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Abstract— Entanglements like vines and branches in natural
settings or cords and pipes in human spaces prevent mobile
robots from accessing many environments. Legged robots
should be effective in these settings, and more so than wheeled
or tracked platforms, but naive controllers quickly become
entangled and stuck. In this paper we present a method
for proprioception aimed specifically at the task of sensing
entanglements of a robot’s legs as well as a reaction strategy
to disentangle legs during their swing phase as they advance
to their next foothold. We demonstrate our proprioception and
reaction strategy enables traversal of entanglements of many
stiffnesses and geometries succeeding in 14 out of 16 trials in
laboratory tests, as well as a natural outdoor environment.

I. INTRODUCTION

Tripping hazards like vines, branches, and outcroppings

fill many natural environments from forest floors to reed

beds. Without a way to navigate these entanglement-filled

environments, mobile robots cannot perform important tasks

like environmental monitoring, scientific sampling, or fire-

fighting. In human environments, robots may need to navi-

gate around cords, hoses, and protrusions to perform tasks

like inspection, delivery, or in-home assistance. In this work,

we develop proprioceptive detection of entanglements on a

quadruped robot’s swing legs and simple control strategies

to disentangle from them, enabling the robot to walk through

numerous, distributed contacts of any stiffness.

In highly vegetated settings, legged robots show unique

promise compared to alternative robotic platforms. Small

wheels become stuck in vines and branches. Large wheels

and tracks roll over obstacles, but may crush or damage them

in the process. Flying robots’ large wings, bodies, and rotors

do not fit between dense woody plants. Legged robots have

the flexibility to both choose footholds and adjust posture to

disentangle from and move around obstructions. However, as

we show in the experimental section, standard controllers that

do not reason about motion through entanglements rapidly

become stuck on vine-like obstacles.

Moving through obstacles like thickets or reeds, contact

is unavoidable. A locomotor must press through them to

progress and cannot simply avoid contact with anything a

visual sensor detects is solid. A locomotor should be able to

push through flexible obstructions, but detect when it is stuck
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Fig. 1. This paper presents an approach to enable a quadruped robot to
walk through entanglements like the bar, bungee cord, and rope shown here.

so that it can disentangle itself. However, the stiffness of

obstacles is difficult to gauge prior to contact. Foliage blocks

most visual sensors and the obstructed materials behind can

vary in stiffness from flexible twigs to rigid rocks.

Detection is also complicated by the dynamics of legged

locomotion. Feet make and break contact with every stride.

During stance phases, forces on the feet are a large fraction

of bodyweight. However, during swing phases, forces much

smaller than bodyweight can be disruptive if they are applied

at unexpected contacts on the body, like tripping over a foot

caught on a ledge or knocking over a chair bumped by a

knee. Rapidly detecting these unexpected forces on the legs is

particularly challenging since they are interspersed between

the stance phase forces and smaller in magnitude than them.

Prior work has demonstrated many approaches to esti-

mating contact. An excellent overview can be found in [1].

Often, proprioception enables robot arms to detect collisions

with objects and people (as discussed in [1]) including when

mounted on a legged robot [2]. [3] analyzes the timing and

impulse associated with contact detection with rigid objects.

However, robot arms are not usually subjected to the large

recurring forces experienced by legs.

On legs, proprioception often provides foot contact de-

tection [4] but reasoning about contacts at other locations

on legs is not as common. [5] localizes where contacts

are on legs or fingers but assumes rigid objects. Measuring

non-stance forces on the legs enables adaptation to these

disturbances [6] and obstacle avoidance [7].

Other work adds additional sensors for detecting contact.

Some use vision to address obstacles or combine vision with

proprioception. Lidar and radar can detect obstacles even

behind foliage, but processing is significant and obstacle





of the observer trading off response time and smoothing

of noise. We chose all diagonal elements of KO to be 25

Hz tuned empirically for a balance between fast response

and rejection of high-frequency noise. We identified inertial

parameters for computing M , C, and G using the method

of [18] with a slight modification to also estimate friction

parameters c and d which we used for friction compensation:

τf,i = −c sign(q̇i)− dq̇i

We found that joints of the same type exhibited similar

friction parameters with the highest dry friction of c = 0.44
N m in the knees and that viscous damping was small for

all joints.

1) Torque estimates for reaction: The MBO torque es-

timates do not distinguish the various forces or points of

application on the robot’s limb, but provide an estimate of

the total resistance the robot feels and its direction. Solving

the full location and magnitude of every contact distributed

across the limb is an under-specified problem [5] but the full

solution is not required to react to obstacles that impede the

robot’s motion; the MBO’s joint torque estimates suffice.

Additional simplification arises from the task of moving

forwards in one direction and a few realistic assumptions

about limb morphology and contact forces. First, we assume

that each of the robot’s legs is an unbranching serial chain

of broadly straight and smooth links in which each link

extends only below and not above the preceding joint as

is usual for legs. Second, we assume that obstacles cannot

exert pulling forces on the surface of the robot limb –

that is, there are negligible adhesive forces. Given these

assumptions, only obstacles ahead of the robot limb can

exert backwards-directed forces impeding forwards progress.

Furthermore, backwards-directed forces always exert torques

in only one direction on joints with axes that are horizontal

and perpendicular to the direction of forwards motion (as

in humans’ knees and in Spirit 40’s hip and knee joints).

This allows us to ignore torques in the opposite direction,

since they can arise only from obstacles pressing on the rear

surface of the limb where they will not impede progress.

2) Initialization: An interesting challenge for external

contact force estimation arises from the action of walking

in which intentional forces with the world alternate between

large (in stance) and small (in swing) magnitudes. Thus,

in this paper we extend the momentum-based observer

approach to separate the estimation of smaller forces from

the planned large external forces.

During stance, external force is usually on the order of 1/2

of the bodyweight for a walking trot gait at 50% duty factor,

resulting in two legs supporting the body at any moment.

However, even forces that induce smaller torques at the joints

can cause an impediment to swing-leg motion.

The robot’s maximum pushing force is limited, requiring

the MBO to detect forces smaller than those at which

the robot becomes stuck. Forces applied to the swing legs

totalling more than some force Fmax are too large for the legs

to push through during swing. At the upper bound, Fmax can

be no larger than µmg where µ is the coefficient of friction

and mg is the bodyweight of the robot. However, in reality

this limit is lower due to controller performance and avoiding

toppling the robot. The achieved Fmax depends on the robot’s

forward velocity control gain tuning, commanded velocity,

and terrain slope and friction.

Fmax sets an upper limit on swing forces, while the MBO’s

noise floor provides a minimum force threshold for detection.

Its accuracy depends on inertial parameter identification

errors whose effect grows as joint velocity and acceleration

increase and on joint dry friction that makes it difficult to

measure torques lower in magnitude than the friction force.

Detecting swing-phase contacts early is important for there

to be sufficient time for any reaction to clear the obstacle.

However, soft contacts from vines or brush in swing phase

can be more difficult than traditional hard impacts since no

impulsive rapid change in momentum results. Furthermore,

these smaller forces are easily overshadowed by the large

stance phase forces early in swing as the momentum observer

estimates converge from their initial large stance values.

To rapidly detect forces on the legs, we re-zero the

momentum-based observer’s momentum estimate p̂ as the leg

leaves stance phase and begins its swing motion. In physical

implementation, the re-zeroing period lasts 30 ms at the start

of swing in case stance ends late due to state uncertainty or

communication latency. This reinitialization takes advantage

of knowledge about stance and swing behavior to improve

accuracy at the start of swing since the limb begins close to

rest and nominally under little load as it ends stance phase

and begins swing phase. We show the benefit of the proposed

MBO reinitialization in Section III-A.

B. Entanglement reaction

1) Formulation and gait constraints: Conventional con-

trollers walk well in the absence of obstacles, but a change

in gait or “reaction” may be required if a limb makes contact

with an obstacle. Two important obstacle properties are: the

peak horizontal force Fo with which it can oppose forward

motion of a limb; and the notion of its geometric “com-

plexity” or how difficult it would be for a path planner to

find a feasible trajectory to overcome the obstacle. Reactions

can occur at different levels of the controller with phase

transitions occuring based on these parameters:

1) If Fo is below Fmax, gait kinematics may remain

largely unchanged and the swing leg can push through

the obstacle by using higher swing leg force.

2) If Fo is greater than Fmax but the entanglement geom-

etry is not complex, the swing leg can be retracted to

step over the obstacle.

3) If the entanglement geometry is moderately complex,

the robot can adjust its gait to solve the entanglement.

4) If the entanglement geometry is exceedingly complex,

the robot can give up on its current planned path and

replan a path that goes elsewhere.

Each method corresponds to reaction at a different level in

a conventional hierarchical planning and control framework

escalating up from joint control to path planning. Generally,

higher-level reactions involve more aggressive deviation from









Fig. 9. Quadruped robot walks through 8 cm of thick underbrush (Top)
and a soccer net suspended 7.6 cm above the ground (Bottom)

estimation with no retuning for all experiments. In addition

to the arrangement of bungee cords, we tested our strategy

against a softer bungee cord created by connecting three

bungees in series, a stiff rope, and a short rigid aluminum

beam. The proprioceptive reaction strategy successfully de-

tected and stepped over all four stiffnesses in all three out

of three trials, summarized in Table II.

Since the detection and reaction strategy ignores small

forces that can be pushed through, the reaction motion

did not trigger until significantly later when contacting the

soft bungee cord (see Fig. 8). By contrast, the reaction

immediately triggered upon impact with the rigid beam. For

the stiff rope, the force remains negligible while the rope

is slack but rapidly rises to be significant once the rope

becomes taught. This distinguishing between contact loads

avoids overreacting to light contacts that are easily brushed

aside while executing disentanglement motions once forces

become large enough to impede forward progress.

D. Many entanglements

Subsequently, we tested our strategy in two challenging

conditions. Fig. 1 shows the robot walking through obstacles

of several stiffnesses: rigid, bungees, and ropes shown in

Fig. 5. Our strategy again succeeded in all three out of three

trials while interacting with obstacles of different stiffnesses

simultaneously contacting different legs, demonstrating the

proprioceptive reaction strategy’s generality.

For an additional challenge, we walked the robot through

a soccer net, presenting a great many small obstacles to the

robot (Fig. 9). For this extreme challenge, we increased the

body height to 35 cm and decreased the commanded forward

speed to 0.4 m/s. The robot became entangled in the soccer

net in two out of four trials, but succeeded in two.

E. Outdoors

Finally, to validate the viability of our momentum-based

observer and underbrush controller, we ran a preliminary test

of our system outside in a field of dense vines approximately

8 cm deep shown in Fig. 9. We commanded Spirit 40 to

walk forward at 0.4 m/s. Our strategy advanced 1.65 m in

6.5 s while the standard controller’s legs became immedi-

ately entangled and the robot advanced only 0.33 m before

falling down. Our strategy was significantly more robust and

walked multiple gait cycles through thick underbrush before

ultimately falling due to limitations in the camera-based body

state estimation. Further outdoor experiments will require

improved onboard body state estimation, and will be the

subject of future work.

IV. CONCLUSIONS

In this paper, we demonstrate a momentum-based observer

for propriceptive joint torque estimation suited to classify

contacts on a robot’s limb as entanglements. In addition,

we preset a simple leg reaction motion to disentangle from

any detected entanglements. These estimation and leg control

modules can be easily integrated into an existing hierarchical

planning and control framework to enable a commercial off-

the-shelf quadruped robot to sense and disentangle from

obstacles without hardware modification. Hardware exper-

iments demonstrate the efficacy of the proposed strategies

and validate that the simplifying assumptions that enable

decoupling are valid in physical realization.

Assumptions simplify our approach but limit the scope

of our observer and reaction strategy. The current imple-

mentation considers only forwards motion and while the

extension strategy is spatial, the retraction strategy is not.

In particular, the retraction strategy will fail if it becomes

stuck on something. For cases such as this and for higher

obstacles over which the robot would be forced to climb or

leap, integration with higher-level planning will be required.

Future work can evaluate the performance of different

walking, sensing, and reaction strategies in real environments

from underbrush to thickets including performance metrics

like the maximum speed that can be achieved among differ-

ent numbers and types of obstacles. Extraction of additional

contact location and force magnitude estimates or data-driven

estimation could provide refined obstacle information for

disentanglement. While the overall approach presented in

this work should apply generally to platforms of other mor-

phologies, extension to biped robots requires considerations

of balance, foot shape, and other features. This includes

generalizing retraction to spatial motion including sideways

walking in which the robot’s hip and knee joint axes are

parallel to the direction of travel.

Extensions could also address appropriate escalation of

disentanglement maneuvers from simple behaviors that work

for most situations to complex replanning to handle more

circuitous extrication from particularly severe entrapment, as

discussed in Section II-B.1.
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