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Abstract 16 

The liquid residue resulting from various agroindustrial processes is both rich in organic 17 
material and an attractive source to produce a variety of chemicals. Using microbial communities to 18 
produce chemicals from these liquid residues is an active area of research, but it is unclear how to 19 
deploy microbial communities to produce specific products from the different agroindustrial residues. 20 
To address this, we fed anaerobic bioreactors one of several agroindustrial residues (carbohydrate-21 
rich lignocellulosic fermentation conversion residue, xylose, dairy manure hydrolysate, ultra-filtered 22 
milk permeate, and thin stillage from a starch bioethanol plant) and inoculated them with a microbial 23 
community from an acid-phase digester operated at the wastewater treatment plant in Madison, WI, 24 
USA. The bioreactors were monitored over a period of months and sampled to assess microbial 25 
community composition and extracellular fermentation products. We obtained metagenome 26 
assembled genomes (MAGs) from the microbial communities in each bioreactor and performed 27 
comparative genomic analyses to identify common microorganisms, as well as any community 28 
members that were unique to each reactor. Collectively, we obtained a dataset of 217 non-redundant 29 
MAGs from these bioreactors. This MAG dataset was used to evaluate whether a microbial ecology 30 
model in which medium chain fatty acids (MCFAs) are simultaneously produced from intermediates 31 
products (e.g., lactic acid) and carbohydrates could be applicable to all fermentation systems, 32 
regardless of the feedstock. MAGs were classified, using a multiclass classification machine learning 33 
algorithm into three groups, organisms fermenting the carbohydrates to intermediate products, 34 
organisms utilizing the intermediate products to produce MCFAs, and organisms producing MCFAs 35 
directly from carbohydrates. This analysis revealed commonalities among the microbial communities 36 
in different bioreactors, and although different microorganisms were enriched depending on the 37 
agroindustrial residue tested, the results supported the conclusion that the microbial ecology model 38 
tested was appropriate to explain the MCFA production potential from all agricultural residues. 39 

1 Introduction 40 

Finding ways to generate chemicals and chemical precursors from renewable sources is an 41 
important step towards creating a sustainable circular economy that decreases society’s dependance 42 
on fossil fuels. Medium chain fatty acids (MCFAs) are one such class of product that can be 43 
microbially produced, have applications in lubricant synthesis, production of herbicides and 44 
antimicrobials, and can be further processing into additional chemicals (Sarria et al., 2017; 45 
Scarborough et al., 2018b). Microbes and microbial communities can produce MCFAs using a wide 46 
variety of carbohydrate-rich substrates, making biological MCFA production an attractive target due 47 
to the widespread availability of carbohydrate-rich organic wastes that can be used as substrates, such 48 
as undistilled corn beer (Ge et al., 2015), thin stillage (Fortney et al., 2021), lignocellulosic 49 
fermentation conversion residues (Scarborough et al., 2018a; Scarborough et al., 2018b), a soluble 50 
fraction of municipal solid waste (Grootscholten et al., 2013; Grootscholten et al., 2014) and winery 51 
residue (Kucek et al., 2016b). In addition to MCFAs, other fermentation products have been 52 
identified as coproduced by microbial communities that generate MCFAs from various substrates, 53 
including the accumulation of acetic, lactic, succinic, and butyric acids, as well as ethanol (Han et al., 54 
2018; Fortney et al., 2021). Lactic, succinic, and butyric acids can be used as building blocks for 55 
materials such as bioplastics (Harmsen et al., 2014). Further, both lactic acid and ethanol have been 56 
shown to be intermediate metabolites during MCFA production by members of microbial 57 
communities that perform reverse ß-oxidation, also known as chain elongation (Agler et al., 2012; 58 
Zhu et al., 2015; Kucek et al., 2016a; Han et al., 2018). Although most MCFA production research 59 
has been conducted with microbial communities, it is not clear how to steer a community towards 60 
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maximizing MCFA production without accumulation of other fermentation products, or how to 61 
harness the microbial community to produce primarily one fermentation product. Therefore, 62 
additional knowledge is needed to enable the engineering of microbial communities to produce the 63 
desired fermentation products. We are interested in generating models that can explain and possibly 64 
predict the relationship of microbial community structure with the type of carbohydrate-rich 65 
substrates and the type of fermentation products that accumulate.  66 

An emerging microbial ecology model describes three main functions in a chain elongation 67 
microbiome; one group of microbes that can ferment carbohydrates to lactic acid but cannot perform 68 
chain elongation, other microbes that can perform chain elongation using lactic acid as an electron 69 
donor, and others that can perform chain elongation directly from carbohydrates (Scarborough et al., 70 
2018a). This model, initially proposed based on experiments using xylose-rich organic residues from 71 
lignocellulosic ethanol production (Scarborough et al., 2018a), has been suggested for other 72 
substrates (Crognale et al., 2021; Fortney et al., 2021; Ingle et al., 2021), and there is emerging 73 
evidence of MCFA-producing microbes with the genomic capacity for producing MCFA from both 74 
lactic acid and carbohydrates (Kang et al., 2022; Wang et al., 2022). In other cases, it is proposed that 75 
ethanol can be used as an electron donor and act as an intermediate during MCFA production (Agler 76 
et al., 2012; Kucek et al., 2016a). To evaluate whether this microbial ecology model can be 77 
generalized to conceptually explain MCFA production from a variety of carbohydrate-rich organic 78 
residues, we evaluated the microbial communities that were enriched when the same inoculum was 79 
used in bioreactor experiments that fermented several agroindustrial residues, including thin stillage 80 
from starch ethanol production (Fortney et al., 2021; Fortney et al., 2022), thin stillage from 81 
cellulosic ethanol production (Scarborough et al., 2018a; Scarborough et al., 2020), xylose 82 
(Scarborough et al., 2022), dairy manure hydrolysate (Ingle et al., 2021; Ingle et al., 2022), and 83 
ultrafiltered milk permeate (Walters et al., 2022; Walters et al., 2023). In all cases, the inoculum was 84 
from an acid-phase anaerobic digester at the local wastewater treatment plant (Madison, WI, USA).  85 

Here we present the comparison of metagenome assembled genomes (MAGs) from these 86 
bioreactors and examine the role of different microbial groups in the fermentation and chain 87 
elongation processes. For this analysis, we developed a script to identify genes encoding key 88 
metabolic enzymes in the MAGs and a machine learning algorithm to bin each MAG into relevant 89 
categories. This analysis revealed patterns showing that in fermentations in which MCFA is the 90 
primary product that accumulates, and the feedstock is a carbohydrate-rich substrate, the microbial 91 
ecology model that describes chain elongation occurring via utilization of intermediates or direct 92 
utilization of carbohydrates is applicable, even though different microorganisms were enriched 93 
depending on the agroindustrial residue tested. 94 

2 Materials and Methods 95 

2.1 Metagenome assembled genome (MAG) sources 96 

MAG data was obtained from previously published lab-scale bioreactor studies of microbial 97 
communities grown with various agroindustrial residues (Scarborough et al., 2018a; Scarborough et 98 
al., 2020; Fortney et al., 2021; Ingle et al., 2021; Fortney et al., 2022; Ingle et al., 2022; Scarborough 99 
et al., 2022; Walters et al., 2022). The operational conditions of the bioreactors are summarized in 100 
Table 1. MAGs were obtained from the inoculum source (10 MAGs) (Ingle et al., 2022) and 101 
bioreactors fed cellulosic ethanol thin stillage (10 MAGs) (Scarborough et al., 2018a; Scarborough et 102 
al., 2020), synthetic medium containing xylose as the primary carbon source (8 MAGs) (Scarborough 103 
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et al., 2022), hydrolysate from dairy manure (38 MAGs) (Ingle et al., 2021; Ingle et al., 2022), ultra-104 
filtered milk permeate (123 MAGs) (Walters et al., 2022; Walters et al., 2023), and starch ethanol 105 
thin stillage (51 MAGs) (Fortney et al., 2021; Fortney et al., 2022). In all cases, only the best-quality 106 
representative MAGs determined in each study were used. In total, we used an initial dataset of 240 107 
MAGs (Table S1).  108 

2.2 MAG dereplication and taxonomic classification 109 

The program dRep (v3.2.2; dereplicate command) (Olm et al., 2017) was used to identify 110 
redundant MAGs using default settings, except -conW was set to 0.5 and -N50W was set to 5. This 111 
reduced the total MAG number from 240 to 217 non-redundant MAGs (Table S2). CheckM (v1.0.11; 112 
lineage_wf and qa commands with default parameters) (Parks et al., 2015) was used to determine 113 
relevant quality parameters for each of the 217 MAGs (Table S2). All 217 MAGs were 114 
taxonomically classified using GTDB-Tk (v1.5.1; database release 202; classify_wf command with 115 
default parameters) (Table S3). 116 

2.3 Alignment and relative abundance calculations 117 

To predict the relative abundance of microorganisms represented by the 217-MAG dataset in 118 
samples from the different bioreactors, the genome FASTA files of all the MAGs were concatenated, 119 
and then, Bowtie2 (v2.2.2 with default parameters) (Langmead and Salzberg, 2012) was used to align 120 
the FASTQ sequencing files. Resulting SAM files were converted into BAM files and sorted using 121 
samtools (v1.15.1; view and sort commands with default parameters) (Li et al., 2009). CoverM 122 
(v0.4.0; coverm genome command with default parameters) (https://github.com/wwood/CoverM) 123 
was used to generate relative abundance statistics of mapped reads in the sorted BAM files (Table 124 
S2). We identified 131 MAGs with at least 1% relative abundance in at least one sample across all 125 
experiments, which we define as the high-abundance MAG dataset (Table S4). 126 

2.4 Phylogenetic analyses 127 

Maximum likelihood phylogenetic trees were generated using RAxML-NG (v0.9.0; model 128 
LG+G8+F) (Kozlov et al., 2019) using 1000 bootstraps. GTDB-Tk (v1.5.1; database release 202; 129 
ani_rep command with default parameters) (Chaumeil et al., 2019) was used to identify closest 130 
related genomes, which were downloaded from NCBI. The MAGs and closest genomes were 131 
compared using GTDB-Tk (identify and align commands with default parameters) using a set of 120 132 
bacterial single-copy marker genes (Bac120) for all trees. Prevotella intermedia (GCF_001953955.1) 133 
was used as an outgroup to root the trees. 134 

An additional analysis was performed to compare homologs of subunit B of the electron 135 
transfer flavoprotein (EtfB). For this, EtfB homologs were identified using known protein sequences 136 
(Walters et al., 2023) and tBLASTn (v2.8.1, default parameters) (Camacho et al., 2009) with “pident” 137 
(percent identity to the query sequence) > 25% and “qcovhsp” (coverage of the query sequence) > 138 
70%. EtfB homologs were aligned using MUSCLE (v3.8.31, default parameters) and a phylogenetic 139 
tree was constructed using RAxML-NG using 500 bootstraps (see Data Availability).  140 

2.5 Non-metric multidimensional scaling plots 141 

Non-metric multidimensional scaling (NMDS) plots were generated from the relative 142 
abundance calculations for the 217 non-redundant MAGs using R (v4.1.0) (Core Team, 2018). 143 

https://github.com/wwood/CoverM


  Metagenomes from agroindustrial residues 

 5 

Specifically, the vegdist command with the “bray” index (from the vegan package) was used to 144 
determine the distance metrics and the metaMDS command (from the vegan package) was used to 145 
generate the NMDS values. Plots were constructed using ggplot2 (Wickham, 2016) from the NMDS 146 
values and edited for clarity using Adobe Illustrator (v27.2). The R script used to generate the NMDS 147 
plot is available on GitHub (see Data Availability). 148 

2.6 Homology-based gene identification 149 

A homology-based analysis was performed to identify genes encoding enzymes of 150 
fermentation and central carbon metabolism in each MAG. The query protein sequences used were 151 
manually vetted through either EcoCyc (Keseler et al., 2011), MetaCyc (Caspi et al., 2020), SWISS-152 
PROT via UniProtKB (Boutet et al., 2016), or other published datasets. Query protein amino acid 153 
sequences and metadata were downloaded from the UniProtKB database. tBLASTn (v2.8.1) 154 
(Camacho et al., 2009) was used to identify homologs using default parameters. Subject sequences 155 
that had an e-value less than 1x10-10, a “pident” (percent identity to the query sequence) value greater 156 
than 25%, and a “qcovhsp” (coverage of the query sequence) value greater than 70% were used to 157 
determine gene homologs (Table S5). All files and scripts are available on GitHub (see Data 158 
Availability). 159 

2.7 Multiclass classification machine learning algorithm 160 

MAGs were classified into four functional groups. The first group, “Ferment to 161 
Intermediates”, consists of MAGs that ferment carbohydrates into intermediate extracellular 162 
products, such as ethanol or lactic acid. The second group, “Intermediate Chain Elongators”, consists 163 
of MAGs that convert intermediate extracellular products (e.g., ethanol or lactic acid) into medium 164 
chain fatty acids (MCFAs) using reverse ß-oxidation. The third group, “Carbohydrate Chain 165 
Elongators”, consists of MAGs that ferment carbohydrates directly into MCFAs. A fourth group, 166 
“uninvolved”, was used to bin MAGs that could not be classified into the three functional groups.  167 

Multiclass classification machine learning was utilized to categorize the MAGs based on gene 168 
homologs of key fermentation pathways that were detected. A training set was constructed using 169 
organisms known to fit into one of the four groups (Table S6). Bifidobacterium species and lactic 170 
acid bacteria were used for the Ferment to Intermediates training set (Okada et al., 1979; Pokusaeva 171 
et al., 2011; Pruckler et al., 2015; Tanner et al., 2016; Eckel and Vogel, 2020; Ferrero et al., 2021; 172 
Kasmaei et al., 2022; Ksiezarek et al., 2022), Clostridium and Megasphaera species were used for 173 
the Intermediate Chain Elongators training set (Wallace et al., 2003; Seedorf et al., 2008; Jeon et al., 174 
2017; Kobayashi et al., 2017; Tao et al., 2017; Yang et al., 2018; Yoshikawa et al., 2018; Litty and 175 
Muller, 2021), Caproicibacter and Roseburia species were used for the Carbohydrate Chain 176 
Elongators training set (Kim et al., 2015; Tamanai-Shacoori et al., 2017; Flaiz et al., 2020; 177 
Schoelmerich et al., 2020), and Acetobacter, Prevotella, and Sphaerochaeta species were used for the 178 
uninvolved training set. 179 

Multiple multiclass classification machine learning algorithms were tested using the auto_ml 180 
module (v2.9.10) (https://github.com/ClimbsRocks/auto_ml). The algorithms tested against baseline 181 
were Decision Tree (Pedregosa et al., 2011), Random Forest (Pedregosa et al., 2011), Linear 182 
Regression (Pedregosa et al., 2011), XGBoost (https://xgboost.readthedocs.io/en/stable/index.html), 183 
Neural Network (Pedregosa et al., 2011), Nearest Neighbors (Pedregosa et al., 2011), Extra Trees 184 
(Pedregosa et al., 2011), CatBoost (Prokhorenkova et al., 2018), and LightGBM (Zhang et al., 2017). 185 

https://github.com/ClimbsRocks/auto_ml
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The machine learning algorithms were evaluated for correct classification of training set genomes 186 
into functional groups using multiple analyses: the logloss metric (-log(p), where p is the probability 187 
of correctly categorizing the training set) (Bian and Tao, 2011) for each algorithm compared to the 188 
baseline value of no algorithm, precision-recall (PR) curves for each algorithm and receiver operating 189 
characteristic (ROC) curves for each algorithm (Haibo and Garcia, 2009). These evaluations showed 190 
that using the LightGBM model provided the largest decrease in logloss metric (a 99.91% 191 
improvement compared to baseline alone) while maximizing true positives and minimizing false 192 
positives. The script, files used for the machine learning analysis, and the results of the multiclass 193 
classification machine learning analysis are available on GitHub (see Data Availability). 194 

2.9 Hierarchical clustering 195 

 MAGs were classified into predicted functional groups using hierarchical clustering based on 196 
the detected genes in metabolic pathways important in MCFA production (Walters et al., 2023). 197 
Hierarchical clustering was performed in R (v4.1.0) (Core Team, 2018) using the gplots R package 198 
(v3.1.3, heatmap.2 command with default parameters, https://github.com/talgalili/gplots/). MAGs 199 
were classified using the hierarchical clustering results in the Fermentation to Intermediates group if 200 
they had high percentage of genes detected in the bifid shunt or phosphoketolase pathways and low 201 
percentage of genes detected in the lactic acid utilization and reverse ß-oxidation pathways, in the 202 
Intermediate Chain Elongators group if they had low percentage of genes detected in the bifid shunt 203 
or phosphoketolase pathways and high percentage of genes detected in the lactic acid utilization and 204 
reverse ß-oxidation pathways, and in the Carbohydrate Chain Elongators group if they had low 205 
percentage of genes detected in the bifid shunt, phosphoketolase, and lactic acid utilization pathways 206 
but high percentage of genes detected in the reverse ß-oxidation pathway (Table S2). The script, files 207 
used, and results of this analysis are available on GitHub (see Data Availability). 208 

3 Results 209 

3.1 Analysis of the non-redundant MAG dataset 210 

For this study we used MAGs assembled from 10 different bioreactors that were fed various 211 
agroindustrial residues (Figure 1). The microbial communities that were enriched in these bioreactors 212 
originated from the same inoculum source, an acid-phase anaerobic digester used in the solids 213 
handling treatment train at the local wastewater treatment plant (Madison, WI, USA). In addition to 214 
the type of agroindustrial residue used as the feedstock, parameters such as temperature and pH were 215 
also different in some bioreactor experiments (Table 1). Bioreactor performance has been described 216 
elsewhere for a bioreactor fed xylose-rich thin stillage from cellulosic ethanol production 217 
(Scarborough et al., 2018b), one fed a carbohydrate-rich hydrolysate created from chemical 218 
pretreatment of dairy manure (Ingle et al., 2021), five bioreactors fed thin stillage from starch ethanol 219 
biorefining (Fortney et al., 2021), and one bioreactor fed lactose-rich ultra-filtered milk permeate 220 
(Walters et al., 2023). Two additional bioreactors complete the set of 10 bioreactors used in this 221 
study; one fed a xylose-rich synthetic medium and a second one operated with ultra-filtered milk 222 
permeate as the feedstock. The MAGs assembled from all of the bioreactors have been reported and 223 
are publicly available (Scarborough et al., 2018a; Fortney et al., 2022; Ingle et al., 2022; Scarborough 224 
et al., 2022; Walters et al., 2022). The main fermentation products that accumulated in the medium of 225 
these bioreactors include lactic and succinic acids, ethanol, as well as the short chain fatty acids 226 
(SCFAs) acetic and propionic acids and the MCFAs butyric, hexanoic, and octanoic acids (Figure 2).  227 

https://github.com/talgalili/gplots/
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Combined, there are a total of 240 MAGs across these bioreactors (Figure 1B, Table S1). 228 
Given the similarities in the inoculum source and in the accumulated fermentation products, we 229 
hypothesized that the MAGs assembled from these microbial communities would have a high degree 230 
of similarity. However, when the program dRep (Olm et al., 2017) was used to identify MAGs with 231 
at least 99% average nucleotide identity (ANI), only 23 MAGs were highly similar among the 240 232 
MAGs (Figure 1B, Table S1). This dereplication analysis resulted in a library of 217 non-redundant 233 
MAGs that we used to further evaluate the microbial communities in the bioreactors (Table S2). 234 

This collection of 217 non-redundant MAGs represented median relative abundances ranging 235 
from 63.5% to 90.3% in the bioreactor samples, but a median relative abundance of only 11.6% for 236 
the inoculum (Table 2). The low percentage for the inoculum indicates that most of the 217 MAGs in 237 
the library represented microbial community members that were not abundant in the acid-phase 238 
digester inoculum, but were instead enriched during the operation of the bioreactors.  239 

A non-metric multidimensional scaling (NMDS) analysis of the relative abundance of MAGs 240 
in the analyzed samples reveals divergence in the microorganisms that were enriched during growth 241 
in the different agroindustrial residues (Figure 3). The lack of overlap of the abundant MAGs among 242 
agroindustrial residue media used indicates that the media played a large role in shaping the 243 
microbial communities in these bioreactors. The dataset includes samples collected from bioreactors 244 
operated with the same agroindustrial residue but different operational conditions. In these cases, the 245 
NDMS plot suggests that agroindustrial residue used had a larger impact in shaping the microbial 246 
community compared to the operational condition. For example, several bioreactors were operated 247 
using starch ethanol thin stillage (Fortney et al., 2021), and in the NDMS plot (Figure 3) the samples 248 
from these bioreactors clustered together and separate from the samples from bioreactors that used 249 
other agroindustrial residues. The dataset also includes samples collected from bioreactors operated 250 
under identical conditions but receiving different agroindustrial residues. This is the case for the Milk 251 
Permeate 1, Xylose, and the Starch-EtOH 1 experiments (Figure 3). Although they were all operated 252 
under identical conditions, there is no overlap of the abundant MAGs from these reactors in the 253 
NDMS plot, supporting the argument that the agroindustrial residue used had a larger impact in the 254 
microbial communities than the operational conditions used.  255 

The set of non-redundant MAGs has a diverse composition (Table 3, Table S3), with MAGs 256 
belonging to 8 phyla and 12 families within these phyla. 24 MAGs were classified to the genus level 257 
based on the coverage in the metagenomic data sets. In addition, this non-redundant set includes 258 
MAGs assembled with short-read Illumina (149 MAGs) and long-read PacBio technologies (68 259 
MAGs). Estimates of completion and contamination in this dataset are greater than 75% and less than 260 
7.5%, respectively. The MAGs resulting from Illumina sequencing had assemblies with 1 to 558 261 
contigs, whereas the MAGs obtained from PacBio sequencing were assembled in 1 to 44 contigs 262 
(Table 3, Table S2).  263 

3.2 Enzymes in metabolic pathways identified in the non-redundant MAG dataset 264 

 We sought to make predictions on the role of different members of the microbial communities 265 
enriched in the bioreactors and to evaluate the microbial ecology model for MCFA production that 266 
hypothesizes the presence of some community members that produce MCFA directly from 267 
carbohydrates (Carbohydrate Chain Elongators), other community members that produce MCFA 268 
from lactic acid or ethanol as intermediate fermentation products (Intermediate Chain Elongators), 269 
and other community members that produce these intermediate products but do not perform chain 270 
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elongation (Ferment to Intermediates) (Scarborough et al., 2018a). To this end, we queried the MAGs 271 
for the presence of homologs of individual proteins present in different fermentation pathways 272 
(Figure 4, Table S5) (Walters et al., 2023). This allowed categorization of MAGs by association of 273 
similar patterns of the presence of homologous proteins from each metabolic pathway examined. 274 
Using the hierarchical clustering of the MAGs based on the percentage of homologs present per 275 
pathway, we categorized the MAGs into the functional groups. Based on this analysis, 79 MAGs are 276 
predicted to ferment carbohydrates to intermediate products (Ferment to Intermediates), 59 MAGs 277 
are predicted to produce MCFA from the intermediate products (Intermediate Chain Elongators), and 278 
13 MAGs are predicted to produce MCFA from carbohydrates (Carbohydrate Chain Elongators, 279 
Figure 4, Table S2). 280 

3.3 Machine learning-based classification 281 

We also wanted to test if we could use multiclass classification machine learning to generate 282 
similar predictions, as a way to evaluate large MAG datasets quickly and to remove any bias in 283 
functional assignments based on enzyme assignments. For this evaluation, we constructed a training 284 
set of isolated organisms predicted to perform the three specific functions in the model, plus 285 
organisms not known or likely to participate in these activities (Table S6). As input to the machine 286 
learning algorithm, we used the information gathered about detection of protein homologs in the 287 
metabolic pathways relevant to the ecological model (Table S5). The training set was then used to 288 
investigate a number of possible multiclass classification machine learning algorithms, with the 289 
LightGBM algorithm (Zhang et al., 2017) producing the best results of binning the genomes into the 290 
correct functional groups based on multiple methods of evaluation (logloss comparison to baseline, 291 
PR curve, and ROC curve).  292 

To evaluate the machine learning multiclass classifications, a subset of the most abundant 293 
MAGs was selected for further analysis. The 217 non-redundant MAGs across the experiments were 294 
filtered to include only MAGs with at least 1% relative abundance in at least one experiment sample 295 
(Figure 1B, Table S4). The resultant 131 high-abundance MAGs include ones assembled from short 296 
read Illumina technology (74 MAGs) and long read PacBio technology (57 MAGs) and were 297 
categorized into one of four functional groups using the trained multiclass machine learning model. 298 
Overall, 63 MAGs were predicted as being able to ferment carbohydrates to intermediate products 299 
(Ferment to Intermediates), 17 MAGs were predicted as being able to convert intermediate products 300 
to MCFAs (Intermediate Chain Elongators), 12 MAGs were categorized as being able to ferment 301 
carbohydrates to MCFAs (Carbohydrate Chain Elongators), and 39 MAGs were predicted not to be 302 
involved in MCFA production (Figure 5A, Table S4). The MAGs in each category were derived 303 
from several different agroindustrial residue experiments (Figure 5B), showing that similar functions 304 
occurred with the different agroindustrial residues. 305 

 Comparison of the MAGs classified into the functional groups by the machine learning 306 
algorithm to classification by hierarchical pathway clustering reveals differences based on the 307 
approaches (Figure 5C-E). The Fermentation to Intermediates group shows a large amount of overlap 308 
between the two methods (Figure 5C). The hierarchical pathway clustering method identified more 309 
MAGs than the machine learning algorithm for the Intermediate Chain Elongators group while there 310 
was little overlap among the methods for the Carbohydrate Chain Elongators group (Figure 5D, 5E). 311 

 Focusing on the machine learning classification, and to further investigate the MAGs present 312 
in functional groups responsible MCFA production, phylogenetic trees were constructed comparing 313 
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the genomes used in the training set and the MAGs classified into each functional group (Figures 6-314 
8). The MAGs were taxonomically classified using GTDB-Tk (Chaumeil et al., 2019). For each 315 
functional group examined, we found multiple taxonomic groups across taxonomic levels, ranging 316 
from phyla to family (Figures 6-8). Indeed, a subset of the MAGs in groups share no overlap at the 317 
class or family level with genomes in the training set, suggesting the machine learning algorithm is 318 
identifying new taxonomic groups that may perform the specific biological function. 319 

3.4 MAGs predicted to participate in fermentation to intermediate products 320 

 The majority of the MAGs predicted in the Ferment to Intermediates group belonged to the 321 
Lactobacillaceae, Bifidobacteriaceae, and Atopobiaceae families (Figure 6). In general, the MAGs in 322 
Bifidobacteriaceae and Lactobacilaceae clustered with the genomes from the same taxonomic group 323 
used in the training set. Further, the machine learning algorithm classified MAGs of the 324 
Atopobiaceae family into this group, despite no member of this family being present in the training 325 
set. A small subset of the MAGs in this functional group belonged to other taxonomic groups: class 326 
Bacilli (3 MAGs) and phylum Proteobacteria (3 MAGs) (Figure 6). 327 

3.5 MAGs predicted to participate in chain elongation from intermediate products 328 

The majority of the MAGs in the Intermediate Chain Elongators group, predicted to convert 329 
fermentation intermediates into MCFAs, were predicted to belong to five families: 330 
Megasphaeraceae, Acidaminococcaceae, Clostridaceae, Anaerovoracaceae, and Eubacteriaceae 331 
(Figure 7). This included a MAG (UW_SG_EUB1, Ca. Pseudoramibacter fermentans) that was 332 
studied at the transcriptomic level and predicted to ferment intermediates into MCFAs (Scarborough 333 
et al., 2020). The MAGs in four of the five families were clustered with genomes in the same 334 
families used in the training set. However, there were no genomes in the training set that belonged to 335 
the family Acidaminococcaceae, Lachnospiraceae, or Oscillospiraceae. Two MAGs belonged to 336 
phylum Bacteroidota (order Bacteroidales). 337 

3.6 MAGs predicted to participate in chain elongation from carbohydrates 338 

The MAGs predicted to belong to the Carbohydrate Chain Elongators group, one which 339 
convert carbohydrates directly to MCFAs, belonged primarily to two families: Lachnospiraceae and 340 
Acutalibacteraceae (Figure 8). Included in this group is a MAG (UW_SG_LCO1, Ca. Weimeria 341 
bifida) previously studied in-depth and suggested to perform chain elongation from carbohydrate 342 
substrates (Scarborough et al., 2020). Seven of the MAGs present in the Carbohydrate Chain 343 
Elongators group belonged to other taxonomic groups: class Bacilli, class Clostridia as well as phyla 344 
Proteobacteria and Spirochaetota (Figure 8). 345 

4 Discussion 346 

We have used a dataset of over 200 MAGs from 10 previously published bioreactor 347 
experiments to evaluate the prevalence of the emerging microbial ecological model for chain 348 
elongation microbiomes. In this model, MCFAs can be produced either from intermediates, such as 349 
lactic acid, or directly from carbohydrates. Using machine learning and protein homology 350 
predictions, we find that this ecology model is conserved across various microbial communities from 351 
bioreactors fed various carbohydrate rich agroindustrial residues. While the MAGs assembled from 352 
each microbial community were not found to be identical in terms of sequence similarity, the 353 
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biological functions of the microbial communities are predicted to be maintained in MAGs from 354 
various taxonomic groups with different relative abundances (Figure 9). Below we discuss 355 
observations about the organisms classified into each group. 356 

4.1 A taxonomically diverse set of MAGs is predicted to ferment carbohydrates to 357 
intermediates 358 

 The Ferment to Intermediates functional group was comprised of many MAGs classified in 359 
the phylum Firmicutes, specifically lactic acid bacteria, which are associated with carbohydrate 360 
fermentation to lactic acid and other intermediates (Garde et al., 2002; Ganzle and Follador, 2012; 361 
Gänzle, 2015; Zhang and Vadlani, 2015). Indeed, Firmicutes, specifically those in the family 362 
Lactobacillaceae, make up a large portion of the microbial community in most of the bioreactors 363 
analyzed when using cumulative relative genomic abundance as a measure (Figure 9), suggesting 364 
MAGs in this phylum may play a key role in fermentation to intermediates across the agroindustrial 365 
residues examined. There were other taxonomic groups classified in this group. MAGs from both 366 
family Atopobiaceae and family Bifidobacteriaceae (phylum Actinobacteriota) were found to be 367 
fairly abundant in a subset of the experiments, specifically Milk Permeate 1 and 2, as well as 368 
Cellulosic Ethanol Thin Stillage and Xylose (Figure 9), which supports previous observations of the 369 
relationship between these two families (Scarborough et al., 2018a; Carvajal-Arroyo et al., 2019; 370 
Walters et al., 2023). Three MAGs in the class Bacilli but not part of the Lactobacillaceae family as 371 
well as three MAGs in the phylum Proteobacteria were both categorized as being in this functional 372 
group (Figure 9) and were found to be of high abundance in two Starch-EtOH experiments that were 373 
conducted at a higher temperature and did not result in accumulation of MCFA chain elongation 374 
products (Figure 2, Table 1) (Fortney et al., 2021).  375 

 From a metabolic potential perspective, fermentation to intermediates can be accomplished as 376 
homolactic fermentation wherein only lactic acid is produced, or heterolactic fermentation, either by 377 
the phosphoketolase pathway or the bifid shunt pathway, wherein lactic acid and other products 378 
(ethanol or acetate) are produced (Pokusaeva et al., 2011; Gänzle, 2015). The percentage of detected 379 
gene homologs that encode enzymes unique to each fermentative pathway can be used to evaluate 380 
which fermentative pathways may be present in each MAG (Figure S1A). In the majority of MAGs, 381 
greater than 60% of the unique proteins in the homolactic and the heterolactic bifid shunt pathways 382 
were detected, suggesting these are the primary sources of lactic acid across the microbial 383 
communities. This included the MAGs in the phylum Proteobacteria and the non-Lactobacillaceae 384 
MAGs in the class Bacilli, suggesting this is a key reason these MAGs from unexpected taxonomic 385 
groups were categorized into this functional group (Figure S1A). No MAGs contained more than 386 
60% of the unique proteins in the heterolactic phosphoketolase fermentation pathway, with the 387 
majority containing less than 40% of the unique enzymes (Figure S1A), suggesting this is a not a key 388 
pathway in abundant members of the communities that are found when using these agroindustrial 389 
residues. Nearly all the MAGs in the family Bifidobacteriaceae have over 80% of the unique 390 
enzymes in the heterolactic bifid shunt fermentative pathway, which is to be expected for members of 391 
this family (Figure S1A)(Pokusaeva et al., 2011). Future research can explore the proposal that these 392 
MAGs that perform lactic acid fermentation and do so using the homolactic fermentation pathway or 393 
heterolactic bifid shunt fermentation pathway. 394 

4.2 MAGs from several taxonomic groups are predicted to use intermediates for chain 395 
elongation 396 
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  The Intermediate Chain Elongators functional group was comprised of MAGs from a variety 397 
of taxonomic classifications (Figure 7). While nearly all the MAGs were part of the phyla 398 
Firmicutes_A or Firmicutes_C, the lower taxonomic levels were more differentiated (Figures 7 and 399 
9), suggesting a variety of microorganisms capable of performing this transformation in these 400 
microbial communities. Several of these MAGs belonged to families included in the training set, 401 
supporting the functional classification – Anaerovoracaceae, Clostridiaceae, Eubacteriaceae, and 402 
Megasphaeraceae – and were the MAGs with the highest relative level of genomic abundance in the 403 
experimental microbial communities (Figure 9). This suggests that these MAGs may play a key role 404 
in converting intermediates to MCFAs. Interestingly, the machine learning approach predicted 405 
MAGs from other families may also perform this biological function. These included MAGs from 406 
the phylum Bacteroidia and the families Acidaminococcaceae, Lachnospiraceae, and 407 
Oscillospiraceae (Figure 7). A member of the family Oscillospiraceae, Caproicibacterium 408 
lactatifermentans, was shown to utilize lactic acid, a function unique from other members of this 409 
family (Wang et al., 2022), and the Oscillospiraceae MAG has homologs of the key proteins for 410 
conversion of lactic acid to MCFAs (Figure S1B). MAGs that belong to family Lachnospiraceae 411 
have been shown to convert carbohydrates directly to MCFAs (Scarborough et al., 2018a; 412 
Scarborough et al., 2020), but our analysis suggests they may also convert fermentation intermediates 413 
into these products. Indeed, UW_MP_LCO2_1 contains all three proteins key for conversion of lactic 414 
acid to MCFAs, supporting a possible alternative role of the MAG from this family (Figure S1B).  415 

However, neither the Lachnospiraceae MAG nor the Oscillospiraceae MAG were highly 416 
abundant in any of the datasets analyzed (Figure 9), suggesting they may not play a large role, even if 417 
they do perform generate MCFA from intermediates. Interestingly, the Acidaminococcaceae and 418 
Bacteroidia MAGs have relatively high abundance in the Milk Permeate 1 experiment (Figure 9), 419 
raising the possibility that the unique conditions of that experiment (Walters et al., 2023) may lead to 420 
the enrichment of these MAGs to convert fermentation intermediates to MCFAs. However, the two 421 
MAGs belonging to phylum Bacteroidota are the only two MAGs for which a majority of genes 422 
encoding for lactic acid utilization and reverse ß-oxidation were not detected (Figure S1B). This 423 
raises the possibility that these MAGs were misclassified, but their metabolic potential deserves 424 
future exploration since phylogenetically related organisms have recently been associated with SCFA 425 
production in microbial communities (Ho et al., 2021; Watanabe et al., 2021; Liu et al., 2022).  426 

4.3 MAGs from various taxonomic groups are predicted to use carbohydrates for chain 427 
elongation 428 

A majority of the MAGs classified in the Carbohydrate Chain Elongators group by the 429 
machine learning algorithm we used belong to the phylum Firmicutes and specifically five families:  430 
Lachnospiraceae, Acutalibacteraceae, Bacillaceae, Sporolactobacillaceae, and Clostridiaceae 431 
(Figure 9). Of these MAGs, Lachnospiraceae has been shown to produce MCFAs from 432 
carbohydrates in other microbial communities (Scarborough et al., 2018a; Scarborough et al., 2020). 433 
Indeed, the Lachonospiraceae MAGs are the most abundant across the largest number of reactor 434 
experiments, suggesting they are key players in MCFA synthesis from carbohydrate (Figure 9). 435 
Interestingly, for two of these MAGs we were not able to identify homologs to three of the four 436 
enzymes involved in chain elongation (Figure S1C). While this may indicate mis-classification, it 437 
also raises the possibility that other enzymes may perform these processes in these organisms or that 438 
the enzymes have diverged enough in these MAGs so the homologs were below our thresholds. 439 
Additional research into these MAGs will be required to examine these hypotheses. 440 
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Most of the MAGs in this group contain homologs for the chain elongation genes, although 441 
many of them outside the Lachnospiraceae family also contain at least one homolog of the lactic acid 442 
utilization genes (Figure S1C). These results suggest that these MAGs may be able to convert both 443 
carbohydrates as well as lactic acid into MCFAs. This has been observed in other microbes including 444 
Caproicibacterium lactatifermentans (family Acutalibacteraceae) (Wang et al., 2022) and 445 
Megasphaera hexanoica (family Megasphaeraceae) (Jeon et al., 2017; Kang et al., 2022). 446 
Interestingly, MAGs within the same family (Acutalibacteraceae) differ in the presence of lactic acid 447 
utilization homologs (Figure S1C), suggesting this difference may be on the genus or species level. 448 
Recent results suggest members of this family can produce MCFAs from lactic acid (Wang et al., 449 
2022) as well as carbohydrates (Van Nguyen et al., 2023). Further research into these MAGs and 450 
related isolated organisms will be valuable to evaluate this new hypothesis.  451 

Of the two MAGs in the class Bacilli that are classified as Carbohydrate Chain Elongators, 452 
UW_MP_SPOR1_1 (family Sporolactobacillaceae) lacked homologs to the electron bifurcating 453 
acyl-CoA dehydrogenase and the acetyl-CoA C-acetyltransfase enzymes while UW_TS_BAC2_1 454 
(family Bacillaceae) contained homologs for all examined enzymes (Figure S1C). Members of the 455 
family Sporolactobacillaceae are known to produce lactic acid (Chang et al., 2008; Tolieng et al., 456 
2017), so our findings raise the possibility that some members of class Bacilli may be able to produce 457 
MCFAs as well. Similarly, the MAG in the family Clostridiaceae contained homologs for all 458 
enzymes examined, including the lactic acid utilization proteins, suggesting that this MAG may 459 
produce MCFAs from lactic acid as well as carbohydrates. Members of the phyla Spirochaetota and 460 
Proteobacteria are not known to perform chain elongation, but the MAGs contain at least some of 461 
the genes encoding enzymes important for chain elongation, raising the possibility of an expanded 462 
functional role of MAGs from these taxonomic groups (Figure S1C). Taken together, the results from 463 
the machine learning analysis both support previous research and suggest potential new groups of 464 
organisms that may be able to perform the specific biological function. 465 

4.4 Phylogenetic analysis of EtfB homologs can differentiate between lactic acid utilization and 466 
chain elongation  467 

The electron flavoprotein (EtfAB) can for a complex with both electron confurcating lactate 468 
dehydrogenase (ecLDH, involved in lactic acid utilization) and acyl-CoA dehydrogenase (ACD, 469 
involved in chain elongation) (Garcia Costas et al., 2017; Detman et al., 2019) and phylogenetic 470 
analysis of the beta subunit (EtfB) can be used to differentiate between the ability to use lactic acid 471 
and to perform chain elongation (Walters et al., 2023). This analysis suggests that three MAGs in the 472 
Intermediate Chain Elongators group contain multiple copies of EtfB, one associated with ecLDH 473 
and one associated with ACD (Figure 10, Figure S2), supporting the functional classification that 474 
these MAGs use lactic acid to perform chain elongation. Three MAGs in the Carbohydrate Chain 475 
Elongators group contain a single copy of EtfB associated with ACD (Figure 10, Figure S2), 476 
supporting the classification that these MAGs can produce MCFAs but not utilize lactic acid. 477 
However, a majority of the MAGs in both functional groups contain EtfB homologs for which the 478 
phylogenetic analysis cannot predict a metabolic function. Additional research into the metabolism of 479 
microorganisms represented by these MAGs will be required to elucidate the function of these EtfB 480 
homologs. 481 

4.5 Additional data needed to better understand and predict operation of these microbial 482 
communities 483 
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 All of the analyses in this study were performed using metagenomic data for the MAGs 484 
across the 10 experiments. Importantly, metagenomics data can inform what genes are present in a 485 
microbial community, and thus we can use this presence to classify MAGs using machine learning. 486 
However, presence of a gene does not indicate how much that gene is expressed and thus how 487 
important the protein is to the microbial community. Previous work has shown a dramatic disconnect 488 
in MAG abundance when calculated using metagenomics (DNA) data or metatranscriptomics (RNA) 489 
data (Jewell et al., 2016; Lawson et al., 2017; Beach et al., 2021; Wang et al., 2021). The addition of 490 
metatranscriptomics to study this ecological microbial model would not only indicate the expression 491 
level of the genes in each MAG, but would also provide more information about the functional 492 
abundance of each MAG within each functional group. 493 

 For the machine learning analysis, we selected isolated bacteria that had been shown to 494 
perform the biological function for each group. This meant we were limited in how many organisms 495 
were available to use to build our training set. One key example is the lack of isolated organisms 496 
shown to convert ethanol to MCFAs. The only isolated organism we were able to find supported 497 
evidence for this biological process was the well-studied species Clostridium kluyveri (Seedorf et al., 498 
2008; Han et al., 2018). Due to the limited available genomes that represent isolated organisms 499 
known to produce MCFA from ethanol by chain elongation, we did not attempt to predict this as a 500 
separate functional group. As more bacteria are isolated and studied for this biological process, it is 501 
likely the machine learning model can be updated to distinguish between MAGs that using ethanol 502 
and those that use lactic acid to produce MCFAs, adding more value to this type of classification 503 
procedure. 504 

This study suggests that the ecological microbial model of different functional groups 505 
(Ferment to Intermediates, Intermediate Chain Elongators, and Carbohydrate Chain Elongators) is 506 
common among microbial communities enriched in carbohydrate-rich agroindustrial residues seeded 507 
with anaerobic digester sludge from the wastewater treatment plant. Examination of a microbial 508 
community enriched in food waste, a carbohydrate-rich liquid medium, and an inoculum of anaerobic 509 
digester sludge from a wastewater treatment plant suggested a similar ecological model (Crognale et 510 
al., 2021). A key question that remains is how widespread this ecological model is when applied to 511 
other microbial communities, especially in terms of different inocula and feedstock used. Additional 512 
research into the composition and genomic make up of other microbial communities would be 513 
fascinating and reveal how universal this model is among microbial communities performing chain 514 
elongation to produce MCFAs. 515 

4.6 Concluding Remarks 516 

Examining the 240 MAGs across 10 experiments provided us an opportunity to develop new 517 
tools to better understand the microbial communities present across the bioreactors. Specifically, the 518 
large data set enabled the use of multiclass classification machine learning to categorize the MAGs 519 
into distinct functional groups in an unbiased manner. These tools can be adapted to evaluate other 520 
microbial ecology models by changing or expanding the functional groups included in the models. 521 
Thus, this analysis not only further explained the core functional groups for MCFA production in 522 
carbohydrate rich agroindustrial residues but also demonstrated a new way to quickly examine and 523 
explore microbial communities. Such knowledge will help generate hypotheses about microbial 524 
community members that could be experimentally tested, helping in the development of better 525 
strategies to manage microbiomes to produce desired products, as well as to better characterize 526 
microbial functions in a wide variety of microbiomes. 527 
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 766 

Figures 767 

768 
Figure 1. Overview of bioreactors operated with the different agroindustrial feedstocks and 769 
their contribution to the non-redundant MAG dataset. A) Graphical overview of inoculum source 770 
and enrichments with different feedstocks, indicating the number of MAGs assembled from each 771 
source. All reactors were completely mixed flow-through reactors, except for Milk Permeate 2, 772 
which was an upflow sludge blanket reactor. See Table 1 for operational conditions. B) Flow chart 773 
indicating how the MAGs were filtered for this work. From a total of 240 MAGs, dRep (Olm et al., 774 
2017) was used to identify redundant MAGs and define a set of 217 non-redundant MAGs. 775 
Abundance was then used to define a set of 131 high-abundance and non-redundant MAGs.  776 
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777 
Figure 2. Summary of extracellular fermentation products that accumulated in the bioreactors. 778 
Product concentrations are summarized into four groups, indicating maximum concentrations 779 
measured during the course of the experiments: <0.1 gCOD/L (light grey), between 0.1 and 2 g 780 
COD/L (blue), between 2g COD/L and 10g COD/L (red), >10g COD/L (yellow). 781 
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782 
Figure 3. NMDS plot comparing microbial communities across all reactors analyzed. Non-783 
metric multidimensional scaling (NMDS) plot of the relative abundances of the microbial 784 
communities using the 217 non-redundant MAGs across all experiments over all measured time 785 
points (stress value 0.17). Samples from different bioreactor experiments are color coded according 786 
to the key. Ovals represent the standard deviation of the average value for all samples from each 787 
bioreactor experiment and are color coded according to the key. Samples that were taken at the time 788 
of inoculation are marked with ‘0’. See Table 1 for description of bioreactor operational conditions 789 
and definition of experiment names. 790 
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791 
Figure 4. Clustering 217 MAGs using metabolic pathways. Identified homologous proteins in the 792 
indicated metabolic pathways (columns) for each of the 217 non-redundant MAGs (rows). Colors 793 
represent the percentage of protein homologs for each pathway for each MAG as indicated in the key. 794 
The MAGs were hierarchically clustered resulting the dendrogram on the left. Functional group 795 
assignments based on hierarchical clustering is indicated on the right, and color coded as Ferment to 796 
Intermediates (blue), Intermediate Chain Elongation (ICE, green), Carbohydrate Chain Elongation 797 
(CCE, red), and uninvolved in MCFA production (purple). 798 
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799 
Figure 5. Summary of machine learning categorization. A) Distribution of the 131 MAGs in the 800 
different functional groups used for machine learning classification. B) Distribution of the 131 801 
MAGs according to the experiment from which each was identified in according to how they were 802 
classified in by machine learning. Venn diagrams show comparison of the hierarchical pathway 803 
clustering classification and the machine learning classification for Fermentation to Intermediates 804 
group (C), the Intermediate Chain Elongators group (D), and the Carbohydrate Chain Elongators 805 
group (E). Only MAGs present with at least 1% relative abundance in at least one sample across all 806 
experiments are included in the comparison analysis. 807 



  Metagenomes from agroindustrial residues 

 25 

808 
Figure 6. Phylogenetic tree of MAGs classified in the Ferment to Intermediates group and the 809 
genomes used in the training set. A maximum-likelihood phylogenetic tree constructed using 810 
RAxML-ng (Kozlov et al., 2019) with 1000 bootstraps (values >50 shown) and using the 120 811 
bacterial housekeeping gene concatenations generated by GTDB-Tk (Chaumeil et al., 2019). 812 
Taxonomic classification performed using GTDB-Tk (database version 202) (Chaumeil et al., 2019). 813 
The scale bar indicates the number of nucleotide substitutions per sequence site. Genomes used in the 814 
training set are shown (labeled Training Set) and NCBI Accession Numbers are found in Table S6. 815 
Color dots indicate experiment the MAG was identified in (experiments with no MAGs present in the 816 
tree are not shown). Ba., Bacteroidota; Pro., Proteobacteria. 817 
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818 
Figure 7. Phylogenetic tree of MAGs classified in the Intermediate Chain Elongators group and 819 
genomes used in the training set. A maximum-likelihood phylogenetic tree constructed using 820 
RAxML-ng (Kozlov et al., 2019) with 1000 bootstraps (values >50 shown) and using the 120 821 
bacterial housekeeping gene concatenations generated by GTDB-Tk (Chaumeil et al., 2019). 822 
Taxonomic classification performed using GTDB-Tk (database version 202) (Chaumeil et al., 2019). 823 
The scale bar indicates the number of nucleotide substitutions per sequence site. Genomes used in the 824 
training set for this group are shown (labeled Training Set) and NCBI Accession Numbers are found 825 
in Table S6. Color dots indicate experiment the MAG was identified in (experiments with no MAGs 826 
present in the tree are not shown). Ba., Bacteroidota; Acida., Acidaminococcales; Acida., 827 
Acidaminococcaceae; Peptostr., Peptostretococcales; Anaerov., Anaerovoracaceae; Eubacteriac., 828 
Eubacteriaceae; Ls., Lachnospirales; La., Lachnospiraceae; Oscil., Oscillospirales; Os. 829 
Oscillospiraceae. 830 
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831 
Figure 8. Phylogenetic tree of MAGs classified in the Carbohydrate Chain Elongators group 832 
and genomes used in the training set. A maximum-likelihood phylogenetic tree constructed using 833 
RAxML-ng (Kozlov et al., 2019) with 1000 bootstraps (values >50 shown) and using the 120 834 
bacterial housekeeping gene concatenations generated by GTDB-Tk (Chaumeil et al., 2019). 835 
Taxonomic classification performed using GTDB-Tk (database version 202) (Chaumeil et al., 2019). 836 
The scale bar indicates the number of nucleotide substitutions per sequence site. Genomes used in the 837 
training set for this group are shown (labeled Training Set) and NCBI Accession Numbers are found 838 
in Table S6. Color dots indicate experiment the MAG was identified in (experiments with no MAGs 839 
present in the tree are not shown). Ba., Bacteroidota; Pro., Proteobacteria; Baci., Bacillales; So., 840 
Sporolactobacillaceae; Bl., Bacillaceae; Acutalibacter., Acutalibacteraceae; Cl., Clostridiales; Co., 841 
Clostridiaceae; Sp., Spirochaetota. 842 
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843 
Figure 9. Cumulative relative abundances for taxa within each group reveal common biological 844 
functions across agroindustrial residues. Cumulative relative abundances for each taxa across the 845 
10 experiments for MAGs classified in the Ferment to Intermediates group, the Intermediate Chain 846 
Elongators group, and the Carbohydrate Chain Elongators group as labeled. For each panel, the heat 847 
map represents the cumulative relative abundance, with white indicating a cumulative relative 848 
abundance <1. Asterisks indicate taxa present in the machine learning training set. MCFA, Medium 849 
Chain Fatty Acid. 850 
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851 
Figure 10. Association of EtfB homologs with lactic acid utilization, chain elongation, or other 852 
functions. Summary of the phylogenetic analysis (Figure S2) examining EtfB homologs in the 853 
MAGs from the Intermediate Chain Elongators group (A) and the Carbohydrate Chain Elongators 854 
group (B). MAGs with an EtfB homolog that the phylogenetic analysis suggests is associated with 855 
lactic acid utilization have a blue box in the first column while MAGs with an EtfB homolog that the 856 
phylogenetic analysis suggests is associated with chain elongation have a blue box in the second 857 
column. A blue box in the Other column indicates that a MAG has an EtfB homolog for which the 858 
phylogenetic analysis cannot indicate a clear function. 859 



  

Tables 860 
 861 
Table 1. Bioreactor operational conditions 862 

Feedstock Experimenta Main organic substrates in the 
feedstock 

SRTb 
(days) 

HRTb 
(days) Temperature pH Reference 

Manure 
Hydrolysate 

Manure 
Hydrolysate glucose, xylose 6 6 35°C 5.5 (Ingle et al., 2021) 

Ultra-Filtered 
Milk Permeate 

Milk Permeate 1 
(CSTR) lactose 6 6 35°C 5.5 (Walters this issue) 

Milk Permeate 2 
(USB) lactose >40 0.5 room temp 5.5 This Study 

Cellulosic EtOH 
Thin Stillage 

Cellulosic-EtOH 
Thin Stillage xylose 6 6 35°C 5.5 

(Scarborough et al., 
2018a; Scarborough et 

al., 2020) 
Xylose Synthetic 

Medium Xylose xylose 6 6 35°C 5.5 This Study 

Starch EtOH 
Thin Stillage 

Starch-EtOH 1 glycerol, carbohydrates, lactic acid 6 6 35°C 5.5 (Fortney et al., 2021) 
SR-Starch-EtOH 2 glycerol, carbohydrates, lactic acid 6 6 35°C 5.5 (Fortney et al., 2021) 
SR-Starch-EtOH 3 glycerol, carbohydrates, lactic acid 1 1 35°C 5.5 (Fortney et al., 2021) 
SR-Starch-EtOH 4 glycerol, carbohydrates, lactic acid 6 6 55°C 5.0 (Fortney et al., 2021) 
SR-Starch-EtOH 5 glycerol, carbohydrates, lactic acid 1 1 55°C 5.0 (Fortney et al., 2021) 

a CSTR = Continuously stirred tank reactor; USB = Upflow sludge blanket reactor; SR = Solids removed from the thin stillage by decanting. 863 
b SRT = Solid Retention Time; HRT = Hydraulic Retention Time 864 



  

Table 2. Relative abundance of all 217 non-redundant MAGs across all experiments 865 

Experiment 
Number of MAGs 

Detected as 
Presenta 

Min-Max Relative 
Abundance Rangeb (%) 

Median Relative 
Abundance (%) 

Inoculum 21 10.3 – 13.0 11.6 
Manure Hydrolysate 99 68.9 – 77.9 74.7 

Milk Permeate 1 148 9.3 – 91.1 74.6 
Milk Permeate 2 139 7.9 – 80.1 69.2 

Cellulosic EtOH Thin 
Stillage 75 33.0 – 87.3 86.6 

Xylose 21 88.0 – 88.5 88.5 
Starch-EtOH 1 100 8.5 – 87.0 63.5 

SR-Starch-EtOH 2 55 87.9 – 92.6 90.3 
SR-Starch-EtOH 3 52 80.8 – 88.8 85.2 
SR-Starch-EtOH 4 53 84.6 – 89.7 86.1 
SR-Starch-EtOH 5 24 74.9 – 77.4 76.4 

a A MAG was defined to be present in a sample if the relative abundance was greater than 0%. 866 
b Minimum and maximum relative abundances represented by the non-redundant MAG dataset 867 
among all the samples from each bioreactor experiment and from the inoculum samples. 868 

 869 

Table 3. General information on the 217 MAGs 870 
 871 
Characteristic Value 

Phyla Identified 8 

Families Identified 12 

Genera Identified 24 

Illumina Total (contig range) 149 (1-558) 

PacBio Total (contig range) 68 (1-44) 

Completion Minimum 75% 

Contamination Maximum 7.5% 

 872 



   

Supplementary Material 

Comparison of metagenomes from fermentation of various 
agroindustrial residues suggests a common model of community 

organization 

Kevin S. Myers1,2; Abel T. Ingle1,2,3; Kevin A. Walters1,2,3; Nathaniel W. Fortney1,2‡; Matthew J. 
Scarborough4, Timothy J. Donohue1,2,5, Daniel R. Noguera*1,2,3 

 
1 Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA 
2 Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA 
3 Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, 
WI, USA 
4 Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, USA 
5 Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA 
‡Current affiliation:  Thermo Fisher Scientific, Middleton, WI, USA 

* Correspondence:  
Daniel R. Noguera 
dnoguera@wisc.edu 

1 Supplementary Tables 

Table S1. 240 MAGs collected from the inoculum and 10 experiments with different agroindustrial 
residues. (Excel File) 
 
Table S2. 217 MAGs deemed non-redundant by dRep. (Excel File) 
 
Table S3. Organization and distribution of GTDB-Tk determined taxonomy for all 217 non-
redundant MAGs. (Excel File) 
 
Table S4. 131 MAGs with at least 1% relative abundance in at least 1 experimental sample and 
machine learning functional group classification. (Excel File) 
 
Table S5. Enzyme list and reaction presence or absence in all MAGs used for metabolic make up of 
MAGs and genomes. (Excel File) 
 
Table S6. Genomes and results used as a training set for the machine learning algorithm. (Excel File) 

 

 



  Supplementary Material 

 2 

2 Supplementary Figures (Separate Images) 
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Figure S1. Summary of key metabolic pathway and enzyme presence and absence across the MAGs in 
each functional group. A) Summary of enzyme presence or absence in three fermentative pathways for each 
MAG classified in the Ferment to Intermediates group, bold name indicates MAG generated from long-read 
PacBio sequencing data. The percentage of each protein unique to one of the three fermentative pathways 
examined (homolactic, heterolactic phosphoketolase, and heterolactic bifid shunt) is represented by the 
different colored boxes. Note the high abundance of enzymes in the heterolactic bifid shunt for MAGs in the 
family Bifidobacteriaceae. Also shown is the taxonomic grouping from Figure 5. Pro., Proteobacteria. B) 
Summary of enzyme presence or absence known to be required for lactic acid conversion to MCFA for MAGs 
classified in the Intermediate Chain Elongation group, bold name indicates MAG generated from long-read 
PacBio sequencing data. Blue boxes indicate protein presence while yellow boxes indicate protein absence for 
each MAG. Shown is the taxonomic grouping from Figure 6. Ba., Bacteroidota; Euba., Eubacteriales; Eub., 
Eubacteriaceae; Pep., Peptostretococcales; Ana., Anaerovoracaceae; Clostr., Clostridales; Clostrid., 
Clostridiaceae; Acida., Acidaminococcales; Acida., Acidaminococcaceae; Ls., Lachnospirales; La., 
Lachnospiraceae; Ol., Oscillospirales; Os. Oscillospiraceae. C) Summary of enzyme presence or absence 
known to be required for lactic acid conversion to MCFA for MAGs classified in the Carbohydrate Chain 
Elongators group, bold name indicates MAG generated from long-read PacBio sequencing data. Shown is the 
taxonomic grouping from Figure 7. Pro., Proteobacteria; Osc., Oscillospirales; Acu., Acutalibacteraceae; 
Baci., Bacillales; So., Sporolactobacillaceae; Bl., Bacillaceae; Cl., Clostridiales; Co., Clostridiaceae; Sp., 
Spirochaetota. 
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Figure S2.  Phylogenetic analysis of EtfB homologs from genomes and MAGs in the Intermediate Chain 
Elongators and Carbohydrate Chain Elongators functional groups. A maximum-likelihood phylogenetic 
tree constructed using RAxML-ng (Kozlov et al., 2019) with 500 bootstraps (values >50 shown) of the EtfB 
homologs identified from genomes previously used (black genome name) (Walters et al., 2023), MAGs in the 
Intermediate Chain Elongators group (orange MAG name), and the Carbohydrate Chain Elongators group 
(green MAG name). More than one EtfB homolog could be identified in each MAG and is indicated with 
numbers. The scale bar indicates the number of nucleotide substitutions per sequence site. Genomic position 
was determined previously (Walters et al., 2023). Genomes wherein etfB was in the same neighborhood as 
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lactic acid utilization genes encoding electron confurcating lactate dehydrogenase (ecLDC) and lactate 
permease (LacT) are indicated with green circles. Genomes wherein etfB was in the same neighborhood as 
chain elongation genes encoding acyl-CoA dehydrogenase (ACD), acetyl-CoA acetotransferase (ACAT), 3-
hydroxyacyl-CoA dehydrogenase (HAD), and enoyl-CoA hydratase (EcOAH) are indicated with purple 
circles. Green bars indicate MAGs and genomes where in EtfB is predicted to associate with lactic acid 
utilization proteins and purple bars indicate MAGs and genomes where EtfB is predicted to associate with 
chain elongation proteins. 
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