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Hybrid iLQR Model Predictive Control for Contact

Implicit Stabilization on Legged Robots

Nathan J. Kong1,2, Chuanzheng Li2, George Council1 and Aaron M. Johnson1

Abstract—Model Predictive Control (MPC) is a popular strat-
egy for controlling robots but is difficult for systems with
contact due to the complex nature of hybrid dynamics. To
implement MPC for systems with contact, dynamic models are
often simplified or contact sequences fixed in time in order
to plan trajectories efficiently. In this work, we propose the
Hybrid iterative Linear Quadratic Regulator (HiLQR), which
extends iLQR to a class of piecewisesmooth hybrid dynamical
systems with state jumps. This is accomplished by 1) allowing for
changing hybrid modes in the forward pass, 2) using the saltation
matrix to update the gradient information in the backwards pass,
and 3) using a reference extension to account for mode mismatch.
We demonstrate these changes on a variety of hybrid systems and
compare the different strategies for computing the gradients. We
further show how HiLQR can work in a MPC fashion (HiLQR
MPC) by 1) modifying how the cost function is computed when
contact modes do not align, 2) utilizing parallelizations when
simulating rigid body dynamics, and 3) using efficient analytical
derivative computations of the rigid body dynamics. The result is
a system that can modify the contact sequence of the reference
behavior and plan whole body motions cohesively – which is
crucial when dealing with large perturbations. HiLQR MPC
is tested on two systems: first, the hybrid cost modification is
validated on a simple actuated bouncing ball hybrid system. Then
HiLQR MPC is compared against methods that utilize centroidal
dynamic assumptions on a quadruped robot (Unitree A1). HiLQR
MPC outperforms the centroidal methods in both simulation and
hardware tests.

Index Terms—Legged Robots, Model Predictive Control, Hy-
brid Dynamics, Whole Body Motion Planning

I. INTRODUCTION

In order for robots to reliably move and interact within our

unstructured world, they need to be able to replan motions

to handle unexpected perturbations or changes in the envi-

ronment. However, replanning is difficult for robotic systems

that have changing contact with the world because of the

complexity of the discontinuous dynamics and combinatoric

issues that arise.

There are many methods for planning contact-rich behaviors

offline [1–4], but these methods generally suffer from poor

time complexity and cannot be used directly in real-time
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applications. Direct methods for contact implicit trajectory

optimization [1,2] simultaneously solve for the states, inputs,

and contact forces of an optimal trajectory while encoding

the contact conditions through complementarity constraints –

which are notoriously difficult and slow to solve. A relaxation

of contact implicit trajectory optimization is to fix the contact

sequence for each timestep [5–9].

To allow efficient updates of the contact sequence, [10]

speeds up contact implicit trajectory optimization through

strategic linearization about a target trajectory. However, the

basin of attraction is smaller because it is linearized about

a single nominal trajectory. If the robot needs to drastically

change the trajectory, the controller will not use a good model

given the linearization of the target trajectory.

Other relaxations have been made for the planning problem

to achieve real-time Model Predictive Control (MPC). Cen-

troidal methods [11–15] have had a lot of success in planning

gaits in real-time by making large simplifications on the robot

dynamics and also assuming a fixed contact sequence. Swing

legs are often controlled separately using Raibert heuristics

[16] or capture point methods [17] to regulate body velocity.

However, simplifications to the robot dynamics can lead to

the controller being less robust to perturbations which require

reasoning about the full dynamics, such as nonlinear changes

in lever arm for leg extension, varying inertia when the leg

changes shape, or not accounting for changes in contact.

Shooting methods which utilize Differential Dynamic Pro-

gramming (DDP) [18] or iterative Linear Quadratic Regulator

(iLQR) [19–23] are good candidates for model predictive con-

trol because they are fast, can utilize the full nonlinear dynam-

ics, and solutions are always dynamically feasible. Methods

that utilize the full nonlinear dynamics [24–26] generally come

at the cost of enforcing a fixed contact sequence. [27] utilizes

the full nonlinear dynamics for timesteps closer to the current

horizon and then uses simplified dynamics for timesteps later

in the future, but also uses a fixed contact sequence. These

methods rely on iterative linearization, but have not previously

considered the best way to linearize systems with changing

contact conditions.

In this work we propose the Hybrid iLQR (HiLQR) tra-

jectory optimization algorithm that extends iLQR to be a

full-order contact implicit trajectory optimization algorithm

(Sec. III). This is accomplished by:

1) Allowing for varying mode sequences on the forward

pass by using event detection to dictate when a transition

occurs and enforcing the appropriate dynamics in each

mode, Sec. III-B.
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B. Hybrid Simulators

There are 2 main hybrid simulation techniques for rigid

bodies with unilateral constraints – event-driven and timestep-

ping. HiLQR MPC uses a hybrid simulator and can use

either method. But different modifications need to be made

depending on which simulation type is used. It is important

to have a high level understanding of each of these simulation

types to understand that modifications discussed in this work.

Event-driven hybrid simulators [37–39] follow very closely

to the example shown in the definition of hybrid dynamical

systems Def. 1. Event-driven simulations are convenient be-

cause the dynamics have a well defined structure and contacts

are persistently maintained. However, event-driven simulations

have problems with behaviors like Zeno [35], where an infinite

number of hybrid transitions are made in a finite amount of

time, as they must stop integration and apply a reset map for

each individual event.

Time-stepping [39–41] schemes circumvent issues like Zeno

by integrating impulses over small timesteps at a time and are

numerically efficient, especially for systems with large num-

bers of constraints. These methods allow contact constraints to

be added or removed at any time step, but only once per time

step. Furthermore, no distinction is made between continuous

contact forces and discontinuous impulses. However, they are

limited to first-order (Euler) integration of the dynamics.

Time-stepping methods are commonly employed for simu-

lations involving hard contacts since they avoid the Zeno prob-

lem and simplify the process of verifying all potential contact

modes. On the other hand, event-driven hybrid simulators are

capable of modeling a broader range of hybrid systems and

are not limited to computing the progression of constrained

systems.

III. HYBRID ILQR

This section covers an abridged derivation of iLQR [19]

following [20], proposes the changes to make iLQR work on

hybrid systems, and discusses several important key features

of the new algorithm.

A. Smooth iLQR background

Consider a nonlinear dynamical system with states x ∈ R
n,

inputs u ∈ R
m, and dynamics ẋ = F (x(t), u(t)). Define a dis-

cretization of the continuous dynamics over a timestep ∆ such

that at time tk the discrete dynamics are xk+1 = f∆(xk, uk),
where tk+1 = tk + ∆, xk = x(tk), and uk = u(tk).
Let U := {u0, u1, ..., uN−1} be the input sequence, JN the

terminal cost, and J the runtime cost, where J and JN are

both differentiable functions into R.

The optimal control problem over N timesteps is

min
U

JN (xN ) +

N−1
∑

i=0

J(xi, ui) (3)

where x0 = x(0) (4)

xi+1 = f∆(xi, ui) ∀i ∈ {0, ..., N − 1} (5)

To solve this problem, DDP/iLQR uses Bellman recursion

to find the optimal input sequence U , we which briefly review

here. Let Uk := {uk, uk+1, ..., uN−1} be the sequence of

inputs including and after timestep k. Define the cost-to-go

Jk as the cost incurred including and after timestep k

Jk(xk, Uk) := JN (xN ) +

N−1
∑

i=k

J(xi, ui) (6)

with {xk+1, ..., xN} the sequence of states starting at xk based

on Uk and (5). The value function V (x, k) (Bellman equation),

evaluated at state and time (xk, k) is the optimal cost to go

Jk(xk, Uk), which can be rewritten as a recursive function of

variables from the current timestep using the dynamics (5),

V (xk, k) :=min
uk

J(xk, uk) + V (f∆(xk, uk), k + 1) (7)

Since there is no input at the last timestep, the boundary

condition of the value is the terminal cost, VN (xN , N) :=
JN (xN ). Next, define Qk to be the argument optimized in

(7). Optimizing the Bellman equation directly is incredibly

difficult. DDP/iLQR uses a second order local approximation

of Q where perturbations about the state and input (xk, uk)
are taken at time k. The resulting function is defined to be

Qk(δx, δu, k) :=J(xk + δx, uk + δu)− J(xk, uk) (8)

+ V (f∆(xk + δx, uk + δu), k + 1)

− V (f∆(xk, uk), k + 1)

where the value function expansion is for timestep k + 1 and

when expanded to second order

Q(δx, δu, k) ≈
1

2





1
δx
δu





T 



0 QT
x QT

u

Qx Qxx QT
ux

Qu Qux Quu









1
δx
δu



 (9)

the expansion coefficients are

Qx = Jx + fT
x Vx (10)

Qu = Ju + fT
u Vx (11)

Qxx = Jxx + fT
x Vxxfx + Vxfxx (12)

Qux = Jux + fT
u Vxxfx + Vxfuu (13)

Quu = Juu + fT
u Vxxfu + Vxfux (14)

where subscripted variables represent derivatives of the func-

tion with respect to the variable (e.g. Jx = DxJ) and the

discretized dynamics are abreviated as fk = f∆(xk, uk). Note

that the second derivative terms (where adjacency indicates

tensor contraction) with respect to the dynamics (fxx,k, fuu,k,

and fux,k) in (12)–(14) are used in DDP but ignored in iLQR.

With this value function expansion, the optimal control

input, δu∗, can be found by setting the derivative of Q(δx, δu)
with respect to δu to zero and solving for δu,

δu∗ =argmin
δu

Q(δx, δu) = −Q−1
uu (Qu +Quxδx) (15)

This optimal control input can be split into a feedforward term

uff = −Q−1
uuQu and a feedback term K = −Q−1

uuQuxδx.

Therefore, the optimal input for the local approximation at

timestep k is the sum of the original input and the optimal

control input, u∗

k = uk + δu∗.
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Once the optimal controller is defined, the expansion coef-

ficients of V for timestep k can be updated by plugging in the

optimal controller into (9)

Vx = Qx −QuQ
−1
uuQux (16)

Vxx = Qxx −QT
uxQ

−1
uuQux (17)

Now that the expansion terms for the value function at

timestep k can be expressed as sole a function of k + 1 the

optimal control input can be calculated recursively and stored

(uff,k,Kk). This process is called the backwards pass.

Once the backwards pass is completed, a forward pass is

run by simulating the dynamics given the new gain schedule

(uff,k,Kk) and the previous iterations sequence of states and

inputs.

x̂0 = x0 (18)

ûk = Kk(x̂k − xk) + αuff,k (19)

x̂k+1 = f∆(x̂k, ûk) (20)

where the new trajectory is denoted with hats (x̂, û) and α
is used as a backtracking line-search parameters 0 < α ≤ 1
[20, Eqn. 12]. The backwards and forwards passes are run

until convergence. Following [20], convergence is when the

magnitude of the total expected reduction δJ is small

δJ(α) = α
N−1
∑

i=0

uT
ff,iQu,i +

α

2

N−1
∑

k=0

uT
ff,iQuu,iuff,i (21)

Convergence issues may occur when Quu is not positive-

definite or when the second order approximations are inac-

curate. Regularization is often added to address these issues

and here we use the standard regularization from [42] where a

scaled diagonal term is added to the local control cost Hessian.

B. Hybrid system modifications to the forward pass

The first change that is required for iLQR to work on hybrid

dynamical systems is that the forward pass must accurately

generate the hybrid system execution. The dynamics are

integrated for the currently active mode Ij for the duration

of the hybrid time period j, i.e. ∀t ∈ [tj , t̄j ], until a guard

condition is met,

g(Ij ,Ij+1)(t̄j , x(t̄j), u(t̄j)) = 0 (22)

To capture these hybrid dynamics in the discrete forward

pass, the discretized dynamics are computed using numerical

integration with event detection, so that if no event occurs the

dynamic update, (5), is,

f∆j
(x̂k, ûk) :=

∫ tk+1

tk

fIj (x(t), ûk)dt+ x̂k (23)

If during the integration the hybrid guard condition is met,

(22), the integration halts, the transition state is stored, the

reset map is applied, and then the integration is continued

with the dynamics of the new mode, Ij+1. Suppose that the

guard condition is met once (which is ensured for small times

by transversality) at time t̄j , such that tk ≤ t̄j ≤ tk+1, then

f ′

∆(x̂k, ûk) =

∫ tk+1

tj+1

fIj+1
(x(t), ûk)dt+ (24)

R(Ij ,Ij+1)

(

t̄j ,

∫ t̄j

tk

fIj (x(t), ûk)dt+ x̂k

)

Note that this process can be repeated for as finitely many

times as there are hybrid changes during a single timestep,

but there cannot be infinitely many changes during a single

timestep (no Zeno).

Finally, in addition to updating the dynamics the cost

function, (6), can be augmented with additional cost terms,

JNj
, associated with each hybrid transition between the M

hybrid modes, as shown in [43],

J0 = JN (xN ) +

N−1
∑

i=0

J(xi, ui) +

M−1
∑

j=1

JNj
(xNj

) (25)

Such an addition may be desirable if e.g., one wanted to

penalize the occurrences of a transition event in the hopes

of having a minimal number of hybrid events.

C. Hybrid system modifications to the backwards pass

The backwards pass must be updated to reflect the discrete

jumps that were added through the hybrid transitions. Away

from hybrid transitions, the dynamics are smooth and behave

the same way as in the smooth iLQR backwards pass, so

our modification to the backwards pass occurs at timesteps

where a hybrid transition is made. By substituting (24) into

(7), and adding the transition cost from (25), the resulting

Bellman equation for the timesteps during hybrid transition j
over timestep k is

V (xk, k) =min
Uk

J(xk, uk)+JNj
(xNj

)+V (f ′

∆(xk, uk), k+1)

(26)

We elect to approximate the hybrid transition timestep to

have the hybrid event occur at the end of the timestep in

order to maintain smooth control inputs for each hybrid epoch.

For the backwards pass to work on the Bellman equation

during transition timesteps, we need to find the linearization

of f ′

∆(xk, uk). This linearization step is straight forward when

using the saltation matrix to map perturbations pre and post

hybrid transition (2).

The linearization can be broken up into 2 different steps,

where each step the linearization is known.

δx(t̄j) ≈ fx,∆j
δx(tk) + fu,∆j

δu(tk) (27)

δx(tj+1) ≈ Ξδx(t̄j) (28)

where f∗,∆j
= D∗f∆j

(x, u) and the saltation matrix is

abbreviated as Ξ = Ξ(Ij ,Ij+1)(t̄j , x(t̄j), u(tk))
These linearization steps can be combined and directly

substituted in the coefficient expansion equations (10)–(14)

in place of the fk terms. For the transition cost, JNj
, an

expansion is taken about δx(t̄j) which can be mapped back

to (δx(tk), δu(tk)) and added to the expansion coefficients.
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When combining all the expansion terms, the hybrid iLQR

coefficients in (9) are,

Qx,k = Jx + fT
x,∆j

Jx,Nj
+ fT

x,∆j
ΞTVx (29)

Qu,k = Ju + fT
u,∆j

Jx,Nj
+ fT

u,∆j
ΞTVx (30)

Qxx,k = Jxx + fT
x,∆j

Jxx,Nj
fx,∆j

+ fT
x,∆j

ΞTVxxΞfx,∆j

(31)

Qux,k = Jux + fT
u,∆j

Jxx,Nj
fx,∆j

+ fT
u,∆j

ΞTVxxΞfx,∆j

(32)

Quu,k = Juu + fT
u,∆j

Jxx,Nj
fu,∆j

+ fT
u,∆j

ΞTVxxΞfu,∆j

(33)

After this update to the coefficient expansion, the backwards

pass continues normally. If the second order variational ex-

pression for the saltation matrix is calculated, then these

exact changes can be used for a hybrid DDP version of

this backwards pass. However, the computation of the second

order variation expression may not be easy for systems with

large state space. Note that a simplification we make for

the expansion is that we assume that the hybrid transition

occurs at the end of the timestep to ensure piecewise smooth

control inputs. This simplification will no longer be a good

approximation as time step periods become longer.

D. Hybrid extensions for mode mismatches

Since the forward pass can alter the contact sequence, the

new trajectory is not confined to the previous trajectory’s

mode sequence or timing. This feature is intended because

the algorithm can now remove, add, or shift mode transitions

if cost is reduced. However, this introduces an issue when the

reference mode is not the same as the current mode.

In [29, Eq. 7], the authors consider the problem of mode

mismatch for an optimal hybrid trajectory, both of the refer-

ence and of the feedback gains – the reference is extended by

integration, and the gains are held constant. We employ their

strategy, as well as apply this same rule for the feedforward

input and the feedforward gains – applying the input intended

for a different mode can cause destructive results, or be not

well-defined. If the number of hybrid transitions exceeds that

of the reference, we elected to hold the terminal state and

gains constant, though other choices could be made instead.

E. Algorithm

With each hybrid modification to iLQR listed in Sections

III-B, III-C, and III-D our new algorithm can be summa-

rized as follows: 1) Given some initial state, input sequence,

quadratic loss function, number of timesteps, and timestep

duration a rollout is simulated (either through event driven or

time stepping methods) to get the initial reference trajectory

and mode sequence. 2) A hybrid backwards pass (using the

regularization from [42]) computes the optimal control inputs

for the reference trajectory. 3) Hybrid reference extensions

are computed on the start and end states for each hybrid

reference segment. 4) The forward pass simulates the current

mode’s dynamics until a hybrid guard condition is met or it

is the end of the simulation time; if the guard is reached,

the corresponding reset map is applied and the simulation

is continued. This forward pass is repeated with a different

learning rate until the line search conditions are met [20].

5) Then the backwards pass, hybrid extensions, and forward

passes are repeated until convergence.

IV. HILQR MPC IMPLEMENTATION

In this section, the tracking problem is defined, and we show

how to adapt Hybrid iLQR to be a MPC controller.

A. Hybrid Cost Update

HiLQR for trajectory optimization’s goal is to reach a

specific state whereas HiLQR MPC is now trying to reach

every point a long a trajectory at specific points in time. The

goal now becomes minimizing the difference in state and input

with respect to a reference state and input

Ĵ(xi, ui) = (xi − x̂i)
TQi(xi − x̂i) + (ui − ûi)

TRi(xi − ûi)
(34)

where Qi is the quadratic penalty matrix on state, and Ri is

the quadratic penalty matrix on input, and (x̂, û) denotes the

reference. The optimization problem is now

min
U

ĴN (xN ) +
N−1
∑

i=0

Ĵ(xi, ui) (35)

where x0 = x(0) (36)

xi+1 = f∆(xi, ui) ∀i ∈ {0, ..., N − 1} (37)

However, because Hybrid iLQR is contact implicit (the

hybrid mode sequence can differ from the target’s mode

sequence), the runtime cost (34) can be ill defined when

the candidate trajectory’s mode does not match the target’s.

For example, if there is an early or late contact in a rigid

body system with unilateral constraints, the velocities will be

heavily penalized for having a mismatched timing. This issue

is further propagated to the backward pass, where the gradient

information relies on these differences and can ultimately

lead to the algorithm not converging. To mitigate these mode

mismatch issues, we propose 2 different solutions for event-

driven and timestepping simulations.

For event-driven hybrid simulators, the same hybrid ex-

tensions used in reference tracking on the forward pass in

Hybrid iLQR can be used when comparing error during mode

mismatches. Suppose a hybrid transition occurs at time t. The

reference state at pre-transition x̂(t−) is extended beyond the

hybrid guard by flowing the pre-transition dynamics forwards

while holding the pre-transition input constant. The post-

transition reference state x̂(t+) is extended backward by

flowing the dynamics backward in time while again holding

the input constant. With these hybrid extensions, when there

is a mode mismatch induced by a transition timing error, the

reference is switched to the extension with the same hybrid

mode. Note that when tracking error trends to zero, then the

time duration of mode mismatch also trends to zero. Because

of this, the local minimum will not change with references

when error goes to zero, and the references will not ultimately
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Figure 2: Linesearch for the first HiLQR MPC forward pass

iteration after applying a 1.5m
s

lateral perturbation while

walking as shown in Fig 13. If computed sequentially, the

linesearch would terminate after 12 steps.

change the optimal solution when there is zero error, it only

helps to find the optimal solution when error is non zero.

In timestepping simulations, the effect of the hybrid tran-

sition is applied over several timesteps rather than instanta-

neously as in event-driven hybrid simulations. For example,

when a contact is made, the penetrating velocities do not

immediately go to zero and actually take several timesteps to

go to zero. During these timesteps, the hybrid mode is not well

defined. Because of this, the hybrid extension method does

not work due to the timesteps that are “in between” hybrid

modes. Instead, we propose to use a different approach for

legged robots, where the constraint forces λj are used to scale

the penalty on input from Rmin to Rmax

wj =
λj

∑

z λz

(38)

Rj = Rmax − wj(Rmax −Rmin) (39)

where the subscripts j and z corresponds to the leg index. The

constraint forces are recorded from the output of Isaac gym

simulations and they represent the ground reaction force from

each leg of the robot. This modification penalizes changes in

input less when a leg applies more ground reaction force and

penalizes changes in input more when the leg applies less

force to the ground. This is intuitive because when a leg is

not supporting much weight, we want that leg to have lower

gains because it has less control authority on the robot body.

B. Rollout and Forward Pass

Depending on the hybrid system, HiLQR MPC uses either

an event-driven or timestepping simulation for its rollouts

and forward passes. In this work, we demonstrate the cost

mismatch update for an event-driven simulation on a bouncing

ball. However, when multiple contacts are involved, as in the

case for a quadruped robot, simulating an event-driven system

is significantly more difficult than using an out-of-the-box

timestepping rigid body dynamics simulator. Many rigid body

contact simulators utilize timestepping simulation methods. In

this work, we use “Isaac Gym” (a high performance GPU-

based physics simulation) [44], because the simulator has a

unique feature where it can simulate multiple robots at once

at a fraction of the runtime of simulating them serially. We

utilize parallel computations to parallelize the linesearch in

the forward pass. An example linesearch is shown in Fig. 2,

which shows the cost for different learning rates. Note that the

cost is discontinuous with respect to the learning rate because

the line search explores different contact sequences. In order

for cost to be reduced in this case, the linesearch needs to take

12 steps if done sequentially. Due to the efficiency of parallel

computations on the forward passes, parallelizing is on average

twice as fast as computing the linesearch sequentially when

comparing the computation times for the solutions in Fig. 13.

Another approach for “parallel line search” [45] is a method

which speeds up optimizations by computing jobs serially, but

terminates jobs which take longer to compute. This method

is completely different from our parallel line search method

which computes all jobs as once.

Several key implementation features consist of precomput-

ing the gain schedule for the reference trajectory, reusing

the valid portions of previous solutions, and always seeding

the reference trajectory as one of the parallel solves in the

linesearch.

Lastly, quaternion differences [46] are used instead of Euler

angles when computing the orientation cost and linear feed-

back. This change allows for better convergence properties, as

well as allowing for tracking more dynamic behaviors like the

backflip in Fig. 1 due to properly accounting for the group

structure. See [46] for more details on quaternion differences

and how they improve solving optimization problems when

used in place of Euler angles.

C. Backward Pass

The main challenge for the backward pass is how to

compute the derivatives of the dynamics. For simple hybrid

systems like the bouncing ball, the derivatives of the dy-

namics and saltation matrix are trivial to find and compute.

However, computing the derivatives for the full order rigid

body dynamics with unilateral constraints is not trivial –

if done naively, the computations are incredibly slow. This

is the same for the saltation matrix because it relies on

computing the derivative of the impact map. In this work,

we utilize a rigid body dynamics library called Pinocchio [47]

(which computes these derivatives in an optimized fashion)

for all full order contact rigid body dynamics derivatives.

This work adds onto using Pinocchio’s analytical derivative

computation capabilities by efficiently computing the Saltation

matrix which provide analytical. Again, the saltation matrix is

applied when an MPC horizon adds a new contact.

For the backward pass, HiLQR MPC assumes the trajectory

is produced by an event-driven simulation. If the timesteps are

small enough, then approximating a timestepping simulation as

an event-driven simulation on the backward pass is reasonable.
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A. Bouncing Ball

1) Experimental Setup: In this experiment, the same 1D

bouncing ball hybrid system from Sec. V-A is used. To

validate that updating the cost on mode mismatches improves

convergence for HiLQR MPC, we first generate a reference

trajectory using Hybrid iLQR to create an optimal single

bounce trajectory. HiLQR MPC is used to stabilize an initial

large perturbation and is run with and without the hybrid

cost update for event-driven simulations. For both cases,

HiLQR MPC is applied at every timestep. At each timestep,

convergence is recorded where convergence is determined by

the expected reduction (21). For this test, the convergence cut-

off is set to be δJ < 1e−4. It is expected that, by utilizing

the mode extensions, convergence will improve because the

algorithm will not spend unnecessary computation and effort

in flipping the velocity of the ball if there is a mismatch in

impact timing, rather it will wait for when the impact applies

the flip.

2) Results: The task for the bouncing ball experiment is

to track a predefined trajectory using HiLQR MPC for a

fully actuated bouncing ball. The target trajectory is 1 second

long, where the ball starts at 4 meters above the ground with

no velocity and ends at 2.5 meters above the ground with

no velocity. We compare using the event-driven hybrid cost

update (Sec. IV-A) to not using this update, and the results of

this experiment are shown in Fig. 8.

As expected, both methods converge and track well before

the impact event is within the horizon of the HiLQR MPC.

The approaches differ once the hybrid event is within the

horizon, as can be seen by the high control effort and unnatural

kink in state space that is produced when not using the

cost update. Furthermore, of the 1001 time steps, 8 did not

converge when the cost update was not used. Although the

number of unconverged timesteps is small, the quality of the

trajectory suffered greatly, as shown in Fig. 8, top row. This

is because without updating the cost to account for hybrid

mode mismatches, the gradient information biases the solution

towards flipping the velocity before impact.

Using the cost update for hybrid mode mismatches, HiLQR

MPC can correctly utilize the impact to reduce tracking error,

as shown in Fig. 8, bottom row. The cost update allows HiLQR

MPC to create plans that are closer to the target trajectory by

shifting contact times rather than making large modifications

to the input to match the contact schedule, which results in

significantly better convergence. In addition to having better

tracking performance, when using trajectory optimization for

MPC, it is desirable to always converge and to not make drastic

changes from the planned trajectory unless necessary.

B. Simulated Robot Controller Comparison

1) Experimental Setup: To demonstrate the robustness of

cohesively planning whole body motions and allowing contact

schedules to change, we compare HiLQR MPC to Convex

MPC and Instant QP by applying perturbations to A1 while

implementing a walking gait in simulation. To make the

comparison fair, the walking gait that HiLQR MPC is tracking

is the same one generated from Convex MPC in the absence

Table II: Lateral perturbation success rates for a medium

perturbation 1.0m/s, a large perturbation 1.5m/s, and the

average max deviation for the large perturbation over 8 trials.

Controller 1.0m/s Succ. [%] 1.5m/s Succ. [%] Avg. Dev. [m]

HiLQR MPC 100% 88% 0.512m
Convex MPC 88% 50% 1.032m
Instant QP 50% 25% 3.729m

of perturbations. Similar gait parameters are chosen for Instant

QP to produce a similar gait. All controllers are run at each

timestep and use the first control input of the new trajectory

as the control input for that timestep.

The walking gait starts from a standing pose and then

attempts to reach a desired forward velocity of 0.2m
s

. Lateral

velocity perturbations are applied to the robot’s body at two

different magnitudes and eight different times along the gait

cycle: four when each foot is in swing when getting up to

speed and the other four when the gait is in steady state. The

number of times the robot falls and the maximum perturbed

lateral position are recorded for each push.

It is expected that HiLQR MPC should be able to recover

from a wider variety of perturbations and have less deviation

when the perturbations are large when compared against the

centroidal methods because it can utilize the nonlinear contact

dynamics of the swing and stance legs cohesively.

2) Results: The robustness of HiLQR MPC is compared

with Convex MPC and Instant QP for a walking trajectory

at eight different perturbations in simulation. The results

are summarized in Table II, farthest perturbed position is

visualized for each experiment in Figs. 9 and 10, change in

contact sequence in Figs. 11 and 12, and the resuling behavior

shown in Fig 13.

As expected, deviations from the smaller perturbation lead

to similar results and high success for all controllers. This

is most likely because the perturbations do not require the

controller to heavily modify the trajectory while stabilizing

less stable robot states, such as in the case of the larger per-

turbations. In the medium and large perturbation experiments,

HiLQR MPC had a higher success rate of 100% and 88%

compared to the centroidal methods – Convex MPC 88% and

50% and Instant QP 50% and 25%. Failure for the controllers

tended to occur when a right leg was in swing (both front right

and back). This failure mode is most likely due to the lateral

perturbation being applied in the left direction causing the

stabilizing maneuvers to be more complicated and less stable.

Because HiLQR MPC is able to plan the body and swing legs

more cohesively, it can handle these complex maneuvers better

than the centroidal methods, where the stance and swing legs

are planned separately. This difference is mostly highlighted

when the perturbations are larger. Since Instant QP performed

worse than Convex MPC, further comparisons are made only

between HiLQR MPC and Convex MPC.

In the large perturbation experiments, HiLQR MPC deviated

half as much as Convex MPC when comparing max lateral

deviations in body position, as shown in Table II. An example

trial (large perturbation during the first step) is shown in Fig.
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