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Learning-Based Tracking Control of Soft Robots
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and Chengzhi Yuan

Abstract—This letter proposes an adaptive radial basis function
neural network (RBF NN) based scheme for the dynamics learning
and tracking control problems of a soft trunk robot. Specifically, a
low-order approximate model describing the soft robot’s dynamics
is first derived with the finite element method and proper orthog-
onal decomposition technique. Based on this model, an adaptive
learning control scheme is developed with RBF NN, which can not
only provide stable and accurate tracking control for the soft robot,
but also achieve accurate learning of the robot’s dynamics during
the online control process. The proposed controller can effectively
handle the soft robot’s complex nonlinear uncertain dynamics and
external disturbances, it thus can guarantee desirable tracking ac-
curacy and control adaptability. The learned knowledge of robot’s
dynamics can be obtained and stored in a constant RBF NN model.
Based on this, a novel knowledge-based controller is further pro-
posed to provide desirable control performance for the soft robot
without needing to repeat any online parameter adaptations, which
significantly improves the overall system’s operational efficiency
with reduced computational complexity and easier control imple-
mentation. Effectiveness and advantages of the proposed methods
are validated through physical experiments.

Index Terms—Soft robotics, tracking control, dynamics lear-
ning, adaptive learning control, neural networks.

1. INTRODUCTION

OFT robots are a novel type of robots made of soft materials,
S such as silicone and robber. Compared to traditional rigid
robots, soft robots have developed many desirable mechanical
properties, e.g., inherent compliance, flexibility and hyper re-
dundance, which facilitates safe human-robot interaction and
operation in a restrained environment [1]. This has motivated a
rapidly-increasing demand of soft robots for industrial, surgical
and assistive applications [2].
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Precise motion control of soft robots is an essential and
difficult problem. The main technical challenge lies in the soft
robot’s complex physical model due to its deformable structure,
complex geometry and infinite degrees of freedom [2]. To this
end, [20] used the Geometric Variable Strain technique—a ge-
ometrically exact approach based on the Cosserat rod theory—
to model the dynamics of the soft robot. [21] presented the
deformation space formulation of the soft robots’ dynamics
by using the Finite Element Deformation Method. [3] used
the piecewise constant curvature approximation technique for
kinematics modeling of soft robots. In [4], Euler-Bernoulli Beam
theory has been used to model the bending of robots. These
schemes require strict assumptions on the shape, structure, and
constitutive materials of the studied robots, limiting their appli-
cability to more general and complex soft robots. Some research
works in [22], [23] studied the control problem by physically
modeling the soft robots without requiring strict assumptions.
These methods may not be able to deal with the uncertainty or
disturbances of the soft robots when operating in complex and
variable environments.

To tackle the challenges in deriving an accurate Kkine-
matic/dynamic model for soft robots, research attempts have
been dedicated to learning control design for soft robots [5].
These methods only use measurement data of soft robots, with-
out needing a priori knowledge of robots’ underlying struc-
ture. They can develop arbitrarily complex kinematic/dynamic
models of soft robots, which are especially suitable for those
robots that are highly nonlinear, nonuniform, and/or act within
unstructured environment [2]. Usually, learning control design
are developed using neural network (NN) techniques with re-
markable approximation and learning capabilities. For exam-
ple, [24] utilized feedforward NN to learn a differentiable model
of a soft robot’s quasi-static physics, aiming to find optimal
open-loop control inputs. In [6], a deep learning-based predictive
uncertainty estimation framework was proposed with recurrent
NN technique for soft robot’s multimodal-sensing. [7], [8],
[9] proposed a model-based policy learning algorithm with
recurrent NN for the closed-loop predictive control problem
of a soft robotic manipulator. These methods were mostly
offline-learning schemes, which cannot handle abrupt changes
in robot’s kinematics/dynamics during online operation under
various harsh control environments. To overcome these issues,
some control schemes have been developed in [25], [26], which
can first offline-learn the robots’ model and then online-adapt
to handle the disturbances or dynamics change. However, they
cannot realize accurate identification for the dynamics of the soft
robot while guaranteeing the associated parameter convergence
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to the optimal values, thus they may not be able to achieve
satisfactory sample efficiency and desired control performance.

In real applications, soft robots usually encounter external
disturbances, such as payload and external interaction [5], pos-
sibly leading to major changes in robots’ kinematics/dynamics.
To achieve a desirable control performance in these cases, on-
line learning control approach is needed to adapt/react to such
changes by adjusting associated control variables online, see,
e.g., [10], [11]. However, the research of online learning control
of soft robots is still in its primitive stage with limited success
so far. To the author’s best knowledge, there are only a few
research results have been developed in [5], [12], [13], which
provided enhanced control accuracy and adaptability for soft
robots in complex environments. However, these methods have
not well explored the real learning capability of the associated
controllers. More specific, these methods cannot obtain the
learned knowledge through the control process for reutilization,
which thus have to repeat online updating control parameters
even for a same/similar control task, resulting in high com-
putation burden and time consumption in associated control
implementations.

In this letter, we will propose an adaptive NN learning-
based tracking control scheme for a soft trunk robot, aiming
to drive the robot’s end-effector to track a prescribed reference
trajectory with a desirable tracking accuracy. Specifically, for
the soft robot, a low-order approximate model to describe the
robot’s dynamics will be first derived with the Finite Element
Method (FEM) and Proper Orthogonal Decomposition (POD)
techniques. Based on this analytical model, an adaptive learning
control scheme will be proposed with the Radial Basis Func-
tion Neural Network (RBF NN) technique, which is able i) to
provide accurate and stable tracking control for the soft robot’s
end-effector; and ii) to achieve accurate learning for the robot’s
uncertain dynamics during online control process. With these
features, the proposed learning controller can handle the soft
robot’s complex uncertain dynamics and external disturbances,
thus guaranteeing desirable tracking accuracy and control adapt-
ability. Moreover, this learning controller guarantees that the
knowledge of the robot’s dynamics can be learned in real time
during online control process, and the learned knowledge can
be further stored and represented by a constant RBF NN model.
Based on this, a new knowledge-based controller will be further
proposed to provide a desired control action using the learned
knowledge, which does not need to repeat online the update
of control parameters, thereby improving the overall system’s
operational efficiency with reduced computational complexity
and easier control implementation. Effectiveness and advantages
of the proposed methods will be validated through physical
experiments.

The major contributions of this work are summarized below.

i) We propose an adaptive RBF NN-based learning control
scheme for soft robots, which can provide desired track-
ing control performance by online learning the robot’s
complex nonlinear uncertain dynamics;

ii) We propose a novel knowledge-based controller for soft

robots, which can achieve high tracking control perfor-
mance with the learned knowledge of robot’s dynamics,
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significantly improving the overall system’s operational
efficiencys;

iii) We perform physical experiments on a soft trunk robot to
validate the effectiveness and advantages of our proposed
control methods.

It should be stressed that the present work is developed by
extending our previous work in [14], which focused on the
dynamics modeling problem of soft robots. Different from [14],
which presented an offline learning scheme, the current letter
proposes an online learning scheme, which guarantees that the
robot’s dynamics is learned/modeled during the online control
process, and the learned knowledge can be used in real time to
improve the control performance. Compared to [14], the online
dynamics learning mechanism in the current letter enables the
controller to develop improved tracking accuracy and control
adaptability, which is more suitable for soft robots operating in
harsh control environments.

The remainder of this letter is organized as follows. Section II
provides some preliminaries. Section III includes the problem
statement. The proposed adaptive NN-based learning control
scheme and the knowledge-based control scheme are presented
in Section IV. The experiments are conducted in Section V. The
conclusions are given in Section V1.

II. PRELIMINARY
A radial basis function neural network (RBF NN) [15] can
be described by fun(z) = SN si(z) = W S(x), where
x € Q, CR™ is the input vector with {2, being a compact

set, W = [iy,...,wy,]T € RN» is the weight vector, with
N,, denoting the NN node number, and S(z) = [s1(]|z —
sill)s-- 8w, (Jlz —sn, )] : R® — RY», with s;(-) being a

radial basis function, and g; € R (: = 1,2,..., N,,) being dis-
tinct points in state space. In this paper, the radial basis func-
tion s;(-) is chosen as the Gaussian function: s;(||z — ¢||) =
exp[%;(z*")}, where g; is the center of the receptive field
and n; is the width of the receptive field. As shown in [15],
for any continuous function f(x): Q, — R, and for the NN
approximator with the node number N,, being sufficiently large,
there exists an ideal constant weight vector W* & RM» _such that
forany e* > 0, f(z) = W*'S(z) + €,V € Q,, where |¢| < €
is the ideal approximation error. The ideal weight vector W*
is an “artificial” quantity required for analysis, and is defined
as the value of W that minimizes le| for all = € €, ie.,

W* = argming, g, {sp,cq, | () = WTS(2)[}.

III. PROBLEM STATEMENT
A. The Soft Trunk Robot

The studied soft trunk robot is shown in Fig. 1, which is
similar to the one in our previous work [14]. It is pneumatic
actuated and composed of three identical segments made by high
elasticity silicone rubber. Each segment has maximum length of
108 mm and maximum width of 32 mm. They can extend and
shrink vertically by pressurizing/depressurizing the air inside the
segment, and the maximum deformation displacement is about
60 mm. With the cooperative deformation of these segments, the
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Fig. 1.

Soft trunk robot and the experimental platform.

robot’s end-effector can move in the 3D space. The objective of
this letter is to design a controller to drive the robot’s end-effector
to track a given reference trajectory with a desirable tracking
accuracy.

Remark 1: We emphasize that the soft trunk robot of Fig. 1
is used to provide a simple case study to validate the feasibility,
effectiveness and applicability of our approach. Our approach is
not necessarily limited to the robot of Fig. 1, and it can be easily
extended and applied to generic soft robots.

B. Model Description

We first derive an analytical model for the robot in Fig. 1
to describe its complex geometry and continuously deforming
structure. With the FEM technique, we discretize the robot’s
structure into a mesh of finite elements, so as to establish a finite
element model as seen in Fig. 1. Denoting n as the number of
the mesh nodes, we can define ¢ € R3" as the 3D-displacement
of each mesh node, and v € R®" as the velocity vector. By
Newton’s second law, the robot’s motion can be described by
the following nonlinear dynamical model:

M(q)o = P(q) — F(q,v) + H(q) ", (1)

where M(q) : R3" — R3"*3" js the mass matrix; F(q,v) :
R3™ x R3™ — R3" are the internal forces applied to the robot’s
structure; P(q) : R3™ — R3" are the external forces; H(q) :
R3" — R3™*™ contains the directions of the forces from the
actuators and v € R™ is the amplitude of the forces from the
actuators. For the robot in Fig. 1, the actuator has dimension
m=3.

Denoting # = [¢",v"]" € R%", the model (1) can be refor-
mulated in a general form as:

M(q)""(P(q) — F(q,v) + H(q) "u)
y = Cu,

= G(z,u),

i’:

(2)
wherey € R3isthe 3D-displacement of the robot’s end-effector;
and C' € R3*%" ig the output matrix for picking out the end-
effector from all mesh nodes.

C. Model Order Reduction

Note that model (2) is underactuated, which is not suitable for
the synthesis of subsequent control design. Thus, model order
reduction will be performed on this model. Since the robot in
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Fig. 1 is similar to the one in our previous work of [14], the model
order reduction process can be achieved by following a similar
procedure as presented in [14] and is omitted here. The model
reduction results are given in the following for completeness.
Specifically, for the system (2), according to [14, Sec. II-A],
with the POD method, the state = € R%" can be decomposed
into two parts: a low-order state x,, € R” (with » < 6n) and a
negligible state 2 € R6"~", such that

.

z=[Ve V| |T"| with [x R )
Ty Ty

with some projectors V, € R V. € R6»*(6n=n) ] ¢

RS Uy € RO O6n=n) - satisfying (U, Us] [Vy, V3] = 1.

Based on (3), the model (2) can be reformulated as:

C.Ur = UJG(.’ET,.I'?,’LL), .
{jjf = U’I;FG(‘/L.’I’W x’Fa u)? Wlth y - O‘/T.xr + O‘/Fxf' (4)

By neglecting the state 27, we have x ~ V,.x,, and the model
(4) can be approximated by a reduced-order model:

{ir = UTTG(Z‘“U) = GT(mWU’)’

5
y=CVex, = Crx,. )

According to [14, Sec. IV-D1], the state x,. in (5) is of dimension
r = 6 for the robot object of this study.

Remark 2: The FEM technique of Section III-B and the POD
technique of Section III-C are used to theoretically deduce the
dynamics of the soft robot as the analytical model of (5). This can
facilitate the subsequent design of our learning control scheme.

D. Model Linearization

Since we focus on the tracking control of the displacement
of the end-effector of the robot, i.e., system output y in (5), we
rewrite model (5) into the following form:

y=Cr, = CrGr(y + T — CT.TJT,’U/> = Gy(yvxr; u), 6)

where y € R?, z, € RS, and u € R3. Then, consider a stable
equilibrium point of robot’s operation, i.e., (y, u) = (0,0) when
the robot’s end-effector points vertically down without external
actuation. Through the linearization process around this equi-
librium point, model (6) can be derived as:

y = Ay + Bu+ f(x,), @)

9G,
where A= |, o€ R, B=

aa%h:o € R3*3, and
f(x,) : R® — R3 is the linearization error. The matrices A, B
can be obtained by performing a linear regression process on
the robot around the equilibrium point (y, ) = (0, 0), while the
function f(x,.) is the system model uncertainty mainly related
to the system state x,., which cannot be precisely known due to
the difficulty of modeling soft robot’s dynamics.

Remark 3: To facilitate the subsequent control design, we
assume the input matrix B € R3*? in (7) to have full rank. This
can be satisfied for the soft trunk robot in Fig. 1, by properly
placing the position of the actuator/controller.
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Reference Model (8)

ra

Linear
Controller
(9)

Adaptation
Mechanism (18)

Fig.2. Block diagram of the adaptive RBF NN-based learning control scheme,
involving two operation modes: the adaptive learning control mode (mode 1)
and the knowledge-based control mode (mode 2). The control scheme is first
operating in the adaptive learning control mode; and then switching to the
knowledge-based control mode after the learning control process is completed
and the learned knowledge is obtained. y is the displacement of robot’s end-
effector; y4 is the reference trajectory for y; e = y — y4 is the tracking error;
rq is the reference command in (8); y,, is the output measurement (i.e., the
displacement and velocity variables of the robot’s end-effector); ug is the linear
control signal in (9); and w is the total control signal in (17) or (21).

Adaptive RBF NN :
Based Learning ,
Mechanism !

E. Control Objectives

For the soft robot in (7), we design a reference model to
generate the desired reference trajectory as follows:

Ya = Aqya + Bara, (8

where r4 € R3 is the reference command that can be freely
designed, yq € R? is the generated reference signal, and Ay €
R33, By € R®*3 are design parameters. This reference model
ensures: i) the signal y, is recurrent, i.e., periodic or almost-
periodic; and ii) the parameters A4, By satisfy Ag = A — BK,,
Bq = BK,, for some matrices K, € R**3, K, € R3*3, with A,
B given in (7). These conditions are easily satisfied when the
matrix B has full rank, which can be guaranteed by our soft
robot according to Remark 3.

In this letter, our objective is to drive the displacement of the
robot’s end-effector y in (7) to accurately track the reference
trajectory yg4 in (8). For a desired tracking control performance,
we need to handle the negative effect of the system uncertainty
f(z,) on the tracking control process. Thus, we will propose
an adaptive RBF NN learning-based control scheme aiming
to: i) provide stable and accurate control for the end-effector
y to track the reference trajectory v4; and ii) achieve accurate
learning/identification for the uncertain dynamics f(z,) of (7)
in the online control process. Then, once the learning control
process is completed, we will obtain the learned knowledge to
develop a new knowledge-based controller, aiming to provide
an efficient and accurate tracking control for the soft robot (7)
without needing to repeat any online parameter adaptations.

IV. ADAPTIVE NN-BASED LEARNING CONTROL DESIGN

This section will present the design of the proposed adaptive
learning control scheme for the soft robot in Fig. 1. A block
diagram illustrating our control scheme is given in Fig. 2.

A. Linear Control Design

We first consider the case that the model (7) has a small
linearization error f(x,.) around the equilibrium point (y, u) =
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(0,0). Considering the reference model (8), we can design a
linear controller as:

Ug = 7K(y - yd) + Kyrqg — Kyya 9

where yg4, rq, K, and K, are given in (8), and K € R3? is a
design parameter. With this controller, from (7)—(8), the closed-
loop error dynamic system (with e = y — y4) can be derived as:

e = (Ad—BK)e‘f'f(iCr) (10)
This implies that when the nonlinear uncertainty f(x,) of (7)
is bounded and small, by selecting a control parameter K of
(9) to satisfy eig(Ay — BK) < 0, the closed-loop system (10)
can be stable and the tracking error e =y — y4 can be small.
However, in real applications, the nonlinear uncertainty f(x;.)
of (7) could be large, especially when i) the robot encounters
external disturbances, e.g., payload and external interaction,
resulting in a major change in the system model (7); ii) the robot’s
end-effector operates in a region away from the equilibrium
point (y,u) = (0,0); and/or iii) the robot has a complicated
underlying structure, complex geometry and nonuniform shape,
resulting in a highly nonlinear dynamic model. In these cases,
since the controller (9) is not designed to handle the uncertainty
f(z), it could not guarantee a desired tracking control perfor-
mance.

B. Adaptive NN Learning Based Control Design

To handle the nonlinear uncertainty f(z,.) of (7), we propose
to incorporate an adaptive RBF NN-based learning mechanism
into the linear controller (9), so as to generate the adaptive RBF
NN-based learning controller as shown in Fig. 2. To this end,
from Remark 3, we rewrite the model (7) as:

j— Ay+ B (u+BT (BBT)_lf(xT)). (11)
For the uncertain function B'(BB")~!f(z,), according to
Section II, there exists an ideal constant NN weight W* €
RN»*3 (with N,, denoting the number of NN nodes) such that

B" (BB") " f(z,) = W S(x,) + e, (12)

where S(z,) € RV is an RBF vector, and € € R? is an ideal
approximation error.

Based on (12), the NN learning process will require the signal
x, to be measurable as NN input. This is difficult in practice,
because the robot’s whole state = as well as the reduced-order
state z, = UTT x might not be measurable. In view of this, we
will take a simple variable-transformation as follows. We set a
sufficient number of sensors on the robot in Fig. 1 to obtain a
measurement of y,,, € R” (with# > 6). Then, from (3), we have

Ym = Cyx = CyV,x, = Cpy, (13)
where C, € R™%" (,, € R™*¢ are the output matrices for
picking out the measurement y,,, respectively from the robot’s
state x and x,. By appropriately arranging the sensors such
that the matrix C,,, is of full rank, from (13), we have: z, =

Authorized licensed use limited to: University of Rhode Island. Downloaded on December 20,2023 at 16:17:38 UTC from IEEE Xplore. Restrictions apply.



ZHANG et al.: LEARNING-BASED TRACKING CONTROL OF SOFT ROBOTS

(C)Cm)LC) Yy, and the model (11) can be formulated as:

j=Ay+B(u+ B (BB)) " £ ((CrCm) ' Chitm))

—Ay+B (u+ BT (BB") " f(ym)) (14)
and the NN approximation of (12) can be rewritten as
BT (BBT) " f(yn) =W S(ym) +e.  (15)

Based on this, we can implement the NN learning of
BT(BB")™' f(yn) by using the robot’s measurement ,,, in-
stead of the robot’s state x,..

Remark 4: For (13), to guarantee C,,, to have full column
rank, we require the measurement y,, to satisfy dim(y,,) >
dim(x,.). In view of this, considering the soft robot in Fig. 1,
whose dominant state x,. has dimension of » = 6 in (5), we can
set the sensors on the robot to obtain 6-dimensional measure-
ment y,, (e.g., the 3D displacement and velocity of the robot’s
end-effector). As long as the sensors are properly placed, the
matrix C,,, of (13) can have full rank.

From (15), we can construct an adaptive RBF NN model to
identify/learn the nonlinear uncertainty f(y,,) as follows:

BY(BB") ™ f(ym) = W' S(ym), (16)

where W € RN»*3 is the estimate of the ideal NN weight
W* in (15) and f(y,,) is the estimate of f(y,,) in (14). By
incorporating this model with the controller (9), we develop an
adaptive NN learning-based controller as:

u=—K(y—ya) + Kuyra— K,y — W S(ym), (17

where K is a design parameter satisfying eig(44; — BK) < 0;
Yd» > Aa, Ky, Ky are given in reference model (8); and the
NN weight Wis updated with the following adaptation law:

W =TS(ym)(y —ya)' B—ToW, (18)

where B is given in (14), T =T'" > 0 and ¢ > 0 are design
parameters, with o being of a small value.

The learning controller (17)—(18) is designed by extending our
previous works in [10], [11], based on a positive-definite Lya-
punov function: V =e'e+ tr(W T 1W) with e =y — yq
and W = W — W*. The overall performance of control stability
and signals’ convergence can be theoretically proved based on
the deterministic learning theory [16], and the details are omitted
here. Under the control of (17)—(18), from (14) and (8), we derive
the error system dynamics as:

é=(Aa— BK)e+ f(zm) = BW ' S(ym)- (19
It shows that the effect of uncertainty f(y,,) on the control pro-
cess can be compensated by the NN model W S (y,, ), thus the
tracking error e can be made small. This verifies that, compared
to the linear controller (9), the adaptive NN learning controller
(17) could provide a better tracking control performance for the
soft robot in real applications.

C. Knowledge Based Control Design

With the adaptive learning control system of (8), (14), (17)
and (18), once the learning control process is completed, we can
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obtain the learned knowledge to design a new knowledge-based
controller as follows.

According to the analysis in [10], [11], [16], the adap-
tive learning controller (17)—(18) can achieve an accu-
rate learning/identification for the nonlinear uncertainty
BT (BB")™'f(ym) of (14) during the control process. That
is, the adaptive NN model W7 S(y,,,) can provide a locally-
accurate approximation for B' (BB ") f(y,,), and the NN
weight W can converge to a small neighborhood of the optimal
value W* through the control process. Based on this, the learned
knowledge of BT (BB')~! f(y,,) can be obtained and stored in
a constant RBF NN model W' S(y,,,), i.e.,

BT (BB f(ym) = W S(ym), (20)

where W is the convergent value of NN weight W in (17), which
can be obtained by W = meante[thh]W(t) with [t1, 2] being
a time segment after the transient process.

Using the constant RBF NN model (20), following a similar
line of the design of (17), we can propose a knowledge-based
controller as follows:

u = _K(y_yd)+Kqu_Kyy_WTS(ym)a 21

where K, K, and K, are design parameters given in (17).
Similar to the case of (17)-(19), the controller (21) can also
provide a desired control performance for the robot by us-
ing the model W 'S(y,,) to handle the uncertainty f(y,,) in
(14). Particularly, different from the adaptive learning controller
(17)—(18), the control process of (21) does not need to repeat
any online adaptation of NN parameters, thereby reducing the
computational complexity and time cost.

Remark 5: We emphasize that our schemes (including the
learning controller of (17)—(18) and the knowledge-based con-
troller of (21)) can be used even when the soft robot is operating
in a region away from the equilibrium point (y,u) = (0,0).
This is due to the adaptive RBF NN-based learning mechanism
incorporated in the controller. It can online learn the robot’s
uncertain dynamics f(x,.) in (7) and compensate its effect on
the control process in real time, so as to guarantee the desired
system stability and tracking accuracy. Such setup can facilitate
our scheme to provide desired control performance when the
robot moves away from the equilibrium point and its model-
ing uncertainty (i.e., the uncertain dynamics f(x,)) becomes
larger.

V. EXPERIMENTAL TESTING ON SOFT ROBOT

In this section, we will perform physical experiments with the
setup shown in Fig. 1, which includes the soft trunk robot, the
actuation system (air tubes) and the sensor system (reflective
balls and infrared cameras). The displacement of the robot’s
end-effector is measured by using OptiTrack motion capture
systems [17], and the velocity is obtained with the finite differ-
ence approximation technique.

A. Experiment 1: Feasibility Test

The first experiment is to validate the effectiveness and advan-
tages of our approach. We examine the tracking performance of
the soft robot under PID control, adaptive control, and adaptive
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Tracking control performance for the soft robot using different control

TABLE I
STEADY-STATE TRACKING ERROR OF THE SOFT ROBOT UNDER DIFFERENT
CONTROL METHODS

Control methods Max (|le]|) Mean (Jle]|) RMS (|le|D

PID control 6.232 mm 3.119 mm 3.360 mm
Adaptive control 7.467 mm 2.931 mm 3.189 mm
Adaptive NN learning control  1.661 mm 0.444 mm 0.499 mm
Knowledge-based control 1.457 mm 0.489 mm 0.536 mm

|[e]| is the Euclidean norm of tracking error e =y — y,;; RMS is the Root-mean-square
value.

RBF NN learning control and knowledge-based control, respec-
tively. The comparison results are presented in Fig. 3 and in
Table I.

1) Model Linearization and Reference Model Design: For
control implementation, we need to derive the soft robot’s
linearized model in (7). They are obtained by performing a
linear-regression process on the robot in Fig. 1 around the
equilibrium point (y,u) = (0,0), i.e., the robot’s end-effector
points vertically down without external actuation. We have A =
[77,8.23, —4.47; —0.56,94.9, —1.14; —11.8,55.4, 100] - 1073,
B =[-719,-1.09,59.1; —13.8, —7.95, —15.3; 35.2, —74.3,
37.1] - 102. The reference model (8) is given with Ay = 0,
By = B, and the reference trajectory yq is plotted as a red dash
line in Fig. 3.
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2) PID Control: We first examine the control performance
for the soft robot using the PID control. The control gain
is set as: P =[—0.8,—0.7,0.2;0,—0.7,—1;0.8,0.7,0.2], I =
0.01P and D = 0. The tracking performance is shown in
Fig. 3(a), in which the robot can be driven to track the refer-
ence path, but the tracking error is relatively large (£6 mm)
and presents an oscillatory behavior. It cannot accurately deal
with the robot’s complex nonlinear uncertain dynamics without
parameter tuning, thereby leading to poor tracking performance.

3) Adaptive Control: We further examine the control per-
formance using the model reference adaptive control approach
borrowed from [18]. The tracking performance for the soft
robot is plotted in Fig. 3(b), showing a limited tracking ac-
curacy level that is similar to the case of PID control (see
Table I). This result implies that the adaptive controller with-
out the learning capability cannot effectively adapt to the
complex highly-uncertain nonlinear dynamics of the robot
in the control process, failing to provide the desired control
performance.

4) Adaptive RBF NN Learning Control: Next, we
examine the control performance of our proposed adaptive
NN learning controller (17)—(18). The RBF NN model
WTS(ym) is constructed in a regular lattice with the
nodes N, = 531441, and the NN input y,, is the
real-time displacement and velocity variables of the robot’s
end-effector. Associated design parameters are given as K =
[—8.29,—-8.13,3.82; —0.12, —8.84, —9.69; 7.01, —9.89,4.07] -
107, K, =[-6.3,-22.1,3.33;1.3,-30.9, —10.33;5.39,
—26,3.1]-1072, K, =1, I =0.4, and o = 0.00125. The
tracking control performance of the adaptive learning controller
is illustrated in Fig. 3(c), where the robot’s end-effector y can
accurately track the reference trajectory y4, and the tracking
error e = y — yg decreases over time and converge to a small
range (£1.5 mm). As shown in Table I, the adaptive learning
controller can provide a steady-state tracking error with max
value 1.661 and mean value 0.444, which is smaller than those
of PID control (max value 6.232 and mean value 3.119) and
adaptive control (max value 7.467 and mean value 2.931).
These results verify that, compared to the traditional PID
and adaptive controllers, our adaptive NN learning controller
can effectively handle the soft robot’s complex dynamics and
provide an improved control performance, i.e., higher tracking
accuracy.

5) Knowledge-Based Control: Once the learning control
process of (17)—(18) is completed, we further examine the
knowledge-based controller (21) with the control parameters
(K, K,, K,,) given the same as above. The results are presented
in Fig. 3(d) and Table I. The knowledge-based controller can
achieve a similar tracking accuracy compared to the adaptive
NN learning controller (see Table I), but provide a faster tracking
speed (see Fig. 3(c), and (d)). This is because, different from the
adaptive NN learning controller, the knowledge-based controller
is integrated with the knowledge learned through the control
process, which can provide a control action by quickly recalling
the embedded knowledge without repeating any online param-
eter adaptation, thus leading to desirable tracking accuracy and
faster convergence rate.
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Fig. 4. Tracking control performance using different control methods for the
soft robot in Fig. 1 when encountering external disturbances during online
operation.

B. Experiment 2: Adaptability Test

The second experiment is to show the adaptability of our
adaptive learning controller (17)—(18) for the soft robot against
external disturbances. During the operation of the soft robot, we
attach a blue ball (0.102 kg) on the robot (0.142 kg) for a period
of time, which results in a major change in the robot’s dynamic
model. For this control situation, we examine the PID controller
and our adaptive learning controller by using the same control
setup as above, and the results are plotted in Fig. 4. Specifically,
with the PID controller in Fig. 4(a), after loading the blue ball
at about 105 sec, the robot’s tracking error will increase and
remain stationary until the ball is removed at about 218 sec.
This indicates that the PID controller cannot effectively cope
with the robot’s model change induced by the blue ball. With
our adaptive learning controller in Fig. 4(b), after loading the
blue ball at about 1542 sec, the robot’s tracking error will first
increase and then quickly decrease to a level similar as before
within about 50 sec. A similar change in the tracking error
is observed when removing the ball at about 1696 sec. This
illustrates that once the robot encounters external disturbances,
our learning controller can quickly adapt and respond to the dy-
namics change, and maintain the tracking accuracy at a desirable
level. Consequently, the results in Fig. 4 verify that our adaptive
learning controller can provide a better control performance
for the soft robot against external disturbances compared to a
traditional PID controller.

C. Experiment 3: Practicality Test

The third experiment is designed to show the practicality
of our control scheme when it operates on different trajecto-
ries within the workspace. To this end, we first consider four
reference trajectories with different shape and location in the
workspace, as shown in Fig. 5. To drive the robot’s end-effector
to track these trajectories, we first implement the adaptive
NN learning control process by using the same control setup
of Section V-A4, and obtain the learned knowledge/model to
construct the knowledge-based controller of (21). The tracking
performance of the knowledge-based control is plotted in Fig. 5,
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Fig. 5. Tracking control performance of the knowledge-based controller for

the soft robot to track different reference trajectories.

showing that the robot can accurately track these different ref-
erence trajectories, and the tracking errors converge to a small
range (+2 mm). This verifies the applicability of our control
scheme on the soft robot operating in the entire workspace.

Next, we will verify the applicability of the learned knowledge
(obtained from the adaptive learning control) on the soft robot,
by testing it on a new trajectory that has not been trained.
We consider five different reference trajectories in Fig. 6(a),
including four trajectories ¢ (i = 1,2, 3,4) to be trained and
one trajectory (¥ to be tested. We first train the soft robot on
the reference trajectories ' by following a similar procedure of
Section V-A4 and obtain the associated knowledge. By merg-
ing these knowledge with the merging mechanism as adopted
in [19], we can construct the knowledge-based controller of
(21). Then, we test this controller on the soft robot to track
the new reference trajectory (°, which is different from the
trajectories (o’ (i = 1,2, 3,4) and has not been trained, and the
results are shown in Fig. 6(b). Our control scheme can still drive
the robot to track the new trajectory ¢ while guaranteeing the
desired system stability and tracking accuracy. This verifies that
using our learning control scheme, the learned knowledge can
accurately capture the complex dynamics of the soft robot in
the workspace, thus can guarantee the desired practicality of
working on the new trajectory.
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trajectories ¢ (i = 1,2, 3, 4) and tested on the new trajectory °.

VI. CONCLUSION

This letter has developed an adaptive RBF NN based learn-
ing control scheme for a soft trunk robot, aiming to drive the
end-effector of the robot to track a predefined reference trajec-
tory. Specifically, a low-order approximate model to describe
the robot’s dynamics has been derived with FEM and POD
techniques. Based on this model, an adaptive learning control
scheme has been developed with RBF NN technique. It can
not only provide stable and accurate tracking control for the soft
robot, but also achieve accurate learning for the robot’s uncertain
dynamics in the online control process. The learned knowledge
of robot’s dynamics can be stored and represented by a constant
RBF NN model. Using this model, a knowledge-based controller
has also been proposed, to provide desirable tracking control
for the soft robot in an efficient manner. The effectiveness and
advantages of the proposed methods have been validated through
physical experiments.

In future work, we expect to combine the proposed control
methods with the fault diagnosis scheme developed in our pre-
vious work of [14], aiming to develop a fault tolerant control
scheme for providing safer and more reliable soft robot op-
erations. After this, we plan to extend these approaches from
single-segment soft robots to more complex multi-segment ones,
for better practical applicability.
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