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Multimode Brownian dynamics of a nanomechanical resonator in a viscous fluid
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Brownian motion imposes a hard limit on the overall precision of a nanomechanical measurement. Here,
we present a combined experimental and theoretical study of the Brownian dynamics of a quintessential
nanomechanical system, a doubly clamped nanomechanical beam resonator, in a viscous fluid. Our the-
oretical approach is based on the fluctuation-dissipation theorem of statistical mechanics: we determine
the dissipation from fluid dynamics; we incorporate this dissipation into the proper elastic equation to
obtain the equation of motion; and the fluctuation-dissipation theorem then directly provides an analytical
expression for the position-dependent power spectral density (PSD) of the displacement fluctuations of the
beam. We compare our theory to experiments on nanomechanical beams immersed in air and water and
obtain excellent agreement. Within our experimental parameter range, the Brownian-force noise driving
the nanomechanical beam has a colored PSD due to the “memory” of the fluid; the force noise remains
mode independent and uncorrelated in space. These conclusions are not only of interest for nanome-
chanical sensing but also provide insight into the fluctuations of elastic systems at any length scale.

DOI: 10.1103/PhysRevApplied.20.044061

I. INTRODUCTION

Brownian fluctuations of mechanical systems have been
a topic of active research in physics since the 1920s [1,2].
Early electrometers [3] and galvanometers [4] that featured
proof masses attached to linear springs displayed irreg-
ular movements around their equilibrium points despite
all “precautions and shields” [5]. These early experiments
eventually led to the realization that the observed fluctu-
ations, namely, Brownian motion, were of a fundamental
nature and limited the overall precision of mechanical
measurements [5]. A century later, Brownian motion still
remains centrally relevant to precision metrology and sens-
ing based on mechanical systems—in particular, nanoelec-
tromechanical systems (NEMS) [6] and AFM microcan-
tilevers [7]. These state-of-the-art miniaturized mechanical
systems are even more susceptible to Brownian noise
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than their macroscopic counterparts, since they tend to be
extremely compliant to forces.

The Brownian dynamics of a nanomechanical resonator
can be formulated using elasticity theory and statisti-
cal mechanics. Elasticity theory provides a dissipationless
equation of motion, such as the beam equation. Solv-
ing this equation under a harmonic ansatz and subject to
boundary conditions maps the dynamics of the nanome-
chanical resonator onto that of a collection of eigenmodes,
i.e., spring-mass systems, with discrete eigenfrequencies
and mode shapes (eigenfunctions) [8,9]. In the simplest
approximation of Brownian dynamics, each eigenmode is
assumed to have a constant and spatially uniform dissi-
pation, resulting in a Brownian-force noise that is delta-
function correlated in both time and space. These assump-
tions result in a theoretical expression for the power spec-
tral density (PSD) of the displacement fluctuations of the
beam as a sum of the PSDs of the individual uncorrelated
eigenmode fluctuations [8,10]. In the limit of small dissi-
pation, multimode noise measurements on cantilevers [11],
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microdisks [12], microtoroids [13], nanowires [14], and
macroscopic elastic systems [15], all agree with this first-
order approximation.

Most mechanical systems, however, do come with
some “memory,” making the above-mentioned assumption
of a temporally uncorrelated force noise inaccurate [8].
If the dissipation is spatially nonuniform, i.e., position
dependent, the force noise between different eigenmodes
becomes correlated [16], with the eigenmode expansion
of the force noise becoming nontrivial. For elastic sys-
tems with spatially nonuniform dissipation, alternative
approaches to calculate the noise PSD have been devel-
oped [16,17] and experimentally tested [18–20].

For a nanomechanical resonator immersed in a viscous
fluid, memory comes from the flow-resonator interac-
tion [21]. Here, the presence of the viscous fluid allows
for a viable path to formulate the Brownian dynamics of
the nanomechanical resonator consistently [22–24]: first,
the dissipation of the resonator is found from fluid dynam-
ics; then, the fluctuation-dissipation theorem is used for the
calculation of the PSD of the resonator fluctuations. Since
the fluidic dissipation is frequency dependent, the force-
noise PSD is also “colored,” and the resonator fluctuations
deviate substantially from the first-order approximation
discussed above. In nearly all work so far, the dissipation
in viscous fluids has been assumed to be mode indepen-
dent and spatially uniform, resulting in a Brownian-force
noise that is spatially uncorrelated. This assumption of
spatial homogeneity again leads to formulas expressible
as a sum in terms of the individual eigenmodes. There
are notable papers, where the experimental noise data
have been successfully fitted with colored PSDs. However,
these experiments typically do not extend beyond the first
mode of the elastic structure [25–28] and are thus not very
insightful on the spatial nature of the force noise.

The topic of this paper is the Brownian dynamics of
a nanomechanical resonator in a viscous fluid. In partic-
ular, we investigate how the Brownian force driving the
nanomechanical resonator is correlated in time and space
in a viscous fluid. To this end, we derive an expression
for the PSD of the displacement fluctuations of an elas-
tic nanomechanical beam under tension in a viscous fluid,
assuming a frequency-dependent but spatially homoge-
neous viscous dissipation. This results in a PSD that is
the sum of the PSDs of the uncorrelated fluctuations of
individual eigenmodes. We validate this theory by experi-
ments performed on nanomechanical beams under tension
immersed in air and water. Using solely experimental
parameters, we obtain excellent agreement between the
experimental data and theory. This agreement, up to the
12th eigenmode in air and the seventh eigenmode in water,
validates our overarching assumptions: the Brownian-
force noise has a colored PSD due to the memory of
the fluid but can be approximated to be uncorrelated in
space.
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FIG. 1. (a) A doubly clamped beam with length L, width b,
thickness h, and gap g between the beam and substrate. (b) An
illustration of the first three eigenfunctions φn(x). (c) An SEM
image of a doubly clamped silicon nitride beam under tension,
with L ×  b ×  h =  50 µm ×  900 nm ×  93 nm and g =  2 µm. The
silicon nitride layer is shown in green, with the suspended part in
light green. The silicon substrate and the gold layer are gray and
yellow, respectively.

II. THEORY

We start with the equation of motion for a beam under
tension driven by a deterministic external force in a viscous
fluid. The respective linear dimensions of the beam are L ×
b ×  h along the x, y , and z axes [Fig. 1(a)] and μ  =  ρsbh
is the mass per unit length, with ρs being the density. The
flexural displacement of the beam, W(x, t), along the z axis
at position x and time t is given by

EI ∂4W(x, t) FT ∂2W(x, t) ∂2W(x, t)
L4 ∂x4 L2 ∂x2                            ∂t2

=  Ff (x, t) +  Fd(x, t). (1)

The x coordinate has been normalized by L such that
0 ≤  x ≤  1. In Eq. (1), E is the Young’s modulus, I is
the area moment of inertia, Ff (x, t) is the force per unit
length of the fluid acting on the beam, Fd(x, t) is the
external drive force per unit length, and FT is the tension
[29]. The beam has fixed boundaries such that W(0, t) =
W(1, t) =  W0(0, t) =  W0(1, t) =  0, where a prime indicates
an x derivative.

It will be useful to proceed in the frequency domain [30],
using the Fourier-transform pair

Z ∞
W(x, ω) = W(x, t)eiωtdt, (2)

− ∞

W(x, t) =  
1  ∞  

W(x, ω)e−iωtdω, (3)
− ∞
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where ω is the angular frequency. This leads to the trans-
formed differential equation

EI ∂4W(x, ω) FT ∂2W(x, ω)
L4 ∂x4 L2 ∂x2

−  ω2     μ  +  
π 
ρf b20(ω) W(x, ω) =  Fd(x, ω) (4)

for the Fourier component W(x,ω) at ω. In Eq. (4), we have
described the force due to the fluid as

Ff (x, ω) =  
4 
ρf ω2b20(ω)W(x, ω), (5)

where ρf     is the fluid density and 0(ω) is the complex
hydrodynamic function for a blade, derived from Stokes’
oscillating cylinder theory [31–33]. In Eq. (5), 0(ω) quan-
tifies the mass loading and viscous damping of the fluid
acting on the beams. To obtain 0(ω), one starts with
the complex hydrodynamic function for an infinitely long
oscillating cylinder,

4iK1 − i
√

i Reω
c ω

i ReωK0 − i  i Reω

where K0 and K1 are, respectively, the zeroth- and first-
order modified Bessel functions of the second kind [34].
The argument of 0c is the frequency-dependent Reynolds
number, Reω =  ρf ωb2/4ηf , where ηf is the dynamic vis-
cosity of the fluid. To account for the rectangular cross
section of the beams, one then applies a small frequency-
dependent correction factor to 0c [33]. It can be deduced
from Eq. (6) that the only parameters in 0(ω) are b and
ηf , which are both constants. Thus, 0(ω) is assumed to be
independent of position x as well as the mode shape of the
beam.

We solve Eq. (4) using the eigenfunction expansion
[33],

W(x, ω) =  
X

f n (ω )φn (x ) , (7)
n=1

where n is the mode number, fn(ω) describes the frequency
dependence, and the φn(x) are the orthonormal eigen-
functions of the beam with tension [Fig. 1(b)]. Expres-
sions for φn(x) and the eigenfrequencies ωn/2π for a
doubly clamped beam with tension are available [28,30,
35,36]. We note that both φn(x) and ωn/2π are found
from the dissipationless equation of motion. The influence
of the tension force on φn(x) and ωn can be quanti-
fied in terms of the nondimensional tension parameter U,
where FT/(2EI /L2). The dynamics becomes, respectively,
that of an Euler-Bernoulli beam and a string for U →  0
and U  1.
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Using the orthogonality of φn(x), the solution to Eq. (4)
can be expressed as

L4 X  R 1 Fd(x0,ω)φn(x0)dx0

EI 
n=1

•2 −  B4(ω) n

•n are the nondimensional eigenfrequencies, defined as

•n =  
α/L2 

, (9)

where α =  (EI /μ)1/2 . The complex function B(ω) con-
tains the dissipation and added mass and is given by

2

B4(ω) =  •2 [1 +  T00(ω)] , (10)
1

where ω1 is the fundamental eigenfrequency of the beam
in the absence of fluid, i.e., dissipation and added mass.
The mass-loading parameter, T0 =  (π/4)(ρf b/ρsh), is the
ratio of the mass of a cylinder of fluid with diameter b to
the mass of the beam.

In order to connect with the fluctuation-dissipation
theorem, we next calculate the susceptibility, χ (x0, t),
which we define as the time-dependent displacement of
the beam measured at position x0 due to the application
of a unit impulse of force at the same position x0. Thus, we
specify

Fd(x, t) =  
L
δ(x −  x0)δ(t), (11)

which becomes

Fd(x, ω) =  
L
δ(x −  x0) (12)

in the frequency domain, with δ being the Dirac delta
function. Hence, χ̂ (x0, ω) =  W(x0, ω) and we obtain

χ̂ (x0, ω) =  
EI 

n=1 

R
0 δ(x0 −  x0)φn(x0)dx0 

φn(x0), (13)

which can be expressed as

3     ∞ 2

χ̂ (x0, ω) =  
EI 

n=1 
•2 −  B4(ω)

. (14)

Using ωn/ω1 =  •n/ •1, defining ω̃n =  ω/ωn, and simpli-
fying further yields

∞

χ̂ (x0, ω) =  
n=1 

kn(x0)

×  
1 −  ω̃ 2(1 +  T000(ω)) −  iω̃ 2T0000(ω)

,

(15)
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TABLE I.     The eigenfrequencies ω /2π are from fitting our air measurements to our model; the peak frequencies, ω(v)/2π and
ω(a)/2π , are measured in vacuum and air, respectively. The effective stiffness k (x ) is found at an antinode and the quality factors
Q(a) in air are found from Lorentzian fits. All frequency values are in megahertz. The modal peak for n =  12 is barely resolvable in
the PSD (Fig. 2).

L =  30 µm L =  40 µm L =  50 µm

Mode

1
2
3
4
5
6
7
8
9
10
11
12

ωn

2π
3.531
7.158
10.998
15.260
20.159
25.532
31.556
37.940
45.306
52.195
60.014

. . .

(v)
n

2π
3.538
7.224
11.009
15.293
20.141
25.605
31.461
37.784
45.086
52.392
59.904
68.342

(a)
n

2π
3.501
7.111
10.934
15.180
20.067
25.420
31.423
37.789
45.132
52.004
59.802
68.293

kn(xn) Q(a)

1.42        28
6.05        50
21.42       69
34.65       86
63.28      104
118.67     121
183.02     125
405.19     141
495.15     150
699.80     155

1077.36 167
. . . . . .

ωn

2π
2.577
5.182
7.906

10.817
13.924
17.373
21.037
25.017
29.275
34.043
38.970
44.291

(v)
n

2π
2.596
5.310
7.997
10.968
14.073
17.537
21.121
25.175
29.354
34.265
38.879
44.234

(a)
n

2π
2.553
5.145
7.856
10.755
13.851
17.289
20.938
24.910
29.156
33.904
38.817
44.120

kn(xn)     Q(a)

1.16       22
3.86       40
10.94      56
25.46      70
39.62      83
50.77      98
93.52     110
145.15 120
173.99 131
375.16 137
375.16 144
564.47 153

ωn

2π
2.017
4.065
6.194
8.356

10.649
13.166
15.717
18.579
21.562
24.682
28.112
31.678

(v)
n

2π
2.019
4.073
6.168
8.326
10.598
13.227
15.725
18.598
21.564
24.695
27.988
31.565

(a)
n

2π
1.995
4.030
6.151
8.303
10.585
13.094
15.636
18.487
21.462
24.573
27.991
31.548

kn(xn)     Q(a)

1.04       17
3.81       35
7.99       46
19.11      58
29.64      68
54.49      81
64.15      92
83.14     102
153.41 112
220.33 119
220.33 128
349.46 136

where 00(ω) and 000(ω) are the real and imaginary parts
of 0(ω), respectively. The effective spring constant of
mode n, when measured at x0, is represented as kn(x0);
kn(x0) can be consistently determined by ensuring that the
kinetic energy of the spatially extended oscillating beam
with mode shape φn(x) equals that of a lumped system
measured at x0. This yields

2

kn(x0) =  
φn (x0)

, (16)

where m =  μL is the nominal mass of the beam.
The PSD of the Brownian fluctuations of the beam

at axial position x0 can be directly expressed using the
fluctuation-dissipation theorem [37,38] as

GW(x0, ω) =  
4kBT

χ̂ 00(x0,ω), (17)

where χ̂00(x0,ω) is the imaginary part of χ̂ (x0, ω), kB is the
Boltzmann constant, and T is the temperature. The sub-
script W on GW indicates that this is the spectral density of
the fluctuations in the flexural displacement W(x, t) of the
beam along the z axis.

Taking the imaginary part of Eq. (15) to find χ̂ 00(x0,ω)
and inserting this into Eq. (17), we obtain the desired result
as

∞

GW(x0, ω) =  4kBT 
n=1 

kn(x0)ωn

ω̃nT0000(ω)

1 −  ω̃ 2(1 +  T000(ω)) 2 +  ω̃ 2T0000(ω) 2

(18)

This expression yields the total PSD for the displacement
fluctuations of the beam at frequency ω and position x0.
We emphasize that GW(x0, ω) in Eq. (18) is obtained as a
sum over individual eigenmodes. This is because 0(ω) is
assumed to be spatially homogeneous and independent of
mode number n [39].

III. EXPERIMENTS

Our experiments are performed on silicon nitride dou-
bly clamped beams of b =  900 nm, h =  93 nm, and three
different lengths of L =  30, 40, and 50 µm; there is a gap
of g =  2 µm between each beam and the substrate. Figure
1(c) shows a scanning electron microscope (SEM) image
of a beam with L =  50 µm. All the beams are from the
same fabrication batch. The beams are under tension, as
inferred from their resonance frequencies in vacuum [29].
We determine μ  =  ρsbh =  2.66 ×  10−10 kg/m, with the
density measured as ρs =  2960 kg/m3 [29]. The beams
also have U-shaped gold-nanoresistor patterns near their
anchors for other experiments [28,29].

We measure the displacement fluctuations of the beams
using a path-stabilized homodyne Michelson interferome-
ter. The diffraction-limited He-Ne laser spot with a diam-
eter of approximately 650 ±  10 nm (full width at half
maximum) is positioned on the beam using an XYZ pre-
cision stage. The typical powers incident on the beam and
the photodetector are approximately 600 µW and approx-
imately 1 mW, respectively, with a shot-noise-limited dis-
placement sensitivity of approximately 5 fm/ Hz. We cal-
ibrate the system against the wavelength of the laser [40]
and operate at the point of optimal sensitivity. For each
measurement taken at a given position x0 on a beam, a sec-
ond measurement is taken with the same parameters near
the anchor of the beam to determine the background noise
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FIG. 2.     The PSDs of the displacement fluctuations GW(xn, ω) plotted using semilogarithmic axes for the first 12 modes of a beam
with L =  30 µm in air. The measurement is performed at x =  xn, i.e., an antinode of mode n. The continuous lines are fits based on
Eq. (18). The insets for n =  9, ..., 12 show GW(xn, ω) using linear axes. Because the peak of the 12th mode is barely resolved, we do
not determine values for ω12/2π , k12(x12), and Q(a).

level in our measurements, e.g., due to the low-frequency
laser noise or cable resonances. We assume that the beam
fluctuations and the background noise are uncorrelated and
subtract this background from the noise PSD measured
on the beam [41]. This allows us to resolve the beam
fluctuations down to approximately 2 fm/ Hz.

The finite size of the optical spot introduces errors into
the measurements [42]. A significant source of error is
the curvature of the beam, especially in higher modes. By
computing the overlap of the Gaussian optical spot with
the beam mode, we estimate this error to be less than
10% for the 12th mode of our 30-µm-long beam, which
has the largest curvature in all our experiments. In water
measurements, it also becomes problematic to position the
optical spot precisely at the desired locations on the beam.
To find x0 =  0.50 (center) and x0 =  0.25 (L/4) positions
on the beam, we maximize the n =  1 and n =  2 peaks,
respectively.

IV. RESULTS

A. Vacuum

We first measure the resonance frequencies of the
eigenmodes of the beams in vacuum (p <  10−6 bar), as

listed in Table I. These peak frequencies in vacuum,
ω(v)/2π , should be very close to the eigenfrequencies of
the dissipationless beam, ωn/2π . We also extract quality
factors in vacuum from Lorentzian fits and find that all
Q(v) & 103.

B. Air

Next, we examine the displacement fluctuations in air.
We first identify the frequency at which our system tran-
sitions from viscous to molecular flow. For this system,
the transition frequency ωc/2π can be found using ωcτ +
(λ/b) ≈  1, where τ is the relaxation time and λ is the
mean free path in the fluid [41,43]. In air, τ ≈  1 ns and
λ ≈  68 nm [41,43]. The relevant length scale, b =  900 nm,
is the same for all our devices. We thus find that ωc/2π ≈
100 MHz in air. Therefore, our measurements are mostly
within the viscous regime.

Figures 2–4, respectively, show the PSDs of the first 12
modes of beams with L =  30, 40, and 50 µm. The low
dissipation in air results in distinctly separated peaks in
the PSDs. Each PSD is measured at an antinode (x =  xn)
of mode n as a function of frequency near the peak fre-
quency, ω(a)/2π , in air. The relatively large modal quality
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FIG. 3. The PSDs of the displacement fluctuations GW(xn, ω) plotted using semilogarithmic axes for the first 12 modes of a beam
with L =  40 µm in air. The measurement is performed at x =  xn, i.e., an antinode of mode n. The continuous lines are fits based on
Eq. (18). The insets for n =  9, ..., 12 show GW(xn, ω) using linear axes.

factors, 17 ≤  Q(a) ≤  200, allow us to determine the eigen-
frequencies ωn/2π , the effective spring constants kn(xn),
and the theoretical GW(xn, ω) curves in a self-consistent
manner. To this end, we first use the equipartition of
energy to find kn(xn) from 1 kn(xn) W2(xn) =  1 kBT, where
the mean-squared fluctuation amplitude, W2(xn) , is the
numerical integral of the experimental GW(xn, ω) data over
frequency. To find the theoretical GW(xn, ω) curve, we cal-
culate T0 and 0(ω) using the density and viscosity of air at
room temperature. We then insert the experimental kn(xn)
values along with T0 and 0(ω) into Eq. (18) and calculate
GW(xn, ω), treating ωn as a fit parameter. The best fits are
shown as continuous lines in Figs. 2–4.

We reemphasize that, except for ωn, the fits (continuous
lines) in Figs. 2–4 are solely determined using known or
measured quantities of the beam and the surrounding fluid.
The values of ωn/2π found by fitting are typically slightly
higher than ω(a)/2π (Table I). This is expected because
the ωn/2π are the eigenfrequencies without any fluid load-
ing. Our vacuum measurements support this observation
(Table I): the vacuum frequencies ω(v)/2π are all slightly
larger than ω(a)/2π . There are very small discrepancies
(typically <1.5%) between the eigenfrequencies deter-
mined by fitting, i.e., ωn/2π , and those obtained from

vacuum measurements, ω(v)/2π . We attribute these small
discrepancies to the fact that the eigenfrequencies of
nanomechanical resonators are easily perturbed by exter-
nal factors, e.g., the accumulation of adsorbates or changes
in the temperature and humidity of the environment. Since
the resonance is very sharply peaked in air (Q(a) >  10)
and in vacuum (Q(v) � 103), these perturbations result in
small but noticeable frequency shifts from measurement to
measurement.

C. Eigenfrequencies and spring constants

We next compare the experimental values for ωn/2π and
kn(xn) with the theoretical predictions of Euler-Bernoulli
beam theory with tension [30]. We estimate the magnitude
of the tension force FT by comparing the eigenfrequen-
cies obtained from experiments, ωn/2π , with those from
theory, ω(t)/2π . To determine ω(t)/2π , we turn to the char-
acteristic equation, which relates ω(t)/2π to the unknown
tension [35] in terms of the nondimensional parameters
•n and U. In our calculations, we use nominal beam
dimensions as well as E and ρs values for SiN. Since the
reported values for E have a large uncertainty, 200 GPa .
E .  380 GPa [44–46], we take the Young’s modulus as

044061-6



n

G
W

 (x
n

 ,
) 

(m
2
/H

z)

10 10

0

10

0

n

|ω |2

n

MULTIMODE BROWNIAN DYNAMICS... PHYS. REV. APPLIED 20, 044061 (2023)

10–26     
n = 1

10–27

10–28

10–29

1 2

10–27     
n = 5

10–28

10–29

10–30

10–26      

n = 2

10–27

10–28

10–29

3 3 4
10–27

n = 6

10–28

10–29

10–30

10–27     
n = 3

10–28

10–29

5
10–30        

5 6

n = 7
10–28

10–29

10–30

10–27     n = 4

10–28

10–29

10–30

7 7 8 9

10–28     
n = 8

10–29

10–30

10 11
x10–29

10

10–26     
n = 9 5

10–27

10–28 20     21     22

10–29

10–30

20 21 22

–31

12 12 13 14 15
x10–29

10–26 5 10–26

10–27     
n = 10

10–27     
n = 11

23 10–28 0
24     25     26     10–28

10–29 10–29

10–30 10–30

23 24 25 26 27

–31

16 17 17 18 19 20
x10–29                                                                                                       x10–29

4
5

10–27     n = 12 2

0 27     28     29 10–28
30     31     32     33

10–29

10–30

–31

28 29 30 31 32 33

Frequency (MHz)
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Eq. (18). The insets for n =  9, ..., 12 show GW(xn, ω) using linear axes.

E =  300 GPa. The density has been measured as ρs =
2960 ±  30 kg/m3 [29]. For each beam, we sweep the value
of FT, solve for ω(t)/2π for each FT, and then compute the
error

ε =  
X  |ωn −  ω(t)|2

(19)
n=1 n

between ωn and ω(t), where n encompasses the first 12
modes. The minimum ε provides the experimental value
of FT. Because all of the beams are on the same chip, we
average the values of FT for each of our three beams. We
thus find that FT =  7.43 µN. In Fig. 5(a), we show exper-
imental ωn/2π data (symbols) and theoretical predictions
(continuous lines) using FT =  7.43 µN on semilogarithmic
axes for all three beams.

To find the theoretical kn(xn) at an antinode, we use Eq.
(16). To this end, we calculate φn(x) for each beam [30]
using FT and ωn/2π ; we use nominal m, measured ωn, and
calculated φn(xn) to determine kn(xn). We show the experi-
mental and theoretical values for kn(xn) in Fig. 5(b). The
experimental spring constants match predictions closely

over 2 orders of magnitude for n .  7. With our knowl-
edge of φn(x) and kn(xn), we can determine kn(x0) for any
position x0 along the beam.

The differences between the experimental and theoreti-
cal values of ωn and kn(xn) are most likely due to imper-
fections, such as the presence of the gold layer and the
undercuts beneath the anchors. There is also an estimated
10% error in FT due to the fact that we do not know the
exact value of E [28]. Thus, it is more justifiable to use the
ωn and kn(xn) values directly obtained from experiments
rather than those calculated from elasticity theory.

D. Water

Our beams are then immersed in water, where we mea-
sure the PSDs of displacement fluctuations, GW(x0, ω),
over the continuous frequency range of 50 kHz to 15 MHz
at two positions on the beam, x0 =  0.25 and x0 =  0.50.
Figure 6 shows GW(x0, ω) as a function of frequency at
these two positions for all three beams. The first posi-
tion, x0 =  0.50, corresponds to an antinode of all odd
modes and a node of all even modes [Figs. 6(a)–6(c)];
the second position, x0 =  0.25, is close to the antinode
of the second mode [Figs. 6(d)–6(f)]. Low quality factors
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are shown by symbols and continuous lines, respectively. Typical
error bars for kn(xn) are smaller than the symbols, unless shown
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(Q & 1) in water result in broad and overlapping peaks;
the peak frequencies are significantly lower than those
in air.

Next, we compare our measurements in water to our the-
oretical expression for GW(x0, ω). The continuous curves
in Fig. 6 show predictions based on Eq. (18). Here, we
use the ωn values found above and determine kn(x0) from
kn(xn) after correcting for the position dependence via Eq.
(16). We then compute T0 and 0(ω) using the density and
viscosity of water and combine all factors in Eq. (18) to
generate the curves. The dotted curves show the PSDs
of individual modes; the continuous curve is the sum of
the first 12 modes. A strong agreement between experi-
ment and theory is evident for n .  7; for n & 7, the beam
fluctuations remain below our resolution limit. The theory

PHYS. REV. APPLIED 20, 044061 (2023)

predicts the peak frequencies and the noise power levels
accurately.

The positioning error mentioned in the third para-
graph in Sec. III affects both kn(x0) and the measured
GW(x0, ω). This error becomes more pronounced at higher
frequencies. In principle, the theory curves can be further
improved by treating the measurement position as a fit
parameter.

V. DISCUSSION AND CONCLUSIONS

Equation (18) describes the Brownian dynamics of a
nanomechanical beam in a viscous fluid and indicates
that, at a given frequency, the total noise is found by
adding the noise PSDs in different eigenmodes. The under-
lying assumption is that the Brownian-force noise is
delta-function correlated in space [33,47]. The form of
Eq. (18), i.e., the summation over uncorrelated eigen-
modes, should remain unchanged for any mechanical sys-
tem as long as the dissipation is uniform in space. For
our system, the dissipation in Eq. (5) from the cylinder
model is indeed spatially homogeneous. The remarkable
agreement between experiment and theory in Fig. 6 for
the first seven modes suggests that the cylinder model
remains accurate—to within our experimental resolution.
In other words, the frequency dependence and the spatial
homogeneity of the dissipation in the model are both
validated by our experiments.

Hydrodynamic fluctuations in a simple fluid are typi-
cally assumed to be delta-function correlated in space [48].
However, the situation is different for the nanomechanical
beam immersed in a fluid: the flow around the structure
and the fluid-structure interactions are expected to result in
spatial correlations in the force noise, eventually leading
to observable deviations from Eq. (18) for higher modes.
This expectation is consistent with the fact that the viscous
dissipation of the oscillating-cylinder model is not accu-
rate for higher modes. As the flow in the axial direction
becomes more appreciable with increasing mode number,
the dissipation becomes mode dependent and nonuniform
[39,49]. However, the agreement between predictions and
experiments suggests that the axial flow is negligible in
our parameter space. The smallest length scale probed in
our beams is comparable to the smallest resolved modal
wavelength of approximately 9 µm.

GW(x0, ω) should also be affected by the presence of
the nearby substrate due to the squeeze flow between the
beam and the substrate. In our theory, we have neglected
the presence of the substrate. This can be corrected
using numerical simulations [49]: we estimate a decrease
in 00(ω/2π =  0.1 MHz) by approximately 30% and an
increase in 000(ω/2π =  0.1 MHz) by approximately 30%,
which leads to an increase in GW(ω/2π =  0.1 MHz, x0)
of .  30% depending on the length L of the beam. This
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additional damping should further broaden the fundamen-
tal mode and induce an additional red shift of the peak
[25,50], which we observe in measurements. At higher fre-
quencies, as the thickness of the viscous boundary layer δ
becomes δ/g  1, this effect disappears [27,51].

To experimentally observe the noise-correlation effects
due to fluid-structure interaction, it would be necessary
to resolve the fluctuations in higher modes. To this end,
one should first determine the viscous dissipation from
fluid dynamics and assess the regime where the dissipation
becomes nonhomogenous, e.g., due to axial flows. Unfor-
tunately, analytical solutions cannot be found for most
experimental geometries, making numerical simulations
necessary. Once the flow regimes around the structure are
determined, one could design and fabricate structures with
softer spring constants kn such that the Brownian motions
in higher modes can be resolved.

Nonlinearities in the elastic potential can modify the
Brownian dynamics of the nanomechanical beam [52,53].
Achieving the nonlinear limit for thermal fluctuations of
a mode requires a very high modal Qn and a very soft
modal spring [53]. We estimate that the very low Qn in
fluids along with the large kn of the beams makes non-
linear effects negligible in our experiments. As an order-
of-magnitude comparison, the fundamental mode of our
50-µm-long beam displays nonlinear behavior at ampli-
tudes & 20 nm [54], while its thermal amplitude remains
around 60 pm in air. The emergence of nonlinear behavior

in higher modes of elastic structures and Brownian motion
in a nonlinear potential are both interesting questions
requiring further study.
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