
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 10, OCTOBER 2023 6155

Learning-Based Tracking Control of Soft Robots
Jingting Zhang, Xiaotian Chen, Paolo Stegagno , Member, IEEE, Mingxi Zhou , Member, IEEE,
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Abstract—This letter proposes an adaptive radial basis function
neural network (RBF NN) based scheme for the dynamics learning
and tracking control problems of a soft trunk robot. Specifically, a
low-order approximate model describing the soft robot’s dynamics
is first derived with the finite element method and proper orthog-
onal decomposition technique. Based on this model, an adaptive
learning control scheme is developed with RBF NN, which can not
only provide stable and accurate tracking control for the soft robot,
but also achieve accurate learning of the robot’s dynamics during
the online control process. The proposed controller can effectively
handle the soft robot’s complex nonlinear uncertain dynamics and
external disturbances, it thus can guarantee desirable tracking ac-
curacy and control adaptability. The learned knowledge of robot’s
dynamics can be obtained and stored in a constant RBF NN model.
Based on this, a novel knowledge-based controller is further pro-
posed to provide desirable control performance for the soft robot
without needing to repeat any online parameter adaptations, which
significantly improves the overall system’s operational efficiency
with reduced computational complexity and easier control imple-
mentation. Effectiveness and advantages of the proposed methods
are validated through physical experiments.

Index Terms—Soft robotics, tracking control, dynamics lear-
ning, adaptive learning control, neural networks.

I. INTRODUCTION

S
OFT robots are a novel type of robots made of soft materials,

such as silicone and robber. Compared to traditional rigid

robots, soft robots have developed many desirable mechanical

properties, e.g., inherent compliance, flexibility and hyper re-

dundance, which facilitates safe human-robot interaction and

operation in a restrained environment [1]. This has motivated a

rapidly-increasing demand of soft robots for industrial, surgical

and assistive applications [2].
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Precise motion control of soft robots is an essential and

difficult problem. The main technical challenge lies in the soft

robot’s complex physical model due to its deformable structure,

complex geometry and infinite degrees of freedom [2]. To this

end, [20] used the Geometric Variable Strain technique—a ge-

ometrically exact approach based on the Cosserat rod theory—

to model the dynamics of the soft robot. [21] presented the

deformation space formulation of the soft robots’ dynamics

by using the Finite Element Deformation Method. [3] used

the piecewise constant curvature approximation technique for

kinematics modeling of soft robots. In [4], Euler-Bernoulli Beam

theory has been used to model the bending of robots. These

schemes require strict assumptions on the shape, structure, and

constitutive materials of the studied robots, limiting their appli-

cability to more general and complex soft robots. Some research

works in [22], [23] studied the control problem by physically

modeling the soft robots without requiring strict assumptions.

These methods may not be able to deal with the uncertainty or

disturbances of the soft robots when operating in complex and

variable environments.

To tackle the challenges in deriving an accurate kine-

matic/dynamic model for soft robots, research attempts have

been dedicated to learning control design for soft robots [5].

These methods only use measurement data of soft robots, with-

out needing a priori knowledge of robots’ underlying struc-

ture. They can develop arbitrarily complex kinematic/dynamic

models of soft robots, which are especially suitable for those

robots that are highly nonlinear, nonuniform, and/or act within

unstructured environment [2]. Usually, learning control design

are developed using neural network (NN) techniques with re-

markable approximation and learning capabilities. For exam-

ple, [24] utilized feedforward NN to learn a differentiable model

of a soft robot’s quasi-static physics, aiming to find optimal

open-loop control inputs. In [6], a deep learning-based predictive

uncertainty estimation framework was proposed with recurrent

NN technique for soft robot’s multimodal-sensing. [7], [8],

[9] proposed a model-based policy learning algorithm with

recurrent NN for the closed-loop predictive control problem

of a soft robotic manipulator. These methods were mostly

offline-learning schemes, which cannot handle abrupt changes

in robot’s kinematics/dynamics during online operation under

various harsh control environments. To overcome these issues,

some control schemes have been developed in [25], [26], which

can first offline-learn the robots’ model and then online-adapt

to handle the disturbances or dynamics change. However, they

cannot realize accurate identification for the dynamics of the soft

robot while guaranteeing the associated parameter convergence
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to the optimal values, thus they may not be able to achieve

satisfactory sample efficiency and desired control performance.

In real applications, soft robots usually encounter external

disturbances, such as payload and external interaction [5], pos-

sibly leading to major changes in robots’ kinematics/dynamics.

To achieve a desirable control performance in these cases, on-

line learning control approach is needed to adapt/react to such

changes by adjusting associated control variables online, see,

e.g., [10], [11]. However, the research of online learning control

of soft robots is still in its primitive stage with limited success

so far. To the author’s best knowledge, there are only a few

research results have been developed in [5], [12], [13], which

provided enhanced control accuracy and adaptability for soft

robots in complex environments. However, these methods have

not well explored the real learning capability of the associated

controllers. More specific, these methods cannot obtain the

learned knowledge through the control process for reutilization,

which thus have to repeat online updating control parameters

even for a same/similar control task, resulting in high com-

putation burden and time consumption in associated control

implementations.

In this letter, we will propose an adaptive NN learning-

based tracking control scheme for a soft trunk robot, aiming

to drive the robot’s end-effector to track a prescribed reference

trajectory with a desirable tracking accuracy. Specifically, for

the soft robot, a low-order approximate model to describe the

robot’s dynamics will be first derived with the Finite Element

Method (FEM) and Proper Orthogonal Decomposition (POD)

techniques. Based on this analytical model, an adaptive learning

control scheme will be proposed with the Radial Basis Func-

tion Neural Network (RBF NN) technique, which is able i) to

provide accurate and stable tracking control for the soft robot’s

end-effector; and ii) to achieve accurate learning for the robot’s

uncertain dynamics during online control process. With these

features, the proposed learning controller can handle the soft

robot’s complex uncertain dynamics and external disturbances,

thus guaranteeing desirable tracking accuracy and control adapt-

ability. Moreover, this learning controller guarantees that the

knowledge of the robot’s dynamics can be learned in real time

during online control process, and the learned knowledge can

be further stored and represented by a constant RBF NN model.

Based on this, a new knowledge-based controller will be further

proposed to provide a desired control action using the learned

knowledge, which does not need to repeat online the update

of control parameters, thereby improving the overall system’s

operational efficiency with reduced computational complexity

and easier control implementation. Effectiveness and advantages

of the proposed methods will be validated through physical

experiments.

The major contributions of this work are summarized below.

i) We propose an adaptive RBF NN-based learning control

scheme for soft robots, which can provide desired track-

ing control performance by online learning the robot’s

complex nonlinear uncertain dynamics;

ii) We propose a novel knowledge-based controller for soft

robots, which can achieve high tracking control perfor-

mance with the learned knowledge of robot’s dynamics,

significantly improving the overall system’s operational

efficiency;

iii) We perform physical experiments on a soft trunk robot to

validate the effectiveness and advantages of our proposed

control methods.

It should be stressed that the present work is developed by

extending our previous work in [14], which focused on the

dynamics modeling problem of soft robots. Different from [14],

which presented an offline learning scheme, the current letter

proposes an online learning scheme, which guarantees that the

robot’s dynamics is learned/modeled during the online control

process, and the learned knowledge can be used in real time to

improve the control performance. Compared to [14], the online

dynamics learning mechanism in the current letter enables the

controller to develop improved tracking accuracy and control

adaptability, which is more suitable for soft robots operating in

harsh control environments.

The remainder of this letter is organized as follows. Section II

provides some preliminaries. Section III includes the problem

statement. The proposed adaptive NN-based learning control

scheme and the knowledge-based control scheme are presented

in Section IV. The experiments are conducted in Section V. The

conclusions are given in Section VI.

II. PRELIMINARY

A radial basis function neural network (RBF NN) [15] can

be described by fnn(x) =
∑Nn

i=1 ŵisi(x) = Ŵ⊤S(x), where

x ∈ Ωx ⊂ R
n is the input vector with Ωx being a compact

set, Ŵ = [ŵ1, . . . , ŵNn
]⊤ ∈ R

Nn is the weight vector, with

Nn denoting the NN node number, and S(x) = [s1(‖x−
ς1‖), . . . , sNn

(‖x− ςNn
‖)]⊤ : Rn → R

Nn , with si(·) being a

radial basis function, and ςi ∈ R
n (i = 1, 2, . . . , Nn) being dis-

tinct points in state space. In this paper, the radial basis func-

tion si(·) is chosen as the Gaussian function: si(‖x− ςi‖) =

exp[−(x−ςi)
⊤(x−ςi)

η2

i

], where ςi is the center of the receptive field

and ηi is the width of the receptive field. As shown in [15],

for any continuous function f(x) : Ωx → R, and for the NN

approximator with the node number Nn being sufficiently large,

there exists an ideal constant weight vectorW ∗ ∈ R
Nn , such that

for any ǫ∗ > 0, f(x) = W ∗⊤S(x) + ǫ, ∀x ∈ Ωx, where |ǫ| < ǫ∗

is the ideal approximation error. The ideal weight vector W ∗

is an “artificial” quantity required for analysis, and is defined

as the value of Ŵ that minimizes |ǫ| for all x ∈ Ωx, i.e.,

W ∗ := argminŴ∈RNn {supx∈Ωx
|f(x)− Ŵ⊤S(x)|}.

III. PROBLEM STATEMENT

A. The Soft Trunk Robot

The studied soft trunk robot is shown in Fig. 1, which is

similar to the one in our previous work [14]. It is pneumatic

actuated and composed of three identical segments made by high

elasticity silicone rubber. Each segment has maximum length of

108 mm and maximum width of 32 mm. They can extend and

shrink vertically by pressurizing/depressurizing the air inside the

segment, and the maximum deformation displacement is about

60 mm. With the cooperative deformation of these segments, the
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Fig. 1. Soft trunk robot and the experimental platform.

robot’s end-effector can move in the 3D space. The objective of

this letter is to design a controller to drive the robot’s end-effector

to track a given reference trajectory with a desirable tracking

accuracy.

Remark 1: We emphasize that the soft trunk robot of Fig. 1

is used to provide a simple case study to validate the feasibility,

effectiveness and applicability of our approach. Our approach is

not necessarily limited to the robot of Fig. 1, and it can be easily

extended and applied to generic soft robots.

B. Model Description

We first derive an analytical model for the robot in Fig. 1

to describe its complex geometry and continuously deforming

structure. With the FEM technique, we discretize the robot’s

structure into a mesh of finite elements, so as to establish a finite

element model as seen in Fig. 1. Denoting n as the number of

the mesh nodes, we can define q ∈ R
3n as the 3D-displacement

of each mesh node, and v ∈ R
3n as the velocity vector. By

Newton’s second law, the robot’s motion can be described by

the following nonlinear dynamical model:

M(q)v̇ = P (q)− F (q, v) +H(q)⊤u, (1)

where M(q) : R3n → R
3n×3n is the mass matrix; F (q, v) :

R
3n × R

3n → R
3n are the internal forces applied to the robot’s

structure; P (q) : R3n → R
3n are the external forces; H(q) :

R
3n → R

3n×m contains the directions of the forces from the

actuators and u ∈ R
m is the amplitude of the forces from the

actuators. For the robot in Fig. 1, the actuator has dimension

m = 3.

Denoting x = [q⊤, v⊤]⊤ ∈ R
6n, the model (1) can be refor-

mulated in a general form as:

⎧

⎪

⎨

⎪

⎩

ẋ =

[

v

M(q)−1(P (q)− F (q, v) +H(q)⊤u)

]

= G(x, u),

y = Cx,

(2)

wherey ∈ R
3 is the 3D-displacement of the robot’s end-effector;

and C ∈ R
3×6n is the output matrix for picking out the end-

effector from all mesh nodes.

C. Model Order Reduction

Note that model (2) is underactuated, which is not suitable for

the synthesis of subsequent control design. Thus, model order

reduction will be performed on this model. Since the robot in

Fig. 1 is similar to the one in our previous work of [14], the model

order reduction process can be achieved by following a similar

procedure as presented in [14] and is omitted here. The model

reduction results are given in the following for completeness.

Specifically, for the system (2), according to [14, Sec. II-A],

with the POD method, the state x ∈ R
6n can be decomposed

into two parts: a low-order state xr ∈ R
r (with r ≪ 6n) and a

negligible state xr̄ ∈ R
6n−r, such that

x =
[

Vr Vr̄

]

[

xr

xr̄

]

with

[

xr

xr̄

]

=
[

Ur Ur̄

]⊤

x (3)

with some projectors Vr ∈ R
6n×r, Vr̄ ∈ R

6n×(6n−r), Ur ∈
R

6n×r, Ur̄ ∈ R
6n×(6n−r), satisfying [Ur, Ur̄]

⊤[Vr, Vr̄] = I .

Based on (3), the model (2) can be reformulated as:
{

ẋr = U⊤
r G(xr, xr̄, u),

ẋr̄ = U⊤
r̄ G(xr, xr̄, u),

with y = CVrxr + CVr̄xr̄. (4)

By neglecting the state xr̄, we have x ≈ Vrxr, and the model

(4) can be approximated by a reduced-order model:

{

ẋr = U⊤
r G(xr, u) = Gr(xr, u),

y = CVrxr = Crxr.
(5)

According to [14, Sec. IV-D1], the state xr in (5) is of dimension

r = 6 for the robot object of this study.

Remark 2: The FEM technique of Section III-B and the POD

technique of Section III-C are used to theoretically deduce the

dynamics of the soft robot as the analytical model of (5). This can

facilitate the subsequent design of our learning control scheme.

D. Model Linearization

Since we focus on the tracking control of the displacement

of the end-effector of the robot, i.e., system output y in (5), we

rewrite model (5) into the following form:

ẏ = Crẋr = CrGr(y + xr − Crxr, u) = Gy(y, xr, u), (6)

where y ∈ R
3, xr ∈ R

6, and u ∈ R
3. Then, consider a stable

equilibrium point of robot’s operation, i.e., (y, u) = (0, 0) when

the robot’s end-effector points vertically down without external

actuation. Through the linearization process around this equi-

librium point, model (6) can be derived as:

ẏ = Ay +Bu+ f(xr), (7)

where A =
∂Gy

∂y
|y=0 ∈ R

3×3, B =
∂Gy

∂u
|u=0 ∈ R

3×3, and

f(xr) : R
6 → R

3 is the linearization error. The matrices A, B

can be obtained by performing a linear regression process on

the robot around the equilibrium point (y, u) = (0, 0), while the

function f(xr) is the system model uncertainty mainly related

to the system state xr, which cannot be precisely known due to

the difficulty of modeling soft robot’s dynamics.

Remark 3: To facilitate the subsequent control design, we

assume the input matrix B ∈ R
3×3 in (7) to have full rank. This

can be satisfied for the soft trunk robot in Fig. 1, by properly

placing the position of the actuator/controller.
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Fig. 2. Block diagram of the adaptive RBF NN-based learning control scheme,
involving two operation modes: the adaptive learning control mode (mode 1)
and the knowledge-based control mode (mode 2). The control scheme is first
operating in the adaptive learning control mode; and then switching to the
knowledge-based control mode after the learning control process is completed
and the learned knowledge is obtained. y is the displacement of robot’s end-
effector; yd is the reference trajectory for y; e = y − yd is the tracking error;
rd is the reference command in (8); ym is the output measurement (i.e., the
displacement and velocity variables of the robot’s end-effector); u0 is the linear
control signal in (9); and u is the total control signal in (17) or (21).

E. Control Objectives

For the soft robot in (7), we design a reference model to

generate the desired reference trajectory as follows:

ẏd = Adyd +Bdrd, (8)

where rd ∈ R
3 is the reference command that can be freely

designed, yd ∈ R
3 is the generated reference signal, and Ad ∈

R
3×3, Bd ∈ R

3×3 are design parameters. This reference model

ensures: i) the signal yd is recurrent, i.e., periodic or almost-

periodic; and ii) the parametersAd,Bd satisfyAd = A−BKy ,

Bd = BKu for some matricesKy ∈ R
3×3,Ku ∈ R

3×3, withA,

B given in (7). These conditions are easily satisfied when the

matrix B has full rank, which can be guaranteed by our soft

robot according to Remark 3.

In this letter, our objective is to drive the displacement of the

robot’s end-effector y in (7) to accurately track the reference

trajectory yd in (8). For a desired tracking control performance,

we need to handle the negative effect of the system uncertainty

f(xr) on the tracking control process. Thus, we will propose

an adaptive RBF NN learning-based control scheme aiming

to: i) provide stable and accurate control for the end-effector

y to track the reference trajectory yd; and ii) achieve accurate

learning/identification for the uncertain dynamics f(xr) of (7)

in the online control process. Then, once the learning control

process is completed, we will obtain the learned knowledge to

develop a new knowledge-based controller, aiming to provide

an efficient and accurate tracking control for the soft robot (7)

without needing to repeat any online parameter adaptations.

IV. ADAPTIVE NN-BASED LEARNING CONTROL DESIGN

This section will present the design of the proposed adaptive

learning control scheme for the soft robot in Fig. 1. A block

diagram illustrating our control scheme is given in Fig. 2.

A. Linear Control Design

We first consider the case that the model (7) has a small

linearization error f(xr) around the equilibrium point (y, u) =

(0, 0). Considering the reference model (8), we can design a

linear controller as:

u0 = −K(y − yd) +Kurd −Kyy, (9)

where yd, rd, Ku and Ky are given in (8), and K ∈ R
3×3 is a

design parameter. With this controller, from (7)–(8), the closed-

loop error dynamic system (with e = y − yd) can be derived as:

ė = (Ad −BK)e+ f(xr). (10)

This implies that when the nonlinear uncertainty f(xr) of (7)

is bounded and small, by selecting a control parameter K of

(9) to satisfy eig(Ad −BK) < 0, the closed-loop system (10)

can be stable and the tracking error e = y − yd can be small.

However, in real applications, the nonlinear uncertainty f(xr)
of (7) could be large, especially when i) the robot encounters

external disturbances, e.g., payload and external interaction,

resulting in a major change in the system model (7); ii) the robot’s

end-effector operates in a region away from the equilibrium

point (y, u) = (0, 0); and/or iii) the robot has a complicated

underlying structure, complex geometry and nonuniform shape,

resulting in a highly nonlinear dynamic model. In these cases,

since the controller (9) is not designed to handle the uncertainty

f(xr), it could not guarantee a desired tracking control perfor-

mance.

B. Adaptive NN Learning Based Control Design

To handle the nonlinear uncertainty f(xr) of (7), we propose

to incorporate an adaptive RBF NN-based learning mechanism

into the linear controller (9), so as to generate the adaptive RBF

NN-based learning controller as shown in Fig. 2. To this end,

from Remark 3, we rewrite the model (7) as:

ẏ = Ay +B
(

u+B⊤
(

BB⊤
)−1

f (xr)
)

. (11)

For the uncertain function B⊤(BB⊤)−1f(xr), according to

Section II, there exists an ideal constant NN weight W ∗ ∈
R

Nn×3 (with Nn denoting the number of NN nodes) such that

B⊤
(

BB⊤
)−1

f(xr) = W ∗⊤S(xr) + ǫ, (12)

where S(xr) ∈ R
Nn is an RBF vector, and ǫ ∈ R

3 is an ideal

approximation error.

Based on (12), the NN learning process will require the signal

xr to be measurable as NN input. This is difficult in practice,

because the robot’s whole state x as well as the reduced-order

state xr = U⊤
r x might not be measurable. In view of this, we

will take a simple variable-transformation as follows. We set a

sufficient number of sensors on the robot in Fig. 1 to obtain a

measurement of ym ∈ R
r̄ (with r̄ ≥ 6). Then, from (3), we have

ym = Cyx ≈ CyVrxr = Cmxr, (13)

where Cy ∈ R
r̄×6n, Cm ∈ R

r̄×6 are the output matrices for

picking out the measurement ym respectively from the robot’s

state x and xr. By appropriately arranging the sensors such

that the matrix Cm is of full rank, from (13), we have: xr =
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(C⊤
mCm)−1C⊤

mym, and the model (11) can be formulated as:

ẏ = Ay +B
(

u+B⊤
(

BB⊤
)−1

f
(

(

C⊤
mCm

)−1
C⊤

mym

))

= Ay +B
(

u+B⊤
(

BB⊤
)−1

f (ym)
)

, (14)

and the NN approximation of (12) can be rewritten as

B⊤
(

BB⊤
)−1

f(ym) = W ∗⊤S(ym) + ǫ. (15)

Based on this, we can implement the NN learning of

B⊤(BB⊤)−1f(ym) by using the robot’s measurement ym in-

stead of the robot’s state xr.

Remark 4: For (13), to guarantee Cm to have full column

rank, we require the measurement ym to satisfy dim(ym) ≥
dim(xr). In view of this, considering the soft robot in Fig. 1,

whose dominant state xr has dimension of r = 6 in (5), we can

set the sensors on the robot to obtain 6-dimensional measure-

ment ym (e.g., the 3D displacement and velocity of the robot’s

end-effector). As long as the sensors are properly placed, the

matrix Cm of (13) can have full rank.

From (15), we can construct an adaptive RBF NN model to

identify/learn the nonlinear uncertainty f(ym) as follows:

B⊤(BB⊤)−1f̂(ym) = Ŵ⊤S(ym), (16)

where Ŵ ∈ R
Nn×3 is the estimate of the ideal NN weight

W ∗ in (15) and f̂(ym) is the estimate of f(ym) in (14). By

incorporating this model with the controller (9), we develop an

adaptive NN learning-based controller as:

u = −K(y − yd) +Kurd −Kyy − Ŵ⊤S(ym), (17)

where K is a design parameter satisfying eig(Ad −BK) < 0;

yd, rd, Ad, Ku, Ky are given in reference model (8); and the

NN weight Ŵ is updated with the following adaptation law:

˙̂
W = ΓS(ym)(y − yd)

⊤B − ΓσŴ , (18)

where B is given in (14), Γ = Γ⊤ > 0 and σ > 0 are design

parameters, with σ being of a small value.

The learning controller (17)–(18) is designed by extending our

previous works in [10], [11], based on a positive-definite Lya-

punov function: V = e⊤e+ tr(W̃⊤Γ−1W̃ ) with e = y − yd
and W̃ = Ŵ −W ∗. The overall performance of control stability

and signals’ convergence can be theoretically proved based on

the deterministic learning theory [16], and the details are omitted

here. Under the control of (17)–(18), from (14) and (8), we derive

the error system dynamics as:

ė = (Ad −BK)e+ f(xm)−BŴ⊤S(ym). (19)

It shows that the effect of uncertainty f(ym) on the control pro-

cess can be compensated by the NN model Ŵ⊤S(ym), thus the

tracking error e can be made small. This verifies that, compared

to the linear controller (9), the adaptive NN learning controller

(17) could provide a better tracking control performance for the

soft robot in real applications.

C. Knowledge Based Control Design

With the adaptive learning control system of (8), (14), (17)

and (18), once the learning control process is completed, we can

obtain the learned knowledge to design a new knowledge-based

controller as follows.

According to the analysis in [10], [11], [16], the adap-

tive learning controller (17)–(18) can achieve an accu-

rate learning/identification for the nonlinear uncertainty

B⊤(BB⊤)−1f(ym) of (14) during the control process. That

is, the adaptive NN model Ŵ⊤S(ym) can provide a locally-

accurate approximation for B⊤(BB⊤)−1f(ym), and the NN

weight Ŵ can converge to a small neighborhood of the optimal

valueW ∗ through the control process. Based on this, the learned

knowledge of B⊤(BB⊤)−1f(ym) can be obtained and stored in

a constant RBF NN model W̄⊤S(ym), i.e.,

B⊤(BB⊤)−1f(ym) ≈ W̄⊤S(ym), (20)

where W̄ is the convergent value of NN weight Ŵ in (17), which

can be obtained by W̄ = meant∈[t1,t2]Ŵ (t) with [t1, t2] being

a time segment after the transient process.

Using the constant RBF NN model (20), following a similar

line of the design of (17), we can propose a knowledge-based

controller as follows:

u = −K(y − yd) +Kurd −Kyy − W̄⊤S(ym), (21)

where K, Ku and Ky are design parameters given in (17).

Similar to the case of (17)–(19), the controller (21) can also

provide a desired control performance for the robot by us-

ing the model W̄⊤S(ym) to handle the uncertainty f(ym) in

(14). Particularly, different from the adaptive learning controller

(17)–(18), the control process of (21) does not need to repeat

any online adaptation of NN parameters, thereby reducing the

computational complexity and time cost.

Remark 5: We emphasize that our schemes (including the

learning controller of (17)–(18) and the knowledge-based con-

troller of (21)) can be used even when the soft robot is operating

in a region away from the equilibrium point (y, u) = (0, 0).
This is due to the adaptive RBF NN-based learning mechanism

incorporated in the controller. It can online learn the robot’s

uncertain dynamics f(xr) in (7) and compensate its effect on

the control process in real time, so as to guarantee the desired

system stability and tracking accuracy. Such setup can facilitate

our scheme to provide desired control performance when the

robot moves away from the equilibrium point and its model-

ing uncertainty (i.e., the uncertain dynamics f(xr)) becomes

larger.

V. EXPERIMENTAL TESTING ON SOFT ROBOT

In this section, we will perform physical experiments with the

setup shown in Fig. 1, which includes the soft trunk robot, the

actuation system (air tubes) and the sensor system (reflective

balls and infrared cameras). The displacement of the robot’s

end-effector is measured by using OptiTrack motion capture

systems [17], and the velocity is obtained with the finite differ-

ence approximation technique.

A. Experiment 1: Feasibility Test

The first experiment is to validate the effectiveness and advan-

tages of our approach. We examine the tracking performance of

the soft robot under PID control, adaptive control, and adaptive
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Fig. 3. Tracking control performance for the soft robot using different control
methods.

TABLE I
STEADY-STATE TRACKING ERROR OF THE SOFT ROBOT UNDER DIFFERENT

CONTROL METHODS

RBF NN learning control and knowledge-based control, respec-

tively. The comparison results are presented in Fig. 3 and in

Table I.

1) Model Linearization and Reference Model Design: For

control implementation, we need to derive the soft robot’s

linearized model in (7). They are obtained by performing a

linear-regression process on the robot in Fig. 1 around the

equilibrium point (y, u) = (0, 0), i.e., the robot’s end-effector

points vertically down without external actuation. We have A =
[77, 8.23,−4.47;−0.56, 94.9,−1.14;−11.8, 55.4, 100] · 10−3,

B = [−71.9,−1.09, 59.1;−13.8,−7.95,−15.3; 35.2, −74.3,
37.1] · 10−2. The reference model (8) is given with Ad = 0,

Bd = B, and the reference trajectory yd is plotted as a red dash

line in Fig. 3.

2) PID Control: We first examine the control performance

for the soft robot using the PID control. The control gain

is set as: P = [−0.8,−0.7, 0.2; 0,−0.7,−1; 0.8, 0.7, 0.2], I =
0.01P and D = 0. The tracking performance is shown in

Fig. 3(a), in which the robot can be driven to track the refer-

ence path, but the tracking error is relatively large (±6 mm)

and presents an oscillatory behavior. It cannot accurately deal

with the robot’s complex nonlinear uncertain dynamics without

parameter tuning, thereby leading to poor tracking performance.

3) Adaptive Control: We further examine the control per-

formance using the model reference adaptive control approach

borrowed from [18]. The tracking performance for the soft

robot is plotted in Fig. 3(b), showing a limited tracking ac-

curacy level that is similar to the case of PID control (see

Table I). This result implies that the adaptive controller with-

out the learning capability cannot effectively adapt to the

complex highly-uncertain nonlinear dynamics of the robot

in the control process, failing to provide the desired control

performance.

4) Adaptive RBF NN Learning Control: Next, we

examine the control performance of our proposed adaptive

NN learning controller (17)–(18). The RBF NN model

Ŵ⊤S(ym) is constructed in a regular lattice with the

nodes Nn = 531441, and the NN input ym is the

real-time displacement and velocity variables of the robot’s

end-effector. Associated design parameters are given as K =
[−8.29,−8.13, 3.82;−0.12,−8.84,−9.69; 7.01,−9.89, 4.07] ·
10−1, Ky = [−6.3,−22.1, 3.33; 1.3,−30.9, −10.33; 5.39,
−26, 3.1] · 10−2, Ku = I , Γ = 0.4, and σ = 0.00125. The

tracking control performance of the adaptive learning controller

is illustrated in Fig. 3(c), where the robot’s end-effector y can

accurately track the reference trajectory yd, and the tracking

error e = y − yd decreases over time and converge to a small

range (±1.5 mm). As shown in Table I, the adaptive learning

controller can provide a steady-state tracking error with max

value 1.661 and mean value 0.444, which is smaller than those

of PID control (max value 6.232 and mean value 3.119) and

adaptive control (max value 7.467 and mean value 2.931).

These results verify that, compared to the traditional PID

and adaptive controllers, our adaptive NN learning controller

can effectively handle the soft robot’s complex dynamics and

provide an improved control performance, i.e., higher tracking

accuracy.

5) Knowledge-Based Control: Once the learning control

process of (17)–(18) is completed, we further examine the

knowledge-based controller (21) with the control parameters

(K,Ky,Ku) given the same as above. The results are presented

in Fig. 3(d) and Table I. The knowledge-based controller can

achieve a similar tracking accuracy compared to the adaptive

NN learning controller (see Table I), but provide a faster tracking

speed (see Fig. 3(c), and (d)). This is because, different from the

adaptive NN learning controller, the knowledge-based controller

is integrated with the knowledge learned through the control

process, which can provide a control action by quickly recalling

the embedded knowledge without repeating any online param-

eter adaptation, thus leading to desirable tracking accuracy and

faster convergence rate.
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Fig. 4. Tracking control performance using different control methods for the
soft robot in Fig. 1 when encountering external disturbances during online
operation.

B. Experiment 2: Adaptability Test

The second experiment is to show the adaptability of our

adaptive learning controller (17)–(18) for the soft robot against

external disturbances. During the operation of the soft robot, we

attach a blue ball (0.102 kg) on the robot (0.142 kg) for a period

of time, which results in a major change in the robot’s dynamic

model. For this control situation, we examine the PID controller

and our adaptive learning controller by using the same control

setup as above, and the results are plotted in Fig. 4. Specifically,

with the PID controller in Fig. 4(a), after loading the blue ball

at about 105 sec, the robot’s tracking error will increase and

remain stationary until the ball is removed at about 218 sec.

This indicates that the PID controller cannot effectively cope

with the robot’s model change induced by the blue ball. With

our adaptive learning controller in Fig. 4(b), after loading the

blue ball at about 1542 sec, the robot’s tracking error will first

increase and then quickly decrease to a level similar as before

within about 50 sec. A similar change in the tracking error

is observed when removing the ball at about 1696 sec. This

illustrates that once the robot encounters external disturbances,

our learning controller can quickly adapt and respond to the dy-

namics change, and maintain the tracking accuracy at a desirable

level. Consequently, the results in Fig. 4 verify that our adaptive

learning controller can provide a better control performance

for the soft robot against external disturbances compared to a

traditional PID controller.

C. Experiment 3: Practicality Test

The third experiment is designed to show the practicality

of our control scheme when it operates on different trajecto-

ries within the workspace. To this end, we first consider four

reference trajectories with different shape and location in the

workspace, as shown in Fig. 5. To drive the robot’s end-effector

to track these trajectories, we first implement the adaptive

NN learning control process by using the same control setup

of Section V-A4, and obtain the learned knowledge/model to

construct the knowledge-based controller of (21). The tracking

performance of the knowledge-based control is plotted in Fig. 5,

Fig. 5. Tracking control performance of the knowledge-based controller for
the soft robot to track different reference trajectories.

showing that the robot can accurately track these different ref-

erence trajectories, and the tracking errors converge to a small

range (±2 mm). This verifies the applicability of our control

scheme on the soft robot operating in the entire workspace.

Next, we will verify the applicability of the learned knowledge

(obtained from the adaptive learning control) on the soft robot,

by testing it on a new trajectory that has not been trained.

We consider five different reference trajectories in Fig. 6(a),

including four trajectories ϕi (i = 1, 2, 3, 4) to be trained and

one trajectory ϕ0 to be tested. We first train the soft robot on

the reference trajectories ϕi by following a similar procedure of

Section V-A4 and obtain the associated knowledge. By merg-

ing these knowledge with the merging mechanism as adopted

in [19], we can construct the knowledge-based controller of

(21). Then, we test this controller on the soft robot to track

the new reference trajectory ϕ0, which is different from the

trajectories ϕi (i = 1, 2, 3, 4) and has not been trained, and the

results are shown in Fig. 6(b). Our control scheme can still drive

the robot to track the new trajectory ϕ0 while guaranteeing the

desired system stability and tracking accuracy. This verifies that

using our learning control scheme, the learned knowledge can

accurately capture the complex dynamics of the soft robot in

the workspace, thus can guarantee the desired practicality of

working on the new trajectory.
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Fig. 6. Tracking control performance of the soft robot using the knowledge-
based controller. The knowledge for control design is learned from the reference
trajectories ϕi (i = 1, 2, 3, 4) and tested on the new trajectory ϕ0.

VI. CONCLUSION

This letter has developed an adaptive RBF NN based learn-

ing control scheme for a soft trunk robot, aiming to drive the

end-effector of the robot to track a predefined reference trajec-

tory. Specifically, a low-order approximate model to describe

the robot’s dynamics has been derived with FEM and POD

techniques. Based on this model, an adaptive learning control

scheme has been developed with RBF NN technique. It can

not only provide stable and accurate tracking control for the soft

robot, but also achieve accurate learning for the robot’s uncertain

dynamics in the online control process. The learned knowledge

of robot’s dynamics can be stored and represented by a constant

RBF NN model. Using this model, a knowledge-based controller

has also been proposed, to provide desirable tracking control

for the soft robot in an efficient manner. The effectiveness and

advantages of the proposed methods have been validated through

physical experiments.

In future work, we expect to combine the proposed control

methods with the fault diagnosis scheme developed in our pre-

vious work of [14], aiming to develop a fault tolerant control

scheme for providing safer and more reliable soft robot op-

erations. After this, we plan to extend these approaches from

single-segment soft robots to more complex multi-segment ones,

for better practical applicability.
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