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Abstract— In this paper, we investigate the fault isolation
(FI) problem of a soft trunk robot and propose a dynamics
learning-based FI approach which is generic and applicable to
general types of faults. Specifically, an adaptive radial basis
function neural network (RBF NN) based dynamics learning
scheme is first developed to achieve accurate identification of
the robot’s dominant dynamics under different faulty modes,
and the learned knowledge is stored and represented by constant
RBF NN models. The learned results are then merged by using a
novel merging mechanism to construct a bank of global RBF NN
models, for capturing the characteristics of the robot’s dynamics
under each specific faulty mode. Based on these models, a
bank of FI observers are designed to develop an important
capability of accurately reconstructing the robot’s dynamics
under various faulty modes. The FI scheme is developed using
these FI observers, which monitors the robot’s operation status
online to provide accurate isolation of faults occurring in the
robot. Physical experiments are performed on the soft trunk
robot to validate the effectiveness of our proposed approaches.

I. INTRODUCTION

Soft robots have many desirable mechanical properties,
e.g., lightweight, inherent compliance and flexibility, which
facilitate safe human-robot interaction and operation in a
restrained environment [1]. This has motivated a rapidly-
increasing demand for soft robots in industrial, surgical and
assistive applications [2]. In these applications, desired safety
and reliability of soft robots during online operation are
paramount. Fault diagnosis is a critical step, which includes:
checking whether/when there is a fault in the robot (i.e.,
fault detection); determining the location, type, or size of the
occurring fault (i.e., fault isolation); and making a response
to faults for minimum performance degradation and avoiding
dangerous situations [3].

In our previous work [4], the fault detection (FD) problem
of soft robots has been successfully tackled using an adaptive
dynamics learning-based approach. However, this work has
not investigated the fault isolation (FI) of soft robots, which
is a more challenging problem. The main technical challenge
lies in how to accurately extract the characteristics of the
robots’ dynamics under different faulty modes [5]. For soft
robots, due to their complicated structure and excessive
degrees of freedom, they have complex dynamics that are
very difficult to model [4]; moreover, due to their inherent
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compliance and flexibility, they have a wide diversity of dy-
namic behaviors even under the same operating environment
(e.g., the same/similar faulty mode). These features could
greatly complicate the extraction of faulty characteristics for
soft robots, making the associated FI problem very difficult.
Although a few research results have been published in recent
years, e.g., [6], [7], [8], [9], there are still many issues yet
to be adequately addressed. For example, the FI scheme
presented in [6] was developed using an attention-based noise
compensation module to handle the robot’s vibration behavior
under faulty modes, but this approach is limited to locked-
motor faults. Koopman operator was used in [7] to identify
the robot’s dynamics under different payloads, which cannot
be extended to other general types of faults. [8], [9] developed
an active FI scheme by imposing the piecewise constant-
curvature assumption on the studied robots, which limits their
wider applicability to more general soft robots.

In this paper, we will propose an adaptive dynamics
learning-based approach for the FI problem in the context of
a soft trunk robot. General types of faults will be considered,
including component faults (e.g., the robot’s air tube is
blocked), actuator faults (e.g., the robot’s pump motor has
a problematic power voltage), and sensor faults (e.g., the
robot’s sensors deviate from the desired position). Specif-
ically, to extract the characteristics of these faults, in the
training phase, we develop an adaptive radial basis function
neural network (RBF NN) based dynamics learning scheme
to identify the robot’s complex nonlinear uncertain dynamics,
and the learned knowledge can be obtained and stored in
constant RBF NN models [10]. In particular, knowing that
the soft robot could have a wide diversity of dynamics under
faulty modes, we will train a sufficiently-large number of
robot’s dynamics under each specific faulty mode, and obtain
a bank of local constant NN models to represent the learned
knowledge. By merging these local NN models with a novel
merging mechanism motivated by [11], a global constant RBF
NN model can be constructed to represent the global knowl-
edge of the soft robot’s dynamics under the corresponding
faulty mode, which can be used to capture the associated
faulty characteristics. In the FI phase, a bank of FI observers
will be designed using these global NN models, which can
develop an important capability of accurately approximating
the robot’s dynamics under various faulty modes. The FI
scheme is then developed based on these FI observers. By
online comparing the dynamics of the FI observers and those
of the soft robot, the robot’s real-time operation mode can
be identified, and the type of fault occurring in the robot
can be recognized in real time. Physical experiments have
been conducted to validate the effectiveness of our proposed
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Fig. 1: The soft trunk robot studied in this paper: the
robot’s prototype (left); the actuators’ setup (middle); and
the sensors’ arrangement (right).

methods.
It should be noted that this paper extends our previous work

[4] on the FD problem of soft robots. Several features of our
current work distinguished from [4] need to be emphasized.
First, we develop a new output-feedback dynamics learning
scheme for the soft robot without using a high-gain observer,
which could facilitate improving the learning accuracy and
FI capability. This advances the scheme of [4] where the
dynamics learning process was achieved by using a high-gain
observer that could yield large oscillations in the presence of
noise and increase the dynamics-learning errors. Furthermore,
we propose new FI observers by using a bank of global RBF
NN models constructed with a novel merging mechanism,
which can more effectively capture the characteristics of the
robot’s faulty dynamics for FI purpose. This advances our
previous work [4] where the associated FD observer was
designed without using the merging mechanism.

The main contributions of this paper are: (i) we solve the FI
problem of a soft trunk robot by considering general types of
faults; (ii) we propose a dynamics learning-based FI scheme
for the soft trunk robot by extending our previous work of
[4]; and (iii) we perform physical experiments on the soft
trunk robot to validate our proposed approaches.

The rest of the paper is organized as follows. Section
II includes the problem statement. The adaptive dynamics
learning scheme and the FI scheme are presented in Sections
III and IV, respectively. Experimental results are given in
Section V. Section VI concludes the paper.

II. PROBLEM STATEMENT

A. The Soft Trunk Robot

The soft trunk robot studied in this paper is the same
as the one in our previous work of [4], as shown in Fig.
1. This robot is pneumatic actuated and composed of three
identical segments made of high elasticity silicone rubber.
Each segment is able to vertically extend and shrink by
pressurizing/depressurizing the inside air. It is actuated by
using an air tube to link with two pump motors and one
electrical air valve. Five reflective balls are sensors fixed
on the robot’s top to locate the end-effector. For this soft
robot, during its online operation, four general types of faults
could occur, including: (i) fault 1: one of the robot’s air
tubes is blocked; (ii) fault 2: different one of the air tubes is
blocked; (iii) fault 3: the power voltage of one of the pump
motors raises by 50%; and (iv) fault 4: the reflective balls

deviate from the desired position locating the end-effector.
These faults are indexed by k ∈ K = {1, 2, 3, 4}, and can
be classified as the component faults (i.e., faults 1,2), the
actuator fault (i.e., fault 3), and the sensor fault (i.e., fault 4),
according to the definitions given in [3].

B. Study Objectives

In this paper, our objective is to develop an FI scheme for
the soft trunk robot in Fig. 1, and to determine the type of
fault k ∈ K that occurs in the robot. The design of our FI
scheme will be consisted of: (i) the faulty dynamics learning
phase: developing an RBF NN-based learning approach to
identify the soft robot’s dominant dynamics under different
faulty modes, to obtain the learned knowledge for capturing
the characteristics of the robot’s dynamics under each specific
faulty mode; and (ii) the FI phase: developing an FI scheme
with the learned knowledge, to real-time monitor the opera-
tion status of the soft robot and to provide accurate isolation
for the occurring fault.

III. FAULTY DYNAMICS LEARNING

This section will present the identification/learning process
for the soft robot’s dominant dynamics.

A. Dynamics Modeling of Soft Robot

We first derive an analytical model to describe the domi-
nant dynamics of the soft robot in Fig. 1, for facilitating the
subsequent dynamics learning process. Details are similar to
our previous work in [4], and concluded here for complete-
ness of presentation.

Considering the robot in Fig. 1, from [4, Sec. III-B], by
using the finite element method, we can discretize the robot’s
structure into a mesh of finite elements to establish a finite
element model. Then, with Newton’s second law, we can
derive a dynamic model to describe the robot’s motion as:

M(q)v̇ = P (q)− F (q, v) +H(q)⊤u, (1)

where q ∈ R3n is the 3D displacement of each mesh node
in the finite element model (with n being the number of the
mesh nodes); v ∈ R3n is the velocity; M(q) is the mass
matrix; F (q, v) is the internal forces; P (q) is external forces;
H(q) contains the direction of actuator’s forces; and u ∈ Rm

is the amplitude of actuator’s forces (with m = 3).
Noting that the model (1) is still not suitable for the

subsequent learning process due to its high dimensionality,
a model-order reduction process will be performed on this
model with the proper orthogonal decomposition technique
[12]. Specifically, we first rewrite the model (1) as:

ẋ = fx(x) + gx(x)u, (2)

with x = [q; v], fx(x) = [v;M(q)−1(P (q) − F (q, v))], and
gx(x) = [0;M(q)−1H(q)⊤]. From [4, Sec. IV-D1], the state
x ∈ R6n of (2) can be approximated by a low-order state
xr ∈ R6, such that xr = U⊤

r x, x ≈ Vrxr with the projectors
Ur, Vr derived according to [4, Eqs. (4)–(6)]. Then, the model
(2) can be approximated by a reduced-order model:

ẋr = U⊤
r fx(xr) + U⊤

r gx(xr)u = fr(xr) + gr(xr)u. (3)
41
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This model can be used to describe the dominant dynamics
of the soft robot in Fig. 1. Particularly, the dynamics fr(xr)
and gr(xr) are still unknown, and will be identified in the
sequel.

B. Dynamics Learning with Output Measurement

Identifying the dynamics of (3) requires the measurement
of state xr = U⊤

r x, which however might not be available in
practice for the robot of Fig. 1. In view of this, we first take a
simple variable-transformation for the model (3) as follows.
Assume that, by appropriately setting sufficient sensors on
the robot in Fig. 1, we can obtain a measurement of y ∈ Rp

(with p ≥ 6) such that

y = Cx ≈ CVrxr = Crxr, and xr = (C⊤
r Cr)

−1C⊤
r y, (4)

where C and Cr are the output matrices for picking out the
measurement y respectively from the robot’s states x and
xr; and the matrix Cr can be of full rank by appropriately
arranging the sensors on the robot, according to [4, Rem. 1].
Based on (4), the model (3) can be transformed into:

ẏ = Crfr((C
⊤
r Cr)

−1C⊤
r y) + Crgr((C

⊤
r Cr)

−1C⊤
r y)u

= f(y) + g(y)u.
(5)

Thus, the robot’s dominant dynamics fr(·) and gr(·) in (3)
can be captured by the dynamics f(·) and g(·) in (5). This
enables that the robot’s dominant dynamics can be identified
by directly using the robot’s output y, with avoiding using a
high-gain observer for state estimation as adopted in [4].

Based on the model (5), by following a similar line of our
previous work in [4, Sec. IV-B], we can develop an RBF
NN-based adaptive dynamics identifier as follows:

˙̂y = −a(ŷ − y) + Ŵ⊤
1 S1(y) + Ŵ⊤

2 S2(y)u,
˙̂
W1 = −Γ1S1(y)(ŷ − y)⊤ − Γ1σ1Ŵ1,
˙̂
W2 = −Γ2S2(y)u(ŷ − y)⊤ − Γ2σ2Ŵ2,

(6)

where y is the robot’s output measurement of (4); u is the
robot’s control input; Ŵi (i = 1, 2) is the NN weight; Si(y)
is an RBF vector; a > 0, Γi = Γ⊤

i > 0 and σi > 0 are design
parameters with σi being a small number.

Using the identifier (6) on the model (5), according to [4,
Sec. IV-B], it can be deduced that: the accurate identification
for the dynamics f(y) and g(y) in (5) can be achieved
by the RBF NN models Ŵ⊤

1 S1(y) and Ŵ⊤
2 S2(y) in (6),

respectively; and the associated NN weights Ŵ1 and Ŵ2 can
converge to a small neighborhood around their constant opti-
mal values. Consequently, through the NN learning process,
the learned knowledge of f(y) and g(y) can be obtained and
represented by constant RBF NN models as follows

f(y) ≈ W̄⊤
1 S1(y); g(y) ≈ W̄⊤

2 S2(y), (7)

where W̄i (i = 1, 2) is the convergent value of Ŵi in (6),
which can be obtained by W̄i = meant∈[t1,t2]Ŵi(t) with
[t1, t2] being a time segment after the transient process.

Fig. 2: Schematic diagram of the FI scheme (left) and the FI
decision making rule (right), where the fault 1 occurs in the
robot at time tc and is isolated at time t0. u is the control input
of the soft robot; y is the robot’s output measurement, i.e.,
the displacement and velocity variables of the robot’s end-
effector; ȳk is the state of k-th FI observer with k ∈ K =
{1, 2, 3, 4};

∥∥ek∥∥
1
= 1

T

∫ t

t−T

∣∣ek(τ)∣∣ dτ (with ek = ȳk − y)
is the FI signal; and ρk is the FI threshold.

IV. FAULT ISOLATION SCHEME DESIGN

In this section, a bank of FI observers will be designed by
using the training results of Section III-B, which are used to
online monitor the operation status of the robot in Fig. 1. Our
FI scheme will be developed with these FI observers, and its
schematic diagram is given in Fig. 2.

A. FI Observer Design

Consider that the robot of Fig. 1 is operating under the
k-th faulty mode (with k ∈ K). Following a similar line of
(5), the robot’s faulty dynamic model can be derived as:

ẏ = fk(y) + gk(y)u, (8)

where fk(y), gk(y) include a wide diversity of dynamics of
the soft robot under the k-th faulty mode.

For the k-th faulty system of (8), we collect a data set
with Nk number of robot’s measurement (y, u). Each mea-
surement data corresponds to a local dynamics fkj (y) and
gkj (y), i.e., fk(y) = ∪Nk

j=1f
kj (y) and gk(y) = ∪Nk

j=1g
kj (y).

Based on this data set, by implementing the learning scheme
of Section III-B, we can obtain the knowledge of these local
faulty dynamics by the following constant RBF NN models

fkj (y) ≈ W̄
kj⊤
1 S1(y); gkj (y) ≈ W̄

kj⊤
2 S2(y). (9)

Then, by using a novel merging mechanism as adopted in
[11], we can merge the local NN models of (9) to construct
global RBF NN models to represent the knowledge of the
global faulty dynamics fk(y), gk(y) in (8), i.e.,

fk(y) ≈ W̄ k⊤
1 S1(y); gk(y) ≈ W̄ k⊤

2 S2(y), (10)
42
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with the NN weights given as:

W̄ k
i =


∑Nk

j=1
ϱ
kj
i

ϱk
i

W̄
kj

i , if ϱki ̸= 0

0, if ϱki = 0
(11)

where W̄ k
i and W̄

kj

i are the i-th component of W̄ k and W̄ kj ,
respectively (with W̄ k = W̄ k

1 /W̄
k
2 , and W̄ kj = W̄

kj

1 /W̄
kj

2 );
ϱ
kj

i = maxy=ykj
Si(y) is the maximum excitation level of

the i-th node of neurons S(y) in (10) under the robot’s kj-
th measurement data ykj (with S(y) = S1(y)/S2(y)); and
ϱki =

∑Nk

j=1 ϱ
kj

i .
With the global RBF NN models (10), we can design a

bank of FI observers as follows:

˙̄yk = −a(ȳk−y)+W̄ k⊤
1 S1(y)+W̄ k⊤

2 S2(y)u, ∀k ∈ K (12)

where (y, u) is the real-time measurement of the robot; and
a > 0 is a design parameter. For each k ∈ K, by comparing
the observer (12) with the system (8), we can obtain the error
dynamic system (with ek = ȳk − y) as follows:

ėk = −aek+(W̄ k⊤
1 S1−fk(y))+(W̄ k⊤

2 S2−gk(y))u. (13)

Noting that the NN models W̄ k⊤
1 S1, W̄ k⊤

2 S2 can provide
an accurate approximation for the dynamics fk(y), gk(y)
according to (10), the error signal ek in (13) can be guar-
anteed arbitrarily small with a proper parameter a > 0. This
verifies that the observer’s state ȳk of (12) can provide an
accurate approximation for the robot’s dynamics y under
the k-th faulty mode of (8). In particular, such an accurate
approximation can be guaranteed only for the robot under
the matched k-th faulty mode. The FI observer (12) can thus
be used to distinguish the matched k-th faulty mode from
other mismatched faulty modes, to facilitate the subsequent
development of the FI scheme.

B. FI Decision Making

Using the designed FI observers (12), we can develop an
FI scheme as shown in Fig. 2 by following a similar line of
our previous work [5], [13]. Specifically, in the FI process,
a bank of FI observers in (12) with k ∈ K = {1, 2, 3, 4} are
constructed to online monitor the operation status of the robot
in Fig. 1. By real-time comparing the robot’s measurement
y of (4) and observer’s states ȳk of (12) for all k ∈ K,
we can generate the residual signals ek = ȳk − y, and the
corresponding FI signals

∥∥ek∥∥
1
= 1

T

∫ t

t−T

∣∣ek(τ)∣∣ dτ with
T > 0 being a design parameter. The FI signal

∥∥ek∥∥
1

can be
used to characterize the difference between the robot’s real-
time dynamics and the each k-th faulty dynamics, according
to (13). The FI decision making rule is illustrated in Fig.
2, and clarified as follows. Assume that fault 1 occurs
in the robot at time tc. The robot’s real-time dynamics
will match the 1-st faulty dynamics, thus their difference
(characterized by the FI signal

∥∥e1∥∥
1
) will decrease and

become smaller than a given constant threshold ρ1 at some
time t0. Noting that the robot’s dynamics does not match
other k-th (k = 2, 3, 4) faulty dynamics, their differences
(characterized by FI signals

∥∥ek∥∥
1
) will remain large and
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Fig. 3: Approximation performance of the identifier (6) for
the soft robot of Fig. 1 under the faulty mode k = 1. y is the
displacement and velocity of the robot’s end-effector.

larger than their corresponding thresholds ρk. Thus, as seen
in Fig. 2, according to the comparison results between the FI
signals

∥∥ek∥∥
1

and thresholds ρk in Fig. 2, the occurring fault
can be identified as the 1-st type of faults. Such an idea is
formalized as follows:

FI decision making: Compare the FI signals
∥∥ek∥∥

1
with

the corresponding FI thresholds ρk for all k ∈ K. If there
exists a finite time t0 and a unique l ∈ K such that el ≤
ρl holds for time t ≥ t0, then, the occurring fault can be
identified as the l-th type of faults.

V. EXPERIMENTAL STUDY ON SOFT ROBOT

In this section, physical experiments will be performed on
the soft trunk robot in Fig. 1 to validate our approaches.

A. Training Phase: Learning of Faulty Dynamics

We enable the robot of Fig. 1 to operate in different faulty
modes k ∈ K = {1, 2, 3, 4} according to Section II-A.
For the training purpose, we collect Nk = 20 number of
measurement data (y, u) for each faulty mode, where y is
the displacement and velocity variables of the robot’s end-
effector and u is the robot’s control input. Using these data,
the dynamics learning process can be implemented according
to Section III-B. The learning performance of the identifier
(6) for the robot’s dynamics under the faulty mode k = 1
is illustrated in Fig. 3, in which the identifier’s state ŷ can
provide an accurate approximation for the robot’s dynamics
y. This verifies the effectiveness of our proposed dynamics
learning scheme in Section III-B.

B. Testing Phase: Isolation of Different Faults

1) Validation of FI Observers: After the training process,
we can obtain 4 × 20 = 80 of constant RBF NN models
(9) to represent the learned knowledge of the robot’s local
dynamics under the faulty modes k = 1, 2, 3, 4. By merging
these local NN models, we can obtain 4 of global NN models
(10) specific to each faulty mode k = 1, 2, 3, 4, and the FI
observers can be constructed according to (12). To examine
the performance of these observers, we consider that the robot
of Fig. 1 operates in 1-st faulty mode, and the approximation
performance of the matched 1-st FI observer is illustrated in
Fig. 4a. It is shown that the observer’s state ȳ1 can provide an
accurate approximation for the robot’s dynamics y. To further
show the advantage of such an FI observer, we compare its
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Fig. 4: Approximation performance for the soft robot of Fig.
1 under the faulty mode k = 1 using: (a) the proposed
observer of (12); and (b) the existing observer of [4]. y is
the displacement and velocity of the robot’s end-effector.

performance with our previously-proposed observer of [4, Eq.
(19)] in Fig. 4. It is seen that compared to the one of [4], the
observer (12) can provide a better approximation accuracy for
the robot’s dynamics. This verifies that advanced over the one
of [4], our observer (12) can provide a better approximation
performance by using the global knowledge of robot’s faulty
dynamics, as represented by the global NN models (10).

2) Validation of FI Scheme: Using the constructed FI
observers, according to Fig. 2, we can test the performance
of our FI approach by using the soft robot of Fig. 1 and
the four general types of faults k ∈ K = {1, 2, 3, 4} as
detailed in Section II-A. We first consider that the fault 2
occurs in the robot, and the FI performance is illustrated in
Fig. 5. After the fault’s occurrence at time tc = 77.1 sec,
the matched FI signals

∥∥e2∥∥
1

will all decrease and become
smaller than the corresponding thresholds (i.e., the red dash
lines) at time t0 = 80.4 sec; while the other mismatched
FI signals

∥∥ek∥∥
1

(k = 1, 3, 4) will remain larger than the
corresponding thresholds. Thus, fault k = 2 can be isolated
at time t0 = 80.4 sec and the absolute FI time is t0−tc = 3.3
sec. We further consider that the fault 3 occurs in the robot in
Fig. 6, in which the FI observers have similar performance,
the fault 3 occurs at time tc = 59.9 sec and is isolated at time
t0 = 64.3 sec, with the absolute FI time being t0 − tc = 4.4
sec. As for the faults k = 1 and k = 4, the FI performances
are similar to those of faults k = 2 and k = 3, thus are
omitted here due to the limited space. By following the same
procedure as above, we further test 40 cases for each faulty
mode k = 1, 2, 3, 4, and the FI results are summarized in
Table I. It verifies that our FI scheme can provide desired FI
performance (in terms of the FI success rate and the FI time)
for the soft robot with general types of faults.

VI. CONCLUSION

This paper has investigated the FI problem of a soft trunk
robot by considering four general types of faults. Specifically,
an adaptive RBF NN-based dynamics learning scheme has
been developed to identify the dominant dynamics of the

TABLE I: FI results for the soft robot of Fig. 1 under different
faulty modes. FI rate: the ratio of the number of the faults
being correctly isolated to the total number of the faults being
tested. Absolute FI time: the absolute difference between the
fault occurrence time tc and the isolated time t0. SD: the
standard deviation.

Faulty Mode FI Rate Absolute FI Time
Mean Max SD

1 40 / 40 3.44 sec 4.88 sec 0.52 sec
2 40 / 40 3.34 sec 4.94 sec 0.70 sec
3 36 / 40 4.78 sec 6.16 sec 0.48 sec
4 39 / 40 1.28 sec 1.59 sec 0.11 sec

soft robot under different faulty modes, with associated
knowledge being obtained and stored in constant RBF NN
models. Based on the learned knowledge, a bank of global
RBF NN models have been constructed with a novel merging
mechanism and used to capture the characteristics of the
robot’s dynamics under each specific faulty mode. Then, a
bank of FI observers have been designed with these global
NN models, which can provide an accurate approximation
for the robot’s dynamics under various faulty modes. The
FI scheme has been developed using these FI observers,
which can monitor the robot’s operation status online and
provide accurate real-time isolation for the fault occurring
in the robot. The proposed methods have been validated with
physical experiments. In future work, we expect to extend our
proposed fault detection and isolation approaches to develop
a fault-tolerant control scheme for soft robots.
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(c) the 3-rd FI observer; and (d) the 4-th FI observer, where the red dash lines are the corresponding FI thresholds. The fault
2 occurs at time tc = 77.1 sec and is isolated at time t0 = 80.4 sec, with the absolute FI time being t0 − tc = 3.3 sec.
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Fig. 6: FI performance of the FI observers (12) for the soft robot in Fig. 1: (a) the 1-st FI observer; (b) the 2-nd FI observer;
(c) the 3-rd FI observer; and (d) the 4-th FI observer, where the red dash lines are the corresponding FI thresholds. The fault
3 occurs at time tc = 59.9 sec and is isolated at time t0 = 64.3 sec, with the absolute FI time being t0 − tc = 4.4 sec.
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