

The Role of Surface Hydroxyls in the Entropy Driven Adsorption and Spillover of H₂ on Au/TiO₂ Catalysts

Authors: Akbar Mahdavi-Shakib,^{1,†} Todd N. Whittaker,^{2,3,†} Tae Yong Yun,¹ K. B. Sravan Kumar,^{4,‡} Lauren C. Rich,² Shengguang Wang,⁴ Robert M. Rioux,^{1,5} Lars C. Grabow,^{4,6} and Bert D. Chandler^{1,5}

Affiliations:

¹Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

²Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States

³Department of Chemical and Biological Engineering, The University of Colorado, Boulder, Colorado 80303, United States

⁴Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204-4004

⁵Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

⁶Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, TX 77204

*Corresponding author. Email: bert.chandler@psu.edu

†These authors contributed equally to this paper and project.

Abstract: Hydrogen spillover involves the migration of H atom equivalents from metal nanoparticles to a support. While well-documented, H spillover is poorly understood and largely unquantified. Here, we measure weak, reversible H₂ adsorption on Au/TiO₂ catalysts, and extract the surface concentration of spilled-over hydrogen. The spillover species (H*) is best described as a loosely coupled proton/electron pair distributed across the titania surface hydroxyls. In stark contrast to traditional gas adsorption systems, H* adsorption increases with temperature. This unexpected adsorption behavior has two origins. First, entropically favorable adsorption results from high proton mobility and configurational surface entropy. Second, the number of spillover sites increases with temperature, due to increasing hydroxyl acid-base equilibrium constants. Increased H* adsorption correlates with the associated changes in titania surface zwitterion concentration. This study provides a quantitative assessment of how hydroxyl surface chemistry impacts spillover thermodynamics, and contributes to the general understanding of spillover phenomena.

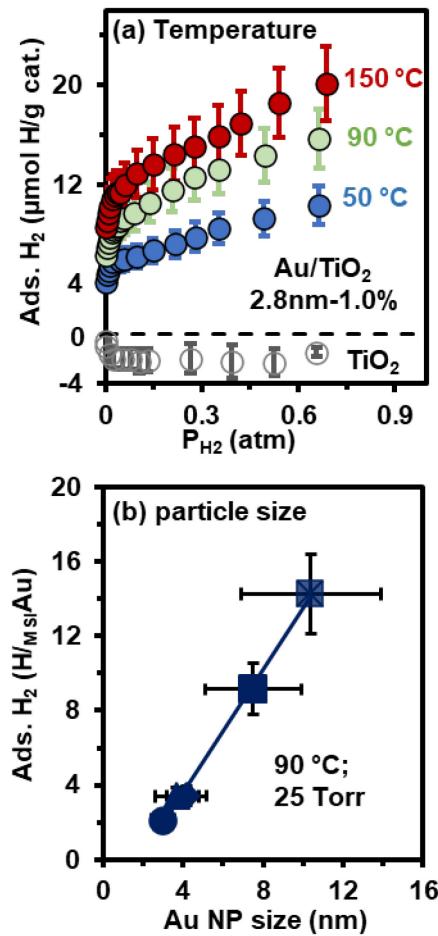
1
2 **Introduction**

3 Hydrogen spillover, which transfers hydrogen atom equivalents from a metal nanoparticle
4 to an oxide support,¹⁻³ is a well-documented phenomenon that bridges heterogeneous catalysis,
5 semiconductor surface chemistry, and photo-/electro-catalytic hydrogen evolution.³⁻⁸ It has broad
6 technological impacts including H₂ production, utilization, and storage systems; accordingly,
7 spillover will likely be pivotal in reducing CO₂ emissions. Various descriptions of spillover are
8 invoked for a broad array of materials, including single atom alloys,⁹⁻¹¹ high entropy alloys,¹²
9 metal-organic frameworks,¹³ and metal-semiconductor photoelectrodes.^{14,15}

10 For supported metal catalysts, spillover onto oxide supports is strongly associated with
11 support reducibility, as reducible supports show spillover effects over far larger distances than
12 non-reducible supports.¹ In these systems, spillover originates at the metal-support interface
13 (MSI), which participates in numerous catalytic reactions.¹⁶⁻¹⁸ The MSI is especially important for
14 supported Au catalysts,^{19,20} which are highly active for a variety of catalytic oxidations²⁰⁻²³ and
15 highly selective in organic synthesis.²⁴⁻²⁶

16 Gold catalysts display a surprising dichotomy in reactions involving H₂. Au/TiO₂ is highly
17 active for formic acid dehydrogenation,²⁷ photocatalytic H₂ evolution,⁴⁻⁶ and water-gas shift
18 chemistries,^{28,29} yet Au catalysts have only moderate activity in several important selective and
19 partial hydrogenations, and are nearly inert in alkene hydrogenation.³⁰ This distinctive reactivity
20 is associated with the relative inertness of Au surfaces and its consequence for H₂ activation.
21 While most metals activate H₂ through strong dissociative chemisorption, H₂ adsorption on Au
22 metal is thermodynamically unfavorable.³¹⁻³³ As a result, supported Au catalysts activate H₂ at the
23 MSI via an entirely separate mechanism: heterolytic H₂ activation followed by fast Au-H
24 deprotonation.³³⁻³⁵

25 We recently showed the notoriously weak H₂ adsorption on Au/TiO₂ yields two H-atom
26 equivalents (2 protons and 2 electrons) localized on MSI hydroxyls: there are essentially no Au-
27 H species on the catalyst.³²⁻³⁵ Additionally, Au/TiO₂ catalysts continue to adsorb hydrogen long
28 after the adsorption sites are saturated.³⁵ As we show conclusively below, the increased surface
29 coverage is due to hydrogen spillover.

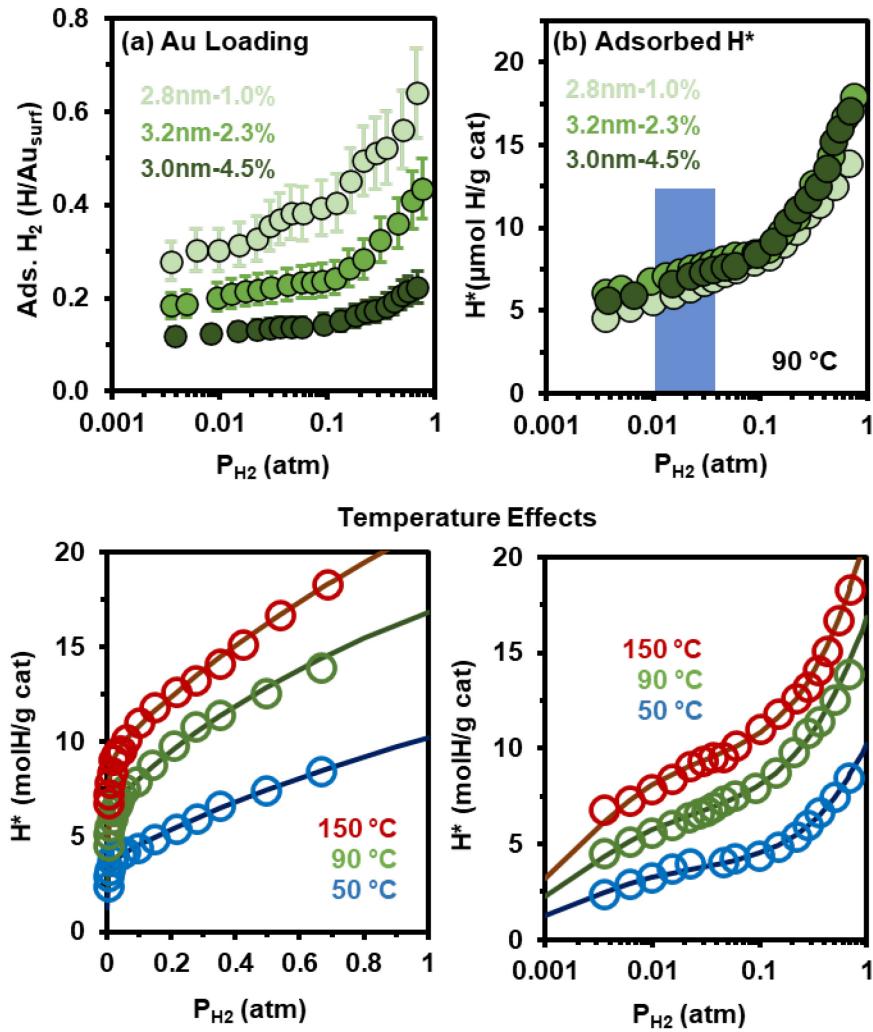

30 Despite its technological importance, spillover remains poorly understood and largely
31 unquantified, for two primary reasons.³ First, it is difficult to distinguish spillover from weak H
32 adsorption on active metal surfaces. Second, it is difficult to disentangle spillover from the effects
33 of especially support reduction and the strong metal-support interaction. Indeed, spillover is often
34 referred to interchangeably with support reduction, complicating their discussion in the literature.²
35 While there is no universal definition of spillover, we defer to Prins' distinction between spillover,
36 which is highly mobile H-atom equivalents (H*), and reversible support reduction which has the
37 effect of storing spilled-over H within an oxide support. As Prins' review details, these are related,
38 but fundamentally distinct processes.

39 While support reduction can be quantified by several methods, the inability to quantify the
40 mobile H* species that lead to support reduction has been a key limitation to studying spillover.
41 With essentially no H adsorption on Au, H₂ adsorption on Au/TiO₂ provides an ideal platform to
42 quantify these difficult to study species. As we show below, spillover results from several
43 unexpected adsorption phenomena that break several traditional assumptions regarding gas-phase
44 adsorption. These include the conclusion that spillover is an entropy driven adsorption process in
45 which the number of adsorption sites increases with temperature.

46
47 **Results**

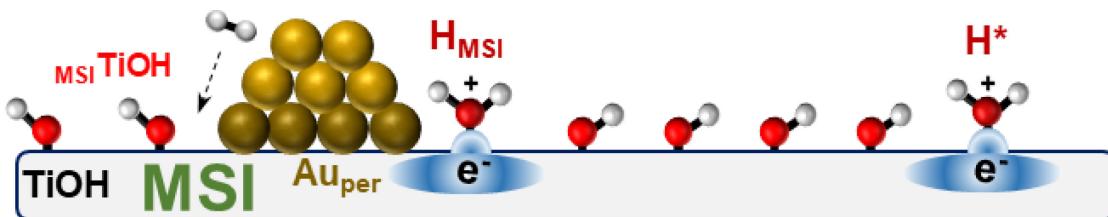
1 **Quantifying Hydrogen Spillover.** H₂ adsorption on Au/TiO₂ is both fast and reversible,
 2 with an activation barrier of ~20 kJ/mol.³³⁻³⁵ Reversible H₂ adsorption isotherms, measured
 3 directly with a combination of volumetric chemisorption and IR spectroscopy, show the quantity
 4 of adsorbed hydrogen roughly doubles as the adsorption temperature increases from 50 to 150 °C
 5 (**Figure 1A**). The adsorption isotherms are highly reproducible, and we collected similar data on
 6 more than a dozen separate batches of catalyst. Because this is weak, reversible adsorption the
 7 anomalous temperature dependence cannot be attributed to activated adsorption, as is well-known
 8 for N₂ adsorption in ammonia synthesis.³⁶ We also confirmed no surface species (i.e., water) are
 9 released upon adsorption, as this can drive adsorption at higher temperatures (see Supplementary
 10 **Figure 3**).³⁷

11



12 **Figure 1. Temperature and particle size effects on H₂ adsorption.** (a) H₂ equilibrium
 13 adsorption isotherms on Au/TiO₂ as a function of temperature and P_{H2}. Error bars show the
 14 standard deviation based on at least four isotherm measurements. (b) Total H₂ adsorption
 15 normalized to the number of MSI sites as a function of Au particle size. At a constant Au wt. %,
 16 H₂ adsorption per adsorption site increases with Au particle size. Error bars show standard
 17 deviations from TEM data (x-axis) and adsorption isotherm data (y-axis). Particle size calculations
 18 are detailed in the **Supplementary Methods**.

19
 20
 21
 22 The isotherms quantify the total amount of adsorbed H (H_{tot}), so quantifying H* requires
 23 accounting for different adsorption sites. Previous work shows there is one reactive support


hydroxyl (_{MSI}TiOH) per perimeter Au atom (_{MSI}Au). The _{MSI}TiOHs (surface concentration = 1.8 $\mu\text{mol/g cat.}$) are the strongest H-atom binding sites on the catalyst; further, they are always occupied under H_2 ³³ and remain saturated with H_2 up to at least 120 °C (Figure S5). Figure 1B shows H_{tot} far exceeds the number of adsorption sites; most of the adsorbed H_2 must therefore migrate either to the Au nanoparticle or the TiO_2 support.

Hydrogen adsorption on extended Au surfaces is thermodynamically unfavorable.³¹⁻³³ Smaller Au particles are generally more reactive; the increase in H_{ads} with Au particle size (Figure 1B) suggests the excess H is transferred to the support. To test this, we prepared catalysts with constant particle size ($3 \pm 0.2 \text{ nm}$) but varied Au loading. If the additional H_{ads} is transferred to Au, the $\text{H}/\text{Au}_{\text{surf}}$ ratio should be constant for these catalysts. Figure 2a shows the $\text{H}/\text{Au}_{\text{surf}}$ ratio changes by a factor of three, ruling out H transfer to Au_{surf} and confirming the additional H_{ads} is H^* on the support.

Figure 2. Au loading effects on H_2 adsorption and spillover. (a) H_2 adsorption isotherms (90 °C) on catalysts with comparable Au particle size (~3 nm), but variable Au loading. Total H_{ads} is normalized to the number of surface Au atoms; the ratio of $\text{H}_{\text{ads}}:\text{Au}_{\text{surf}}$ changes with Au loading indicating H is not transferred to Au. (b) H^* adsorption isotherms; data from 2A with adsorption attributable to the MSI sites subtracted. (c & d) Temperature effects on H^* adsorption; data from

1 1A with adsorption attributable to the MSI sites subtracted plotted on linear (c and logarithmic (d
2 axes. Lines are fits to two-site Langmuir models.
3

4
5 **Figure 3. Schematic showing H₂ adsorption at the MSI.** Beginning from the left of the figure,
6 H₂ adsorbs at the Au/TiO₂ metal-support interface (MSI). The species adsorbed at the interface
7 (H_{MSI}), is described as a proton interacting with a basic MSI hydroxyl group and an electron
8 delocalized across the associated Ti-O antibonding orbital, nearby support atoms, and the Au.
9 Once the MSI hydroxyls are saturated with H_{MSI}, H-atom equivalents (H^{*}) are transferred to the
10 support. The highly mobile H^{*} species are similar to H_{MSI}, consisting of a proton interacting
11 with a surface TiOH and an electron in surface conduction band states delocalized across the TiOH
12 and neighboring support atoms.
13

14 These measurements are enabled by the unique properties of Au/TiO₂. There is no H₂
15 chemisorption on Au and no measurable H₂ physisorption on TiO₂ (**Figure 1A**, grey data). Thus,
16 weak H₂ adsorption can be attributed to H_{MSI} and H^{*}, shown schematically in **Figure 3**. Because
17 the MSI sites are always occupied in these experiments,³⁴ H^{*} isotherms can be determined by
18 subtracting H_{MSI} from H_{tot} at each equilibrium pressure, as described in section 5 of the **SI**.³⁴
19 **Figure 2B** shows the resulting isotherms are independent of the Au loading, further confirming
20 spillover to the TiO₂ support. Similarly, **Figure 2C** shows the increase in H adsorption with
21 temperature in **Figure 1A** is attributable to increases in H^{*}. To our knowledge, these are the first
22 reported isotherms for weakly adsorbed, mobile hydrogen spillover.
23

Langmuir Analyses. The H^{*} adsorption isotherms do not fit a single Langmuir adsorption
24 isotherm, indicating the free energy for adsorption (ΔG_{H^*}) changes substantially with surface
25 concentration. The experimental data fit Freundlich isotherms, but these power-law fits have no
26 physical basis and therefore provide limited utility for understanding the adsorption phenomenon.
27

The H^{*} isotherms are well described with multi-site Langmuir models. Fits to a simple
28 two-site Langmuir models are included in **Figure 2C**; further details are provided in the
29 **Supplementary Discussion**. We also used a progressive Langmuir analysis as shown in **Figure**
30 **4A**. This treatment plots adsorption data in a linearized form of the Langmuir equation. While
31 the full data set is not linear due to the coverage dependent adsorption energy, the plot is linear
32 over small pressure ranges where changes in surface concentration are small. Under these
33 conditions, K_{ads} is relatively constant, and the Langmuir approximation is valid. This treatment
34 generates two descriptive parameters for each pressure range: (i) the adsorption equilibrium
35 constant (K_P^* , where P indicates the median pressure used) and (ii) a surface H^{*} concentration
36 ($_{surf}C_P^*$) which quantifies the adsorption capacity for the pressure range, i.e. the number H^{*}
37 adsorbates with $K_{ads}^* \geq K_P^*$.
38

Both methods do a good job of describing individual isotherms. The two-site model
39 condenses the coverage dependence into strong and weak adsorption sites, simplifying the
40 description.³⁸ The progressive Langmuir analysis determines multiple adsorption parameters over
41 consecutive small pressure ranges, therefore describing the coverage dependence in greater detail.
42

This allows us to examine changes to the adsorption equilibrium, and therefore adsorption energetics, as a function of the H^* surface concentration. This is qualitatively similar to the Temkin isotherm, but without the restriction of a linear change in adsorption energy with coverage.

This analysis (2.8 nm-1% Au/TiO₂ at 90 °C, **Figure 4B**) shows H^* adsorption strength decreases substantially as H^* surface concentration increases. **Supplementary Tables 3-6** compile extracted adsorption parameters for 5 different catalysts and 4 adsorption temperatures. To facilitate discussions, we discuss adsorption parameters determined at 25 Torr as representative of the broader trends. The K_{25}^* and $surfC_{25}^*$ values are remarkably consistent across all catalysts, indicating the H^* surface concentration is independent of Au particle size or loading. This further confirms H^* is associated with the support.

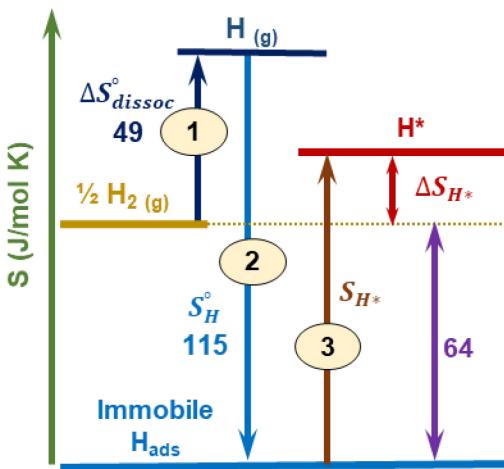


Figure 4. H^* Adsorption Thermodynamics. (a) Linearized Langmuir plot for H^* on 2.8 nm-1% Au/TiO₂ at 90 °C. Langmuir parameters were extracted from sliding linear fits as shown. (b) Extracted Langmuir parameters from (A) plotted as a function of P_{H2} . Data show the adsorption equilibrium has a strong surface concentration dependence. (c) ΔG_{H^*} values at 90 °C for three catalysts as a function of surface concentration. (d) ΔG_{H^*} values for 2.8 nm-1% Au/TiO₂ at three temperatures. (e) Data from panels (C) and (D) plotted versus P_{H2} . (f) Langmuir parameter temperature dependence. Parameters extracted at ~25 Torr H₂; symbols average 5 data points measured over 5 different catalysts having different Au loadings and average particle sizes between 2.5 and 4 nm. Error bars show standard deviations for at least 5 determinations over 5

1 different catalysts with varying Au loading and particle size (minimum 15 measurements); error
 2 bars for K_{25}^* values are smaller than the symbols (RSD: 12%).
 3

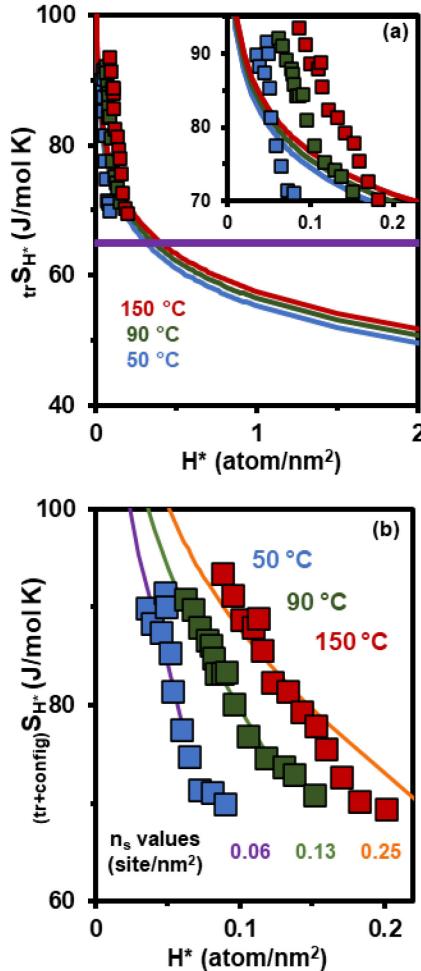
4 **Adsorption Energetics.** **Figure 4C** shows ΔG_{H^*} values extracted from the isotherms in
 5 **Figure 2B**; ΔG_{H^*} values vary by ~ 20 kJ/mol and are consistent with weak adsorption. Plots of
 6 ΔG_{H^*} vs H^* surface concentration for this data are in **Figure 4D**. At any given surface
 7 concentration, ΔG_{H^*} becomes more favorable as temperature increases. However, when the same
 8 data is plotted as ΔG_{H^*} vs. P_{H_2} (**Figure 4E**) adsorption energies show the same pressure
 9 dependence and are indistinguishable from the catalysts with different Au loadings. This is
 10 remarkable behavior with little precedent in the adsorption literature. As we detail below, it is
 11 consistent with an increase in adsorption sites with increasing temperature.

12 To examine this possibility, we plotted the extracted Langmuir parameters vs. temperature,
 13 focusing on the data collected at 25 Torr to simplify quantitative comparisons. **Figure 4F** shows
 14 K_{25}^* is constant with temperature, consistent with **Figure 4E**. Simultaneously the "maximum"
 15 surface concentration ($_{surf}C_{25}^*$) increases by $\sim 50\%$, indicating the number of adsorption sites
 16 increases with increasing temperature. The data in Figure 4E largely represent the strong sites in
 17 the two-site Langmuir model; the weak sites show the same temperature dependence: K remains
 18 constant while the number of sites increases with temperature (SI section 9). Van't Hoff analysis
 19 (SI section 5) yields a thermoneutral adsorption enthalpy ($\Delta H_{ads} = 0 \pm 2$ kJ/mol) and a favorable
 20 adsorption entropy ($\Delta S_{ads} = +49 \pm 6$ J/mol K). Thus, H^* adsorption involves two properties distinct
 21 from traditional adsorption models: a temperature-dependent change in the number of accessible
 22 adsorption sites and entropy driven adsorption.

23
 24
 25 **Figure 5. Entropy diagram for H^* adsorption at 25 °C.** Energy diagram showing changes in
 26 standard entropy for H_2 dissociation and adsorption on a solid. The entropy loss due to H atom
 27 immobilization on the surface is balanced offset by the entropy gains due to H-H bond dissociation
 28 and H surface entropy (translational, configurational, and vibrational entropy). When the standard
 29 surface entropy of the adsorbed H atoms exceeds 64 J/mol K, H adsorption is entropically favorable.

30
 31 **Entropy Driven Adsorption.** Adsorption entropies are of fundamental importance and
 32 increasing interest,³⁹⁻⁴³ but their influences are often obscured by large enthalpic contributions to
 33 the free energy. The adsorption enthalpy for H_2 on Au/TiO₂ is approximately 0, providing an ideal
 34 opportunity to experimentally study adsorption entropy. We first address the entropic driving

1 force, following Vannice's two-step dissociative adsorption procedure for calculating ΔS_{ads} (see
2 SI section 7).⁴⁴ As **Figure 5** shows, we consider gas-phase H₂ dissociation (1, $\Delta S_{\text{dissoc}}^\circ$) followed
3 by adsorption conceptualized as the loss of all gas-phase entropy (2, $-S_H^\circ$). The entropy of the
4 adsorbed species (3, S_{H^*}) is added to determine the adsorption entropy change (ΔS_{H^*}). Since
5 dissociation doubles the number of species, S_{H^*} need only exceed 64 J/mol K for an entropically
6 favorable process ($\Delta S_{H^*} > 0$).


7 As Campbell et al.'s work succinctly articulates, adsorbate surface entropy is coverage
8 dependent, comprised of translational, configurational, and vibrational components.^{39,40} Based on
9 the number or additional vibrational modes, the maximum vibrational entropy is 12 J/mol K
10 (details in the SI). This value is small relative to the observed changes and reasonable experimental
11 uncertainty, so vibrational entropy effects are excluded from the following analysis. Both Vannice
12 and Campbell quantify translational entropy ($_{tr}S$) by treating the adsorbate as a 2D ideal gas with
13 modified versions of the Sackur-Tetrode equation.^{39,40} We use a slightly modified version of
14 Vannice's treatment (details in the SI), describing $_{tr}S$ with equation (1):

$$15 \quad S_{tr} = R \ln(aMT\beta) \quad (1)$$

16 Where M = molar mass, T = absolute temperature, and α = the area available to each adsorbate,
17 which is simply the inverse of the H* surface concentration. The β term is a collection of
18 fundamental constants; for α values expressed in units of nm² per adsorbate, β has a value of
19 2.42328 mol/g·K·nm² (details in the **Supplementary Discussion**). This equation is not specific
20 to H* and can be used to determine the translational entropy of any adsorbate on any surface over
21 which it can move, provided the adsorbate is a free translator, with diffusion barrier parallel to the
22 surface $< kT$.

23 The lines in **Figure 6A** are $_{tr}S_{H^*}$ values calculated at three temperatures. At any given
24 temperature, $_{tr}S_{H^*}$ depends only on the surface concentration, reflecting the area over which each
25 adsorbate can freely traverse; it is conceptually analogous to pressure of a 3D gas. At low surface
26 concentrations, adsorbates move over large areas and $_{tr}S_{H^*}$ exceeds 100 J/mol K. This is sufficient
27 to drive H₂ adsorption. Conceptually, at the low surface densities H*, the loss of one gas-phase
28 translational degree of freedom from H₂ is compensated by the doubling of adsorbed species and
29 the large 2D translational area.

30

Figure 6. Entropic contributions to hydrogen spillover energetics. (a) Experimentally determined (symbols) and calculated (lines) S_{H^*} values based only on translational entropy contributions ($_{tr}S_{H^*}$). The horizontal line approximates the minimum S_{H^*} required for a net favorable adsorption entropy ($\Delta S_{H^*} = 0$) at 25 °C. The inset shows the same plot at experimentally relevant H^* surface densities. (b) Experimentally determined (symbols) and calculated (lines) S_{H^*} values including translational and configurational entropy contributions ($(tr+config)S_{H^*}$), see the **Supplementary Discussion** for details. The lines show the calculated S_{H^*} values at a specific temperature using a fitted number of adsorption sites (n_s), which is required to determine the fractional coverage see equation (2).

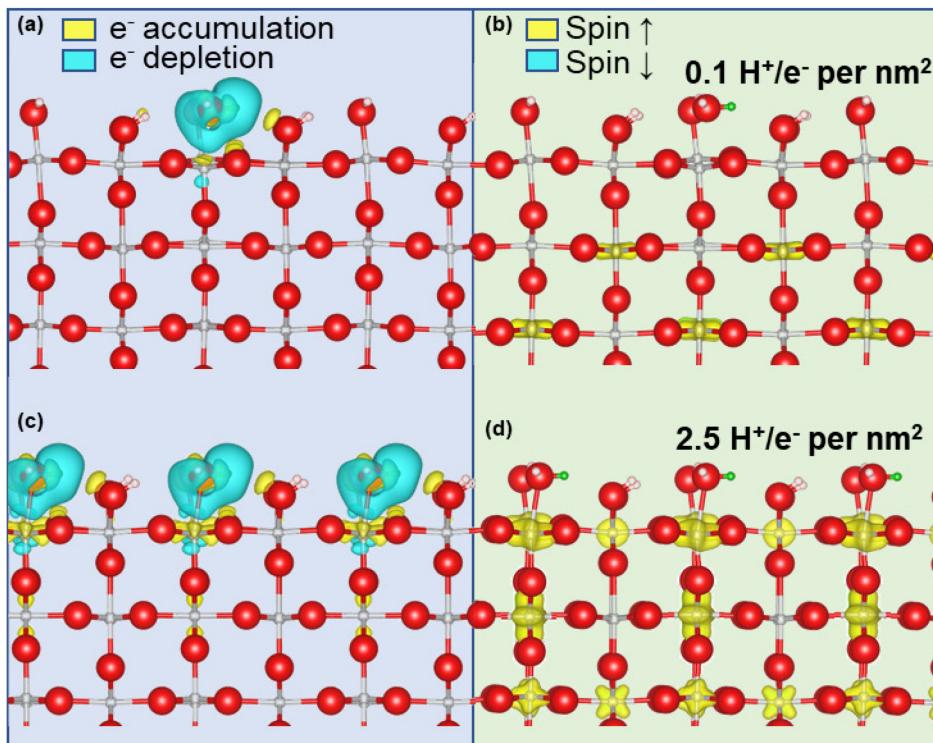
Experimental $\Delta S_{H^*}(\theta)$ values determined from the ΔG_{H^*} values (**Figure 4d**) show the same trend as calculated $_{tr}S_{H^*}(\theta)$ values. Closer examination (**Figure 6a inset**) reveals the $_{tr}S$ values vary minimally with temperature. While translational entropy is sufficient to explain entropy driven adsorption, it cannot account for the higher surface concentration (more H^*) at higher temperatures. We therefore considered configurational entropy ($_{config}S_{H^*}$), which is immaterial in a 3D gas, but arises from surface-adsorbate interactions. This is conceptually analogous to the difference between He and H₂ gas: the interaction between H atoms gives rise to vibrational and rotational entropies that are not present in He.

Using Campbell's hindered translator model,³⁹ configurational entropy is described by:

$$configS = R \left[\ln \left(\frac{1-\theta}{\theta} \right) - \frac{\ln(1-\theta)}{\theta} \right] \quad (2)$$

1 Fractional coverage (θ) is required and conventionally defined as $\theta = \frac{n_{H^*}}{n_s}$ where n_{H^*} is the
2 H^* surface concentration and n_s is the adsorption site density. Quantifying $_{\text{config}}S_{H^*}$ requires
3 estimating the number of available adsorption sites. **Figure 6b** shows $_{(\text{tr+config})}S_{H^*}$ values fitted to
4 reasonable n_s values. The model only describes the experimental data if the adsorption site density
5 (n_s , sites/nm²) increases with temperature.

6 **Nature of Spillover Hydrogen.** Spillover is primarily associated with semiconducting
7 supports, so we considered electronic explanations.^{1,3} However, the population of surface
8 conduction band states increases with temperature (**Supplementary Discussion**), which should
9 inhibit H^* adsorption. Previous DFT calculations indicate H_{MSI} can be described as $_{\text{MSI}}\text{TiOH}_2^+$,
10 accompanied by an electron delocalized across $_{\text{MSI}}\text{TiOH}_2^+$, the Au nanorod, and nearby lattice O
11 and Ti atoms.³³


12 Infrared spectroscopy shows electron transfer to the support induces a broad background
13 absorbance (BBA) associated with electron transfer to the support.³³⁻³⁵ Morris⁶ and Zaera⁴
14 independently described comparable spectroscopic signals arising from H interacting with TiO₂
15 photocatalysts.⁶ The BBA signals associated with H_{MSI} and H^* are indistinguishable, indicating
16 the two species are chemically similar. The interaction between $_{\text{MSI}}\text{TiOH}$ and the Au particles
17 have allowed us to identify and assign IR signals to stretching and bending modes of TiOH_2^+ ,³⁴
18 however, no comparable signals for H^* are observable.

19 DFT calculations on rutile (110) and anatase (001) at various coverages provide further
20 insight into the nature of H^* . Electron density difference plots at 0.1 H⁺/e⁻ per nm² (**Figure 7a**)
21 show a proton coordinated to a basic surface hydroxyl (TiOH₂⁺). A concomitant lengthening of
22 the Ti-O bond is observed, along with Bader charge analysis showing a net positive charge of ca.
23 2/3 |e⁻|, which is assigned to the OH₂ group. This suggests charge localization on the O atom only
24 partially balances about 1/3 of the proton charge.

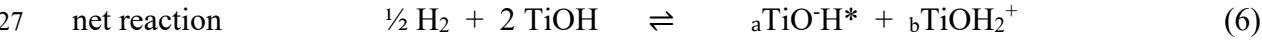
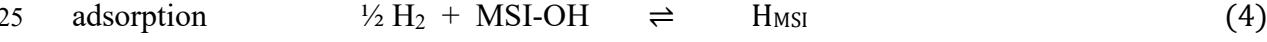
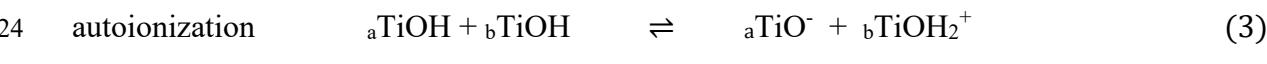
25 Spin density difference analysis (**Figure 7b**) shows the remaining fraction of the
26 accompanying electron is widely delocalized across multiple subsurface Ti atoms, even at the low
27 surface concentrations comparable to experimental observations (rutile at 0.1 H⁺/e⁻ per nm²). With
28 increasing surface concentrations (anatase with 1.7 H⁺/e⁻ and rutile with 2.5 H⁺/e⁻ per nm²), spin
29 density difference analysis (**Figure 7d** and **7f**) shows greater electron localization on terminal
30 hydroxyl sites, changing their character from a formal Ti⁴⁺ to Ti³⁺ cation. This is similar to
31 VandeVondele and coworkers' conclusions for spillover calculations on Pt/TiO₂⁴⁵ and with our
32 calculations for H_{MSI} .³³

33 Accordingly, H^* is best described as a loosely coupled H⁺/e⁻ pair,³ in which the adsorption
34 sites are tied to both support electronic properties and surface proton transfer chemistry. The
35 system is likely highly dynamic, consistent with rapid H/D exchange.³⁵ The broad electron
36 delocalization at experimentally relevant surface concentrations suggests electron stabilization,
37 while necessary, is of secondary importance. This is consistent with our kinetic observations for
38 H₂ activation at the MSI, where electron transfer from Au to the support follows rate-determining
39 proton transfer.³³ This paints a broadly consistent picture of the spillover phenomenon: dynamic
40 adsorption sites are dominated by the ability to stabilize surface protons; associated electronic
41 effects respond to and modify the adsorption sites.

$\text{H}^*/\text{rutile}-\text{TiO}_2(110)-\text{OH}$

$\text{H}^*/\text{anatase}-\text{TiO}_2(001)-\text{OH}$

Figure 7. DFT model for H^* adsorbed on rutile (110) and anatase (001). DFT calculations for H^* adsorbed on fully hydroxylated rutile (110) at $0.1 \text{ H}^*/\text{nm}^2$ (a & b), $2.5 \text{ H}^*/\text{nm}^2$ (c & d), and anatase at $1.7 \text{ H}^*/\text{nm}^2$ (e & f). Panels a, c, and e show changes in electron density; panels b, d, and f show changes in electron spin density.

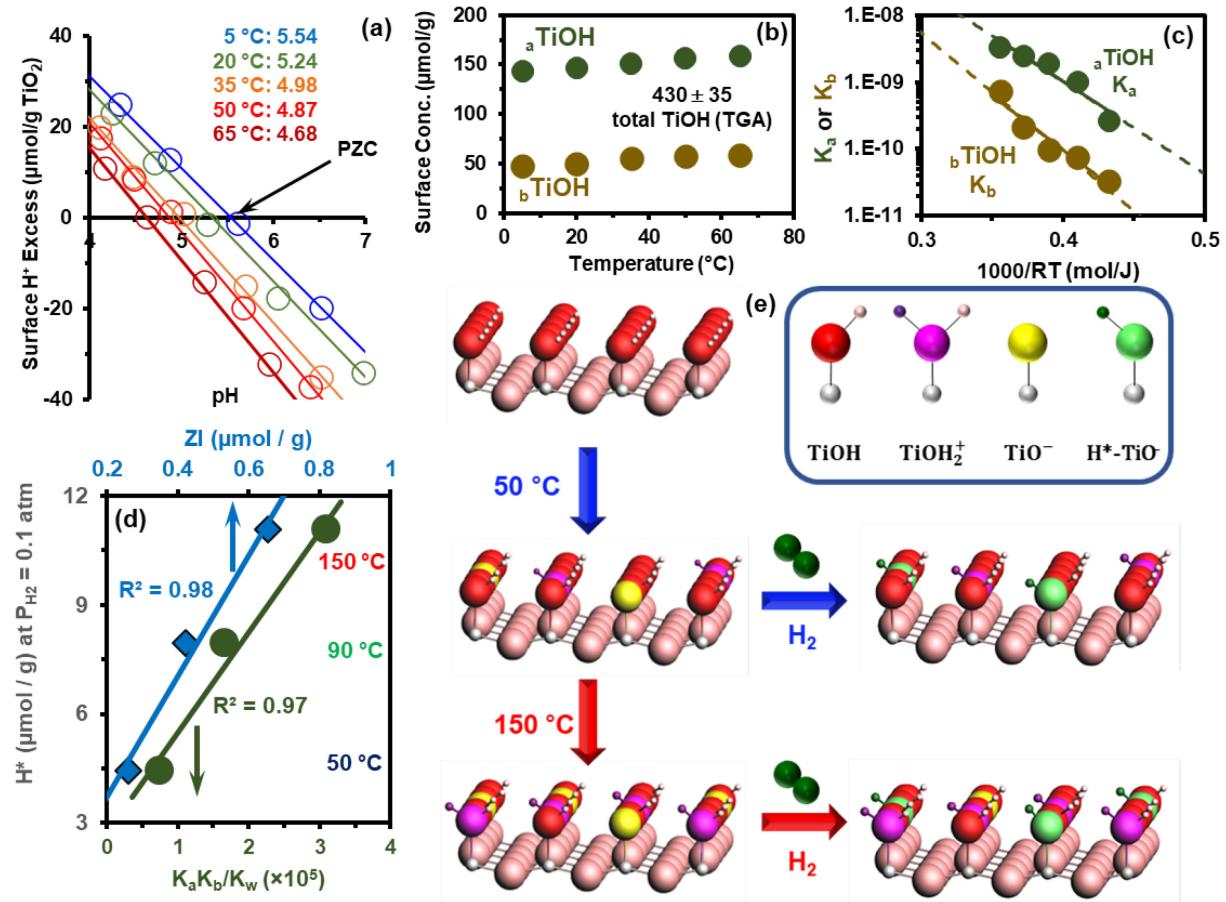



Surface Hydroxyl Autodissociation. The surface hydroxyl density ($\sim 6 \text{ OH}/\text{nm}^2$ by TGA) is considerably larger than the H^* adsorption site densities ($< 0.3 \text{ sites}/\text{nm}^2$) required to describe the surface entropy (Figure 6). Given the importance of proton stabilization, a subset of the surface TiOH groups are good candidates for the H^* adsorption sites. Titania surfaces are amphiprotic, containing weak acid (aTiOH) and weak base (bTiOH) sites. Proton transfer between these sites yields surface zwitterions, which are likely to have relatively low surface concentrations. Additionally, surface zwitterion generation is a dynamic equilibrium processes

1 and therefore subject to potentially large temperature effects. These are the two key criteria for
2 H* adsorption sites.

3 Surface zwitterion generation is conceptually equivalent to the well-known temperature
4 effects on water autodissociation (K_w). At 85 °C, $K_w = 6 \times 10^{-13}$, yielding a neutral pH of 6.1. Thus,
5 the H_3O^+ and OH^- concentrations in water at 85 °C are nearly an order of magnitude higher than
6 at 25 °C. Comparable chemistry between surface TiOH groups should increase surface zwitterion
7 concentration with temperature, providing a plausible mechanism for increasing the H* site
8 density.

9 We tested this hypothesis using aqueous acid-base titrations of P25 titania suspensions,
10 determining the isoelectric point (IEP) and Brønsted acid-base parameters.⁴⁶ From 5-65 °C, the
11 TiO_2 IEP shifts nearly a full pH unit (**Figure 8a**). Measured a $TiOH$ and $TiOH$ site densities, are
12 relatively constant (**Figure 8b**); the small changes are attributable to the temperature dependence
13 of water density and dielectric constant.⁴⁷ Note the a $TiOH$ and b $TiOH$ site densities are measured
14 with aqueous titrations, and are therefore subject to surface charging and counterion limitations.
15 Thus the number of proton exchange sites on highly hydroxylated surfaces is generally smaller
16 than the total number of surface hydroxyls measured with TGA.⁴⁶

17 Measured K_a and K_b values, on the other hand, increase by more than an order of magnitude
18 from 5-65 °C (**Figure 8c**). While solvation energies complicate direct comparisons between
19 aqueous and dry systems, Selloni's work with thin layers of water on anatase⁴⁸ suggests trends in
20 surface proton transfer chemistry are similar. In this context, H_2 adsorption can be described as a
21 combination of three reactions: autoionization to form surface zwitterions, adsorption, and
22 spillover:



27

28 There is considerable debate regarding the nature of adsorbed water on TiO_2 , particularly
29 if it is dissociated, forming a $TiOH$ and b $TiOH$ hydroxyls, or remains as intact (strongly bound to
30 Ti sites). We treat the surface as generic $TiOH$ (dissociated water) for simplicity and clarity;
31 however, an autoionization reaction can be applied to either case. Further, the final state of the
32 system (reaction D) is exactly the same regardless of which way the surface and reaction are
33 conceptualized. The key concept is the role of proton transfer in increasing surface zwitterion
34 concentration or stabilizing added protons from H^* .

35

36

Figure 8. Temperature dependence of TiO₂ surface hydroxyl chemistry. (a) IEP measurements from 5-65 °C. (b) Surface proton donor (_aTiOH) and acceptor (_bTiOH) site densities determined from aqueous acid-base titrations. Error bars show the average standard deviation for all measurements in that series. (c) K_a and K_b values for _aTiOH and _bTiOH sites in water, respectively. (d) Plot of H^{*} vs. two parameters that scale with the surface zwitterion concentration. (e) Schematic representation of temperature induced changes in proton distribution across surface hydroxyls and impact on the number of accessible H^{*} sites.

Combined with the surface entropy discussion, this relatively simple model, shown schematically in Figure 8e), accounts for all our observations. The individual isotherm experiments shown in Figures 1, 3 and 4 probe reactions 4 & 5 only. In these experiments, the adsorption capacity at any given temperature is related to the total number of surface zwitterions present at that temperature. The van't Hoff analysis (Figure 4f) quantifies the temperature effects on H^{*} adsorption (reaction 6) and therefore includes increases in the surface zwitterion concentration with increasing temperature. The aqueous titration data can be used to estimate the surface zwitterion concentration (see Supplementary Discussion); Figure 8d shows H^{*} adsorption is highly correlated to this value. While the absolute value of the surface zwitterion concentration likely changes from aqueous to dry environments, the trends in surface proton transfer chemistry appear to be very similar and explain the increases in H^{*} sites with temperature.⁴⁸

Van Bokhoven's experiments showed reduction of FeO_x via spillover hydrogen is orders of magnitude faster on TiO₂ relative to Al₂O₃.¹ However, spillover on alumina, which has a band gap of ~7 eV, was still observed. Our model also provides a framework for understanding reports

1 of spillover on non-reducible oxides, such as in Van Bokhoven's work. The H* translational
2 entropy, which is the primary thermodynamic driving force for spillover, depends only on the H*
3 surface concentration and is therefore independent of the metal oxide identity. This entropic
4 driving force is balanced against enthalpic energies associated with stabilizing the proton and
5 electron. While H* adsorption on TiO₂ is essentially thermoneutral, adsorption enthalpies are
6 expected to vary significantly with the support identity and must be tested to better evaluate the
7 generality of the model. However, **Figure 6** shows the translational entropy approaches infinity
8 as the H* coverage approaches zero; consequently, large enthalpic barriers to H* adsorption may
9 be overcome at exceedingly low coverages. Thus, this model provides a clear lens through which
10 future results can be viewed.

11 Spillover also occurs at higher temperatures on surfaces where few hydroxyl groups are
12 available.⁴⁹ While the involvement of surface zwitterions requires the presence of surface
13 hydroxyls, the broader entropic models should apply equally well to dehydroxylated surfaces at
14 higher temperatures. The only real requirement for spillover in our model is the surface must be
15 able to accommodate both protons and electrons; so long as both of these species are stabilized,
16 the basic conclusions regarding entropy should apply to most surfaces. We are now beginning to
17 test to test this hypothesis.

18 This provides similar insight into the high H₂ evolution activity of Au/TiO₂, despite it being
19 a generally poor hydrogenation catalyst. Zaera's experiments suggested H₂ evolution proceeds
20 through reduction of surface protons at metal or MSI sites on Au/TiO₂ and other doped titanias.⁴
21 Similarly, Selloni showed surface protonation is required for hole transfer to the surface in
22 photocatalytic methanol oxidation.⁵⁰ Building on their work, our model and DFT calculations
23 show surface hydroxyls help localize electrons near the support surface, likely slowing electron-
24 hole recombination. Surface proton and electron mobility similarly provide clear transport
25 pathways to rapidly move both to catalytic sites at the MSI.

26 **Conclusions**

27 In summary, our experiments and models show entropy can drive adsorption processes
28 when surface concentrations are low. This provides a robust description of both the nature of and
29 driving force for hydrogen spillover on TiO₂, which is fundamentally driven by large translational
30 entropy at low H* coverage. These thermodynamics are general drivers for spillover and therefore
31 inform other systems, including single atom alloys,⁹⁻¹¹ high entropy alloys,¹² metal-organic
32 frameworks,¹³ and metal-semiconductor photoelectrodes.¹⁴ In the specific case of metal oxide
33 supports, where spillover is most prominent on reducible semiconductors, the ability to stabilize
34 added electrons appears to be necessary, but not sufficient. Surface hydroxyls (and/or oxo-groups)
35 play a critical role in stabilizing spillover protons at surface zwitterion sites, while electrons are
36 broadly delocalized. Thus, spillover is an entropy-driven adsorption phenomenon that is
37 intimately tied to the support's ability to stabilize **both** surface protons and sub-surface electrons.
38

40 **Methods**

41 **Chemicals**

42 Gases (H₂, N₂) were 5.0 grade supplied by Praxair. Water was purified to a resistivity of 20
43 MΩ with a Elga Purelab Ultra (Evoqua) system; no additional purification methods were
44 employed. HAuCl₄•3H₂O (99.7%) was purchased from Sigma-Aldrich. NH₄OH (29.3 w/w%) was
45 purchased from Fisher Scientific. Urea (99.5%) was purchased from Acros Organics. Evonik P-
46 25 TiO₂ was generously supplied by Evonik Industries.
47

1 **Catalyst preparation**

2 Au/TiO₂ catalysts were synthesized in a foil-wrapped flask via urea deposition-
3 precipitation.³⁵ The desired amount of HAuCl₄•3H₂O and urea (2.52 g, 0.42 M) were added to 250
4 mL H₂O with stirring. This yellow/orange solution was heated with stirring until the temperature
5 was stable at 80 °C. TiO₂ powder (6 g) was then added and the slurry was stirred at 80 °C for 4 h.
6 After 4 h, the stirring was stopped and the solution was allowed to cool to room temperature,
7 resulting in a yellow paste and clear solution. The solid was isolated via vacuum filtration and
8 washed thoroughly with ~100 mL H₂O followed by ~100 mL 0.1 M NH₄OH, and then H₂O until
9 the filtrate was pH 7; the absence of Au and Cl⁻ were confirmed with NaBH₄ and AgNO₃ tests,
10 respectively. The washed solid was dried at room temperature under vacuum for 16 h and stored
11 at 4 °C under air.

12 The Au/TiO₂ catalysts were prepared by heating the supported precursors in flowing 50% v/v
13 H₂ and N₂. The material was loaded into a tube furnace, heated at 5 °C/min to desired temperature
14 (see **Supplementary Table 1**) and held at the reduction temperature for 1 h, cooled to room
15 temperature and stored at 4 °C under air.

16 **Volumetric H₂ adsorption**

17 All volumetric adsorption experiments were performed on a Micromeritics ASAP 2020.
18 Previously pretreated catalysts (i.e., previously reduced supported Au precursor) were used for H₂
19 adsorption studies. The sample (200-300 mg) was loaded into a U-tube, evacuated at 150 °C for
20 1 h and then reduced in flowing H₂ at 150 °C for 1 h to remove any adsorbed oxygen. Following
21 the pretreatment, the sample was evacuated, purged with helium for 30 min, and cooled to the
22 analysis temperature under an active vacuum. A series of two isotherm H₂ adsorption experiments
23 were performed at 60, 90, and 120 °C; the sample was evacuated to at least 10 μm Hg for 1 h at
24 the adsorption temperature between isotherms.
25

26 We note any adsorbed oxygen in the system must be removed before reversible H₂ adsorption
27 can be observed either via volumetric adsorption or with FTIR spectroscopy. Once care is taken
28 to remove adsorbed oxygen, the first and the second isotherms are essentially indistinguishable.
29 Therefore, for all further volumetric adsorption measurements described hereafter, reported
30 hydrogen uptakes were determined by averaging the first and second isotherms at each pressure
31 point.
32

33 **FTIR Spectroscopy**

34 Infrared spectra were collected on a Thermo Nicolet Nexus 470 FTIR spectrometer in a home-
35 built heated (20-300 °C) transmission flow cell. Gas flow rates were controlled using rotameters
36 calibrated with a bubble flowmeter. Water in the feed gases was minimized by passing the reactive
37 gas through a dry ice-isopropanol moisture trap immediately prior to entering the IR cell. For H₂
38 adsorption experiments, ~40-50 mg of catalyst sample was pressed (3 tons of pressure for 10 s)
39 into a 13 mm circular pellet, which was mounted in the flow cell. The sample pellet was pretreated
40 under 25 sccm of N₂ at 300 °C for 1 h to eliminate surface carbonates, and then cooled to 50 °C.
41 The vapor pressure of water at -78 °C is 0.5 mTorr (660 ppb). Even with the dry ice-isopropanol
42 bath, sub-ppm levels of residual water from the gas stream adsorb on the surface at lower
43 temperatures. We allowed the surface water coverage to equilibrate until the water bending band
44 at 1620 cm⁻¹ was stable before conducting further experiments. Based on our previous work and
45 the absorbance of the δ_{HOH} bending vibration, we estimate the surface water coverage to be around
46 2-3 H₂O molecules / nm².²¹

47 After stabilization of the water bending mode, a mixture of 20 sccm H₂ and 25 sccm N₂ was
48 flowed over the catalyst at 50 °C for one hour to ensure no weakly adsorbed O₂ remained on the

1 pellet. Catalysts were kept under N₂ flow to ensure the weakly adsorbed H₂ is removed. H₂
2 adsorption experiments were then performed at desired temperatures by flowing the desired ratio
3 of H₂ and N₂ over the catalyst.

4

5 **Transmission Electron Microscopy**

6 Gold particle sizes were determined with transmission electron microscopy. Catalysts were
7 imaged with scanning/transmission electron microscopy (STEM) using an FEI Talos F200X
8 microscope at an accelerating voltage of 200 kV. A small quantity of each sample was crushed in
9 an agate mortar and dispersed in ethanol with sonication. A few drops of this suspension were
10 placed on a Cu TEM grid (Ted Pella, Inc.) and allowed to dry before inserting into the microscope
11 for analysis. The number-averaged diameter for Au nanoparticles was determined with ImageJ
12 from the measurement of >200 particles (**Supplementary Figure 1**). **Supplementary Table 1**
13 compiles TEM, and BET characterization data for the catalysts studied in this work. Error bars
14 associated with the diameter represent the standard deviation of the distribution.

15

16 **Data Availability**

17 Raw data is available through ScholarSphere, Penn State's open access repository at
18 <https://scholarsphere.psu.edu/>.

20

21 **Acknowledgements**

22 The authors gratefully acknowledge the Department of Energy Basic Energy Sciences
23 Program (DE-SC0022053 and DE-SC0016192) for primary support of this work. Preliminary
24 experiments were supported by the National Science Foundation (CBET-1803769, 1803808, and
25 2102430) and the Research Corporation for Science Advancement. The computational work was
26 completed with resources provided by the Research Computing Data Core at the University of
27 Houston. We thank Prof. Mike Janik at Penn State for invaluable discussions and Dr. Tianze Xie
28 for his assistance in collecting TEM data.

29

30 **Author Contributions**

31 Conceptualization: BDC, TNW, AMS
32 Formal Analysis: AMS, TNW, TYY, SW, KBSK, LCR,
33 Funding Acquisition: BDC, LCG, RMR
34 Investigation: AMS, TNW, TYY, LCR, SW, KBSK
35 Methodology: AMS, TNW, TYY, SG
36 Project Administration: BDC
37 Supervision: BDC, AMS, LCG
38 Visualization: AMS, TNW, TYY, SW
39 Writing – original draft: BDC & AMS
40 Writing – review & editing: TNW, RMR, LCG, SW, KBSK

41

42 **Competing Interests**

43 The authors declare no competing interests.

44

45 **Figure Captions**

1 **Figure 1. Temperature and particle size effects on H₂ adsorption.** (a) H₂ equilibrium
2 adsorption isotherms on Au/TiO₂ as a function of temperature and P_{H2}. Error bars show a 15%
3 relative standard deviation, which is the determined uncertainty for six isotherm measurements at
4 each temperature. (b) Total H₂ adsorption normalized to the number of MSI sites as a function of
5 Au particle size. At a constant Au wt. %, H₂ adsorption per adsorption site increases with Au
6 particle size. Error bars show standard deviations from TEM data (x-axis) and adsorption isotherm
7 data (y-axis). Particle size calculations are detailed in the **Supplementary Methods**.

8
9 **Figure 2. Au loading effects on H₂ adsorption and spillover.** (a) H₂ adsorption isotherms (90
10 °C) on catalysts with comparable Au particle size (~3 nm), but variable Au loading. Total H_{ads} is
11 normalized to the number of surface Au atoms; the ratio of H_{ads}:Au_{surf} changes with Au loading
12 indicating H is not transferred to Au. Error bars show the standard deviation based on at least four
13 isotherm measurements. (b) H* adsorption isotherms; data from 2A with adsorption attributable
14 to the MSI sites subtracted. (c & d) Temperature effects on H* adsorption; data from 1A with
15 adsorption attributable to the MSI sites subtracted plotted on linear (c) and logarithmic (d) axes.
16 Lines are fits to two-site Langmuir models.

17
18 **Figure 3. Schematic showing H₂ adsorption at the MSI.** Beginning from the left of the figure,
19 H₂ adsorbs at the Au/TiO₂ metal-support interface (MSI). The species adsorbed at the interface
20 (H_{MSI}), is described as a proton interacting with a basic MSI hydroxyl group and an electron
21 delocalized across the associated Ti-O antibonding orbital, nearby support atoms, and the Au.
22 Once the MSI hydroxyls are saturated with H_{MSI}, H-atom equivalents (H*) are transferred to the
23 support. The highly mobile H* species are similar to H_{MSI}, consisting of a proton interacting
24 with a surface TiOH and an electron in surface conduction band states delocalized across the TiOH
25 and neighboring support atoms.

26
27 **Figure 4. H* Adsorption Thermodynamics.** (a) Linearized Langmuir plot for H* on 2.8 nm-
28 1% Au/TiO₂ at 90 °C. Langmuir parameters were extracted from sliding linear fits as shown. (b)
29 Extracted Langmuir parameters from (A) plotted as a function of P_{H2}. Data show the adsorption
30 equilibrium has a strong surface concentration dependence. (c) ΔG_{H*} values at 90 °C for three
31 catalysts as a function of surface concentration. (d) ΔG_{H*} values for 2.8 nm-1% Au/TiO₂ at three
32 temperatures. (e) Data from panels (C) and (D) plotted versus P_{H2}. (f) Langmuir parameter
33 temperature dependence. Parameters extracted at ~25 Torr H₂; symbols average 5 data points
34 measured over 5 different catalysts having different Au loadings and average particle sizes
35 between 2.5 and 4 nm. Error bars show standard deviations for at least 5 determinations over 5
36 different catalysts with varying Au loading and particle size (minimum 15 measurements); error
37 bars for K₂₅* values are smaller than the symbols (RSD: 12%).

38
39 **Figure 5. Entropy diagram for H* adsorption at 25 °C.** Energy diagram showing changes in
40 standard entropy for H₂ dissociation and adsorption on a solid. The entropy loss due to H atom
41 immobilization on the surface is balanced offset by the entropy gains due to H-H bond dissociation
42 and H surface entropy (translational, configurational, and vibrational entropy). When the standard
43 surface entropy of the adsorbed H atoms exceeds 64 J/molK, H adsorption is entropically favorable.

44
45 **Figure 6. Entropic contributions to hydrogen spillover energetics.** (a) Experimentally
46 determined (symbols) and calculated (lines) S_{H*} values based only on translational entropy
47 contributions (trS_{H*}). The horizontal line approximates the minimum S_{H*} required for a net

1 favorable adsorption entropy ($\Delta S_{H^*} = 0$) at 25 °C. The inset shows the same plot at experimentally
2 relevant H^* surface densities. (b) Experimentally determined (symbols) and calculated (lines) S_{H^*}
3 values including translational and configurational entropy contributions ($_{(tr+config)}S_{H^*}$), see the
4 **Supplementary Discussion** for details. The lines show the calculated S_{H^*} values at a specific
5 temperature using a fitted number of adsorption sites (n_s), which is required to determine the
6 fractional coverage see equation (2).

7
8 **Figure 7. DFT model for H^* adsorbed on rutile (110) and anatase (001).** DFT calculations
9 for H^* adsorbed on fully hydroxylated rutile (110) at 0.1 H^*/nm^2 (a & b), 2.5 H^*/nm^2 (c & d), and
10 anatase at 1.7 H^*/nm^2 (e & f). Panels a, c, and e show changes in electron density; panels b, d,
11 and f show changes in electron spin density.

12
13 **Figure 8. Temperature dependence of TiO_2 surface hydroxyl chemistry.** (a) IEP
14 measurements from 5-65 °C. Error bars show the average standard deviation for all measurements
15 in that series ((b) determined surface proton donor (a_{TiOH}) and acceptor (b_{TiOH}) site densities
16 in water (error bars show standard deviations for a minimum of three experiments); (c) K_a and K_b
17 values for a_{TiOH} and b_{TiOH} sites in water, respectively. (d) Schematic representation of
18 temperature induced changes in proton distribution across surface hydroxyls and impact on the
19 number of accessible H^* sites.

21 References

22
23 1 Karim, W. *et al.* Catalyst support effects on hydrogen spillover. *Nature* **541**, 68-71 (2017).
24 <https://doi.org/10.1038/nature20782>

25 2 Hulsey, M. J., Fung, V., Hou, X., Wu, J. & Yan, N. Hydrogen Spillover and Its Relation
26 to Hydrogenation: Observations on Structurally Defined Single-Atom Sites**. *Angewandte
27 Chemie International Edition* **61**, e202208237 (2022).
28 <https://doi.org/https://doi.org/10.1002/anie.202208237>

29 3 Prins, R. Hydrogen Spillover. Facts and Fiction. *Chemical Reviews* **112**, 2714-2738 (2012).
30 <https://doi.org/10.1021/cr200346z>

31 4 Joo, J. B. *et al.* Promotion of atomic hydrogen recombination as an alternative to electron
32 trapping for the role of metals in the photocatalytic production of H_{2} . *Proceedings of the National
33 Academy of Sciences* **111**, 7942-7947 (2014).
34 <https://doi.org/doi:10.1073/pnas.1405365111>

35 5 Primo, A., Corma, A. & García, H. Titania supported gold nanoparticles as photocatalyst.
36 *Physical Chemistry Chemical Physics* **13**, 886-910 (2011).
37 <https://doi.org/10.1039/C0CP00917B>

38 6 Panayotov, D. A. & Morris, J. R. Surface chemistry of Au/TiO₂: Thermally and
39 photolytically activated reactions. *Surface Science Reports* **71**, 77-271 (2016).
40 <https://doi.org/https://doi.org/10.1016/j.surfrept.2016.01.002>

1 7 Chen, X., Liu, L., Yu, P. Y. & Mao, S. S. Increasing Solar Absorption for Photocatalysis
2 with Black Hydrogenated Titanium Dioxide Nanocrystals. *Science* **331**, 746-750 (2011).
3 <https://doi.org:doi:10.1126/science.1200448>

4 8 Lu, Y. *et al.* Self-hydrogenated shell promoting photocatalytic H₂ evolution on anatase
5 TiO₂. *Nature Communications* **9**, 2752 (2018). <https://doi.org:10.1038/s41467-018-05144-1>

7 9 Lucci, F. R. *et al.* Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at
8 the single-atom limit. *Nat. Commun.* **6** (2015). <https://doi.org:10.1038/ncomms9550>

9 10 Darby, M. T., Stamatakis, M., Michaelides, A. & Sykes, E. C. H. Lonely Atoms with
10 Special Gifts: Breaking Linear Scaling Relationships in Heterogeneous Catalysis with
11 Single-Atom Alloys. *The Journal of Physical Chemistry Letters* **9**, 5636-5646 (2018).
12 <https://doi.org:10.1021/acs.jpclett.8b01888>

13 11 O'Connor, C. R. *et al.* Facilitating hydrogen atom migration via a dense phase on palladium
14 islands to a surrounding silver surface. *Proceedings of the National Academy of Sciences*
15 **117**, 22657-22664 (2020). <https://doi.org:10.1073/pnas.2010413117>

16 12 Mori, K. *et al.* Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as
17 a robust catalyst for CO₂ hydrogenation. *Nature Communications* **12**, 3884 (2021).
18 <https://doi.org:10.1038/s41467-021-24228-z>

19 13 Li, Y. & Yang, R. T. Significantly Enhanced Hydrogen Storage in Metal-Organic
20 Frameworks via Spillover. *J. Am. Chem. Soc.* **128**, 726-727 (2006).
21 <https://doi.org:10.1021/ja056831s>

22 14 Esposito, D. V., Levin, I., Moffat, T. P. & Talin, A. A. H₂ evolution at Si-based metal-
23 insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection
24 and H spillover. *Nat. Mater.* **12**, 562-568 (2013). <https://doi.org:10.1038/nmat3626>

25 15 Kumaravel, V., Mathew, S., Bartlett, J. & Pillai, S. C. Photocatalytic hydrogen production
26 using metal doped TiO₂: A review of recent advances. *Applied Catalysis B: Environmental*
27 **244**, 1021-1064 (2019). <https://doi.org:https://doi.org/10.1016/j.apcatb.2018.11.080>

28 16 Sampath, A. *et al.* Spectroscopic Evidence for the Involvement of Interfacial Sites in O–O
29 Bond Activation over Gold Catalysts. *ACS Catalysis* **12**, 9549-9558 (2022).
30 <https://doi.org:10.1021/acscatal.2c02076>

31 17 Cagnello, M. *et al.* Control of Metal Nanocrystal Size Reveals Metal-Support Interface
32 Role for Ceria Catalysts. *Science* **341**, 771-773 (2013).
33 <https://doi.org:10.1126/science.1240148>

1 18 Frey, H., Beck, A., Huang, X., Bokhoven, J. A. v. & Willinger, M. G. Dynamic interplay
2 between metal nanoparticles and oxide support under redox conditions. *Science* **376**, 982-
3 987 (2022). <https://doi.org:doi:10.1126/science.abm3371>

4 19 Rolison, D. R. *et al.* Power of Aerogel Platforms to Explore Mesoscale Transport in
5 Catalysis. *ACS Appl. Mater. Interfaces* **12**, 41277-41287 (2020).
6 <https://doi.org:10.1021/acsami.0c10004>

7 20 Sankar, M. *et al.* Role of the Support in Gold-Containing Nanoparticles as Heterogeneous
8 Catalysts. *Chemical Reviews* **120**, 3890-3938 (2020).
9 <https://doi.org:10.1021/acs.chemrev.9b00662>

10 21 Saavedra, J., Doan, H. A., Pursell, C. J., Grabow, L. C. & Chandler, B. D. The critical role
11 of water at the gold-titania interface in catalytic CO oxidation. *Science* **345**, 1599-1602
12 (2014). <https://doi.org:10.1126/science.1256018>

13 22 Yuan, W. *et al.* In situ manipulation of the active Au-TiO₂ interface with
14 atomic precision during CO oxidation. *Science* **371**, 517-521 (2021).
15 <https://doi.org:doi:10.1126/science.abe3558>

16 23 Green, I. X., Tang, W., Neurock, M. & Yates, J. T., Jr. Spectroscopic Observation of Dual
17 Catalytic Sites During Oxidation of CO on a Au/TiO₂ Catalyst. *Science* **333**, 736-739
18 (2011). <https://doi.org:10.1126/science.1207272>

19 24 Corma, A. & Garcia, H. Supported gold nanoparticles as catalysts for organic reactions.
20 *Chemical Society Reviews* **37**, 2096-2126 (2008).

21 25 Hashmi, S. K. & Hutchings Graham, J. Gold catalysis. *Angewandte Chemie (International
22 ed. in English)* **45**, 7896-7936 (2006).

23 26 Zhang, Y., Cui, X., Shi, F. & Deng, Y. Nano-Gold Catalysis in Fine Chemical Synthesis.
24 *Chemical Reviews* **112**, 2467-2505 (2012). <https://doi.org:10.1021/cr200260m>

25 27 Ojeda, M. & Iglesia, E. Formic Acid Dehydrogenation on Au-Based Catalysts at Near-
26 Ambient Temperatures. *Angewandte Chemie International Edition* **48**, 4800-4803 (2009).
27 <https://doi.org:https://doi.org/10.1002/anie.200805723>

28 28 Rodriguez, J. A. *et al.* Activity of CeO_x and TiO_x Nanoparticles Grown on Au(111) in the Water-Gas Shift
29 Reaction. *Science* **318**, 1757-1760 (2007). <https://doi.org:doi:10.1126/science.1150038>

31 29 Shekhar, M. *et al.* Size and Support Effects for the Water-Gas Shift Catalysis over Gold
32 Nanoparticles Supported on Model Al₂O₃ and TiO₂. *Journal of the American Chemical
33 Society* **134**, 4700-4708 (2012). <https://doi.org:10.1021/ja210083d>

1 30 Mitsudome, T. & Kaneda, K. Gold nanoparticle catalysts for selective hydrogenations.
2 *Green Chemistry* **15**, 2636-2654 (2013). <https://doi.org/10.1039/C3GC41360H>

3 31 Sault, A. G., Madix, R. J. & Campbell, C. T. Adsorption of oxygen and hydrogen on
4 gold(110)-(1 × 2). *Surf. Sci.* **169**, 347 (1986). [https://doi.org/10.1016/0039-6028\(86\)90616-3](https://doi.org/10.1016/0039-6028(86)90616-3)

6 32 Whittaker, T. *et al.* H₂ Oxidation over Supported Au Nanoparticle Catalysts: Evidence for
7 Heterolytic H₂ Activation at the Metal–Support Interface. *Journal of the American
8 Chemical Society* **140**, 16469-16487 (2018). <https://doi.org/10.1021/jacs.8b04991>

9 33 Sravan Kumar, K. B., Whittaker, T. N., Peterson, C., Grabow, L. C. & Chandler, B. D.
10 Water Poisons H₂ Activation at the Au–TiO₂ Interface by Slowing Proton and Electron
11 Transfer between Au and Titania. *Journal of the American Chemical Society* **142**, 5760-
12 5772 (2020). <https://doi.org/10.1021/jacs.9b13729>

13 34 Mahdavi-Shakib, A., Rich, L. C., Whittaker, T. N. & Chandler, B. D. Hydrogen Adsorption
14 at the Au/TiO₂ Interface: Quantitative Determination and Spectroscopic Signature of the
15 Reactive Interface Hydroxyl Groups at the Active Site. *ACS Catalysis* **11**, 15194-15202
16 (2021). <https://doi.org/10.1021/acscatal.1c04419>

17 35 Mahdavi-Shakib, A. *et al.* Kinetics of H₂ Adsorption at the Metal–Support Interface of
18 Au/TiO₂ Catalysts Probed by Broad Background IR Absorbance. *Angewandte Chemie
19 International Edition* **60**, 7735-7743 (2021).
20 <https://doi.org/https://doi.org/10.1002/anie.202013359>

21 36 Honkala, K. *et al.* Ammonia Synthesis from First-Principles Calculations. *Science
(Washington, DC, U. S.)* **307**, 555-558 (2005). <https://doi.org/10.1126/science.1106435>

23 37 Rekharsky, M., Inoue, Y., Tobey, S., Metzger, A. & Anslyn, E. Ion-Pairing Molecular
24 Recognition in Water: Aggregation at Low Concentrations That Is Entropy-Driven.
25 *Journal of the American Chemical Society* **124**, 14959-14967 (2002).
26 <https://doi.org/10.1021/ja020612e>

27 38 Hartshorn, H., Pursell, C. J. & Chandler, B. D. Adsorption of CO on Supported Gold
28 Nanoparticle Catalysts: A Comparative Study. *J. Phys. Chem. C* **113**, 10718-10725 (2009).
29 <https://doi.org/https://doi.org/10.1021/jp902553n>

30 39 Campbell, C. T., Sprowl, L. H. & Árnadóttir, L. Equilibrium Constants and Rate Constants
31 for Adsorbates: Two-Dimensional (2D) Ideal Gas, 2D Ideal Lattice Gas, and Ideal
32 Hindered Translator Models. *The Journal of Physical Chemistry C* **120**, 10283-10297
33 (2016). <https://doi.org/10.1021/acs.jpcc.6b00975>

1 40 Campbell, C. T. & Sellers, J. R. V. The Entropies of Adsorbed Molecules. *Journal of the*
2 *American Chemical Society* **134**, 18109-18115 (2012). <https://doi.org/10.1021/ja3080117>

3 41 Campbell, C. T. & Sellers, J. R. V. Enthalpies and entropies of adsorption on well-defined
4 oxide surfaces: Experimental measurements. *Chem. Rev. (Washington, DC, U. S.)* **113**,
5 4106-4135 (2013). <https://doi.org/10.1021/cr300329s>

6 42 Savara, A., Schmidt, C. M., Geiger, F. M. & Weitz, E. Adsorption Entropies and Enthalpies
7 and Their Implications for Adsorbate Dynamics. *J. Phys. Chem. C* **113**, 2806-2815 (2009).
8 <https://doi.org/10.1021/jp806221j>

9 43 Collinge, G. *et al.* Effect of Collective Dynamics and Anharmonicity on Entropy in
10 Heterogeneous Catalysis: Building the Case for Advanced Molecular Simulations. *ACS*
11 *Catal.* **10**, 9236-9260 (2020). <https://doi.org/10.1021/acscatal.0c01501>

12 44 Vannice, M. A., Hyun, S. H., Kalpaki, B. & Liauh, W. C. Entropies of adsorption in
13 heterogeneous catalytic reactions. *Journal of Catalysis* **56**, 358-362 (1979).
14 [https://doi.org/https://doi.org/10.1016/0021-9517\(79\)90128-3](https://doi.org/https://doi.org/10.1016/0021-9517(79)90128-3)

15 45 Spreafico, C., Karim, W., Ekinci, Y., van Bokhoven, J. A. & VandeVondele, J. Hydrogen
16 Adsorption on Nanosized Platinum and Dynamics of Spillover onto Alumina and Titania.
17 *The Journal of Physical Chemistry C* **121**, 17862-17872 (2017).
18 <https://doi.org/10.1021/acs.jpcc.7b03733>

19 46 Yun, T. Y. & Chandler, B. D. Surface Hydroxyl Chemistry of Titania- and Alumina-Based
20 Supports: Quantitative Titration and Temperature Dependence of Surface Brønsted Acid–
21 Base Parameters. *ACS Applied Materials & Interfaces* **15**, 6868-6876 (2023).
22 <https://doi.org/10.1021/acsami.2c20370>

23 47 Luetzenkirchen, J. & Finck, N. Treatment of temperature dependence of interfacial
24 speciation by speciation codes and temperature congruence of oxide surface charge. *Appl.*
25 *Geochem.* **102**, 26-33 (2019). <https://doi.org/10.1016/j.apgeochem.2018.12.023>

26 48 Lu, Y. *et al.* Self-hydrogenated shell promoting photocatalytic H₂ evolution on anatase
27 TiO₂. *Nat. Commun.* **9**, 1-9 (2018). <https://doi.org/10.1038/s41467-018-05144-1>

28 49 Beaumont, S. K., Alayoglu, S., Specht, C., Kruse, N. & Somorjai, G. A. A Nanoscale
29 Demonstration of Hydrogen Atom Spillover and Surface Diffusion Across Silica Using the
30 Kinetics of CO₂ Methanation Catalyzed on Spatially Separate Pt and Co Nanoparticles.
31 *Nano Letters* **14**, 4792-4796 (2014). <https://doi.org/10.1021/nl501969k>

32 50 Setvin, M. *et al.* Methanol on Anatase TiO₂ (101): Mechanistic Insights into
33 Photocatalysis. *ACS Catal.* **7**, 7081-7091 (2017). <https://doi.org/10.1021/acscatal.7b02003>

34

1
2
3