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Synopsis Whi le anima ls swim, crawl, wa l k, and fly with app arent ease, bui lding robots cap able of ro bus t loco motio n remains a 
sig nificant cha l len g e. In this re vie w, we draw a tten t ion to me chanosensat ion—the sen sin g of me chanica l forces generate d within 
and outside the b o dy—as a key sense that enables ro bus t loco motio n in anim al s. We di scu ss differen ces between m echan osen- 
sation in anim al s and current robots with respect to (1) the encoding properties and distribu tio n o f m echan os ens ors and (2) 
the in tegra tion and regula tio n o f m echan os ens ory fe e db ack. We argue that robo tics wo uld benefit gre at ly from a detai le d un- 
derst anding of t hese aspects in animals. To that end, we hig hlig ht p ro mising exper iment a l and eng ine ering appro ac hes t o study 
m echan osensa tion, em ph a sizing th e mutual ben efits fo r b iolog ists and eng ine ers that emer g e from movin g f orwa rd together. 

I
L  

l  

a  

w  

b  

a  

o  

n  

(  

c  

a  

n
2  

w  

m  

T
 

a  

s  

m  

2  

v  

(  

e  

i  

t  

p  

i  

t  

p  

c  

l  

b  

p  

l  

i  

2

A
©
F

D
ow

nloaded from
 https://academ

ic.oup.com
/icb/advance-article/doi/10.1093/icb/icad057/7190625 by SIC

B M
em

ber Access user on 08 August 2023
ntroduction 

 o co motio n in the real world is a significant chal-
en g e for current rob ots b ecau se n atural environments
re highl y comp lex a nd ca n cha n g e in unpredicta ble
a ys ( Ja ya ra m a nd Fu l l 2016 ). This re quires robots to
e rob us t —resistant to pert urb at ions a nd effe ct ive in
 wide ran g e o f co ndi tio ns ( Jen 2005 ). W hile so me
f the most impressive robots today, like Boston Dy-
amics ’ A tlas ( Guizzo 2019 ) or ANYbotics’ ANYmal
 Hutter et al. 2017 ), are beginning to deliver ro bus t lo-
o motio n in natural environments and redefine robot
g i lity, robots st i l l lack the efficiency and effe ct ive-
ess of anim al s ( Ijspeert 2014 ; Bu schm ann et al. 
015 ). F or exam ple, it is st i l l difficu lt for robots to cope
ith unexpe cte d perturb at ions, suc h as t erra in def or-
ation and foo t slip pag e ( Ohradzan sky et al. 2021 ;
ranzatto et al. 2022 ; Chung et al. 2023 ). 
In contrast to robots, anim al s swim, crawl, wa l k,

nd fly ro bus t ly wit h a pparen t eas e. Ke y to their out-
 dvance A ccess pu blication Jun e 5, 2023 
C Th e Auth or(s) 2023. Pu blis h ed by Oxford University Press on behalf of the
o r permissio ns, plea se e-m ai l: j ourna ls.permissio ns@ou p.co m 
t anding per for m ance i s a co mb inatio n o f fin e-tun ed
e chanica l and s ens ory fe e db ac k ( Dic kinson et al .
000 ). Me chanica l fe e db ack is pro vided b y the intrinsic,
 iscoel ast ic propert ies of the muscu los ke letal system
 Nishi kawa et a l. 2007 ). A fast running coc kroac h, for
xa mple, ca n self-stab ilize wi thin mi l lise conds after be-
ng pus h e d sideways than ks in p art d ue to i ts v iscoel as-
ic legs ( Jindrich and Fu l l 2002 ). From an eng ine ering
 ersp e ct i ve ( Ho lm es et al. 2006 ), m echa nical f eedback
s interesting because it h e lps robots recover from cer-
ain perturb at ions ext rem e ly fast at n o addi tio nal co m-
u tatio nal cost ( Jaya ra m et al. 2018 ). As such, it h a s suc-
essfu l ly inspire d generat ions of high ly cap able mu lt i-
egged robots ( Al tendo rfer et al. 2001 ). Sensory fe e d-
ack, on the other hand, a l lows anima ls to cope with un-
r edictable envir onm ents m or e br o ad ly. A nim al s uti-
ize s ens ory fe e db ack fro m a variety o f different modal-
ties to guide and stabilize locomotion ( Dickinson et al.
000 ). 
 Society for In tegra tive and Com para tiv e B iology. All rights reserved. 
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Fig. 1 Mechanosensory control of locomotion in animals. (A) Animal mechanosensors come in many shapes and forms. Embedded deep 
within the musculoskeletal system, they detect external and internal forces important for controlling locomotion. Top left: cerebrospinal 
fluid contacting neuron in the central canal of a larval zebrafish encoding axial bending in the spinal cord through coupling to an internal 
acellular thread called the Reissner fiber (top view, adapted from Wu et al. 2021 ). Bottom left: chordotonal neurons in a Drosophila larva 
encoding muscle stretch (adapted from Agrawal and Tuthill 2022 ). Top right: muscle spindle in a mouse leg encoding muscle stretch. 
Bottom right: campaniform sensillum on a Drosophila wing encoding aerodynamic forces. (B) Across species and types of locomotion, 
mechanosensory feedback informs locomotor circuits in the central nervous system at multiple levels and timescales. Mechanosensory 
feedback mediates reflexes, shapes internal locomotor rhythms, and contributes to action selection and state estimation. Feedback is 
flexibly regulated to meet behavioral demands. Control diagram adapted from Dickinson et al. (2000) . 
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In this re vie w, we focu s on mech anosens ation, t he
sen sin g of me chanica l forces generate d within and
outside the b o dy. Me chanosensat ion is a crit ica l type of
s ens ory fe e db ack fo r loco motio n across anim al s ( Fig. 1 ;
Tuthi l l and Wi l son 2016 ; Kn a f o a nd Wya rt 2018 ; Tuthi l l
an d Azim 2018 ; Bou bli l et a l. 2021 ; Frigon et a l. 2021 ;
Ag rawa l and Tuthi l l 2022 ). Most anima ls, including
humans, re ly h eavily on m echan osensatio n fo r ro bus t
loco motio n. Fo r exa mple, huma n p at ients lacking
m echan os ens ory fe e db ac k due t o genetic m uta tions
( Ch es ler et al. 2016 ) or viral infections ( Cole and Katifi
1991 ; Laj oie et a l. 1996 ) are t ypic a l l y unab le to wa l k. If
they do re cover, locomot ion is anything but ro bus t—
eac h st ep r equir es pr ecise pla nning a nd v isu a l cont rol.
Lack of m echan os ens ory fe e db ack causes loco motio n
deficits across species, wh eth er anim al s walk, fly, crawl,
or sw im (e.g ., Dickinson 1999 ; Hugh es an d Th om a s
2007 ; Mendes et al. 2013 ; Wu et al. 2021 ; Santuz et al.
2022 ). 

In co mpariso n to oth er m oda lit ies li ke vision,
m echan osensatio n is typ ica l ly fast, co mpu tatio nally
ch eap, an d e qua l ly effe ct ive under varying external con-
di tio n s. These advantag es hav e not been lost on engi-
n eers. In fact, m echan os ens o rs—p r imar ily in t he for m
of inert ia l measurement units (IMUs)—are integ ra l
pa rts of ma ny robot ic cont rol ler desig ns. These robot ic
s ens ors may even ou tperfo rm animal m echan os ens ors
in terms of noise an d con duction de lays ( Bu schm ann et
al. 2015 ). Neverth e less, it h a s been challen gin g to take
fu l l advantage of m echan osensation in robots to enable
anima l-li ke locomot ion. Why? 
In this re vie w, we draw a tten tion to k ey differences

betwe en me chanosensat ion in current robots and an-
im al s related to (1) the encoding properties and dis-
t ribut ion of m echan os ens ors and (2) the in tegra tion
and regu lat io n o f m echan os ens ory fe e db ack. We ar-
gue t hat inspir ing t h e n ext gen eratio n o f ro bus t ro bots
wi l l be accelerated by a detailed un derstan ding of these
aspects in animals. To that end, we hig hlig ht p ro mis-
ing exper iment a l and eng ine ering appro ac hes t o study
m echan osensa tion, em ph a sizing the mutual benefits for
biologists and engineers that emer g e from moving for-
ward together. 

Encoding properties and distribution of 
mechanosensors 
Encoding properties of mechanosensors 

Eng ine ere d me chanos ens o rs typ ica l ly dire ctly encode a
physica l p a ra meter with fixed sensi tivi ty over the whole
pa ra meter ra n g e. F or exam ple, legged r obots ar e r ou-
tin e ly equi pped wi th s ens ors t hat line arly encode joint
angles or joint for ces/tor ques ( Bu schm ann et al. 2015 ).
At first sight, animal m echan os ens ors may appear to
funct ion simi la rly. For exa mple, the responses of mam-
m alian mu scle spin dles an d insect ch o rdoto nal o r gan s
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r e r elat ed t o joint ang les, w hile those of m amm alian
olgi tendo n o r gan s and in se ct camp aniform sensi l la
r e r elat ed t o fo rces ( Tu thi l l and Azim 2018 ). How-
ver, un li ke eng ine ere d s ens ors, anima l me chanosen-
o rs o ften encode physical pa ra met er s non-linearly and
ependent on st imu lu s hi story. Ca mpa nif orm sensi l la,
 or exa mple, en code th e rat e of c han g e o f fo rce wi th a
ower–l aw rel ation, t heir fir ing rate decre ases over time
h en th e for ce r emain s con stan t (ada pta tion), an d th ey
n code th e sam e magni tude o f fo r ce differ ently depend-
ng on wh eth er it is reached during a force increase or
 for ce decr ease (hyster esis; Ridgel et al. 2000 ). Such
o mplex encoding p roperties may result from a com-
 inatio n o f neural p r operties—which ar e in part deter-
in ed by th e n eurons’ m e chanica l ly gate d ion chan-
 e ls ( Wa l ker et a l. 2000 ; C heng et a l . 2010 ; Fauc herre et
 l. 2013 ; Akita ke et a l. 2015 ; Delm a s et al. 2022 )—and
e chanica l propert ies ( Sa ne a nd McHenry 2009 ; Ba rth
019 ). Me chanica l propert ies dire ctly a ffect sen sin g ca-
 abi lit ies be cause me chanos ens o ry neuro ns are embed-
e d de ep within musc les, t endons, joints, th e s kin, or
h e s ke leton ( Fig. 1 A). Ca mpa nif orm sensilla, f or exa m-
le, are embe dde d in the inse ct exos ke leton, in cluding
n the legs and in the wings ( Dinges et al. 2021 ). Accord-
n gly, the sen si tivi ty o f an individ ua l sensi l lum st rongly
epends on how the surrounding cuticle deforms in re-
ponse t o ext ernal forces ( Dic ker son et al . 2021 ; Din g es
t al. 2022 ). 

istribution of mechanosensors 

ng ine ere d s ens ors differ from animal m echan osen-
ors not only in terms of their encoding properties
ut also in terms of their dist ribut ion across the b o dy.
urr ent r obots ar e e quippe d wi th co m para ti vel y few
 echan os ens ors. L egged rob ots, f or exa mple, may be

 quippe d with a sin gle sen sor per leg joint to encode
o int posi tio n and/o r to rque, and a s ens or in the foot
o en code groun d contact ( Bu schm ann et al. 2015 ). In
ontra st, anim al mech anos ens o rs are o rders o f magni-
udes more numerous. Depending on its size, a sin-
le m amm alian mu scle m ay co ntain u p to 500 mus-
le spindles ( Prochazka 1996 ). Even a tiny f r uit fly leg
ontains s e vera l hundre ds of me chanos ens o ry neuro ns
 Ph e lps et al. 2021 ). Th e high er number of m echan osen-
ors in anim al s like ly contri but es t o their ro bus t lo-
o motio n: Should a subset of mechanos ens ory neu-
ons be damaged, other neurons ca n tak e over with
o a pparen t effect o n loco moto r perfo rmance. In fact,
his redun dan cy makes it difficult to study how spe-
ific m echan os ens o ry neuro ns co ntribu t e t o locomo-
io n co ntrol—a challen g e recognized already in early
unct iona l studies ( Delcomyn 1985 ) and st i l l present to-
ay (see below). But indiv idu a l me chanos ens ory neu-
o ns o f a given type are n ot n ecess ar ily unifor m. Among
t her t hings, t hey may differ in their sensi tivi ty. This
s seen in many m echan os ens o ry neuro ns, like the
osi tio n-sensi tive neuro ns o f cho rdoto nal o r gan s in in-
ect legs. With different peak sensi tivi ties, th ese n eu-
ons c an div ide up the st imu lus ran g e , a strat egy known
s ran g e fract ionat io n ( Matheso n 1992 ; Mamiya et al.
022 ). As a group, th e m echan os ens o ry neuro ns can
h en en code a pa ra met er suc h as joint angle precisely
ver a broad range. 

oving forward 

lthough much is known about the encoding prop-
rties and distribu tio n o f m echan os ens ors in anim al s,
a ny deta ils rema in unclea r, which in turn hampers
r oader r obotic im plemen ta tion. How exactly do neu-
al and me chanica l propert ies int eract t o det er mine t he
en sin g capa b ili ties o f m echan os ens o ry neuro ns? W hat
re the advantages of n on-lin ear, adaptive en coding?
ow many s ens ors are ne e de d to control loco motio n,
n d wh ere s h ould th ey be pl aced? Mov ing f orwa rd, we
elieve that co mpu tatio nal m ode ls an d n ew t ec hniques
 o fabricat e robotic s ens ors wi l l p rovide impo rtant in-
igh ts in to these questions. 

oving forward with computational models 

o mpu tatio nal m ode ls are valuab le too ls t o bett er un-
erst and t he encoding properties and distribu tio n o f
nima l me chanos ens ors. Mus cle spindles are a go o d ex-
mp le. Their di verse and complex responses are well
ocument ed , bu t i t h a s been ch allen gin g to under-
tan d h ow exact ly t h e responses em er g e from b o dy
 ovem ents in different contexts. Using a co mpu tatio nal
 ode l of th e spin dle , B lum et al. (2020) were able

o s h ow t hat t he responses can in fact emer g e from
rst p rinci ples o f muscle co nt ract i le me cha nics. In a n-
ther recen t exam p le, Mami ya et al. (2022) took ad-
antage of a finite e lem ent m ode l b ase d on an X-ray
ataset of the f r uit fly leg to better un derstan d h ow
eg m ovem ent is trans la ted in to the very differen t re-
po nses o f neighbo ring neuro ns o f a cho rdoto nal o rgan.
h e m ode l revea le d that a me chanica l st ructure in the
eg effe ct i vel y p re-p rocesses m ovem ent-re late d sig na ls
o give rise to posi tio n-sensi tivi ty in so m e n eurons an d
ib ratio n-sensi tivi ty in others. 
To study the potent ia l advantages of biologi-

al encodin g ov er sta nda rd eng ine erin g encodin g,
zcze cinski et a l. (2021) develope d a sim ple com puta-
 iona l m ode l tha t em ula tes how insect cam paniform
ensi l l a ad a pt to constan t forces. Th e m ode l wa s u sed a s
 rea l-t ime fil ter o n a robot leg to encode fe e db ack from
train s ens ors “ca mpa nif orm-sensill a-st y le” ( Zy h ows ki
t a l. 2023 ). Than ks to t he adapt ation, t he bio-inspired
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s ens ors ro bus tly sig na le d on ly relat iv e chan g es in strain
on the leg, making them essent ia l ly self-ca librat ing
across contexts. In the future, this may make it eas-
ier to determine when a leg is in ground contact and
ther eby impr ove the contr ol o f inter-leg coo rdinatio n in
wa l king robo ts. In ano ther stud y, Mo hren et al. (2018)
used a co mpu tatio nal m ode l t o bett er under st and t he
en coding an d distri bu tio n o f ca mpa nif o rm sensilla o n
in sect win gs. Th e m ode l revea le d that on ly fe w s ensi l la
in sp ecific lo cations are needed to read out information
ab out b o dy m ovem en ts im portan t for fligh t con trol,
wi th b iolog ica l s ens o rs p rov iding signific a nt adva ntages
ov er en g ine ere d s ens ors t hat direct ly encode strain. 

These examples i l lust rate how co mpu tatio nal m ode ls
can h e lp us un derstan d th e en co ding prop erties and dis-
t ribut ion of anima l me chanos ens or s and , in turn, pro-
v ide valu a ble in spiration for ro bus t sen sin g in robots.
An advantage of com puta t iona l m ode ls is that neural
an d m e chanica l propert ies can be easily chan g ed to ex-
plore h ow th ey a ffect sen sin g capa b ili ties in different
cont exts (e .g., Weber et al . 2021 ). 

Moving forward with new fabrication and 

computing techniques 

On th e engin eering side, n ew fab ricatio n t ec hniques,
such a s la ser microm ac hined stac k laminat e manufac-
turing ( Wo o d et al . 2008 ; S reetha ra n et al. 2012 ) and
3D print ing ( Va lent ine et al . 2017 ; S kylar-Scott et al.
2019 ), now en able fa st, flexi ble, an d low-cost deve l-
op ment o f m aterial s th a t in tegra te s ens ors thro ugho ut
the structure ( Ga fford et al. 2014 ; Muth et al. 2014 ;
McDonn e l l et a l. 2022 ), resu lt ing in smart materi als c a-
pable of functioning a s m achin es th emse lves ( McEvoy
an d Corre ll 2015 ; McCracken et a l. 2020 ). Embe dding
s ens ors directly into a rob ot’s b o dy may enable the use
of g eneric sen sors tha t—m uch like the campaniform
sensi l la di scu ssed a bov e—au to mat ica l ly adapt to behav-
iora l ly relevant st imu li v i a th e m echanics of th e b o dy
( Dic ker son et al. 2021 ), thereby reducing the compu-
tat iona l burdens for contr ol. Mor eover, these accessi-
ble and ea sy-to-u se pro to typing t ec hniques are capa-
ble of creating bio-inspired m echan os ens ors tha t a p-
p roach sensi tivi ties o f b iological s ens o rs ( K ang et al.
2014 ; Liu et al. 2022 ). With suc h t ec hniques, we expect
to see rap id p r ogr ess in engineered system s utilizin g a
lar g e number o f distribu ted s ens or s ( Gao et al . 2016 ;
Shih et al. 2020 ) that have the potent ia l to ou tperfo rm
st ate-of-t he-art systems in terms of adaptab ili ty and re-
silience. Modern b io-insp ired s ens ors are even starting
to be capable of simu lat ing the responses of biolog ica l
m echan osen sitiv e ion chann e ls ( Marcotte et al. 2020 ),
which could lead to higher fidelity robophysical mod-
els. Wi th co mpu tatio nal t ec hniques suc h as n eurom or-
phic co mpu t ing ( Davies et a l. 2021 ) be co ming mo re ac-
cessi ble, m echan os ens o ry neuro n-like encoding can be
readil y imp lemente d in robot ic p rocesso rs ( Du peyroux
et al. 2022 ). As th ese robotic implem entations mature
in design co mplexi ty an d fide lity, th ey can in creasingly
serve as effe ct i ve robop hysical m ode ls to e l ucidate p rin-
ci ples o f b iolog ica l me chanos ens ors, becaus e the y are
fun dam enta l ly g rounde d in t he physics of t he re al world
( Aguilar et al. 2016 ). 

Integration and regulation of 
mechanosensory feedback 

Integration of mechanosensory feedback 

In addi tio n to advantag eous encodin g proper-
t ies and dist ribut ions of me chanos ens ors, effe ct ive
m echan osensation in anim al s i s en abled by efficient
in tegra tio n o f m echan os ens ory fe e db ack a t m u lt iple
leve ls an d tim escales to su ppo rt various loco moto r
functions ( Fig. 1 B; Da l lmann et al. 2021 ; Frigon et al.
2021 ). 
At the lowest leve l, m echan os ens ory fe e db ack is di-

r ectly or indir ectly in tegra ted in m otor n eurons to en-
a ble fast reflex es t hat st ab ilize o n g oin g locomotion. For
example, dur ing t he st ance ph a se of wa l king, mam-
ma lian Golg i tendo n o r gan s and in se ct camp aniform
sensi l l a prov ide reflexi ve, positi ve fe e db ac k t o mo-
to r neuro ns o f ant ig rav it y mu scles, there by r einfor c-
ing b o dy weight supp ort ( Duysens et al. 2000 ; Zill et
a l. 2004 ). This fe e db ack au to mat ica l ly act iva tes m us-
cles more strongly wh en th e m e chanica l dem and s on
the b o dy increase , suc h as when wa l king uphi l l or
when c arry ing addi tio nal w eight. Sta bilizin g reflex es are
crit ica l acros s s p ecies and typ es of lo co motio n. In ze-
brafis h, m echan os ens o ry neuro ns that co nt act t he cere-
b rosp inal fluid in the cent ra l cana l and dete ct bending
of the spine ( Fig. 1 A; D j enoune et a l. 2014 ) proj e ct to
occi p i tal moto r neuro ns in th e hin d b rain that co ntrol
head posi tio n ( Wu et al. 2021 ). Gen etic rem oval of th ese
n eurons dem onst rate d that they are crit ica l to stabilize
pos ture a gains t rollin g durin g high-speed swimmin g
( Hubbard et al. 2016 ; Wu et al. 2021 ). Sta bilizin g reflex es
are even crit ica l for flies, which ra pidly fla p their wings
s e vera l hundre d t imes per se co nd d uring fligh t. F or ex-
amp le, fly ha lteres—modifie d hindwings that function
a s n ature’s o nly b iolog ica l gyroscope—me diate crit ica l
e qui lib ri um reflexes to stabilize the b o dy ( Hengstenb erg
1988 ; Na lb ac h and Hengst enberg 1994 ; Dic kinson 1999 ;
Sherma n a nd Dickinson 2003 ; Dickerson et al. 2019 ). 
At an in termedia te leve l, m echan os ens ory fe e db ack

is in tegra ted in control circuits in the spinal cord (ver-
t ebrat es) or vent ra l nerve cord (invert ebrat es), where
it tunes lo comotor sp e e d and b o dy co ordination. Parts
o f these co ntr ol cir cuits ar e int rinsica l ly r hythmic an d
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 eferr ed to as loco moto r cent ra l p a ttern genera t or s
CPGs; Guertin 2009 ; B iday e et al. 2018 ; G rilln er an d
ozlov 2021 ). 
The effects of mechanos ens ory fe e db ack on

pe e d cont rol can be se en in fict ive prep arat ions,
her e CPG cir cuits ar e i solated and di sconne cte d
rom m echan os ens ory fe e db ack a ltoget her. Wit hout
 echan os ens ory fe e db ac k, rhythmic locomot or-like
ctiv it y in circuits norma l ly cont rol ling wa l king,
ight, sw imming , or crawling is significantly slower
 Wi lson 1961 ; Gri l ln er an d Zan gg er 1979 ; Wa l lén
nd Wi l liam s 1984 ; Ry cke bu sch and La uren t 1993 ;
üsch g es et a l. 1995 ; Pu lver et a l. 2015 ) , s ugges ting
h at mech anos ens ory fe e db ack en hances loco moto r
pe e d. This effe ct was confirme d in genet ic model
r ganism s by manipu lat ing spe cific me chanos ens ory
euro ns d uring swimming and crawling ( Hughes and
hom a s 2007 ; Böhm et al. 2016 ; Kna f o et al. 2017 ).
 or exam p le, acti vating m echan os ens o ry Roho n beard
eurons in larval ze brafish th at detect pres s ure on
h e s kin from th e externa l fluid act ivat es premot or
xci tato ry V2a neurons ( Kna f o et al . 2017 ), whic h are
nvo l ve d in sett ing loco moto r spe e d ( McLean et a l.
008 ; Men e laou an d McLea n 2019 ). Simila r ly, th e cere-
 rosp inal fluid co ntacting neuro ns mentio ned a bov e
n d oth er m echan os ens o ry neuro ns dete ct ing bending
 f the sp ine co ntribu t e t o in creasing m ovem ent spe e d
 Böhm et al . 2016 ; Pict on et al . 2021 ; Wu et al . 2021 ).
ike wis e , in crawling Dro so phila la rvae, different types
f m echan os ens ory neurons that monitor b o dy wa l l
efo rmatio n ( Vaadia et al. 2019 ) provide feedback to
pe e d up loco motio n ( Hughes and Thom a s 2007 ). 
The effects of mechanos ens ory fe e db ack on b o dy

oo rdinatio n are also seen across species and types
 f loco motio n. Durin g walkin g, both v ert ebrat es and
nvert ebrat es int egrat e fe e db ack from various types
f m echan os ens ory neurons to tune the d uratio n o f
ta nce a nd swing ph a ses, sp at ia l f oot placement, a nd
he temp oral co ordination of legs on a s tep-by-s tep ba-
i s ( Proch azka 1996 ; Pearson 2004 ; B iday e et al. 2018 ).
 or exam ple, both m ovem ent- an d for ce-r elate d fe e d-
ac k int erac t with CPG circ uits t o time eac h leg’s
ta nce-to-swing tra nsi tio n ( Duysens and Pearson 1980 ;
ru se 1985 ; Hie bert et al. 1996 ). In addi tio n, coo rdina-
ion across mul ti ple legs is aided by lon g-ran g e , int er-
eg menta l me chanos ens ory pathways ( Grabowska et al.
022 ). Similar ly, m echan os ens ory fe e db ack is re quire d
 o coordinat e different b o dy segments durin g crawlin g
 Hugh es an d Th om a s 2007 ; Song et al. 2007 ). In in-
ec t flig ht, m echan os ens ory fe e db ack tunes the flight
hythm on a s troke-by-s troke ba si s, with mech anosen-
ory fe e db ack from th e hin d wing p l ay ing a major role in
tructur ing t h e m otio n o f i ts anterio r serial ho mologue
 Gettrup 1965 ; Frye 2001 ; Dic ker son 2020 ). This is the
ase for both locusts, in which ca mpa nif orm sensilla en-
ode hin dwing m otion t hat in tur n co ntrols fo rewing
 w ist ( Gettrup 1965 ), and moths, in which the hind-
ing stret c h recept or h e l ps co n trol lift genera tion by
he forewing ( Frye 2001 ). Although flies do not pos ses s
 true hindw ing , recent work s ugges ts t hat t he a f ore-
 ention ed haltere plays a similar role ( Dic ker son et al .
019 ). 
At the highest level , mec hanos ens ory fe e db ack is in-

 egrat ed in control circuits in th e brain, wh ere it h e lps
o elicit ap pro priat e c han g es in motor be havior an d es-
imate the state of the b o dy. F or exam ple, activa ting
 hordot onal neurons in the legs of Dros ophila c an elicit
 orwa rd wa l king ( Me deiros et a l. 2022 ). When wa l k-
ng flies encounter a dead-end , t ouc h-sen sitiv e neu-
o ns o n the b o dy a nd legs ca n elicit backwa rd wa l k-
ng ( Sen et al. 2019 ). These chan g es in motor behavior
re me diate d by circuits in the brain ( Sen et al. 2019 ;
e deiros et a l. 2022 ). Whi le som e fly m echan osen-
ors may directly proj e ct to the brain ( Tsubouchi et
l. 2017 ), m ost m echan os ens ory fe e db ack is car r ied by
scen ding n eurons ( Ch en et al. 2023 ). In the brain,
 echan os ens ory fe e db ack can directly modulate de-
cen ding n euro ns that co ntrol loco motio n ( Sen et al.
019 ) or be in tegra ted wit h ot her types of s ens ory
e e db ack in deeper layers. For example, the cent ra l
om plex—the naviga t iona l center of the insect brain—
n tegra tes m echan os ens ory fe e db ack from the legs ( Lu
t al. 2022 ; Lyu et al. 2022 ) and halteres ( Kathman and
ox 2019 ) wit h ot her s ens ory fe e db ac k t o ke ep t rack of
h e fly’s h eadin g durin g wa l king and flight. Like wis e, in
 amm al s, mech anos ens ory fe e db ack a scend s to mul-

i ple b rain regio ns, incl uding the brainstem, the cere-
e llum, th e th alamu s, an d th e cereb ral co rtex, where i t
 rovides cri t ica l informat ion about the state of the lo-
o moto r system ( Frigon et al. 2021 ). 

egulation of mechanosensory feedback 

 fun dam en tal fea ture of m echan os ens ory fe e db ack in
nim al s i s th at its effects a re no t fixed b ut can be flex-
b l y a tten ua te d when disrupt iv e or self-g enerated and
n hance d when advantageous ( Azim and Seki 2019 ). 
Mechanos ens ory fe e db ack can be adjusted already

n t he per iphery. A wel l-documente d example is the
usc le spindle , whos e s ensi tivi ty is tuned by the activ-

 ty o f gamma moto r neuro ns tha t regula te th e leve l of
ension in the muscle fibers of the spindle ( Macefield
n d Kn e llwolf 2018 ). An oth er exa mple a r e fly halter es.
 ike t he wings, halteres pos ses s a set of steering mus-
les that receive v isu a l fe e db ac k t o regulat e musc le
ctiv it y and, w it h t h at, h a ltere mot ion. This way, vi-
ua l fe e db ack dire ctly a ffects the mechanos ens ory fe e d-
 ack provide d by the halteres and, in tur n, t he hal-
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teres’ effects on fligh t con trol ( Dic ker son et al . 2019 ). A
con serv e d me ch ani sm for regu lat ing me chanos ens ory
fe e db ack in the periphery across species is presynaptic
inhib i tio n, where specialized interneurons inhib i t the
m echan os ens o ry axo ns as they enter the spinal cord or
vent ra l nerve cord in a tas k- an d context-depen dent
manner ( Watson 1992 ; Rudomin and Schmidt 1999 ;
Rossig nol et a l. 2006 ). F or exam ple , mec hanos ens ory
ax on s of locusts and mice r eceive pr esynapt ic in hibi-
tio n d uring wa l king ( Wo lf and B urrows 1995 ; Koch et
al. 2017 ). Removal of this inhib i tio n in mice results
in ex cessiv e flexion and p erturb ed gait, s ugges ting that
presynapt ic in hibit ion is crit ica l to pr event r eflexive r e-
sponses that would otherwi se di srupt rhythmic step-
ping ( Koch et al. 2017 ). 

R egul ating the effects of m echan os ens ory fe e db ack is
not limit ed t o t he per iphery. Fe e db ack can be flexib l y
adjusted a t m ul ti ple levels, fro m circui ts in the sp inal
co rd o r vent ra l nerve cor d to cir cui ts in the b rain ( Azim
an d Se ki 2019 ). In stick insects, f or exa mple, a b a lance
o f exci tatio n an d inhi b i tio n wi thin a po p ulatio n o f spe-
cific interneurons in the vent ra l nerve cord is thought to
re vers e the sign of postural reflex es durin g locomotion
( Dr ies a ng a nd Büsch g es 1996 ). 

Moving forward 

The a bov e examples i l lust rate that m echan os ens ory
fe e db ac k is int egrat ed in contr ol cir cuits at mu lt i-
ple levels to su ppo rt a variety o f loco moto r func-
t ions. Me chanos ens ory fe e db ack me diates fast reflexes,
shap es lo co moto r rhythms, and co ntribu t es t o ac-
t ion sele ct ion and state est imat ion. Tas k- an d context-
depen dent enhan cem ent or attenuation of fe e db ack
gua ra ntees smoo th, rob ust m ovem ents. Desp i te our
bro ad knowle dg e a bout the in tegra tion and regula tion
of m echan os ens ory fe e db ack in anim al s, m any crit ica l
detail s rem ain unc lear, whic h hamper s broader robotic
im plemen ta tion. How exactly are fe e db ack p athways or-
ganize d in cont r ol cir cuits? How do spe cific fe e db ack
pa thways con tribut e t o ro bus t loco motio n? Moving fo r-
ward, w e believ e that co nnecto mics, genetic tools, and
co mpu tatio nal and physical m ode ls w ill prov ide impor-
tan t insigh ts in to these questions. 

Moving forward with connectomics 

One o bs tac le t o under standing mec hanos ens ory fe e d-
back concerns the o rganizatio n o f fe e db ack p athways in
the cent ra l nervo us system. Altho ugh much is known
abou t the o rganizatio n already ( Ab ra ira a nd Ginty
2013 ; Tuthi l l and Wilson 2016 ; Wu et al. 2021 ), we
lack co mp re h en siv e wirin g diagram s. Such wirin g dia-
gram s w ould be power f ul t ools t o generat e and t est hy-
p otheses ab out the in tegra tio n o f m echan os ens ory fe e d-
b ack in cont r ol cir cui ts and co nstrain co mpu tatio nal
m ode ls ( Zarin et a l. 2019 ; Lapp a lainen et a l. 2023 ).
Thanks to recent advances in ele ct r on-micr oscopy-
b ase d conne ctomics, me chanos ens ory w iring di agrams
are now in reac h. Connect omics h a s developed ex-
trem e l y rapidl y in the last five yea rs, pa rticula rly f or
D rosophila ( E schb ach and Zlat ic 2020 ; Ph e lps et al.
2021 ; Ga li li et al. 2022 ; Winding et a l. 2023 ; Ta kemura
et al. 2023 ). There now exist mu lt iple conne ctomes of
th e Drosophil a brain an d vent ra l nerve cord in various
s ta ges of re const ruct ion. Re const ruct ion and an alysi s
efforts a re m a ssi vel y accelerated by co l laborat ions in on-
line co mmuni ties an d n ew machin e le ar ning tools t hat
can re const ruct neurons, ident ify synapses, and predict
neurot ransmitter ident it y w ith hig h acc uracy ( Azevedo
et a l. 2022 ; Dorkenwa ld et a l. 2022 ). Studies have already
begun to reveal the anatomical diversity and distinct
proj e ct ion p atterns of me chanos ens o ry neuro ns fro m
different b o dy parts and how they inter face wit h cen-
t ra l circuits to influence behavior ( Ohyama et al. 2015 ;
Hampel et al. 2020 ; Phelps et a l. 2021 ; Dorkenwa ld et
al . 2022 ; Eic hler et al. 2023 ). One of t he e arlies t s tudies
ident ifie d h ow m echan os ens ory fe e db ac k from c hordo-
to nal o r gan s is in tegra ted in a multilevel circuit in the
Dros ophila l arva to tr ig g er rollin g ( Ohyama et al. 2015 ).
Simila r efforts a re un derway to identify m echan osen-
sory fe e db ack circuits for wa l king and flight in the ad ul t.
A cha l len g e for re const ruct ing me chanos ens ory path-
ways i s th at co nnecto mics datasets do not include the
m echan os ens ory cell b o dies in the periph ery. Th ere-
fore , mec hanos ens o ry axo ns must be ident ifie d wit h t he
h e l p o f ot her dat a sets, such a s light microscopy im ages
( Eich ler et a l. 2023 ). Wh ole-n ervous system conn ec-
tomics is not yet within reach for m amm a lian-size d ner-
v ous system s, but in se ct spe cies ot her t ha n Droso phila
are potent ia l tar g ets. Com para t ive conne ctomics wi l l
be useful to identify which feedback pathways are con-
served and which r epr esent s pecies-s pecific ada pta tions
( Ga li li et al. 2022 ). 

Moving forward with genetic tools 

W here co nnecto mics can provide a static roadmap of
m echan os ens ory pathways, genetic tools allow r ecor d-
ing a nd ma nipu lat ing these p athwa ys in beha ving ani-
m al s with ev er-increasin g specificity. In Drosophila , ze-
bra fish, a nd mice, neural activ it y c an now be imaged in
the sp inal co rd o r vent ra l nerve cord dur ing tet hered lo-
co motio n ( Nelso n et al. 2019 ; Vaadia et al. 2019 ; Böhm
et al. 2022 ; Hermans et al. 2022 ). Exper iment al access to
the activ it y of m echan os ens ors and their downstream
tar g ets is a h uge advan t age. As out lined a bov e, activ it y
patterns cannot easily be predicted from m ovem ent, be-
cause th e n ervous system can adjust fe e db ack in a task-
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n d context-depen dent mann er ( Azim an d Se ki 2019 ).
maging the activ it y of locomotor circuits at mu lt iple
ev els durin g behav ior c a n reveal when a n d wh ere in
he processing hierarchy are specific types of fe e db ack
va ilable f o r co ntrol. In addi tio n, chro nic knock-ou ts
nd acute o p togenetic tools a l low manipu lat ing these
e e db ack p athwa ys in beha ving animals ( Böhm et al.
016 ; DeAn g elis et al. 2020 ; Wu et a l. 2021 ; C ho ck ley
t al. 2022 ). Im portan tl y, these too ls a l low tar g etin g
at hways t hat cannot be tar g ete d with t radit iona l te ch-
iques. A go o d exa mple a re t he inter n al, cere b rosp inal
uid co ntacting neuro ns mentio ned a bov e ( Fig. 1 A).
ar g etin g th ese ce lls with gen etic kn ock-o uts, o p toge-
 etics, an d calcium imaging in behaving ze brafish re-
ea le d that their fe e db ack cont ribut es t o o p timizing lo-
o motio n speed ( Böhm et al. 2016 ; Wu et al. 2021 ).
ike wis e, ins ect c hordot onal n eurons an d m amm alian
uscle spindles are no torio usly difficult to manipulate

n locomot ing anima ls with t radit iona l te chniques, be-
aus e the y are deep l y embe dde d in the legs ( Fig. 1 A).
tudies in Droso phila a nd mice have start ed t o use ge-
et ic manipu lat ions to study the cont ribut ion of these
 echan os ens ors to the co ntrol o f loco motio n ( Akay et

 l. 2014 ; C ho ck ley et al. 2022 ; Santuz et al. 2022 ). Al-
 eit p ower f u l, genet ic manipu lat ions come with their
wn set of cha l len g es ( Wolff and Ölveczky 2018 ). Due
o the redundancy of mechanos ens ory fe e db ack p ath-
ays and their interactio ns wi th loco moto r circui ts at
u lt iple level s, m anipu lat ion s can hav e li ttle effect o n

oco motio n o r unintende d effe c ts that are diffic ult to in-
erpret ( Da l lmann et a l. 2021 ). In p art icu lar, the effe cts
f si lencing spe cific me chanos ens ors might be compen-
ated for during deve lopm ent con siderin g the impor-
ance o f loco motio n fo r anim al s. A p ro mising strategy
s to com plemen t manipula tion experimen ts with com-
u tatio nal and physical m ode ls. 

oving forward with computational models 

n the context of go a l-dire cte d locomot ion, a usefu l
ram ewor k to design and analyze manipu lat ion exper-
men ts is con t rol the ory ( Mad hav a nd Cowa n 2020 ).
ased on system iden tifica tion, t his engineer ing frame-
ork a l lows generat ing test able hypot h eses of h ow dif-
erent types of fe e db ack cont ribut e t o locomot or per-
 orma nce. Roth et a l. (2016) use d this fram ewor k to
tudy the relative co ntribu tio n o f m echan os ens ory and
 isu a l fe e db ac k t o the flower trac king behavio r o f fe e d-
n g hawkmoth s durin g flight. Usin g a n a rt ificia l flower,
 he aut ho rs p rovided independent and conflicting vi-
ual and me chanica l flower st imu li. The ana lysis re-
ea le d that fe e db ack from mechanos ens o ry neuro ns in
he proboscis is sufficient to per for m tracking behav-
or, and is weighted linearly with p ara l lel fe e db ack from
 isu al n eurons. In an oth er study, Ce llini an d Mon g eau
2022) too k ad vantage o f co nt rol the ory t o t ease apart
 he contr ibu tio n o f mechanos ens ory and v isu a l fe e d-
ac k t o gaze stabi lizat ion in flying flies. The an alysi s
evea le d that m echan os ens ory fe e db ack from halteres
cti vel y damps head movements when b o dy motion is
e lf-gen erat ed . S imilar studies have h e lped to under-
tan d h ow m echan os ens ory fe e db ack cont ribut es t o the
as k-leve l co ntrol o f rap id running ( Cowan et al. 2006 ;
on g eau et al. 2015 ). 
W hen loco motio n is not relat ed t o a specific task

i ke flower t racking or gaze stabi lizat ion, determin-
ng an d m e asur ing t h e inputs an d o utp uts of the lo-
o moto r system r equir ed for a top-down, control-
he oret ic appro ach is cha l leng ing. An a lternat ive ap-
roach is botto m-u p m ode ling, wh ere th e locom otor
ystem is synthesized from low-level p rinci ples, in-
luding p hysio log ica l l y p lausib le fe e db ack p athways.
arkin et al. (2016) took this approach and developed

 n eurom e chanica l CPG m ode l of th e cat hin dlimb
ith p hysio log ica l l y p lausib le fe e db ack from cutaneous
 echan os ens ors in the paw and muscle spindles and
olgi tendo n o r gan s in th e leg. Th e m ode l a l lowe d the
u tho r s t o sele ct i vel y remov e mechanosen sory fe e db ack
athways and test the resu lt ing effe cts on wa l king. For
xample, wi thou t muscle spind le fe e db ack from the calf
usc le , the simulat ed cat hindlimb was still able to
a l k, bu t wi thou t Golgi tendo n o rga n f e e db ack from the
ame musc le , it was unable to p rod uce ro bus t wa l king
nd col lapse d a fter a f ew st rides. Simi lar kin ds of m od-
ls are being used to study the rela tive con tribu tio n o f
 echan os ens ory fe e db ack p at hways in ot her wa l king,
rawling , and sw imming anim al s ( Proctor and Holmes
018 ; Schi l ling and Cruse 2020 ; Sun et a l. 2022 ; Ham let
t al. 2023 ; Russo et al. 2023 ). The ab ili ty to easily chan g e
he gain of fe e db ack p at hways in t h ese m ode ls h e lps re-
e al t h e effectiven ess of feedback across the pa ra meter
pace and generat e specific, t est able hypot heses for ex-
eriments. Moving f orwa r d, pr ogr ess will be accelerated
y u sing reali stic co mpu tatio nal m ode l s th at are openly
ha red f or use acros s labs ( Lo b ato-Rios et a l. 2022 ). 

oving forward with physical models 

n oth er approac h t o evaluat e a specific m echan osen-
ory fe e db ack me ch ani sm i s to im plemen t i t o n a robot
 Ijspeert 2014 ). Force feedback durin g walkin g is a go o d
xample. A series of experimental studies suggest that
 orce f e e db ack from m amm a lian Golg i tendo n o r gan s
nd insect camp aniform sensi l l a prov ides reflexive, pos-
t ive fe e db ack that can co ntribu t e t o int er-leg coordina-
 ion ( D uysens a nd Pea rs on 1980 ; Duys ens et al. 2000 ;
i l l et a l. 2009 ; Da l lmann et a l. 2017 ). How ev er, due to
edun dan cy of fe e db ack p athways, it h a s been ch a l leng-
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ing to provide causal evidence for this mech ani sm in
wa l king anima ls. F or exam ple, position and movement
fe e db ack is thought to co ntribu t e t o int er-leg coordina-
t ion as wel l ( Cru se 1985 ; Hie bert et al. 1996 ). But using
a minim ali s tic legged ro bot, Owaki an d Is higuro (2017)
confir med t he sufficiency of the lo ad-b ase d me ch ani sm
for esta blishin g in ter-leg coordina tion. In their exper-
iments, each robotic leg was driven in depen dently of
t he ot hers by its own CPG. Inco rpo rating fo rce fe e db ack
from the legs was sufficient to coordinate the CPGs and
genera te differen t stepping pa ttern s. Robots hav e been
simi larly usefu l t o t est the effe ct iven ess of m echan osen-
sory fe e db ack p at hways in ot her anim al s and types of
loco motio n ( I jspeert 2001 ; I jspe ert et a l. 2007 ; Righett i
and Ijs peert 2008 ; Ha gen et al . 2021 ; S ivitilli et al . 2022 ).
The advantage of robots over sim ula tions in such stud-
ies i s th at the effects of m echan os ens ory fe e db ack on lo-
co motio n can be t est ed in environments similar to those
encountered by anim al s. The physical interactions with
the natural environment provide a rea list ic source of
s ens o ry no ise and other complex conditions that may
be simplified or n on existent in simu lat ion s. Movin g for-
war d, this “r o botics-ins p ired b iology” app roach will be
accelerate d by de creasing cost an d in creasin g availa bil-
i ty o f ele ct ro nic co mpo nents, actuato rs, s ens o rs, fab ri-
cat ion e quipm ent, an d access to o pen-so ur ce softwar e
( Gravis h an d Lauder 2018 ). In addi tio n, size-a gnos tic
design and fab ricatio n wo rkflows wi l l faci litate bui lding
robots at animal scales, including that of sma l l inse cts
( Jaya ra m et al. 2020 ). 

W hile inco rpo ra ting sim ple p rop riocept ive fe e db ack
h a s proven s ucces sful fo r co nt rol ling r obots acr oss sizes
( Wen sin g et al. 2017 ; Jaya ra m, Ja fferis, et al. 2018 ; Doshi
et al. 2019 ; Gong et a l. 2019 ), incorporat ing more ad-
va nced f o rms o f m echan os ens ory fe e db ack h a s been
limi ted d ue to s e veral im plemen ta t ion cha l len g es. For
examp le, p hysio log ica l l y p lausib le contro llers can be-
come highly complex and laborious to tune. This has led
to the emer g ence of model-free reinforcement le ar n-
ing as an a lternat ive appro ach for dev elopin g locomo-
tio n co ntrollers ( Lee et al. 2020 ). Rather than emu-
lat ing spe cific neura l p at hways, t hese cont rol lers le ar n
how to process t he stre a m of mecha nos ens o ry info rma-
tion o p timally for the locomotor tasks a t hand. In trigu-
ing ly, c urr ent r obots r equir e extr em e ly high-ban dwidth
close d-loop cont rol lers ( ∼1 kHz) for effe ct ive locomo-
t ion ( C hung et a l. 2023 ), wherea s anim al s opera te a t
much lower bandwidth ( ∼10 Hz; Nishikawa et al. 2007 ).
On e possi b le exp lan ation i s th a t robotic con trollers
do not yet im plemen t the p ara l lelizat ion, dist ribut ion,
a nd hiera rchical orga nizatio n o f m echan os ens ory path-
ways that make processing in nervous systems so ef-
fe ct ive ( Merel et al. 2019 ). A p ro mising app roach fo r
achieving this is to move a wa y from convent iona l com-
pu ting to neuro mo rphic co mpu t ing—efficient, p ara l lel,
lo w-po wer co mpu ting insp ired by the nervous system
( Calimera et al. 2013 ; Thakur et al. 2018 ; de Croon et al.
2022 ). 
U ltimat e ly, wh en looking fo r insp iratio n fo r engi-

ne ere d systems, it is im portan t to consider that biolog-
ical sol u tio ns are n ot n ecess ar ily o p timized to per for m
one p art icu lar funct ion ( Haberland and Kim 2015 ). For
examp le, some fly mechanos ens o ry neuro n s inv o l ved in
wa l king are a lso invo l ve d in g rooming ( Ravb ar et a l.
2021 ) and courtship ( McKelvey et al. 2021 ). In addi-
tio n, no n-loco moto r facto rs like develop ment and phys-
iology can constrain the dist ribut ion of m echan osen-
so ry neuro ns ( Aiel lo et a l. 2021 ). Ther efor e, it wi l l be
crucial to ask w hich aspec ts of animal m echan osen-
sat ion are t ru ly ne cessary to impr ove r ob otic p erfor-
ma nce, a nd which are bugs. An example of the latter
are s ens ory del ays, which c a n constra in the effe ct iveness
of m echan osensa tion a t high-spe e d locomot ion in ani-
m al s ( More and Don e l an 2018 ). R obots c an easily out-
per for m anim al s in terms of con duction de lays (con-
d uctio n speed through an electric al w ir e appr oaches
the spe e d of light, resu lt in g in in signific ant del ays) and
other co mpo nen t specifica tio ns (e.g., o nboard p rocess-
in g pow er). 

Conclusions 
Me chanosensat ion is a ke y s ens e that enables animals to
move ro bus tl y in comp lex, natural environm ents, an d it
holds great p ro mise fo r the design of the next generation
o f loco mo ting robo ts. We argue that b io-insp ire d eng i-
neerin g w ould benefit gre at ly from (1) a detai le d under-
st anding of t he enco ding prop ert ies and dist ribut ion of
anima l me chanos ens ors and (2) the in tegra tion and reg-
u lat io n o f m echan os ens ory fe e db ack in the nervous sys-
tem. Moving f orwa rd wi l l re quire com plemen tary ex-
per iment al and eng ine ering appro ac hes, inc l uding co n-
nect omics t o map mec hanos ens ory fe e db ack p athways
in th e n erv ous system, g enetic tools to r ecor d fr om and
manipulate these pa thways, com puta t iona l and physi-
cal m ode ls t o evaluat e their effe ct iven ess, an d n ew fab-
ricatio n and co mpu t ing te chniques to emu late them in
robotics. We envision t hat t h ese approach es will h e lp us
study the mechanos ens o ry co ntrol o f loco motio n under
increa singly n atural co ndi tio n s, which may rev eal addi-
t iona l funct ions that are not apparent in simplified labo-
ratory settings. As the space of possible experiments and
ana lyses g r ows, ther e is an incr ease d ne e d for interdisci-
p linary co l laborat ion s of en g ine ers and biolog ists ta king
a com para tive a ppr oach acr os s s pecies and types of lo-
co motio n to identify general p rinci ples wo rthy o f imi ta-
tio n. Interdisci plinary me et ings li ke the 2023 S I CB sym-
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osium “The role of m echan osensation in ro bus t loco-
otion” are invaluable for moving f orwa rd together. 
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