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Abstract: We consider the problem of safe control design for a class of nonlinear, control-
affine systems subject to an unknown, additive, nonlinear disturbance. Leveraging recent
advancements in the application of Koopman operator theory to the field of system identification
and control, we introduce a novel fixed-time identification scheme for the infinitesimal generator
of the infinite-dimensional, but notably linear, Koopman dynamical system analogous to the
nonlinear system of interest. That is, we derive a parameter adaptation law that allows
us to recover the unknown, residual nonlinear dynamics in the system within a finite-time,
independent of an initial estimate. We then use properties of fixed-time stability to derive an
estimation error bound on the unknown dynamics as an explicit function of time, which allows
us to synthesize a safe controller using control barrier function based methods. We conduct a
quadrotor-inspired case study in support of our proposed method, in which we show that safe
trajectory tracking is achieved despite unknown, nonlinear dynamics.
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1. INTRODUCTION

Recent advances in computing power and memory stor-
age have ushered in an era of estimation, identification,
and control for autonomous systems dominated by data-
driven methods. For example, compared to the 74 kilo-
bytes of memory available on the United States National
Aeronautics and Space Administration’s (NASA) first lu-
nar module computer, the gigabytes of memory used in
many of today’s data-driven approaches to dynamical
system identification (e.g., deep neural networks) have
allowed engineers to create significantly more expressive
models. Though regression methods are widely-used for
linear system identification, the field of identification for
nonlinear systems is vast. Popular approaches in recent
years include classes of neural networks (NNs), including
deep NNs (e.g., Zancato and Chiuso (2021)) and recurrent
NNs for time-varying systems (Gonzalez and Yu (2018)),
Gaussian processes (Frigola and Rasmussen (2013)), and
more recently the application of Koopman operator theory
(e.g., Mauroy and Goncalves (2020); Brunton et al. (2016);
Klus et al. (2020), among others), which introduces an
infinite-dimensional but notably linear representation of a
nonlinear system on which traditional linear identification
approaches may be used.

Under Koopman theory, there exists a linear Koopman
dynamical system that captures the dynamics of the orig-
inal nonlinear system over an infinite-dimensional space
of scalar functions known as observables. Beginning with

Mauroy and Goncalves (2020), recent work has focused
on using data-driven approaches to approximate a finite-
dimensional matrix representation of the Koopman op-
erator, which acts as a state-transition operator for the
Koopman dynamical system. In particular, extended dy-
namic mode decomposition (EDMD), first introduced in
Williams et al. (2015) has emerged as a popular tool for
carrying out such an approximation. The end result in
many cases is a batched estimate of either the Koopman
matrix (i.e., in Bruder et al. (2021); Haseli and Cortés
(2021)) or its infinitesimal generator (Klus et al. (2020);
Drmag¢ et al. (2021)) obtained by solving a least-squares
regression problem constructed from data. Potential short-
comings of this class of approaches include slower response
times than e.g., recursive methods, and a lack of formal
guarantees on the approximation error bound, which may
be particularly detrimental when used in control design.
In contrast, it has been shown by Black et al. (2022a) that
fixed-time stability in the context of recursive parameter
identification admits a such bound on the identification
error as an explicit function of time.

Finite- and fixed-time stability (FTS and FxTS) are
stronger notions of stability for equilibria of a dynami-
cal system, each of which guarantees convergence of the
system trajectories to the origin within a finite time.
They have been used in the analysis of linear parameter
identification schemes by Rios et al. (2017); Ortega et al.
(2022), and synthesized for the purpose of safe control
design in Black et al. (2022a); Wang et al. (2022). One
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benefit to recursive parameter identification in fixed-time,
i.e., in a finite-time, independent of the initial condition, is
the knowledge of an error bound on the identification error
as an explicit function of time. When synthesized with a
safe control law, this class of identification schemes yields
less conservative control solutions, as highlighted in Black
et al. (2022a).

Control barrier functions (CBFs) have proven to be a
useful tool for safe control synthesis. As a model-based
approach, however, it is critical that an accurate system
model be available in order to preserve forward invariance
of the set of safe states. Though robust CBF controllers can
protect against bounded disturbances to the system dy-
namics (e.g., Jankovic (2018); Black et al. (2020)), the cost
is conservatism. Various other approaches to safe control
have sought to adapt to the unknown residual dynamics
(e.g., Taylor and Ames (2020); Lopez et al. (2021)), or to
learn their effects via data-driven Koopman-based policies
both online (Folkestad et al. (2020)) and offline (Zinage
and Bakolas (2022)). None of these methods, however,
provide guarantees on learning convergence time.

In this paper, we address this open problem by introducing
a Koopman-based identification scheme for safe control
design that guarantees convergence within a fixed-time for
a class of nonlinear, control-affine systems subject to an
additive, nonlinear perturbation. We use knowledge of the
bound on convergence time to quantify the identification
error as an explicit function of time, the magnitude of
which is leveraged to design a safe CBF-based controller.
We demonstrate the advantages of our proposed approach
on a trajectory tracking problem, and highlight that the
identification and control laws succeed in preserving safety
of the system even in the presence of measurement noise.

The rest of the paper is organized as follows. In Section
2, we introduce the preliminaries and define the problem
under consideration. Section 3 contains our main result on
fixed-time nonlinear system identification, which we use
in Section 4 to design a safe controller. We demonstrate
the approach on a numerical case study in Section 5, and
conclude in Section 6 with directions for future work.

2. PRELIMINARIES AND PROBLEM STATEMENT

In this paper, we use the following notation. R denotes
the set of real numbers. The vector of size n x 1 with all
elements equal to one is denoted 1,x1. We use || - || to
denote the 2-norm and || - ||o to denote the supremum
norm. We denote the minimum and maximum eigenvalue
of a matrix M as Apin (M) and A (M), and refer to
its ' singular value as o,.(M), to its nullspace as N (M),
and its i*" column as col;(M). The gradient operator is
V, and the Lie derivative of a function V : R" — R along
a vector field f : R® — R”™ at a point z € R" is denoted
as L;V(z) & ¥ f(z).

Consider the following class of nonlinear, control-affine
systems

@ = f(x(t)) + g(x(t))u(t) + d(z(t)), =(0)=mo, (1)
where x € X C R" and u € R™ denote the state and
control input vectors, the drift vector field f : R® — R"
and control matrix field g : R™ — R™ x R™ are known and
continuous, and d : R” — R" is an unknown disturbance
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known to be continuous and to obey [|d(x)|lcc < D < 0
for all ® € X'. Consider also the following set of safe states,

S={z € X | h(x) =0}, (2)
for a continuously differentiable function A : R" — R,
where the boundary and interior of S are 9S = {z €
R™ | h(z) = 0} and int(S) = {x € R" | h(z) > 0}
respectively. The trajectories of (1) are said to be safe if
the set S is forward-invariant, i.e., if ¢y € S = x(t) €
S,Vt > 0. The following lemma, known as Nagumo’s
Theorem, provides necessary and sufficient conditions such
that § is forward-invariant.

Lemma 1. (Blanchini (1999)) Suppose that w(t) is con-
tinuous such that the closed-loop trajectories of (1) are
uniquely determined in forward-time. The set S is forward-
invariant if and only if

. Oh(x) .
= —7"x > .
h= "0 >0, Vo € 05 (3)

In recent years, control barrier functions have emerged as
a viable approach for control design satisfying (3).

Definition 1. (Ames et al. (2017)) Given a set S C X C
R"™ defined by (2) for a continuously differentiable function
h :R™ — R, the function h is a control barrier function
(CBF) defined on the set X if there exists a Lipschitz
continuous class K, function « : R — R such that
sup h(z,u) > —a(h(x)), (4)
ueR™
for all z € X.

We refer to (4) as the CBF condition, and observe that
it constitutes sufficiency for the satisfaction of (3). As
such, any continuous control law w(t) that 1) admits
unique closed-loop trajectories of (1) in forward-time and
2) satisfies (4) renders the trajectories of (1) safe. For the
system (1), the CBF condition is

sup [Lyh(x) + Loh(x)u + Lgh(x)] > —a(h(x)),

u€ER™
where, without identification of d(x), the precise value
of Lgh(x) is unknown. By ||d(x)]|e < D, however, it is
known that

—bg < Lah(z) < bg,

where by = D ’%ﬁf)‘ 1,%x1. Under such circumstances, a

robust-CBF may be used for safe control design.

Definition 2. (Jankovic (2018)) Given a set S C X C R"
defined by (2) for a continuously differentiable function
h : R"™ — R, the function h is a robust control barrier
function (r-CBF) for the system (1) defined on the set
X if there exists a Lipschitz continuous class Ko, function
a : R~ R such that
sup [Lyh(x) + Lgh(x)u — bg] > —a(h(x)),  (5)
ueR™
forall x € X.

Designing a controller to protect against the worst possible
disturbance in perpetuity, however, may lead to poor
performance, especially if D is large. Recent work (e.g.,
Lopez et al. (2021); Black et al. (2022a)) has shown
that this may be mitigated by using an estimate of the
unknown disturbance LZ(:I;) Thus, we define the vector field
estimation error d(x) as

d(z) = d(z) — d(zx).
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In Black et al. (2022a), it was shown under mild assump-
tions that if the uncertain vector field is parameter-affine,
ie., if
d(x) = A(z)6",

for some known, continuous, bounded regressor matrix
A 1 X — R™? and unknown, static, polytopic parameters
0" € © C R?, then the vector field estimation error may
be driven to zero within a fixed time using parameter
adaptation, i.e., ||A(z(t))(0* — 8(t))|| — 0 as t — T < oo
for parameter estimates 0(t), independent, of 6(0). We now
review the notion of fixed-time stability.

2.1 Fized-Time Parameter Identification

Consider a nonlinear, autonomous system of the form
z=F(x), =(0)=w, (6)
where F': R™ — R" is continuous such that (6) admits a
unique solution for all £y € R"™, the value of which at time
t is denoted ¢, (), and where F(0) = 0.
Definition 3. (Polyakov (2012)) The origin of (6) is fixed-
time stable (FxTS) if it is stable in the sense of Lyapunov
and any solution ¢, (xg) of (6) reaches the origin within

a finite time 7" independent of xq, i.e., 3T < oo such that
p,(xg) =0 for all ¢ > T, Vay € R".

In what follows, we review a fixed-time stable parameter
adaptation law from the literature.

Theorem 1. (Black et al. (2022a)) Consider a perturbed
dynamical system of the form (1). Suppose that the
following hold:

i) the unknown, additive dynamics are parameter-affine,
ie, d(z) = A(x)0",
i) there exist a known matrix M (t) € R"*? and vector
v(t) € R™ such that M (£)(8* — 6(t)) = v(t),
iii) the nullspace of A(x(t)) is constant for all t < T, i.e.,
N(A(z(t)) = N(A(=z(0))), Vt < T, where
s
g 2k Vab’ 9

with a,b0 > 0, p > 2, ky = ¢y/2\nae(T), for

constant, positive-definite, gain matrix I' € RP*P and
¢ = miny<p o, (M (1)).

Then, under the ensuing parameter adaptation law,

b )
2 ]
[o]|

the estimated disturbance d(z(t)) converges to the true
disturbance d(x(t)) within fixed-time T, i.e., A(z(t))0(t) —

A(x(t))0" as t — T, and A(x(t))0(t) = A(x(t))0" for all
t > T, independent of 6(0).

2
w4

0=TM v <a||'v (8)

Proof. See (Black et al., 2022a, Proof of Theorem 3).

Theorem 1 provides a framework for adapting parameter
estimates 0 such that an unknown disturbance of the form
d(z) = A(x)0" is learned within fixed-time. It requires
idealized conditions, however, namely the availability of
perfect measurements. While this is clearly limiting, the
robustness to bounded measurement noise has been proven
by Black et al. (2022a). Specifically, convergence to a
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neighborhood of A(x(t))8* is guaranteed by A(z(t))0(t)
in fixed-time. We omit this analysis due to space con-
straints, and refer the reader to Black et al. (2022a) for
details. In reality, however, it is far more common for
the unknown vector field d(x) to be nonlinear, which
to this point has precluded the use of (8) as a learning
or adaptation strategy. By utilizing Koopman operator
theory, however, we can transform the problem of identi-
fying the nonlinear function d into a linear, albeit infinite-
dimensional, identification problem, which with appropri-
ate modifications permits the use of the above adaptation
framework.

2.2 Koopman Operator based Identification

Koopman theory dictates that a nonlinear system of the
form (6) has an analogous and notably linear representa-
tion in an infinite-dimensional Hilbert space Q consisting
of continuous, real-valued functions ¢ : X — R referred to
as observables. The continuous-time Koopman dynamical
system analogous to (6) is then described by

i=~Lqg, q€Q, (9)
where £ denotes the infinitesimal generator of the linear
semigroup of Koopman operators U! : Q — Q, i.e.,

Uq—q
t

Lg = lim =F-Vq.

t—0
For tractability, however, many works (e.g., Bruder et al.
(2021); Drmac et al. (2021), among others) derive matrix
representations U € RN and L e RV of the
respective finite-rank operators U§, = IIyU*|g, and Ly =
IIyL|gy, where Iy : Q — Qp is a projection operator
onto the subspace Qn C Q (spanned by N > n linearly
independent basis functions {t; : X — R} ) and O|g,
denotes the restriction of the operator O to Qx. We refer
the reader to Mauroy et al. (2020) for additional details,
and instead highlight that in practice U and L are taken
to be the respective solutions to

¥ @)U = @l (10)
L) = 22 i) (1)

where ¥(x) = [1(x)...¥n(x)]T € RY and % =
RNXn.

If L can be identified directly (as in e.g., Klus et al.
(2020)), the vector field F may be reconstructed by solving
(11) for F(x). When this is not possible, identification of
U may be used to reconstruct F' after computing L via

L= Tislog U, (12)

in the case of sampled data, where log denotes the principal
matrix logarithm and Ts > 0 is the sampling interval. We
observe that both (10) and (11) describe linear systems
of equations of the form a' X = b, and thus X (in this
case U or L) can be identified using linear identification
techniques such as the parameter identification law (8).

2.8 Problem Statement

Now, reconsider the unknown, control-affine, nonlinear
system (1). Suppose that an estimate of its Koopman
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generator matrix L is available, and let the estimated
unknown vector field d(x) then via (11) be the solution

to
() = P22 () 1 glau+ d(a).

We assume that %(w) is full column rank, which may be
satisfied by design fe.g., sinusoidal basis functions), and

thus have that d(z) — d(x) as L — L (which can also

be satisfied if U — U). Define the vectorized Koopman
matrix and generator (u* and A*), and their estimates (f

and A), as

p' = [col] (U) ... coly (U)] 7, (13)

A* = [col{ (L)...col(L)]T, (14)

= ol () ... col L ()], (15)

= [col{ (L)...col (L))", (16)

and observe that for the system (1) the relations (10) and

(11) are equivalent to

(x)p* = (Ple(@) (17)
and
T(x)A" = azg:(:) (f@) +g@u+da),  (18)
respectively, where
p(x) 0 ... 0
T
U(z) = 0 v (@) (_) e RVN - (19)
0 ... 0 ¢T()

Let the Koopman matrix and Koopman generator estima-
tion errors respectively be denoted

ﬁ = ”L* - I:l‘a

A=X" A
and observe that W(z)A = ¥(x)A* for all A € N(¥(z)).
We are now ready to formally define the problem under
consideration.
Problem 1. Consider a dynamical system of the form (1).

Design adaptation and control laws, A = n(m,u,ﬂ) and
u = k(x, A) respectively, such that

(1) the Koopman generator error vector, A, is rendered
fixed-time stable to the nullspace of ¥ (z), i.e., A(t) —
N(®(x)) ast — T and A(t) € N(¥(x)) forall t > T,
independent of A(0), and

(2) the system trajectories remain safe for all time, i.e.,
x(t) e S, Vvt > 0.

In the ensuing section, we introduce our approach to
solving the first element of Problem 1.

3. NONLINEAR ESTIMATION IN FIXED-TIME

In this section, we introduce our proposed adaptation law

XA = n(xz,u,A\) for the fixed-time identification of the
Koopman generator vector A, which allows us to identify
the unknown vector field d(x) in (1) within a fixed-time.
Before introducing one of our main results, we require the
following assumptions.
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Assumption 1. The projection of the infinite-dimensional
Koopman operator U* onto the finite-rank subspace Oy
exactly describes the evolution of observables ¢ € Q, i.e.,
Uk q = (InUY)g, for all ¢ € Q.

Assumption 2. There exist scalars s > 0, T' > 0 such that
on(¥(x(t))) > sforall0 <t <T, where ¥(x(t)) is given
by (19).

The satisfaction of Assumption 1 depends on the choice
of N (and thus on the basis functions 1)), and while
generally this is an open problem, recent work has studied
the existence of Koopman invariant subspaces (see e.g.,
Brunton et al. (2016)), i.e., subspaces Qn C Q over which
Assumption 1 holds. For our numerical study in Section 5,
we find that bases ¥ constructed using monomials or sinu-
soids work well. The satisfaction of Assumption 2, which
is needed for our proposed adaptation law and bounds the
minimum non-zero singular value of ¥, evidently depends
on the choice of basis functions ;. Note, however, that
W(x(t)) is guaranteed to be full row-rank (which implies
that on(®(x(t))) > 0) provided that Ji € [N] such that
¥i(x(t)) # 0. This can be guaranteed with an appropriate
choice of bases, e.g., ¥1(x(t)) = 1.

Theorem 2. Suppose that Assumptions 1 and 2 hold,
where

T— wm ,

45 Amaz (T)Vab

witha,b > 0,w > 2,andI" € RV XN constant, positive-

definite gain matrix. Then, under the ensuing adaptation

law
e ) (20

[, X))|2/w

(20)

A=T9 (2)v(z, ) (au(a:, A2+

the Koopman generator error vector X is rendered FxTS to
the nullspace of ¥(x), i.e., A(t) — N (¥(x(t))) as t — T
and A(t) € N(¥(x)) for all t > T, independent of A(0),

where
o\ OY(x)

v(x,X) = =~ & — ¥(x)A

(22)

Proof. We first show that there exists a time-invariant
Koopman generator vector A(t) = A*, V¢ > 0, and then
prove that under (21) the associated Koopman generator

error vector A is rendered FxTS to N (¥(x)).

First, under Assumption 1 it follows that there exists
a finite-rank operator Ly : Qn — Qn such that the
nonlinear dynamics of (1) may be represented by the
following linear system in the space of observables:

¢=LNng qE€Q
Then, there exists a finite-dimensional matrix representa-
tion L € RN in a basis {¢; : X = R}, corresponding
to the operator Ly such that the relation (11) holds
over the trajectories of (1). Thus, the Koopman generator

matrix L admits the (time-invariant) Koopman generator
vector A* defined by (14).

Next, observe that (18) over the trajectories of (1) may be
modified to obtain
() N

50 T W (x)A,

U(z)\* — ¥(x)A
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where v(x, A) is given by (22). Thus, we have that the
premises of Theorem 1 are satisfied with M = ¥ and
v = v and the adaptation law (21) takes the form of (8).
Then, with Assumption 2 it follows directly from Theorem

1 that X is rendered FxTS to N (®(x)) with settling time
given by (20). This completes the proof.

We note that while the above result requires perfect
measurements, it is predicated on Theorem 1, which as
stated previously has been proven to be robust to bounded
measurement noise. In what follows, we show how the
parameter adaptation law (21) results in learning the exact
disturbance d(x) to the system dynamics (1) within fixed-
time.

Corollary 1. Consider the system (1). Suppose that the
premises of Theorem 2 hold, and that the estimated

Koopman vector \ is adapted according to (21). If the
estimated disturbance d( ) is taken to be

i) - 2220 g 0)A0 - el u), (@)

where a(z(t),u(t)) = f(x(t)) + g(x(t))u(t), then, the
vector field estimation error d(x(t)) is rendered FxTS to

the origin and the estimated disturbance d(z(t)) converges
to the true disturbance d(x(t)) within a fixed-time T' given

by (20), i.e., d(z z(t)) — 0 and d(z(t)) — d(x(t)) as t — T
independent of d(x(0)).

Proof. We first observe from (18) that the disturbance

d(x(t)) is the solution to

PO y1)) = (@it A" al@(t), u(t)):

Next, it follows from Theorem 2 that under (21) A(t) — A*
as t — T. Then, we have that ®(x(t))A(t) — ®(z(t))A*
and thus that WCZ(Q:@)) — Wd(m(t)) ast— T
when d(x(t)) is taken to be the solution to (24). Finally,
with w full column rank we use its pseudoinverse

M’(m(t)) to recover (23) and thus have that d(z(t)) —
wzut Yast—T.

o (x(t)) (24)
Ox

For the purpose of control design, it is important to
know how the estimation error signals behave during
the transient period ¢ < T before the unknown vector
field d(x) has been learned. In contrast to least-squares
and related regression-based approaches to learning the
Koopman matrix U and/or generator matrix L, our FxTS
parameter adaptation law allows us to derive explicit
estimation error bounds as a function of time. In fact,
prior work (see Black et al. (2022a)) has shown that
the magnitude of this error bound is a monotonically
decreasing function of time. In the following result, we
introduce a modification to the prior work in order to
derive a bound on the magnitude of the vector field
estimation error d(x(t)) as an explicit function of time.

Corollary 2. Suppose that the premises of Corollary 1
hold. If, in addition, the initial estimated Koopman gen-
erator vector is set to zero, i.e., 5\(0) = Opn2x1, and T
n (21) is constant, positive-definite, and also diagonal,
then Vvt € [0,T], where T is given by (20), the following
expression constitutes a monotonically decreasing upper
bound on ||d(x(t))||co:
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|d(@(1))l|oo < ATmaz(W (1)) tan® (A(2)) = 6(t), (25)
where
maz ( )11)/4 (26)
and
wit) = P g, (27)
A(t) = max {E - \/T(Tbt, O} , (28)
Z=tan! <\/§ (;ﬂrlo ) , (29)
where l = 201 vz .1, and [|d(@(1)) [l oo = 0, VE > T,

Proof. Follows from (Black et al.,
and omitted due to space.

2022a, Corollary 1),

Knowledge of the upper bound on the disturbance esti-
mation error bound (25) permits the use of robust, adap-
tive model-based control techniques. In particular, we will
show in the next section how to synthesize a CBF-based
controller that guarantees safety both before and after
the transient phase t < T during which the unknown
disturbance d(x) is learned, and in doing so address the
second element of Problem 1.

4. ROBUST-ADAPTIVE CONTROL DESIGN

In this section, we describe two approaches to synthesiz-
ing the Koopman-based parameter adaptation law with
a CBF-based control law for safe control under model
uncertainty.

4.1 Robust-CBF Approach

In the first approach, we demonstrate how to apply
robust-CBF principles to the design of a safe controller

u = /i(m,j\) when using the Koopman-based adaptation
scheme (21).
Theorem 3. Consider a system of the form (1), a safe set
S defined by (2) for a continuously differentiable function
h : X — R, and suppose that the premises of Corollary 2
hold. Then, any control input u satisfying

sup [Lyh(z) + Lyh(z)u + Ljh(x) — ba(t)] > —a(h(z))

u€eR™
(30)
renders the trajectories of (1) safe, where

ba(t) = oh

‘(5(1&) “1nx1, (31)
and §(¢) is given by (25).

oz

Proof. Observe that over the trajectories of (1)
h = Lyh(x) + Lyh(x)u + Lgh(x)

= Lh(x) + Lyh(x)u + oh g

oh -
o () + 5 d(a)

> Lyh(x) + Loh(x )u—&——d ’ “1nxi-

By Corollary 2 it follows that ||d(x(t))||e < 0(t) for all
t > 0. Therefore, h > —a(h(z) whenever (30) holds, and
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thus S is rendered forward-invariant by any control input
satisfying (30).

It is worth noting that as the estimated disturbance d(z)
converges to the true disturbance d(x) the robustness term
ba(t) will go to zero. So while initially the condition (30)
may demand large control inputs to guarantee safety in
the face of a the unknown disturbance, as ¢t — T the term
ba(t) — 0 and the standard CBF condition is recovered.

4.2 Robust-Adaptive CBF Approach

In this approach, we define the following robust-adaptive
safe set

S, ={xeX:h(x,t) >0}
for the continuously differentiable function

holew,t) = h(w) — 387 (HQ8(0),

for 8(t) = (t) - 1nx1 with §(¢) given by (25), and a
constant, positive-definite matrix 2 € R™*™. We note that
the set S, defined by (32) is a subset of the safe set S
defined by (2), i.e., S, € S. We now introduce a robust-

adaptive CBF condition that renders the trajectories of
(1) safe.

Theorem 4. Consider a system of the form (1), a set S,
defined by (32) for a continuously differentiable function
h, : X — R, and suppose that the premises of Corollary 2
hold. Then, any control input u satisfying

[th,,(w) + Lohy (z)u — r(t,d(w(t)))] > —a(hy(2))
(33)

(32)

sup
ueR™

renders the trajectories of (1) safe, where
r(t,d(z(t)) = Te(Q)8(t)d(t) + ba(t),
where d(t) is given by (25), ba(t) is given by (31), and
0(t) = AGumaz(W (¢)) tan® (A(t))

- %AJW(W@))\/@ tan 3 ~1(A(t))sec2(A(L))
(34)

Proof. Follows directly from (Black et al., 2022a, Theo-
rem 5) by replacing 6 with d(x).

Remark 1. We note that the robust-adaptive CBF con-
dition (33) requires the time-derivative of the maximum
singular value of the matrix W(t) given by (27), i.e.,
Omaz (W (t)). While this may not be available in closed-
form, it may be approximated in practice using finite-
difference methods.

Since both the robust (30) and robust-adaptive (33) CBF
conditions ensure safety of the trajectories of (1), either
condition may be included as an affine constraint in the
now popular quadratic program based control law (eg.
Ames et al. (2017); Black et al. (2020)). We now introduce
one such iteration of the QP controller,

u’ = arg mianu —ul|? (35a)
ucR™ 2
s.t. Vs e [l.q
Either (30) or (33), (35b)
the objective (35a) of which seeks to find a minimally
deviating solution u* from a nominal, potentially unsafe
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input u° subject to the specified CBF constraint (35b). In
this way, the controller (35) may be used in conjunction
with the adaptation law (8) for simultaneous system
identification and control.

In the following section, we demonstrate the efficacy of our
jointly proposed adaptation (21) and control (35) laws on
a quadrotor tracking problem.

5. NUMERICAL CASE STUDY

Let F be an inertial frame with a point sy denoting its
origin. Consider a quadrotor seeking to track a Gerono
lemniscate (i.e., figure-eight) trajectory amidst circular
obstacles in the 2D plane. Quadrotor dynamics are known
to be differentially flat, thus as shown to be feasible in
Zhou and Schwager (2014) we take the model to be the
following 2D double-integrator subject to an unknown,
wind disturbance:

T Vg 0

Ul _ |y 0

oo = la| T |du(2) | (36)
Oy Qy dy(z)

where = and y denote the position coordinates (in m),
vy and v, are the velocities (in m/s), and a, and a, are
the accelerations (in m/s?). The full state and control
input vectors are z = [z y v, v,]] € R* and u =
[az a,]T € R? respectively, and d, : R* — R and d, :
R* — R are unknown wind-gust accelerations satisfying
the requirements of d in (1). Specifically, we used the wind-
gust model from Davoudi et al. (2020) to obtain spatially
varying wind velocities w;(z) and set d;(z) = Cy(w;(z) —
v;) for ¢ € {z,y}, where Cy is a drag coefficient, such that
[z (2)]]oos [|dy (2)]| 00 < D = 10.

We consider the presence of two circular obstacles, each of
which occludes the desired quadrotor path. As such, the
safe set is defined as

S={zeR: hi(z) >0} N{z € R*: hy(2) >0},
where h;(z) = (x — ¢z )% + (y — ¢y,;)? — R? for i € {1,2},
(€z,i; ¢y,;) denotes the center of the it" obstacle, and R is its
radius. Since hq, ho are relative-degree! two with respect

to (36), we use future-focused CBFs for a form of safe,
predictive control (see Black et al. (2022b) for details).

We use forms of the CBF-QP control law? (35) corre-
sponding to both the robust (30) and robust-adaptive (33)
CBF conditions, and compare the performance against
a naive (ie., assuming exact identification, d = d) CBF
controller equipped with the data-driven Koopman-based
identification schemes proposed in Bruder et al. (2021)
(which is denoted DD-KM and uses EDMD to learn the
Koopman matrix from data) and Klus et al. (2020) (which
is denoted DD-KG and uses EDMD to learn the Koopman
generator from data) respectively, with each storing the
last N = 500 measurements. For the robust and robust-
adaptive simulations we inject additive noise sampled from
N(0,0.01) into both measurements of & and @ in order to

1 A function p : R™ +— R is said to be of relative-degree r with
respect to the system dynamics if r is the number of times p must
be differentiated before one of the control inputs appear explicitly.
2 All simulation code and data are available online at https://
github.com/6lackmitchell/nonlinear-fxt-adaptation-control
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= Qbstacles

== Nominal Controller
== DD-KM CBF
= = DD-KG CBF
= Robust CBF
Robust-Adaptive CBF

Fig. 1. XY paths under the various CBF-QP control laws
in the double-integrator example. Only the controllers
using the proposed Koopman-based fixed-time iden-
tification scheme succeed in preserving safety.

stress-test the algorithm under non-ideal conditions. We
use the nominal control law introduced for quadrotors in
Schoellig et al. (2012) and adapted for our dynamics, where
the reference trajectory is the Gerono lemniscate defined
by

x*(t) = 4sin(0.27t)

y*(t) = 4sin(0.27t) cos(0.27t),
which specifies that one figure-eight pattern be completed
every 10s. Our circular obstacles are centered on (—2.5,0)
and (2, —1) respectively, each with a radius of R = 1.5m.
For all controllers, we used linear class K., functions
a(h) = h. For our Koopman basis functions, we used sinu-
soids of the form v; = V/2cos(nmz), i1 = V2sin(nnz),
for n € {1,2} and z € {x,y,v;,v,}. We use a sampling
time of At = 0.001s.

The resulting paths taken by the simulated CBF-controlled

vehicles (Koopman-based naive, robust, and robust-adaptive),

as well as the path taken for the nominally controlled
vehicle without disturbance estimation are displayed in
Figure 1. Here, only the robust and robust-adaptive CBF
controllers that use our fixed-time identification approach
preserve safety (as seen in Figure 2). As the data-driven
Koopman matrix (Bruder et al. (2021)) and generator
(Klus et al. (2020)) approaches are non-recursive and un-
able to quantify the identification error, they are neither
sufficiently responsive nor accurate enough to guarantee
safety in this example. Figure 3 highlights that our distur-
bance estimates indeed converge to the true values within
the fixed-time T' = 0.12 sec, computed using (20), and
the control inputs are shown in Figure 4. We further
note that even when measurement noise is injected into
the system, the adaptation-based approach succeeds in
both reconstructing the unknown disturbance to within a
small error and preserving safety. We leave quantification
of this measurement error and any error associated with
representing the infinite-dimensional Koopman operator
in a finite-dimensional subspace to future work.

6. CONCLUSION

We introduced a safe control synthesis using Koopman-
based fixed-time system identification. We showed that
under mild assumptions we can learn the unknown, addi-
tive, nonlinear vector field perturbing the system dynamics
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Fig. 2. Evolutions of h; and hs for the various controllers
considered in the double-integrator example.
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Fig. 3. The ground truths d,, d, and estimates dy, czy of
the unknown wind gusts. In our scheme, the estimates
converge to the true values within the fixed-time T
without noise, and converge to a close approximation
in the presence of measurement noise.
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Fig. 4. Control inputs for the double-integrator example.

within a fixed-time independent of the initial estimate. The
a priori knowledge of this identification guarantee allows
us to derive robust and robust-adaptive control barrier
function conditions suitable for use in a standard class of
quadratic program-based controllers.

We recognize that there are practical limitations to our
method, including the need to measure the state derivative
and to be able to exactly represent the linear, infinite-
dimensional Koopman dynamical system with a finite-
rank operator. Though we demonstrated some robustness
to measurement noise in our simulated study, in the future
we will seek to relax these assumptions by analyzing the
use of observers and filters for state and state-derivative
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approximation and by seeking to quantify the residual
error associated with projecting the infinite-dimensional
Koopman operator onto a finite-dimensional subspace.
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