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ABSTRACT
The explosion of conference paper submissions in AI and related

fields has underscored the need to improve many aspects of the peer

review process, especially the matching of papers and reviewers.

Recent work argues that the key to improve this matching is to

modify aspects of the bidding phase itself, to ensure that the set

of bids over papers is balanced, and in particular to avoid orphan
papers, i.e., those papers that receive no bids. In an attempt to

understand and mitigate this problem, we have developed a flexible

bidding platform to test adaptations to the bidding process. Using

this platform, we performed a field experiment during the bidding

phase of a medium-size international workshop that compared two

bidding methods. We further examined via controlled experiments

on Amazon Mechanical Turk various factors that affect bidding,

in particular the order in which papers are presented [11, 17]; and

information on paper demand [33]. Our results suggest that several

simple adaptations, that can be added to any existing platform,

may significantly reduce the skew in bids, thereby improving the

allocation for both reviewers and conference organizers.
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1 INTRODUCTION
Academic peer review of papers and grants sits at the heart of aca-

demic work and is the cornerstone of modern scientific enterprise

[6]. In some areas of computer science (mainly AI/ML), where most

papers are submitted to large conferences, the fate of a paper is

very much in the hands of automated assignment algorithms that

help program chairs distribute thousands of papers among a similar

number of committee members that serve as reviewers [33]. For

this matching to happen, the committee members must first submit

their preferences over papers. These preferences are supposed to

reflect both the competence and the interest of the reviewer in

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents

and Multiagent Systems (www.ifaamas.org). All rights reserved.

reviewing those particular papers, using a designated platform—a

process typically referred to as bidding and that many of the read-

ers probably know well from their own experience. Cabanac and

Preuss [11] provide a detailed account of conference bidding and

review flow. After the bidding process, one of the many algorithms

for matching under preferences [25, 29] can be used to find an as-

signment satisfying various notions of optimality, fairness, stability,

etc. [2–4, 13].

Crucially, the current design of the bidding process falls far

short of eliciting the full preferences and capabilities of reviewers.

First, in some widely used platforms (e.g. EasyChair) there are only

three levels of preference: ‘no’ / ‘maybe’ / ’yes’. Other platforms

provide a finer scale for reviewers to express their preferences.

However, it is not clear to what extent reviewers use this flexibility,

as extreme responding or scale end bias is a well known phenomena

in many social sciences [19]. Additionally, it is not clear yet whether

or not a finer grained scale of responses would actually lead to

more desirable matchings between reviewers and papers. Second

and more importantly, going over the entire list of submissions

to determine the fit of every paper would take hours, whereas

most reviewers would not invest that much time in bidding. Given

that modern computer science conferences may have thousands of

papers submitted to them, automated systems are being increasingly

used to impute the bids of reviewers over papers, an example being

the Toronto Paper Matching System (TPMS) [12].

Hence, for these reasons and many others, it has been claimed

that skewed bidding, i.e., where a few papers get many bids and

some papers get no bids, is one of the main reasons for poor paper

assignment [17, 27, 28, 33, 38, 39]. The argument is that some pa-

pers get insufficient (or no) bids and have to be assigned randomly

or manually by the program chair, often ending up at unqualified

reviewers. For example, Cabanac and Preuss [11] analyzed data

from nearly 20,000 reviews in dozens of conferences managed on

ConfMaster, and showed that more than 8,000 (42%) were done by

reviewers who did not bid on the paper at all!
1
A poor assignment,

in turn, may affect review quality [36, 37, 41]; and increase the over-

head on conference chairs, who need to handle these orphan papers
that receive no bids via manual (re)assignments. Skewed bidding is

also likely to put obstacles in the way of achieving alternative goals

such as fairness [28, 35], as creating a fair assignment crucially

depends on actually knowing the preferences of the reviewers.

1
Indeed, ConfMaster also allows reviewers to express negative preference on a paper

by bidding ‘no’, but this is not very helpful when facing thousands of papers.
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Skewed Bidding at AI Conferences. At AAMAS, where we have

data from PrefLib [31, 32], there are also a high number of orphan

papers.
2
The AAMAS 2015 dataset contains 9,817 bids of 201 re-

viewers over 613 papers; this represents about 40% of the actual

22,360 bids of 281 reviewers over 670 papers. The 2016 data con-

tains 161 out of 393 reviewers with bids over 442 out of 550 papers.

Within this, for AAMAS 2015 papers had 6.9 bids on average, yet

there are 30 papers that have no bids at all (5%) and 95 papers that

have less than 3 bids (15.4%), while for AAMAS 2016 papers had

6.5 bids on average, but there are 8 papers that have no bids at all

(1.8%) and 54 papers with less than 3 bids (12.2%).

Simply increasing the bidding requirement, which increases the

burden on reviewers during the bidding process, may still not be

sufficient to deal with the issue of orphan papers. For example, at

IJCAI 2018 each paper received almost 40 bids on average (!), and
yet 140 papers (4%) had only two or fewer bids [33].

1.1 Proposed Solutions
There have been two recent suggestions in the literature to alleviate

the problem of skewed bidding :

(1) Presenting low-demand papers higher on the list [11, 17];

(2) Providing information regarding paper demand [33].

Interestingly, the first suggestion builds on reviewers’ cognitive

biases, while the latter exploits their (bounded) rational behavior.

In more detail, Fiez et al. [17] proposed an algorithm to determine

the order in which papers are presented to the reviewer during

bidding, taking advantage of the ordering of papers to bidders. This

suggestion rests on the primacy effect: items that appear earlier on

a list are more likely to be selected [34]. Primacy effects have been

empirically shown to occur in conference bidding data on Conf-

Master [11]. The underlying idea is that demand can be smoothed

by taking advantage of well known cognitive biases rather than

providing more information to bidders.

We should note that by default, most platforms order papers by

their submission number. Typically this is a serial number assigned

on submission, but recently some platforms such as HotCRP started

to assign random submission numbers. In addition, users can usu-

ally sort papers according to every column (e.g. alphabetically by

title, or by quality of matching according to keywords).

The other suggestion, byMeir et al. [33], considers amodel where

the demand over papers is known (or revealed) to the bidders. They

showed that as long as reviewers are individually rational and

interpret their probability of being assigned a paper as inversely

proportional to demand, a simple market-based scheme induces

an incentive to follow the recommended instructions, and thereby

reduces the skew in bids and leads to an improved assignment.

Drawing inspiration from the Trading Post Mechanism [40], they

suggest tagging papers with their inverse price rather than actual

demand, and assign a budget the bidder is encouraged to use. Inter-

estingly, rational bidders then have an incentive to exhaust their

budget, but some bias in favor of high-price (low-demand) papers

is necessary to obtain more balanced bids. Thus the model predicts

bounded rationality would lead to the best results.

2
Note that AAMAS reviewers were able to opt out of being included in the public

dataset, hence some papers and bids are missing from this dataset.

In both the work of Meir et al. [33] and Fiez et al. [17], the actual

behavior of the individual bidder (i.e. how their bid is affected by

order or demand) is assumed, and the theoretical and empirical

results are contingent on these assumptions. However, bidding

behavior with prices has never been tried or empirically validated,

and while primacy effect has been shown to exist on average, it is

not well understood how substantial it is compared to other factors.

1.2 Contribution
The goal of this paper is to explore how different components of

the bidding platform affect the probability that a participant will

select a particular paper. The main motivation, following [17, 33] is

to promote the selection of papers with few bids, thereby reducing

the skew and indirectly improving the paper assignment.

Since previous work has suggested to control either the order

of papers [11, 17], or the information given to users on the de-

mand [33], these are the main parameters we considered.

Hypothesis 1 (Order Effect) Subjects tend to select papers

appearing earlier on the list.

Hypothesis 2 (Demand Effect) Subjects tend to select pa-

pers that are indicated as low-demand.

In addition we are interested in how these tendencies, if they ex-

ist, are distributed in the population, as well as in various factors

affecting them. Hence, we designed and executed two types of exper-

iments. The first is a field experiment on a medium-size workshop,

and the second is a large scale experiment on Amazon Mechanical

Turk where we control all the variables. In both experiments only

some of the subjects were exposed to information on the demand,

so their behavior can be compared to the control group.

Our main findings support both hypotheses, as we show that

both paper order and information on demand can be used to shift

reviewers towards low-demand papers. However at the individual

level there is a substantial difference. The order of papers has an

effect on most subjects, but in a rather weak manner. In contrast,

we identify in both experiments a small group of people that are

highly sensitive to the demand, and results from the field experiment

suggest that their effect on the bid distribution is substantial. We

further study via controlled experiments the relative and cumulative

effect of exposing the subjects to different forms of information

on the demand, and simple factors affecting compliance with the

bidding instructions. We conclude with a list of simple, practical

suggestions to improve the use bidding platforms so as to reduce the

prevalent skew in paper bidding, thereby improving papermatching.

The full version updated of this paper, as well as collected data, is

available on arXiv.

1.3 Related Work
Ordering effects are well studied in economic and psychological

models of choice. Typically, decision makers attend to the first few

and last few items in a list more than the rest, increasing response

rates for these items [26]. In an academic context, papers appearing

earlier on an email digest are more likely to be downloaded and

cited [16]. Cabanac and Preuss [11] were the first to show that

ordering effects occur in paper bidding. Later, Fiez et al. [17] sug-

gested a sophisticated sorting algorithm that takes into account

both dynamic demand and estimated reviewers’ preferences.
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Rodriguez et al. [37] aimed at uncovering the factors underlying

bidders’ behavior in the JCDL’05 conference. Their starting point

was that bids are expected to reflect the (objective) expertise of

the reviewer w.r.t. the domain of the submission. They evaluate

this expertise through alternative means, e.g., co-author network

or keyword occurrence. The authors find very low correlation be-

tween reviewers’ areas and their bids, and conjecture that reviewer
fatigue may be responsible. Our work does not get into whether

reviewers’ preferences are indeed based on expertise (as opposed

to, say, curiosity and interest in the title). It does however shed light

on the other, factors that consistently affect bidding behavior.

A major challenge in behavioral studies is having subjects with

real-world preferences and comparing behavior against true pref-

erences, which are private. Ideally, we would combine these in a

single experiment that cleverly elicits the real preferences, as in

the work of Budish and Kessler [10] on course allocation, or by

performing individual exit polls [5] on voters. Since there is no

conference, let alone a large one, that uses a similar mechanism

for paper bidding, we resorted to use a combination of field and

controlled experiments.

Assignment Algorithms. The assignment of papers to reviewers

is formally a version of the multi-agent resource allocation prob-

lem with capacities [7] and has been well studied in a number of

areas of computer science [22, 28], economics [9], and beyond [15].

Garg et al. [20] provide a comprehensive discussion of assignment

algorithms, their application to the review process, and different

methods for evaluating the quality of an assignment from both the

conference and reviewer standpoint. Two popular ways to evaluate

assignments are maximizing either the egalitarian welfare [14], i.e.,

making sure the worst off reviewers are as happy as can be or the

utilitarian welfare, i.e., maximizing the sum of reported utilities for

assigned papers across all reviewers. There are other refinements of

these solution concepts [20, 28], and a large literature on calibrating

feedback across reviewers for better assignment [42]. While the

workshop in which we ran our field experiment used the utilitarian

maximal assignment (maximizing social welfare), the results we

report are independent of the assignment algorithm in use. Note

that while assignment of heterogeneous tasks is also common in

other domains such as crowdsourcing [1], the ‘workers’ in paper

bidding have some unique features. They are volunteers (which

is also true in some crowdsourcing tasks), they often participate

repeatedly every year, and they expect a roughly fixed workload.

Some modern platforms use TPMS or other systems that infer

the interests of the reviewer from her list of publications or other

sources [12]. However it does not seem that implicit preferences

induced from TPMS are less skewed than explicit bids. As Fiez et al.

[17] find in their study, TPMS scores result in a very skewed and

sub-optimal bid distribution, where many papers receive very low

scores. For example, in the TPMS dataset from ICLR 2018, out of

the 911 papers, 85 of them (9.3%) have a maximum similarity score

≤ 0.1 (on a [0, 1] scale), meaning that these papers are very unlikely

to get bids from reviewers.

2 EXPERIMENTAL DESIGN
We implemented a platform that resembles common paper bidding

platforms—mainly EasyChair and ConfMaster.
3
An example of the

interface is shown in Figure 1.

2.1 The Basic Platform
In all experiments, the subject is presented with a table containing

all papers. For each paper, the table specifies the title and keywords,

and the user may click a paper to expand and read the abstract. The

user can bid on each paper using a radio button whose states are

No/Maybe/Yes, where No is the default option. As is common in

bidding platforms, we implemented basic search and filtering capa-

bilities. The user may type a string in order to see only the papers

containing this exact string anywhere in the title, keywords, or

abstract. At the top, the user also sees how many papers have been

marked as Yes and as Maybe so far, and may alter their selection of

the papers at any time. Subjects could sort papers according to any

column and the initial order depends on the experiment condition.

In some conditions additional information or options were pro-

vided in the interface including the inverse price of papers (called

‘iPrice’ in Meir et al. [33] and ‘bidding points’ on the platform) or

the total bidding requirement, marked in Fig. 1(Right). We discuss

each of these design modifications in their respective section. Fol-

lowing Meir et al. [33], Shapley and Shubik [40], we define the

inverse Price (iPrice) of a paper 𝑗 as 𝑝 𝑗 := 100 ·min{1, 𝑟
𝑑 𝑗
}, where 𝑑 𝑗

is the current number of bids on the paper, and 𝑟 is the number of

copies of the paper that need to be assigned (throughout this paper

𝑟 = 3). Thus a high iPrice indicates current low demand.

2.2 Field Experiment
For our field experiment, we used the bidding phase of the

COMSOC-2021 international workshop.
4
We partitioned the set

of 42 reviewers randomly into a field treatment (FT) group con-

sisting of 28 people that saw papers’ iPrices during bidding, and a

smaller field control (FC) group of 14 people that saw no iPrices.
There were 93 submissions in total.

Bidding Process. Both groups used our platform for bidding,

where all 93 submissions were available along with the search

and bidding interface shown in Figure 1. Using this interface, re-

viewers could also use the platform to report a conflict of interest

on papers, but this was scarcely used. The control group had no

extra information on demand and were asked to bid positively on

at least 12 papers, of which 5-7 will be assigned as in Fig. 1(Left).

The treatment group saw the iPrices as in Fig. 1(Right), and had a

budget of 800 bidding points. These bidding minimums for both

groups were purely instructive and were not actively enforced in

any way: reviewers could bid on any number of papers. The iPrices

were set as explained above and updated on every new login, hence

iPrices were static during a session but may change between ses-

sions if an individual reviewer logged back in. We implemented the

two caveats recommended in [33]: (a) the current bidder is always

counted as a positive bid on all papers, to prevent price change

during the bid; and (b) demands were initialized as uniform rather

3
See https://easychair.org/ and https://confmaster.net/.

4
https://comsoc2021.net.technion.ac.il/
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Figure 1: Left: Example of our bidding interface used for all experiments. Right: The interface with the additional column for
iPrices (called ‘bidding points’) and the budget.

than empty to prevent a cold start. In practice only three reviewers

logged in more than once to update their bids. Papers in both groups

were initially presented according to their order of submission.
5

2.3 Controlled Experiments
In the controlled experiment we had a Base (B) group (same in-

terface as the control group in the field experiment), and several

different treatment groups. The main treatments we used were:

revealing papers’ iPrices to subjects in the Price (P) group; and
visually highlighting low-demand papers in the Highlight (H)
group. Additional conditions designed to study specific questions

will be explained below. All treatments are between subjects. All

subjects faced the same set of 550 papers from AAAI’15, which

are publicly available.
6
Subjects in groups B, H were requested to

bid on 30 papers (40 in some cases), of which 8 will be assigned.

Subjects in groups P had a budget of 1000 bidding points.

Setting Paper Demand. As each subject in the controlled experi-

ment is independent, we needed to generate the demand (i.e. the

iPrices) for each paper. Rather than generating artificial demand

and derive the iPrice from it, we sampled the iPrice directly from

a uniform distribution on [−25, 120], and truncated to the range

[0, 100]. This is to guarantee we cover the entire range and also

have a substantial number of papers with extreme iPrices. Although

in reality no paper could have an iPrice of 0 (as it indicates infinite

demand), we still wanted to see how this will affect behavior.

Assignment. While the assignment in the controlled experiment

plays no role in our analysis, we describe it in Appendix A for

completeness. Subjects were not aware of the exact allocation

algorithm, but were told that papers with positive bids were more

likely to be assigned, and that the chance also depends on the

demand for the paper (to which they may or may not be exposed

according to the condition they are in). The final assignment was

displayed to the subject immediately after they submitted their bid,

together with the breakdown of the reward.

5
In hindsight it would have been better to present them in random order, as in the

controlled experiments.

6
http://www.aaai.org/Library/AAAI/aaai15contents.php.

Incentives. In our controlled experiment, subjects were not ac-

tually reviewing any paper and thus a-priori had no incentive to

prefer one paper over another. To mimic the situation of a reviewer

trying to select ‘relevant’ papers, we assigned to each subject a

set of six ‘personal keywords’ that supposedly reflect her interests.

Subjects earned ‘coins’ for each of the 8 papers that were eventually

assigned, and howmany of these personal keywords they contained

(either in the title or in the paper keywords or in the abstract). Each

coin increased the bonus by $0.25, thereby creating an incentive to

bid on relevant papers as common in MTurk Experiments [30]. An

important remark is that in real conferences reviewers’ interests

are often positively correlated. Using common keywords leads to a

similar situation in our controlled experiment with a correlation

of 0.7 ± 0.16 in paper relevance among subjects. The personal

keywords were selected at random for each subject from the pool

of all papers’ keywords, with constraints to make sure all subjects

had a similar amount of relevant papers. These personal keywords

were displayed in a separate box on the screen.

Instructions and Demo. To make sure that the (rather complex)

instructions of our experiment are understood we: detailed instruc-

tions; an online quiz; and a demo game. We also informed subjects

up front that failure to reach minimal required reward may result

in rejection of the job—standard for conducting online behavioral

research [30]. The instructions and quiz focused on explaining that

the payment depends only on the assigned papers (8 in total) and

not directly on the bid. The demo was very similar to the game ex-

cept it only contained 50 papers and 3 personal keywords. Subjects

that did not reach the minimal required reward in the demo could

not continue to the game but could try the demo up to 3 times. The

study was approved by the IRB of the authors’ institution, and all

subjects expressed informed consent.

2.4 Measuring Behavior
Since bidding behavior can be complex and depends on many vari-

ables, we develop simple measures that we can compare across

subjects and groups of subjects.
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Figure 2: Example of calculating reward and sensitivity pa-
rameters. Selected papers are marked with *. The reward is
for a subject with the personal keywords {Red, Graphs, Al-
gorithms}.

Figure 3: Left: Histogram of the number of bids for each re-
viewer in the field experiment. Right: Distribution of indi-
vidual order sensitivity values in the field experiment.

For a set of presented papers 𝑆 , we denote by𝐶 (𝑆) ⊆ 𝑆 the subset

of papers that were selected by subjects. Note that each paper is

presented to multiple subjects, and counted as a separate ‘presented

paper’ for each subject. Also note that we treat any positive bid

(‘Maybe’/‘Yes’) as a selection. In particular, 𝐶𝑖 is the set of papers

selected by subject 𝑖 .

We denote by𝐶 (𝑆) := 𝑆 \𝐶 (𝑆) the set of papers from 𝑆 that were

not selected, similarly, 𝐶𝑖 are the papers not selected by subject 𝑖 .

We denote by 𝑝𝑠 ∈ [0, 100] the iPrice of paper 𝑠 . In the field

experiment, the iPrice was derived from the actual demand as ex-

plained above, and was updated with every new login; whereas in

the controlled experiment it was generated once per subject and

remained fixed.

Measuring Individual Behavior. For each measured feature 𝑋 ∈
{𝑅,𝑂, 𝐷} (for (R)eward or Relevance, (O)rder, and (D)emand, re-

spectively); and each paper 𝑠 ∈ 𝑆𝑖 , we denote by 𝑓 𝑋 (𝑠) ∈ [0, 1] the
relevant feature of the displayed paper.

In the example in Fig. 2 paper #3 has 𝑓𝑂 (𝑠) = 3

7
, 𝑓 𝐷 (𝑠) = 80

100
,

and 𝑓 𝑅 (𝑠) = 0

2
, as the maximal reward in this example is 2.

7

For a subset of samples 𝑆 ′, we used the average: 𝑓 𝑋 (𝑆 ′) :=
1

|𝑆′ |
∑
𝑠∈𝑆′ 𝑓

𝑋 (𝑠). E.g. for 𝑆 ′ = {1, 2, 3} in our example, we have

𝑓 𝐷 (𝑆 ′) = 1

3
(0.3 + 0 + 0.8) � 0.366.

For every subject 𝑖 ∈ 𝑁 and feature 𝑋 ∈ {𝑅,𝑂, 𝐷}, we defined
the ‘sensitivity-to-X’ as the difference between the average value

7
The reward scheme we actually used was a bit different. In particular, the reward for

papers with 0 personal keywords, which are most papers, was negative, so there is a

strong incentive to avoid them. See full version.

Figure 4: Left: Distribution of demand sensitivity values in
the field experiment. Right: Bootstrap results for number of
underdemanded and orphan papers in mixed group of 14 re-
viewers.

of the feature in selected and unselected papers. Formally:

𝑆𝑡𝑋𝑖 := 𝑓 𝑋 (𝐶𝑖 ) − 𝑓 𝑋 (𝐶𝑖 ). (1)

𝑆𝑡𝑋𝑖 is always in [−1, 1], and its expected value is 0 if 𝑖 is completely

insensitive to feature 𝑋 (e.g. selects papers at random). For the

subject in our example, where the selected papers are 𝐶𝑖 = {2, 4}
and 𝐶𝑖 = {1, 3, 5, 6, 7}, we have

• 𝑆𝑡𝑅 = 0.5 − 0.1 = 0.4, indicating a moderate sensitivity;

• 𝑆𝑡𝑂 = 6

14
− 22

35
= −0.2, meaning the subject tends to select

earlier papers; and

• 𝑆𝑡𝐷 = 0.9 − 0.36 = 0.54, meaning sensitivity towards paper

with low demand (=high iPrice).

Note that StR cannot be evaluated in the field experiment since

we have no direct access to the reviewers’ real preferences and

expertise.

Measuring Group Behavior. One way to measure the group be-

havior is considering the average StX values of group 𝑆 members

(denoted 𝑆𝑡𝑋 (𝑆)). When we want to condition on other attributes,

we measure the probability of selecting a paper as a function of the

relevant feature (e.g. initial position in the table), while controlling

for relevance. Formally, given a set of samples 𝑆 ′ (say, ‘all papers
in the second quantile of positions that are highly relevant to their

respective subject’), the probability of selection is 𝑃𝑆 (𝑆 ′) := |𝐶 (𝑆′) |
|𝑆′ | .

We can then test if the behavior in two conditions 𝑆, 𝑆 ′ is different
by comparing 𝑆𝑡𝑋 (𝑆) to 𝑆𝑡𝑋 (𝑆 ′) or 𝑃𝑆 (𝑆) to 𝑃𝑆 (𝑆 ′), checking if

the different is significant using an unpaired t-test.

3 RESULTS FROM THE FIELD EXPERIMENT
3.1 Distribution of Bids
The empirical distribution of bids is shown in Figure 3 (Left). In

the control group there were a total of 267 bids, 19.1 bids per user,

while for the treatment group there were 547 bids, which are 19.5

bids per user.

To see if the induced bids in both conditions are drawn from

different distributions, we used a two sample Kolmogorov-Smirnov

test with the null hypothesis that the treatment distribution was less

than the control distribution [24]. This resulted in a test statistic

of 0.001429 and a 𝑝-value of 0.67, so we cannot reject the null

hypothesis that average bid amounts are the same.

However what we really want to know is whether bidders where

affected by the other factors, in particular order and demand.
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Sensitivity to Order. According to Table 1, only the control group
(FC) demonstrated sensitivity to order, however the effect is barely

statistically significant (presumably due to the small number of

reviewers on that group).

Sensitivity to Demand. The first observation from Table 1 re-

garding demand sensitivity is that it is negative in both groups,

on average. This may seem surprising but actually makes intuitive

sense as in a real conference there is positive correlation in bids,

i.e., you are more likely to bid on a popular paper. Hence, only the

difference between the groups matters.

The average of StD is slightly higher in the treatment group, but

this is not statistically significant. It is more instructive to look at the

distribution of StD values (Fig. 4(Left)): we can see clearly that in the

treatment group there are several subjects that are highly sensitive

to high iPrices (i.e. to low demand), whereas the distribution of the

others is similar to the control group.

3.2 Skewed Bids
We compared the number of papers that were under-demanded

in each group, that is, received fewer than the 3 bids necessary to

find a good assignment. In the control group there were 47 papers

that received fewer than three bids, with 6 of these being papers

that received no bids at all. For the treatment group there were

only 6 papers that were under-demanded and only a single paper

that received no bids. However, this must be partially due to the

difference in the size of the two groups.

To address this we looked both at the number of orphan papers

and at the number ofmissing bids (minimal additional bids required

so that every paper has at least 3 bids) that would appear under a

bootstrap sampling paradigm [8]. To do this we took the set of bids

and sampled a “small committee" from each groupwith 14 reviewers

in it 1000 times. As we can see in Fig. 4(Right), although the average

number of bids remains unchanged, the number of missing bids

and orphans drops significantly as we replace FC bidders with FT

bidders, indicating that even the small number of demand-sensitive

bidders have a substantial effect on the bid skew.

3.3 Discussion of the Field Experiment
The initial results from our field experiment suggest that: (1) there

seems to be a weak order effect; (2a) some fraction of reviewers

are highly sensitive to the demand when given via bidding points

and budgets; (2b) this increased sensitivity to demand reduces the

number of missing bids and orphan papers; (3) subjects who had

budgets were more compliant, possibly due to UI differences.

However the small number of reviewers makes it difficult to

make any strong conclusion. In addition some parameters cannot

be controlled (such as inherent demand for papers); or were not

controlled in our design (such as paper order or displaying the

bidding requirement). We therefore turn to controlled experiments

to better understand these effects.

4 CONTROLLED EXPERIMENTS
Conditions. Our base group (B)was similar to the control group

at the field experiment, except that papers were displayed at a

random order, and we added the bidding requirement to the UI in

order to rule out this as a potential source of differences between

groups. See Fig. 1.

In addition to the base group, we had the following treatments.

iPrices (P) In this condition (similarly to the FT group in the

field experiment) subjects had an additional column titled

’Bidding points’ showing papers’ iPrices as integers in the

range [0, 100]. The bidding requirement was set as a ’budget’

of 1000 points.

Highlight (H) In this condition we did not show the iPrice,

but instead highlighted low-demand papers in green (when

iPrice is 100) or yellow (when iPrice in [70,99]).

iPrices + Sort (PS) Similar to Condition P, except papers were

initially sorted by increasing demand (decreasing iPrice).

iPrices + Highlight + Sort (PHS) Similar to PS, with also

highlighting low-demand papers as in Condition H.

Implicit Request (IR) This condition was identical to the

base condition, except that the bidding requirement did not

appear on the screen during bidding.

Data Collection. We collected data from 338 subjects on Amazon

Mechanical Turk. Subjects were allowed to play up to three times.

Subjects were randomly assigned to the base group or to one of

the treatment groups. The total number of subjects of each group

appears in the second column in Table 1. The threshold for rejection

was set at 12 coins (see ‘incentives’ above). Note that we deliberately

collectedmore data on the Treatment group (in the field experiment)

and the Price group, as the other groups cannot be affected by

papers’ iPrices.

Spammers and Sensitivity to Relevance. There was a distinctive
group of subjects who did not respond to paper relevance (‘spam-

mers’) and were not included in the rest of the analysis. We explain

this in detail in Appendix B.

To better understand the isolated effect of each factor, we start

by analysing the Base condition and conditions (H)ighlight and

i(P)rices. For Example, the StR column in Table 1 shows that in all

groups the mean sensitivity (of non-spammers) is about 0.2, and is

significantly higher than 0.

4.1 Paper Order
We can see that in all three conditions, there is similar average

sensitivity to order, of about -0.13, i.e. there is a statistically signifi-

cant bias to papers that appear earlier. However reward still plays

a more important role in selection.
8
But are all subjects slightly

biased or is it a small number of highly biased subjects? For this, we

look at the distribution of individual StO values in our controlled

experiment (Fig. 5, top left).

From the figure, it seems that most subjects are prone to some

bias (sensitivity is most often negative but not below −0.4); yet
there is a non-negligible number of subjects with a very strong

sensitivity, which essentially marked papers at the very top. Some

subjects had high positive StO values, meaning they deliberately

marked papers at the bottom of the list.

Another question we can ask is whether all papers are equally

likely to be promoted when appearing earlier. As we can see in

8
For many spammer subjects, the StO was even more negative, which is not surprising

or interesting.
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Code Condition subjects non-spammers games StReward StOrder StDemand

B Base 50 29 29 0.34 ± 0.07 −0.11 ± 0.10 −0.01 ± 0.03#

P iPrices 124 80 80 0.34 ± 0.04 −0.16 ± 0.07 0.08 ± 0.04

H Highlight 43 21 39 0.36 ± 0.10 −0.13 ± 0.07 0.05 ± 0.04

PS P+ Sort 34 17 17 0.29 ± 0.06 – 0.14 ± 0.10

PHS P+H+Sort 33 28 59 0.44 ± 0.11 – 0.09 ± 0.10#

IR Imp. Req. 54 36 36 0.36 ± 0.06 −0.12 ± 0.09 −0.01 ± 0.03

Total (controlled exp.) 338 211 260

FC Control 14 14 – – −0.12 ± 0.11 −0.04 ± 0.03

FT Treatment 28 28 – – −0.03 ± 0.08 −0.03 ± 0.03

Table 1: The left side shows number of subjects and played games in each group in the controlled experiment. The right
columns show the average sensitivity of each group (non-spammers only) to each parameter, within 2 standard errors. We
mark with # results in the controlled experiment that do not statistically differ from 0.

Figure 5: Left: Histogram of individual StO (top) and StD
(bottom) values. Right: Selection probability of a paper, con-
ditional on its position and relevance (top), and on its de-
mand and relevance (bottom). Probability is calculated over
all subjects in conditions B,P,H. LOW/MED/HIGH relevance
means that the paper contained 0, 1, or more relevant words,
respectively.

Fig. 5 (top right), primacy affects irrelevant and relevant papers

alike, where selection probability drops sharply for papers that are

not at the top, and then continues to decrease moderately.

Our findings regarding order effect are largely consistent with

those of Cabanac and Preuss [11] from real conferences, and thus

support our Hypothesis 1. The added value of our controlled ex-

periments is two-fold: how order effects are distributed across the

population; the dependence of order sensitivity (or lack of thereof)

on the relevance of the paper.

Consistency. A third question we may ask is whether the bias

towards early papers is consistent. We analyzed the behavior of

subjects who played two or three times (all from Condition H),

comparing their StO measure each time.

The between-subject variance of StO is 0.123—slightly higher

than the average within-subject variance of 0.095. This indicates

that subjects maintain some consistency in their sensitivity to order.

4.2 Paper Demand
We considered two ways to communicate papers’ demand to sub-

jects. The first was adopting the market scheme of Meir et al. [33]

where low-demand papers have high iPrices (condition P). In con-

dition H we simply highlighted the low-demand papers visually.

Sensitivity to Demand. The right column in Table 1 shows that

the Base group is completely insensitive to the demand (as expected,

since they have no information about it); the iPrice scheme is mod-

erately effective; and highlighting alone has a small effect (barely

statistically significant). Looking at the distribution of sensitivity

to demand in Fig. 5 (bottom left), we can see that in contrast to the

primacy effect, most subjects in conditions P and H are not sensitive

to the demand. The effect we see is due to a relatively small number

of highly sensitive subjects. This corroborates our initial finding

from the field experiment, and supports our Hypothesis 2.

Price Scheme More Effective than Highlighting. We can see in

Table 1 that the effect of highlighting papers by itself is borderline

significant (only 3 of the 21 subjects demonstrated significant bias

towards highlighted papers in Fig. 5). In contrast, about third of the

subjects who were exposed to iPrices were significantly affected,

and the overall bias doubled.

Which Papers are Affected? Ultimately, the goal of the bidding

process is to assign papers to relevant bidders. Adding bids (even

on underdemanded papers) promotes this goal only if those added

bids are indeed on relevant papers. While we saw that this is not

achieved by manipulating the order of presnetation, we can see

that the effect of high iPrices is mainly on papers that are already

relevant (Fig. 5, bottom right). It is also another evidence of rational

decision making (in the economic sense), as the iPrice indicates the

probability of getting the paper, and thus it would only make serve

the bidder to add bids on papers they actually want.
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Consistency. Similarly to order effects, subjects who played 2 or

3 games exhibit some consistency in their sensitivity to demand,

with a between-subject variance of 0.022 vs. 0.015 within-subject.

4.3 Using All Treatments?
Since paper order, iPrice and highlighting all have some positive

effect, it might make sense to combine them together in order

to influence people to spread their bids even more. We therefore

ran another experiment with two more groups: In group P+Sort

we displayed iPrices and budget as in condition P and sorted the

papers initially by decreasing iPrice (so underdemanded papers are

on top); In group P+H+Sort we did the same and highlighted the

underdemanded (high-iPrice) papers as in condition H.

We can see in Table 1 that neither group demonstrates significant

increase in sensitivity to demand.

In the full version we collected more data for these two condi-

tions, showing that in both of them (but mainly in P+H+S) there is

a large group of demand-sensitive subjects, and a smaller distinct

group with negative demand sensitivity. We suspect that this is an

artifact of the experiment, where some subjects deliberately pick

low-iPrice papers in an attempt to match exactly 1000 points.

5 DISCUSSION
Our combined experiments in bidding behavior show that:

(1) Bidding likelihood increases uniformly for papers appearing

higher in the list (corroborating previous empirical findings);

(2) Presenting papers’ demand in the form of iPrices positively

influences a small but non-negligible subset of people to shift

their selection to low-demand papers;

(3) In the full version we also show that presenting the bidding

requirement during bidding (rather than just include it in the

instructions beforehand) results in much higher compliance.

Our field experiment further showed that shifting the demand of

even few bidders towards low-demand papers, reduces the skew in

bids and makes sure more papers get the minimal required amount

of bids.

Critique on experimental results. There are two main concerns

about the validity of our results. First, there is an internal validity

issue: One can ask whether the behavior we see is consistent or

sporadic. This is important as consistency also means predictability.

Our preliminary analysis shows that subjects exhibit at least some

level of consistency but this should be studied more in-depth over

longer time periods and with diverse input. Another concern is

external validity: will the behavior of researchers bidding on real

papers be similar to that of AMT workers who play a game for

recreation and/or money?

We argue that the answer is yes. While the preferences of actual
reviewers over real paper assignment are very different from those

of AMT subjects in our controlled experiment, it is much more

likely that both groups demonstrate the same behavioral biases and
tendencies in trying to obtain their preferred outcome.

9

In that respect, our use of AMT is similar to its use in consumer

behavior research, where controlled experiments with simulated

9
Note that we restricted our AMT subjects to similar demographics by requiring a

university degree.

(rather than actual) purchases are used to complement field studies

and deepen understanding [21]. More generally, results from AMT

experiments are considered reliable despite some differences in

personality traits [23], especially if subjects are filtered based on

their comprehension of the task (as we do).

In addition to the above, there is a concern that the number of

participants in the field experiment was too small to make conclu-

sive recommendations. Indeed we see this experiment as a first step,

or a ‘sanity check’ of the proposed approach, and wholeheartedly

expect more experiments on a larger scale that will validate the

results and deepen our understanding.

Critique on paper bidding with iPrices. There are several concerns
raised by the suggested bidding scheme in [33]. Mostly regarding

fair treatment of papers and strategic considerations of bidders (e.g.

is it better to bid earlier or later). Meir et al. [33] directly address

most of these concerns in the original paper, where their main point

is that bidders are free to ignore instructions and behave as they

would without demand information, but any bidder that does take

this information into account improves the outcome both for herself

and for the others. We can also add that we did not encounter any

adverse effects in our field experiment. However, we should keep

in mind it was in a small scale.

Another possible objection is that automated matching enabled

by systems like TPMS makes bidding redundant altogether, or at

least less important. That may be true in the future but as shown

in [18] (see our Introduction), current automated fit-scores are also

highly skewed, and may therefore exacerbate the problem rather

than solve it.

Practical Recommendations. We believe that adopting the simple

market scheme of Meir et al. [33] can have a positive influence

on distribution of bids during bidding phase. This influence can

be increased by combining other UI factors such as highlighting

and/or use the current demand as a factor in sorting presented

papers [11, 17]. Regardless of the bidding scheme, we recommend

that the bidding requirement (in terms of number of positive bids

or budget) will be displayed during bidding. These changes can be

easily implemented in existing platforms such as EasyChair and

ConfMaster, and be offered to conference organizers as optional

features.

We recommend doing these changes carefully:

• Consult UX/UI experts regarding the best way to highlight

papers so as to avoid confusion, choosing the best terms to

describe iPrices and budgets, etc.;

• Explain reviewers/committee members that they can bid as

they wish (even ignore all additional information), but will

be more likely to get their desired papers by following the

bidding instructions;

• As for paper order, we should keep in mind that most plat-

forms offer the user flexibility in how to sort the papers, so

users should have the option to choose whether demand

should be a factor in this order;

• Test suggested changes on a subset of conference partici-

pants and/or in smaller workshops before full adoption.

We hope these suggestions will contribute to improving the review

process for all.
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