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Boundary Tracking Control for An Unstable Wave

Equation with Boundary Uncertainties: A

Backstepping Adaptive NN Approach
Jingting Zhang, Yan Gu, Wei Zeng, Chengzhi Yuan

Abstract—This paper investigates the tracking control problem
of an unstable wave equation with boundary uncertainties.
The wave equation under consideration has a negative damper
(unstable) at the uncontrolled boundary and uncertain nonlinear
dynamics at the controlled boundary. A novel boundary tracking
control scheme is proposed by incorporating the backstepping
method with adaptive neural networks (NN). Specifically, an
adaptive radial basis function (RBF) NN model is first developed
to approximate/counteract the system uncertainties. A boundary-
feedback observer is then designed with such a NN model
to estimate the overall state of the wave equation. Based on
this, a boundary tracking controller is finally proposed using
the adaptive backstepping technique. Uniquely, this new control
scheme is capable of rendering stable state tracking (i.e., driv-
ing the system’s holistic state to track a prescribed reference
trajectory), significantly advancing the current literature that is
largely focused on output tracking control. Rigorous analysis is
performed to verify the well-posedness and stability of the overall
closed-loop system. Simulation studies have been conducted to
demonstrate effectiveness of the proposed results.

Index Terms—Distributed parameter systems, wave equation,
boundary tracking control, backstepping, adaptive neural net-
work.

I. INTRODUCTION

S
TRING and flexible beams—usually modeled by

wave/beam equations—are important benchmarks for the

development of distributed parameter system theory [1]. They

are crucial for many flexible distributed parameter systems,

such as flexible manipulator [2] and flexible link robot arms

[3]. Research on wave/beam equations has been attracting

considerable attention over the past few decades, e.g., [1],

[4], [5], [6].

Tracking control design of wave equations is an impor-

tant problem from both theoretical and practical perspectives,

owing to the ever-increasing demands of many applications,

e.g., flexible robots in manufacturing [7], [8] which require

the operating system’s state/output to track a certain pre-

scribed trajectory. In particular, boundary control design for

such a tracking control problem of wave equations has been

of interests, due to its practical advantages of demanding
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fewer sensors and actuators for controller implementations [6].

Many research efforts have been dedicated to this field. For

example, researchers of [9] developed a boundary-feedback

tracking control scheme for a wave equation with harmonic

disturbances. [6] proposed an adaptive neural network (NN)

based boundary control scheme for the reference-tracking

problem of a wave equation with both matched and unmatched

boundary uncertainties. [5] studied a wave equation with

internal uncertainty and external disturbance. However, most

of these schemes only considered the wave equations with

dissipative/stable system operator (e.g., the systems of [9],

[6], [5] have a positive damper at the uncontrolled boundary),

whose associated open-loop systems are usually stable. For

those unstable wave equations, e.g., the one in [10] that has

a negative damper (unstable) at the uncontrolled boundary,

the associated tracking control design is a rather challenging

problem and still under-explored.

In this paper, we investigate the tracking control problem

of an unstable uncertain wave equation, which has a negative

damper at the uncontrolled boundary and uncertain nonlinear

dynamics at the controlled boundary. A novel boundary adap-

tive tracking control scheme will be developed by: (i) utilizing

the backstepping technique to handle the system’s instability

at the uncontrolled boundary; and (ii) employing adaptive NN

technique to deal with the dynamic system uncertainties at

the controlled boundary. More specific, we first develop an

adaptive radial basis function neural network (RBF NN) model

to approximate/counteract the system’s uncertain dynamics.

With this NN model, a boundary-feedback observer is then

designed to estimate the overall system state of the wave

equation. Using this observer, a boundary tracking control

scheme is finally developed with the backstepping method

and adaptive NN technique, which is capable of rendering

stable and accurate tracking control for the wave equation. It

is worth mentioning that our control scheme is able to drive

the system’s holistic state (instead of just system’s output) to

track a prescribed reference trajectory, which advances most

of existing schemes, e.g., [9], [6], [5]. Rigorous analysis about

the well-posedness and system stability of the overall closed-

loop system is provided.

We would like to emphasize that the current research work

significantly expands our previous work [6] by proposing

a novel backstepping-adaptive-NN-based boundary tracking

control scheme for a wave equation with boundary uncer-

tainties. Specifically, different from [6] focusing on a stable

wave equation, the current paper considers an unstable wave
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equation, whose tracking control design is more challenging.

Moreover, distinguished from the scheme of [6] only using

adaptive NN techniques, the approaches proposed in the

current paper are developed by combining the backstepping

method with adaptive NNs, which are capable of (i) guaran-

teeing the closed-loop stability for the unstable wave equation;

and (ii) rendering accurate tracking for the system’s holistic

state.

The main contributions of this paper are summarized as

follows. (i) The challenging problem of tracking control of

unstable wave equations with boundary uncertainties is suc-

cessfully addressed. (ii) The proposed boundary adaptive NN

backstepping tracking control scheme is novel in the sense that

it can provide stable holistic state tracking control (instead

of only output tracking) for unstable wave equations. (iii)

Rigorous analysis is performed to verify well-posedness and

demonstrate stability of the overall closed-loop system.

The rest of this paper is organized as follows. Section II pro-

vides preliminary results and the problem formulation. Section

III presents the design of a state-feedback backstepping control

scheme. Section IV shows the proposed boundary-feedback

adaptive NN backsetpping control scheme. Simulation results

are presented in Section V. Conclusions are drawn in Section

VI.

Notation. R, R+ and N+ denote, respectively, the set of real

numbers, the set of positive real numbers and the set of positive

integers; Rn denotes the set of n× 1 real column vectors; | · |
is the absolute value of a real number; ‖·‖ is the 2-norm of

a vector or a matrix; L∞(Ω) denotes the set of functions that

are almost everywhere bounded on a measure space Ω; (·)x,

(·)xx, (·)t, (·)tt denote
∂(·)
∂x

,
∂2(·)
∂x2 ,

∂(·)
∂t

,
∂2(·)
∂t2

, respectively; ˙(·)

denotes
∂(·)
∂t

.

II. PRELIMINARIES AND PROBLEM FOMULATION

A. Preliminaries

The RBF networks can be described by fnn(Z) =
∑Nn

i=1 wisi(Z) = W⊤S(Z) [11], where Z ∈ ΩZ ⊂ R
q

is the input vector, W = [w1, · · · , wNn
]⊤ ∈ R

Nn is the

weight vector, Nn is the NN node number, and S(Z) =
[s1(‖Z − ς1‖), · · · , sNn

(‖Z − ςNn
‖)]⊤, with si(·) being a

radial basis function, and ςi (i = 1, 2, · · · , Nn) being distinct

points in state space. The Gaussian function si(‖Z − ςi‖) =

exp[−(Z−ςi)
⊤(Z−ςi)

η2

i

] is one of the most commonly used radial

basis functions, where ςi = [ςi1, ςi2, · · · , ςiq]
⊤ is the center of

the receptive field and ηi is the width of the receptive field.

The Gaussian function belongs to the class of localized RBFs

in the sense that si(‖Z − ςi‖) → 0 as ‖Z‖ → ∞. According

to [11], for any continuous function f(Z) : ΩZ → R where

ΩZ ⊂ R
q is a compact set, and for the NN approximator,

where the node number Nn is sufficiently large, there exists

an ideal constant weight vector W ∗, such that for any ǫ∗ > 0,

f(Z) = W ∗⊤S(Z) + ǫ, ∀Z ∈ ΩZ , where |ǫ| < ǫ∗ is the

ideal approximation error. The ideal weight vector W ∗ is an

“artificial” quantity required for analysis, and is defined as the

value of W that minimizes |ǫ| for all Z ∈ ΩZ ⊂ R
q , i.e.,

W ∗ , argminW∈RNn {supZ∈ΩZ
|f(Z)−W⊤S(Z)|}.

B. Problem Formulation

Consider a one-dimensional unstable wave equation with

boundary uncertainties:



















ytt(x, t) = yxx(x, t), x ∈ (0, 1), t ∈ (0,∞)

yx(0, t) = −qyt(0, t)

yx(1, t) = u(t) + f(y(1, t), yt(1, t))

y(x, 0) = y0(x), yt(x, 0) = y1(x)

(1)

where y(x, t) ∈ R is the system state at the position x ∈ [0, 1]
for time t ∈ [0,∞); u ∈ R is the system boundary control

input; q > 0 (q 6= 1) is a known constant; f(y(1, t), yt(1, t))
is an unknown locally Lipschitz continuous nonlinear function,

representing the system boundary uncertainty; y0(x) and y1(x)
are initial conditions. Assume that the boundary signals y(0, t),
yt(0, t), y(1, t), and yt(1, t) of (1) are all measurable.

In this paper, our objective is to design a boundary tracking

control scheme for the system (1) with its boundary signals,

i.e., y(0, t), yt(0, t), y(1, t) and yt(1, t), aiming to drive

the system state y(x, t) (∀x ∈ [0, 1]) to track a prescribed

reference signal r(x, t) with guaranteed well-posedness and

system stability. In particular, note that the wave equation

(1) has a negative damper at the uncontrolled boundary, i.e.,

yx(0, t) = −qyt(0, t), which will lead the system to an

unstable manner; furthermore, the system (1) has uncertain

nonlinear dynamics f(y(1, t), yt(1, t)), which will challenge

the subsequent designs of system’s state estimation and ref-

erence tracking. In view of this, our control scheme will be

deigned by: (i) employing the backstepping technique to han-

dle the system’s instability at the boundary; and (ii) utilizing

adaptive NN technique to deal with the system uncertainty

f(y(1, t), yt(1, t)).
Before proceeding, a reference model used to generate the

desired reference signal r(x, t) is constructed as follows:



















vtt(x, t) = vxx(x, t)

vx(0, t) = cvt(0, t)

v(1, t) = wref (t)

v(x, 0) = v0(x), vt(x, 0) = v1(x),

(2)

where c is a design parameter satisfying c > 0, c 6= 1 and

qc 6= −1; wref (t) is a reference command that can be chosen

freely to satisfy wref (t) ∈ W 2,∞(0,∞) := {w(t) |w ∈
L∞(0,∞), wt ∈ L∞(0,∞), wtt ∈ L∞(0,∞)}; v0(x) and

v1(x) are initial conditions. With this model, the generated

reference signal r(x, t) can be described by:

r(x, t) =−
1 + qc

c2 − 1
v(x, t) +

c(q + c)

c2 − 1
v(0, t)

+
q + c

c2 − 1

∫ x

0

vt(ς, t)dς.

(3)

Lemma 1. If the design parameters satisfy c > 0, c 6= 1,

and wref (t) ∈ W 2,∞(0,∞), the reference system (2)–(3) is

well-posed and bounded.

Proof. Well-posedness and system stability of the reference

model (2) can be proved by following a similar line of our

previous work [6, Lem. 2], which is omitted here. This can
306
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guarantee that the overall reference model (2)–(3) is well-

posed and bounded.

Remark 1. The reference model (2)–(3) is designed based on

a backstepping transformation, as will be discussed in (5)–(6).

Such a setup can facilitate designing a backstepping controller

for driving the system (1) to track the reference model (2)–(3)

with guaranteed well-posedness and stability. We stress that

implementation of (2)–(3) is feasible in practice. The signal

r(x, t) can be obtained with a suitable state v(x, t), which can

be generated by appropriately selecting the design parameter

c and the reference command wref (t) of (2). An example will

be given in the simulation section for illustration.

III. STATE-FEEDBACK BACKSTEPPING CONTROL

In this section, we will first present the design of a state-

feedback backstepping control scheme for the system (1),

which can enable the system state y(x, t) to track the reference

trajectory r(x, t) of (3) with ∀x ∈ [0, 1]. We assume that the

system dynamics f(y(1, t), yt(1, t)) in (1) is precisely known,

and the system states [y(x, t), yt(x, t)] are measurable for all

x ∈ [0, 1] and t ∈ [0,∞).
Specifically, for the system (1) and the reference model (2)–

(3), a state-feedback backstepping controller is designed as

follows:

u(t) = −f(y(1, t), yt(1, t))−
q2 − 1

1 + qc
(c0v(1, t) + vx(1, t))

− c0y(1, t) +
q + c

1 + qc
(c0qy(0, t)− yt(1, t)− c0

∫ 1

0

ytdx),

(4)

where c0 > 0 is a design parameter; q is the parameter from

(1); and c is from (2).

Consider the system (1) with the controller (4), following

a similar idea of [10], we define an invertible backstepping

transformation:

w(x, t) =−
1 + qc

q2 − 1
y(x, t) +

q(q + c)

q2 − 1
y(0, t)

−
q + c

q2 − 1

∫ x

0

yt(ς, t)dς.

(5)

It can map the system (1) into the following system:






























wtt(x, t) = wxx(x, t)

wx(0, t) = cwt(0, t)

wx(1, t) = −c0(w(1, t)− v(1, t)) + vx(1, t)

y(x, t) = − 1+qc
c2−1w(x, t) +

c(q+c)
c2−1 w(0, t)

+ q+c
c2−1

∫ x

0
wt(ς, t)dς.

(6)

By comparing the system (6) with the reference model (2)–

(3), denoting ε(x, t) = w(x, t)−v(x, t) and e(x, t) = y(x, t)−
r(x, t), we can obtain the following error dynamics:































εtt(x, t) = εxx(x, t)

εx(0, t) = cεt(0, t)

εx(1, t) = −c0ε(1, t)

e(x, t) = − 1+qc
c2−1ε(x, t) +

c(q+c)
c2−1 ε(0, t)

+ q+c
c2−1

∫ x

0
εt(ς, t)dς.

(7)

Theorem 1. Consider the closed-loop system consisting of the

plant (1), the reference model (2)–(3), and the controller (4).

If the design parameters satisfy c0 > 0, c > 0, c 6= 1 and

qc 6= −1, we have: the closed-loop system is well-posed and

exponentially stable in the sense of (
∫ 1

0
(e2x+e2t )dx+e2(1, t))

1

2

with e(x, t) = y(x, t)− r(x, t).

Proof. Following a similar line of the proof for [10, Th.

1], it can be proved that the error system (7) is well-posed

and exponentially stable in the sense of (
∫ 1

0
(e2x + e2t )dx +

e2(1, t))
1

2 . Then, noting that y(x, t) = e(x, t) + r(x, t), and

the reference model (2)–(3) is well-posed and bounded from

Lemma 1, we have: the system (1) with controller (4) is

well-posed and bounded. Consequently, it can be deduced

that the closed-loop system of (1)–(4) is well-posed and

bounded; moreover, it is exponentially stable in the sense of

(
∫ 1

0
(e2x + e2t )dx+ e2(1, t))

1

2 . This ends the proof.

IV. BOUNDARY-FEEDBACK ADAPTIVE NN BACKSTEPPING

CONTROL

In the previous section, the design of controller (4) requires

the information of system dynamics f(y(1, t), yt(x, t)) and the

measurement of system’s overall state yt(x, t), which could

be very difficult in practice. To deal with these issues, in

this section, we will design a boundary-feedback observer to

estimate the overall state [y(x, t), yt(x, t)] of (1), in which

adaptive NN technique will be used to deal with the effect

of system uncertainty f(y(1, t), yt(1, t)). With this observer,

a more practical boundary-feedback backstepping controller

can be designed.

A. Boundary-Feedback Adaptive NN Observer

For the system uncertain dynamics f(y(1, t), yt(1, t)) in (1),

according to Section II-A, we know that there exists a constant

NN weight W ∗ ∈ R
Nn (with Nn ∈ N+ denoting the number

of NN nodes) such that:

f(y(1, t), yt(1, t)) = W ∗⊤S(y(1, t), yt(1, t)) + ǫ, (8)

where S(·) : R
2 → R

Nn is a smooth RBF vector, ǫ ∈ R

is the NN estimation error satisfying |ǫ| < ǫ∗ with ǫ∗ being

a small positive constant. Based on this, for the system (1),

we can propose a boundary-feedback adaptive NN observer as

follows:






































ŷtt(x, t) = ŷxx(x, t)

ŷx(0, t) = −qyt(0, t)− c1(yt(0, t)− ŷt(0, t))

ŷx(1, t) = u(t) + Ŵ⊤S(y(1, t), yt(1, t))

+c2(y(1, t)− ŷ(1, t))

ŷ(x, 0) = ŷ0(x), ŷt(x, 0) = ŷ1(x)
˙̂
W = Γ(ỹt(1, t) + δ1c2ỹ(1, t))S − ΓγŴ ,

(9)

where yt(0, t), y(1, t) and yt(1, t) are system boundary signals

of (1); q is the system parameter of (1); Ŵ ∈ R
Nn is the

estimate of W ∗ in (8); c1 > 0, c2 > 0, Γ = Γ⊤ > 0, γ > 0
and 0 < δ1 < min{ c1

1+c2
1

, 1
2} are design parameters; ỹ(x, t) =

y(x, t)− ŷ(x, t).
307
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Comparing the observer (9) with the system (1), from (8),

denoting W̃ = Ŵ −W ∗, we obtain the error dynamics as:






















ỹtt(x, t) = ỹxx(x, t)

ỹx(0, t) = c1ỹt(0, t)

ỹx(1, t) = −c2ỹ(1, t)− W̃⊤S + ǫ
˙̃
W = Γ(ỹt(1, t) + δ1c2ỹ(1, t))S − ΓγŴ .

(10)

Lemma 2. If the design parameters satisfy c1 > 0, c2 >

0, Γ = Γ⊤ > 0, γ > 0, and 0 < δ1 < min{ c1
1+c2

1

, 1
2},

the observation error dynamics system (10) is well-posed and

bounded.

Proof. Well-posedness of system (10) can easily be proved by

following a similar line of the proof in our previous work [6,

Th. 1], which thus is omitted here.

We study the stability of system (10). Define a Lyapunov

function as: V1 = 1
2

∫ 1

0
(ỹ2x + ỹ2t )dx+ c2

2 ỹ
2(1, t) + δ1

∫ 1

0
(x−

2)ỹxỹtdx + 1
2W̃

⊤Γ−1W̃ , which is positive definite since

0 < δ1 < 1
2 . From (10), according to Young’s inequality,

the derivative of V1 is derived as:

V̇1 = −(c1 − δ1(1 + c21))ỹ
2
t (0, t)−

δ1

2
ỹ2t (1, t)−

δ1c
2
2

2
ỹ2(1, t)

−
δ1

2

∫ 1

0

(ỹ2x + ỹ2t )dx− γW̃⊤W̃ − γW̃⊤W ∗

−
δ1

2
(W̃⊤S − ǫ)2 + δ1c2ỹ(1, t)ǫ+ ỹt(1, t)ǫ

≤ −(c1 − δ1(1 + c21))ỹ
2
t (0, t)−

δ1

4
ỹ2t (1, t)−

δ1c
2
2

4
ỹ2(1, t)

−
δ1

2

∫ 1

0

(ỹ2x + ỹ2t )dx−
γ

2

∥

∥

∥
W̃

∥

∥

∥

2

+
γ

2
‖W ∗‖

2
+

δ21 + 1

δ1
ǫ∗2

(11)

where |ǫ| < ǫ∗ from (8). Then, since 0 < δ1 < c1
1+c2

1

leading

to c1 − δ1(1 + c21) > 0, we have V̇1(t) < 0 whenever:

ỹ2(1, t) ≥
4(δ21 + 1)

δ21c
2
2

ǫ∗2 +
2γ

δ1c
2
2

‖W ∗‖
2
;

∫ 1

0

(ỹ2x + ỹ2t )dx ≥
2(δ21 + 1)

δ21
ǫ∗2 +

γ

δ1
‖W ∗‖

2
;

∥

∥

∥
W̃

∥

∥

∥

2

≥
2(δ21 + 1)

γδ1
ǫ∗2 + ‖W ∗‖

2
.

(12)

This guarantees that the signals of ỹ(1, t), ỹx(x, t), ỹt(x, t)
and W̃ of (10) are all bounded. Based on this and from the

Poincare inequality, we have: all the signals of system (10),

including ỹ(x, t), ỹt(x, t) and W̃ are bounded. This ends the

proof.

B. Boundary-Feedback Backstepping Controller

Using the observer (9), considering the system (1), from

(4), we propose to design the following boundary-feedback

adaptive NN backstepping controller:

u(t) =− Ŵ⊤S −
q2 − 1

1 + qc
(c0v(1, t) + vx(1, t))− c0ŷ(1, t)

+
q + c

1 + qc
(c0qŷ(0, t)− ŷt(1, t)− c0

∫ 1

0

ŷtdx),

(13)

where ŷ(1, t), ŷ0(0, t) and ŷt(x, t) are signals of observer (9);

Ŵ⊤S is the adaptive NN model used in (9); v(1, t), vx(1, t)
are reference signals from (2).

Before investigating the performance of the controller (13)

on the system (1), we first study its performance on the

observer (9). We use the backstepping transformation of (5)

to map the system (9) into the following system:






















ŵtt(x, t) = ŵxx(x, t)−
(q+c)(c1+q)

q2−1 ỹtt(0, t)

ŵx(0, t) = cŵt(0, t) +
(1+qc)(c1+q)

q2−1 ỹt(0, t)

ŵx(1, t) = −c0 (ŵ(1, t)− v(1, t)) + vx(1, t)

− (1+qc)c2
q2−1 ỹ(1, t).

(14)

Comparing this system with the reference model (2), and then

combining with system (10), by denoting ε̂(x, t) = ŵ(x, t)−
v(x, t), we obtain the overall error dynamics as follows:



















































ε̂tt(x, t) = ε̂xx(x, t)−
(q+c)(c1+q)

q2−1 ỹtt(0, t)

ε̂x(0, t) = cε̂t(0, t) +
(1+qc)(c1+q)

q2−1 ỹt(0, t)

ε̂x(1, t) = −c0ε̂(1, t)−
(1+qc)c2
q2−1 ỹ(1, t)

ỹtt(x, t) = ỹxx(x, t)

ỹx(0, t) = c1ỹt(0, t)

ỹx(1, t) = −c2ỹ(1, t)− W̃⊤S + ǫ
˙̃
W = Γ(ỹt(1, t) + δ1c2ỹ(1, t))S − ΓγŴ .

(15)

Lemma 3. If the design parameters satisfy: c > 0, c 6= 1,

qc 6= −1, c0 > 0, c1 > 0, c2 > 0, Γ = Γ⊤ > 0, γ > 0,

and 0 < δ1 < min{ c1
1+c2

1

, 1
2}, system (15) is well-posed and

bounded.

Proof. We consider a variable transformation: ε̃(x, t) =

ε̂(x, t) + (q+c)(c1+q)
q2−1 ỹ(0, t), to rewrite system (15) as:































































ε̃tt(x, t) = ε̃xx(x, t)

ε̃x(0, t) = cε̃t(0, t)−
(c2−1)(c1+q)

q2−1 ỹt(0, t)

ε̃x(1, t) = −c0ε̃(1, t) +
(q+c)(c1+q)c0

q2−1 ỹ(0, t)

− (1+qc)c2
q2−1 ỹ(1, t)

ỹtt(x, t) = ỹxx(x, t)

ỹx(0, t) = c1ỹt(0, t)

ỹx(1, t) = −c2ỹ(1, t)− W̃⊤S + ǫ
˙̃
W = Γ(ỹt(1, t) + δ1c2ỹ(1, t))S − ΓγŴ .

(16)

It is easily seen that well-posedness and stability of the original

system (15) can be investigated by studying the system (16).

Specifically, the well-posedness of system (16) can be

proved by following a similar line of our previous work [6, Th.

1], which is omitted here. We investigate its system stability

in the following. Define a positive-definite Lyapunov function:

V = KV1 + V2, where K > 0, V1 = 1
2

∫ 1

0
(ỹ2x + ỹ2t )dx +

c2
2 ỹ

2(1, t) + δ1
∫ 1

0
(x − 2)ỹxỹtdx + 1

2W̃
⊤Γ−1W̃ as given in

(11), and V2 is defined as: V2 = 1
2

∫ 1

0
(ε̃2x+ε̃2t )dx+

c0
2 ε̃

2(1, t)+

δ2
∫ 1

0
(x− 2)ε̃xε̃tdx, with 0 < δ2 < min{ c

2+4c2 ,
1
2}.

From (16), according to Young’s inequality and following

a similar line of (11), the derivative of V2 is obtained as:

V̇2 ≤ −(
c

2
− δ2(1 + 2c2))ε̃2t (0, t)−

δ2

4
ε̃2t (1, t)−

δ2c
2
0

4
ε̃2(1, t)
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−
δ2

2

∫ 1

0

(ε̃2x + ε̃2t )dx+ (
2

δ2
+ 2δ2)(

(1 + qc)c2
q2 − 1

)2ỹ2(1, t)

+ (
1

2c
+ 2δ2)(

(c2 − 1)(c1 + q)

q2 − 1
)2ỹ2t (0, t)

+ (
2

δ2
+ 2δ2)(

(q + c)(c1 + q)c0
q2 − 1

)2ỹ2(0, t).

(17)

From the Cauchy-Schwarz inequality and Young’s inequal-

ity, we have: −
∫ 1

0
ỹ2xdx ≤ −(

∫ 1

0
ỹxdx)

2 ≤ − 1
2 ỹ

2(0, t) +

ỹ2(1, t), leading to ỹ2(0, t) ≤ 2
∫ 1

0
ỹ2xdx + 2ỹ2(1, t). Based

on this, combining (IV-B) with (11), the derivative of V =
KV1 + V2 is obtained as:

V̇ ≤ −(
c

2
− δ2(1 + 2c2))ε̃2t (0, t)−

δ2

4
ε̃2t (1, t)−

δ2c
2
0

4
ε̃2(1, t)

−
δ2

2

∫ 1

0

(ε̃2x + ε̃2t )dx− (K(c1 − δ1(1 + c21))

− (
1

2c
+ 2δ2)(

(c2 − 1)(c1 + q)

q2 − 1
)2)ỹ2t (0, t)−K

δ1

4
ỹ2t (1, t)

− (K
δ1c

2
2

4
− (

2

δ2
+ 2δ2)(

(1 + qc)c2
q2 − 1

)2 − (
4

δ2
+ 4δ2)

· (
(q + c)(c1 + q)c0

q2 − 1
)2)ỹ2(1, t)−K

δ1

2

∫ 1

0

ỹ2t dx

− (K
δ1

2
− (

4

δ2
+ 4δ2)(

(q + c)(c1 + q)c0
q2 − 1

)2)

∫ 1

0

ỹ2xdx

−K
γ

2

∥

∥

∥
W̃

∥

∥

∥

2

+K
γ

2
‖W ∗‖

2
+K

δ21 + 1

δ1
ǫ∗2.

(18)

Based on this, with 0 < δ2 < c
2+4c2 , 0 < δ1 < c1

1+c2
1

, γ > 0

and a sufficiently large value of K > 0, following a similar

line of the proof in Lemma 2, we have: all signals of the

error system (16), including ε̃(x, t), ε̃t(x, t), ỹ(x, t), ỹt(x, t)
and W̃ , are bounded. Consequently, we can conclude that the

original error dynamics (15) is well-posed and bounded. This

ends the proof.

With Lemmas 1–3, we can establish the well-posedness

and stability of the overall closed-loop system under our

approaches as follows. In particular, from (1), (2), (3), (5),

(7), (9) and (13), we obtain the overall error dynamic system

as follows:














































































εtt(x, t) = εxx(x, t)

εx(0, t) = cεt(0, t)

εx(1, t) = −c0ε(1, t) +
1+qc
q2−1 (W̃

⊤S − ǫ)− 1+qc
q2−1c0ỹ(1, t)

+ q+c
q2−1 (c0qỹ(0, t)− ỹt(1, t)− c0

∫ 1

0
ỹtdx)

e(x, t) = − 1+qc
c2−1ε(x, t) +

c(q+c)
c2−1 ε(0, t)

+ q+c
c2−1

∫ x

0
εt(ς, t)dς

ỹtt(x, t) = ỹxx(x, t)

ỹx(0, t) = c1ỹt(0, t)

ỹx(1, t) = −c2ỹ(1, t)− W̃⊤S + ǫ
˙̃
W = Γ(ỹt(1, t) + δ1c2ỹ(1, t))S − ΓγŴ .

(19)

Theorem 2. Consider the closed-loop system consisting of the

plant (1), the reference model (2)–(3), the observer (9), and

the controller (13). If the design parameters satisfy: c > 0,

c 6= 1, qc 6= −1, c0 > 0, c1 > 0, c2 > 0, Γ = Γ⊤ > 0,

γ > 0, and 0 < δ1 < min{ c1
1+c2

1

, 1
2}, the closed-loop system

is well-posed and bounded.

Proof. Consider the error system (19). From (15), we

have: ε(x, t) = ε̂(x, t) − 1+qc
q2−1 ỹ(x, t) + q(q+c)

q2−1 ỹ(0, t) −
q+c
q2−1

∫ x

0
ỹt(ς, t)dς . Since the system (15) is well-posed and

bounded from Lemma 3, it is easy to deduce that the system

(19) is well-posed and bounded. Based on this, noting that

y(x, t) = e(x, t) + r(x, t), ŷ(x, t) = y(x, t) − ỹ(x, t), and

the reference model (2)–(3) is well-posed and bounded from

Lemma 1, we have: both the system (1) and the observer (9)

under the controller (13) are well-posed and bounded. Conse-

quently, it is verified that the closed-loop system consisting of

(1), (2), (3), (9) and (13) are well-posed and bounded.

V. SIMULATION STUDIES

To demonstrate the effectiveness of our approaches, this

section will perform a simulation study by using a numerical

example. Specifically, the system (1) is given with q = 0.6,

f(y(1, t), yt(1, t)) = 0.4y(1, t) + 0.3 cos(y2t (1, t)), y0(x) =
0.3 sin(2πx) and y1(x) = 0.3 cos(2πx). The reference model

(2)–(3) is designed with c = 0.7, wref (t) = 0.5 sin(π5 t) +
cos(π4 t), v0(x) = 0.1 and v1(x) = 0.1. The observer (9)

is designed with c1 = 0.7, c2 = 1.2, δ1 = 0.45, Γ = 3,

γ = 0.01, ŷ0(x) = 0.1, ŷ1(x) = 0.1, Ŵ (0) = 0, and the RBF

NN model Ŵ⊤S is constructed in a regular lattice with the

number of nodes Nn = 5× 13, the centers evenly spaced on

[−2, 2] × [−7, 5], and the widths ηi = 1 (i = 1, 2, · · · , 65).

The controller (13) is with c0 = 1.2.

Performance of the overall closed-loop system consisting

of the plant (1), the reference model (2)–(3), the observer (9)

and the controller (13) are shown in Figs. 1–2. It is shown that

all signals of the closed-loop system, including system state

y(x, t), reference signal r(x, t), observer state ŷ(x, t), control

signal u(t) and NN weight Ŵ (t), are stable. The signal-

tracking performances of our scheme are illustrated in Fig. 3,

showing that both the state estimation error y(x, t) − ŷ(x, t)
of (1) and (9), and the state tracking error y(x, t) − r(x, t)
of (1) and (3), can converge to a small neighborhood around

zero. Consequently, these simulation results verify that our

approaches can provide desired performance of closed-loop

stability, state estimation, as well as reference tracking control.

In particular, the results of Fig. 3 also justify that our control

scheme can drive the system’s holistic state y(x, t) to track the

reference signal r(x, t) with ∀x ∈ [0, 1], which is advanced

over most of the existing schemes of [9], [6], [5] that only

achieve output tracking.

VI. CONCLUSIONS

In this paper, we have developed a backstepping adaptive

NN boundary control scheme for the tracking control problem

of an unstable wave equation with boundary uncertainties.
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(a) System state y(x, t) of (1). (b) Reference signal r(x, t) of (3). (c) Observer state ŷ(x, t) of (9).

Fig. 1: Overall system state.

(a) NN weights Ŵ (t) of (9).

0 20 40 60 80 100
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0
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(b) Control signal u(t) of (13).

Fig. 2: Closed-loop system response.

(a) State estimation error y(x, t)− ŷ(x, t) of (1)
and (9).

(b) State tracking error y(x, t)−r(x, t) of (1) and
(3).

Fig. 3: Signal-tracking performance.

Specifically, an adaptive RBF NN model has been devel-

oped to approximate/counteract the effect of system uncertain

dynamics. A boundary-feedback observer has been designed

with the NN model, to estimate the system’s overall state.

Using this observer, a boundary tracking control scheme has

been proposed based on the backstepping method and adaptive

NN technique. This control scheme is able to provide stable

tracking control for the unstable wave equation, in which the

system’s holistic state can be driven to track a prescribed

reference trajectory. Rigorous analysis has been performed to

demonstrate the well-posedness and stability of the overall

closed-loop system. In the future work, we expect to extend the

proposed tracking control scheme to a more general case, e.g.,

an unstable wave equation with both matched and unmatched

boundary uncertainties.
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