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AbstractÐThe field of soft robotics has been experiencing
rapid growth, with researchers and engineers showing increasing
interest due to the unique capabilities of these robots. Soft robots,
characterized by their soft bodies and flexible structures, have
demonstrated great potential in addressing real-world challenges
across various domains, including medical applications. Effective
modeling and control are vital for fully harnessing the potential
of soft robots, particularly in applications involving human
interaction. However, creating models for soft robots made of
soft materials, diverse shapes, and actuators poses significant
challenges. Moreover, accurate fault detection in soft robots
necessitates precise modeling. This paper introduces a novel
machine learning approach, termed deterministic learning, for
training a soft robot model using a radial basis function neural
network. The research explores the fault detection process by
simulating four distinct faults that could impair system control
performance, such as diminishing tracking accuracy or inducing
instability. Furthermore, the paper examines the identification of
fault occurrences during the operation of soft robots.

Index TermsÐsoft robotics, radial basis function neural net-
work, deterministic learning, fault detection.

I. INTRODUCTION

Soft robots are generally constructed using soft materials

like silicone and rubber, which provide them with unique

characteristics. Their flexible bodies enable bending and twist-

ing with high curvatures, allowing them to adapt to various

environments and tasks. Due to their extensive applicability,

ranging from underwater settings to the medical field, more

research has been conducted on soft robots such as [1], [2],

[3], [4], [5] and [6].

Although flexibility offers certain advantages for soft robots,

it also complicates the modeling of their dynamics. Soft

robots possess infinite-dimensional structures with unknown

degrees of freedom, leading researchers to propose contin-

uous mathematical models for describing their dynamics.

Some of these models include the Constant-Curvature method

[7], Cosserat-Rod-theory-based method[8], and Finite Element

Method (FEM) [9]. However, due to linear approximations and

simplifications, none of these methods can precisely represent

the dynamics of soft robots. Therefore, they are not suitable

for fault detection experiments which demand a more accurate

approximation model for high nonlinear dynamics of soft

robots. Developing a model-based fault detection method [10]

that considers the robots’ dynamic behavior for improved fault

detection accuracy is also challenging due to the inherent

physical properties of soft robots.

To prevent performance degradation and ensure safety, it is

essential to identify abnormal behavior and faults during robot

operation [10]. This necessity has spurred the development

of fault diagnosis techniques specifically tailored for soft

robots ([11] [12] [13]). However, these techniques may not be

applicable when faults remain concealed due to the infinite-

dimensional nature and highly nonlinear models of soft robots

[14].

The most accurate model of soft robots’ nonlinear dynamics

can be derived by using neural networks (NN). For instance,

[15] which trained a neural network to predict a soft robot’s

quasi-static physics, [16] which uses artificial NN to learn the

input-output model of a soft robot, and [17] used NN for

linear movement pattern. These methods have not used the

high dimensional system states for simplicity and having less

computational effort.

On the other hand, online data-driven model learning has

proven to be more efficient in soft robot dynamics modeling

when accounting for unknown nonlinearities [18]. This sug-

gests that utilizing data-driven machine learning to capture

the robots’ dynamic motions can result in more accurate

approximations of their models. Studies by [19] and [20] have

demonstrated that machine learning can handle complex soft

sensor information by modeling and predicting the external

environment. [21] and [22] have used the data-driven approach

with the continuum kinematics model to improve the modeling

accuracy.

In this paper, we apply deterministic learning (DL) ([23]

[24]) a novel machine learning method, to identify the motion

dynamics of a recently developed soft robot using radial basis

function neural networks. Deterministic learning theory can

be utilized to find the system dynamics of general nonlinear

systems [25] and [26]. A brand new Soft Trunk Robot (STR)

which is designed and developed in our previous research

[27] is investigated for unknown dynamic estimation using DL

with radial basis function NN (RBFNN). After collecting the

motion data of the STR following a predefined trajectory, its

nonlinear dynamics model is obtained using DL. Then a fault

detection procedure is studied involving four different faults

that occurred in the STR to detect fault occurrences for each



fault.

The rest of the paper contains the following sections: section

II delves into the DL theory in detail. Section III presents

the formulation of RBFNN. Section IV introduces the STR

design details and actuation. The average weight procedure

is discussed in section V. The fault detection procedure and

corresponding results are provided in section VI. Finally,

section VII concludes the paper.

II. PRELIMINARIES

The RBFNN can be described as equation

fnn(Z) =
∑N

i=1 wisi(Z) = WTS(Z), where Z ∈ ΩZ ⊆ R
q

described as input vector, and W = w1, ..., w
T
N ∈ R

N as

weight vector. N indicates the number of NN nodes,

S(Z) = [s1(||Z− µi||), ..., sN (||Z− µi||)]
T with si(·) is a radial

basis function, and µi(i = 1, ..., N) is distinct points in the

state space.

The Gaussian function si(||Z− µi||) = exp
[

− (Z−µi)
T (Z−µi)
η2

i

]

is generally used for radial basis functions, where

µi = [µi1, µi2, ..., µiN ]T is the center and ηi is the width

of the receptive field. The Gaussian function categorized

by localized radial basis function s in the sense that

si(||Z− µi||) → 0 as ||Z|| → ∞.

It has been shown in [28] and [29] that for any

continuous function f(Z) : ΩZ → R where ΩZ ⊂ Rp is a

compact set, and for the NN approximator, where the

node number N is sufficiently large, there exists an ideal

constant weight vector W ∗, such that for each ϵ∗ > 0,

f(Z) = W ∗TS(Z) + ϵ(Z), ∀Z ∈ ΩZ , where ϵ(Z) is the

approximation error. Moreover, for any bounded trajectory

Zζ(t) within the compact set ΩZ , f(Z) can be approximated

by using a limited number of neurons located in a

local region along the trajectory: f(Z) = W ∗T
ζ Sζ(Z) + ϵζ ,

where Sζ(Z) = [Sj1(Z), ..., Sjζ(Z)]T ∈ RNζ , with

Nζ < N , |sji| > ι, (ji = j1, ..., jζ), ι is a small positive

constant, W ∗

ζ = [w∗

j1, ..., w
∗

jζ ]
T , and ϵζ is the approximation

error, with
∣

∣

∣
|ϵζ | − |ϵ|

∣

∣

∣
being small.

III. NEURAL NETWORK TRAINING SETUP

Generally, obtaining accurate motion control of a robot

requires developing its model first. For this purpose, a newly

developed machine learning algorithm called the discrete-time

Deterministic Learning (DL) algorithm will be employed for

model learning.

Considering f(x; p) as the unknown dynamics of the sys-

tem, x as system state with x(t0) = x0 initial condition and

p vector as the constant parameter of the system, the general

form of a nonlinear dynamical system can be expressed as

follows:

ẋ = f(x; p) (1)

The discretized representation of this equation using Euler

approximation can be written as follows:

x[k + 1] = x[k] + Tsf(x[k]; p), x[0] = x0. (2)

f(x[k]; p) is the unknown system dynamics to obtain from

system states, and Ts is the time increment for each step.

Using discrete-time deterministic learning theory [24], the

unknown dynamics of the system can be identified with the

following algorithm:

x̂[k + 1] = x[k] + a(x̂[k]− x[k]) + TsŴ
T [k + 1]S(x[k]) (3)

Where x̂ = [x̂1, x̂2, ..., x̂n] and 0 < |a| < 1 are the state

vector and constant parameter respectively. Ts = 0.12 seconds

is discretization time. ŴTS(x[k]) is the radial basis function

neural network while Ŵ is the neural network weight which

is updated using the learning law below:

Ŵ [k + 1] = Ŵ [k]−
αP (e[k]− ae[k − 1])S(x[k − 1])

1 + λmax(P )ST (x[k − 1])S(x[k − 1])
(4)

Where e[k] = x̂[k]− x[k] the matrix P = PT > 0 has the

maximum eigenvalue λ and α ∈ (0, 2) is the learning gain for

the design.

IV. THE SOFT TRUNK ROBOT

A. Design and Fabrication

Our case study for this experiment is the Soft Trunk Robot

(STR) (shown in Fig. 1) which is made of silicone rubber to

enable a flexible motion in a 3-dimensional space.

The STR has consisted of 6 contiguous flattened spheres

mounted from the base and tapering off to the tip point. Placing

six 3D-printed retainers with the same pattern in between each

sphere separately, not only stabilized the STR’s movement but

also holds the four strings all around the trunk to have precise

motion. Each string is released and tied up by a stepper motor

from the on-top base to actuate the STR. Therefore, the tip

point can achieve a sphere-like motion range all around the

STR.

The motors are coordinated in pairs to optimize the motion

range and enable the tip point to reach the target with

minimum oscillation. Each motor automatically either releases

or pulls its corresponding string to reach the desired target

optimally without unnecessary tension on the strings. This also

improves the accuracy of the STR’s positional states.

B. Actuation and State Definition

The STR is actuated by four stepper motors responsible for

pulling or releasing strings attached to the tip. The STR tip

point can be bent toward each direction by pulling the corre-

sponding strings and releasing others. Thus, all motors work

simultaneously in a heterogeneous environment to achieve

precise trajectories.

Since the STR has a 3d motion plan, the x and y axis are

defined across each pair of motors and the z-axis is defined

toward the central axis from top to bottom. Stepper motors

are fixed on the top base diagonally. Fig. 2 shows defined pair

motors and their corresponding axis.

In order to make the STR motion more efficient and simple,

each opposite motor works in pairs. Motors 1 and 3 from the

first pair and motors 2 and 4 from the second pair, with each

pair working independently. The first pair of motor bends the

robot on the y-axis while the second pair bend on the x-axis,



Fig. 1. Soft Trunk Robot.

Fig. 2. Pair motors design overview and corresponding axis.

as shown in the picture. Correspondingly, the z-axis is defined

from top to bottom of the robot.

The system inputs consist of two variables (u1 and u2) and

each corresponds to one pair of motors. Positive and negative

values indicate whether the first or the second motor of each

pair is pulling or releasing the string respectively. For instance,

if the first input value (u1) is negative, it indicates that the

second motor of the first pair is pulling its string, while the

first motor is releasing its corresponding one. As the STR has

a 3D motion plan, there are three positional data (x,y,z) to

be collected as system positional states. Counting each pair

of motors as one state as input and the three positional states,

the overall state of the system includes u1, u2, x, y, and z.

V. DYNAMIC ESTIMATION USING THE AVERAGE OF NN

WEIGHTS

To obtain the best estimation of the system dynamics,

a well-trained NN weight of the model from an original

trajectory is needed. The original trajectory for this experiment

was generated by five continuous similar loops that start

and end in a predefined position. Each loop consists of 120

steps, resulting in an overall trajectory of 600 steps. The

NNs dimension is defined as 12, and with 5 system states,

the number of NN nodes becomes 248,832. Also, in the

training procedure, NN weights progressively converge to their

optimal value Therefore, the latest learned NN weights are

more reliable compared to the previous ones, and the average

values of NN weights from the latest steps of the learning

process (including all NN nodes) was derived to be used in the

estimator. In fact, The average of NN weights, being a more

balanced weight, helps the estimator achieve a more accurate

prediction. The average of the latest 120 NN weights from the

trained model was calculated as average weights:

W̄ =
1

kb − ka + 1

kb∑

k=ka

Ŵ [k] (5)

Where [ka, ..., kb] represents the range of steps (481-600) cho-

sen to calculate the average weight W̄ , using the corresponding

neural network weights Ŵ [k] from these steps.

According to [24], motion dynamics from the neural net-

work can be accurately approximated by fully estimating

dynamics information and average weights based on the fol-

lowing equation:

X̄[k + 1] = X̄[k] + TsB(X̄[k]−X[k]) + Ts(W̄ )TS(X[k]) (6)

With the real state of the trajectory as X[k],

B = diag[0.5, 0.5, 0.5, 0.5, 0.5] as a diagonal matrix, the

estimated states of the original trajectory is defined as X̄[k]

in state estimator process.

Fig. 3 shows that the estimated dynamics align with the

actual ones for all state values. The convergence of the corre-

sponding error to a small neighborhood of zero in just a few

steps demonstrates the estimator’s precision in predicting the

model dynamics. This outcome is achieved by implementing

the adaptive learning algorithm with the average weights.

Therefore, based on the accurate modeled dynamics of the

robot, a fast FD can be achieved.

VI. FAULT DETECTION PROCEDURE AND RESULTS

In the fault detection process, our objective is to identify

when a fault happens. To achieve this, we use the fully

estimated dynamics information associated with the original

trajectory and implement the actual state of a faulty trajectory

in the estimation process. When a significant error arises along

the original trajectory, it indicates a faulty trajectory. The

process diagram in Fig. 4 illustrates the learning process and

FD in detail.

As shown in Fig. 4, by employing RBF NN, the unknown

dynamics of the original trajectory is identified with the DL

algorithm. The average of converged NN weights is then used

in the estimator process along with the faulty trajectory motion

dynamics. The fault detection procedure can be represented by

calculating the norm error and determining a threshold.



Fig. 3. Dynamics comparison between actual system states and predicted
system model states for x, y, and z coordinates from top to bottom respec-
tively).

Fig. 4. Process diagram of the learning procedure.

A. Fault Implementation

Four different faults are defined to occur for this experiment:

1) Hanging an external weight from the tip point.

2) Holding the trunk near a fixed object by an elastic band.

3) Fastening a cable tie over the robot and tightening the

strings to one sphere.

4) Motor shut down due to the power source issue or being

disabled.

Fig. 5 shows how each fault is generated. Each of these

four faults affects the actuation of the STR in different ways.

Understanding how these faults affect the robot’s performance

is crucial for developing an effective fault detection procedure

and ensuring the safe operation of the robot in real-world

applications. The comparison between the actual system dy-

namics and approximated dynamics of faulty trajectories and

their related errors are plotted in Fig. 6 and Fig. 7.

The estimation results before the fault occurrence of Fig. 6

and Fig. 7 demonstrate that the error converged to a small

neighborhood of zero because the trajectory is identical to the

original trajectory up to that point, and the dynamic estimation

results are highly similar. However when a fault happens,

the dynamics of the robot change, leading to a deviation

in the state estimation results, and causing an increase in

the corresponding error. In fact, The error seems to amplify

noticeably following the fault event. This characteristic is

utilized for fault detection procedures.

Fig. 5. Four defined faults: 1. Weight hanging. 2. Elastic band. 3. Cable tie.
4. Motor Shutdown(unplugged).

Fig. 6. Dynamic comparison between the actual system dynamics and
approximated one of faulty trajectory and their corresponding error for x,
y, and z position from top to bottom respectively. Fault 1 (left) and Fault 2
(right).

Fig. 7. Dynamic comparison between the actual system dynamics and
approximated one of faulty trajectory and their corresponding error for x,
y, and z position from top to bottom respectively. Fault 3 (left) and Fault 4
(right).



B. Fault Detection Procedure

The estimation error generated by the fault needs to be

analyzed for the FD procedure. To detect a fault accurately, the

estimation error has to exceed a predefined limit. To address

what the exact limitation value is, we define the norm error of

the estimation error and then a fault detection threshold can

be implemented. The norm error is the absolute average of

the estimation error for a maximum of 120 steps. the reason

to consider the norm of the error is that the oscillation error

would be neglected when using the norm of the estimation

error.

C. FD Results

An intuitive approach to fault detection is defining a fixed

threshold above the norm error of the estimation error. In this

way, if the error happens, it can be detected as the norm error

value starts surpassing the predefined threshold. By setting a

threshold for the increased norm error resulting from a fault,

fault occurrence can be easily detected. If the norm error does

not exceed the threshold value, the trajectory is considered as

healthy (remaining the same as the original one). On the other

hand, if it remains larger than the upper threshold, it diagnoses

as a faulty trajectory.

Three different trials of each fault were conducted on the

robot. The procedure outlined in Fig. 4 was examined and their

norm errors were plotted for each positional state. Specific

threshold values were then defined for each trial separately.

Fig. 8 and Fig. 9 display the norm error and the threshold

corresponding to each fault for three different trials.

The norm error initially increased until it reaches the 120

steps in Fig. 8 and Fig. 9, remaining constant until the

error occurs. It undergoes another constant growth (after the

360th step) when a fault happens. The threshold value can

be determined for each positional state at the beginning of

the constant growth of the norm error when a fault occurs.

This value is defined after studying all three trials for each

fault independently. Additionally, a fault detection time can be

established for each fault. The fault detection time refers to the

time interval between the occurrence of a fault and the moment

when the norm error surpasses its designated threshold.

Table I presents the general threshold values of each fault

for the x,y, and z direction. The threshold values indicate the

limitation of norm error corresponding to each positional state

of each fault. The fault detection time also reveals how long

it takes for all norm errors corresponding to each positional

state to reach their threshold values after fault occurrence. The

maximum value among the trials is designated for FD time.

For instance, when a fault happens due to the cable tie, it takes

0.96 seconds to detect the fault.

Fault detection duration from Table I demonstrates how

quickly each fault can be detected. Since safety is one of

the highest priorities for soft robot applications for human

interactions, minimizing fault detection duration is crucial.

In this experiment by defining corresponding threshold

values and using the norm error for each positional state,

fault detection time is minimized. This accomplishment is also

because of the precise prediction of dynamic estimation using

deterministic learning with an average of constant RBFNN

weights. The fault detection process further ensures that dif-

ferent norm errors can be defined for different possible faults

with FD time.

Fig. 8. Three different norm errors of faulty trajectories and their corre-
sponding threshold for each state position (x,y,z). Fault 1 (left) and Fault 2
(right).

Fig. 9. Three different norm errors of faulty trajectories and their corre-
sponding threshold for each state position (x,y,z). Fault 3 (left) and Fault 4
(right).

VII. CONCLUSIONS

In this paper, we presented a novel machine learning

approach, deterministic learning, for modeling a soft trunk

robot using a radial basis function neural network. By em-

ploying average NN weights, the error between the actual

system dynamics and dynamic estimation converged to a small

neighborhood of zero, resulting in a more accurate model

estimation.

Subsequently, based on the model and the corresponding

error of dynamic estimation, we implemented a fault detection

process to identify the occurrence of four different faults.

For each fault, a threshold value was established for each

positional state to facilitate fault identification. Additionally,

fault detection time was determined for each distinct fault. The

results validated the accuracy of the model and demonstrated

the rapid detection of each fault through various trials.



TABLE I
THRESHOLD VALUES FOR EACH DIRECTION AND FAULT DETECTION TIME

FOR EACH FAULT

Fault
Threshold Values (mm)

FD Time (s)
x y z

1. Weight hanging 1.19 1.52 1.85 1.20

2. Cable tie 0.72 0.88 0.96 0.84

3. Elastic band 0.59 0.69 0.92 0.96

4. Motor shutdown 0.73 0.71 0.83 1.08
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