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Abstract

The liquid residue resulting from various agroindustrial processes is both rich in organic
material and an attractive source to produce a variety of chemicals. Using microbial communities to
produce chemicals from these liquid residues is an active area of research, but it is unclear how to
deploy microbial communities to produce specific products from the different agroindustrial residues.
To address this, we fed anaerobic bioreactors one of several agroindustrial residues (carbohydrate-
rich lignocellulosic fermentation conversion residue, xylose, dairy manure hydrolysate, ultra-filtered
milk permeate, and thin stillage from a starch bioethanol plant) and inoculated them with a microbial
community from an acid-phase digester operated at the wastewater treatment plant in Madison, WI,
USA. The bioreactors were monitored over a period of months and sampled to assess microbial
community composition and extracellular fermentation products. We obtained metagenome
assembled genomes (MAGs) from the microbial communities in each bioreactor and performed
comparative genomic analyses to identify common microorganisms, as well as any community
members that were unique to each reactor. Collectively, we obtained a dataset of 217 non-redundant
MAGs from these bioreactors. This MAG dataset was used to evaluate whether a microbial ecology
model in which medium chain fatty acids (MCFAs) are simultaneously produced from intermediates
products (e.g., lactic acid) and carbohydrates could be applicable to all fermentation systems,
regardless of the feedstock. MAGs were classified, using a multiclass classification machine learning
algorithm into three groups, organisms fermenting the carbohydrates to intermediate products,
organisms utilizing the intermediate products to produce MCFAs, and organisms producing MCFAs
directly from carbohydrates. This analysis revealed commonalities among the microbial communities
in different bioreactors, and although different microorganisms were enriched depending on the
agroindustrial residue tested, the results supported the conclusion that the microbial ecology model
tested was appropriate to explain the MCFA production potential from all agricultural residues.

1 Introduction

Finding ways to generate chemicals and chemical precursors from renewable sources is an
important step towards creating a sustainable circular economy that decreases society’s dependance
on fossil fuels. Medium chain fatty acids (MCFAs) are one such class of product that can be
microbially produced, have applications in lubricant synthesis, production of herbicides and
antimicrobials, and can be further processing into additional chemicals (Sarria et al., 2017;
Scarborough et al., 2018b). Microbes and microbial communities can produce MCFAs using a wide
variety of carbohydrate-rich substrates, making biological MCFA production an attractive target due
to the widespread availability of carbohydrate-rich organic wastes that can be used as substrates, such
as undistilled corn beer (Ge et al., 2015), thin stillage (Fortney et al., 2021), lignocellulosic
fermentation conversion residues (Scarborough et al., 2018a; Scarborough et al., 2018b), a soluble
fraction of municipal solid waste (Grootscholten et al., 2013; Grootscholten et al., 2014) and winery
residue (Kucek et al., 2016b). In addition to MCFAs, other fermentation products have been
identified as coproduced by microbial communities that generate MCFAs from various substrates,
including the accumulation of acetic, lactic, succinic, and butyric acids, as well as ethanol (Han et al.,
2018; Fortney et al., 2021). Lactic, succinic, and butyric acids can be used as building blocks for
materials such as bioplastics (Harmsen et al., 2014). Further, both lactic acid and ethanol have been
shown to be intermediate metabolites during MCFA production by members of microbial
communities that perform reverse 3-oxidation, also known as chain elongation (Agler et al., 2012;
Zhu et al., 2015; Kucek et al., 2016a; Han et al., 2018). Although most MCFA production research
has been conducted with microbial communities, it is not clear how to steer a community towards
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maximizing MCFA production without accumulation of other fermentation products, or how to
harness the microbial community to produce primarily one fermentation product. Therefore,
additional knowledge is needed to enable the engineering of microbial communities to produce the
desired fermentation products. We are interested in generating models that can explain and possibly
predict the relationship of microbial community structure with the type of carbohydrate-rich
substrates and the type of fermentation products that accumulate.

An emerging microbial ecology model describes three main functions in a chain elongation
microbiome; one group of microbes that can ferment carbohydrates to lactic acid but cannot perform
chain elongation, other microbes that can perform chain elongation using lactic acid as an electron
donor, and others that can perform chain elongation directly from carbohydrates (Scarborough et al.,
2018a). This model, initially proposed based on experiments using xylose-rich organic residues from
lignocellulosic ethanol production (Scarborough et al., 2018a), has been suggested for other
substrates (Crognale et al., 2021; Fortney et al., 2021; Ingle et al., 2021), and there is emerging
evidence of MCFA-producing microbes with the genomic capacity for producing MCFA from both
lactic acid and carbohydrates (Kang et al., 2022; Wang et al., 2022). In other cases, it is proposed that
ethanol can be used as an electron donor and act as an intermediate during MCFA production (Agler
et al., 2012; Kucek et al., 2016a). To evaluate whether this microbial ecology model can be
generalized to conceptually explain MCFA production from a variety of carbohydrate-rich organic
residues, we evaluated the microbial communities that were enriched when the same inoculum was
used in bioreactor experiments that fermented several agroindustrial residues, including thin stillage
from starch ethanol production (Fortney et al., 2021; Fortney et al., 2022), thin stillage from
cellulosic ethanol production (Scarborough et al., 2018a; Scarborough et al., 2020), xylose
(Scarborough et al., 2022), dairy manure hydrolysate (Ingle et al., 2021; Ingle et al., 2022), and
ultrafiltered milk permeate (Walters et al., 2022; Walters et al., 2023). In all cases, the inoculum was
from an acid-phase anaerobic digester at the local wastewater treatment plant (Madison, WI, USA).

Here we present the comparison of metagenome assembled genomes (MAGs) from these
bioreactors and examine the role of different microbial groups in the fermentation and chain
elongation processes. For this analysis, we developed a script to identify genes encoding key
metabolic enzymes in the MAGs and a machine learning algorithm to bin each MAG into relevant
categories. This analysis revealed patterns showing that in fermentations in which MCFA is the
primary product that accumulates, and the feedstock is a carbohydrate-rich substrate, the microbial
ecology model that describes chain elongation occurring via utilization of intermediates or direct
utilization of carbohydrates is applicable, even though different microorganisms were enriched
depending on the agroindustrial residue tested.

2 Materials and Methods
2.1 Metagenome assembled genome (MAG) sources

MAG data was obtained from previously published lab-scale bioreactor studies of microbial
communities grown with various agroindustrial residues (Scarborough et al., 2018a; Scarborough et
al., 2020; Fortney et al., 2021; Ingle et al., 2021; Fortney et al., 2022; Ingle et al., 2022; Scarborough
et al., 2022; Walters et al., 2022). The operational conditions of the bioreactors are summarized in
Table 1. MAGs were obtained from the inoculum source (10 MAGs) (Ingle et al., 2022) and
bioreactors fed cellulosic ethanol thin stillage (10 MAGs) (Scarborough et al., 2018a; Scarborough et
al., 2020), synthetic medium containing xylose as the primary carbon source (8 MAGs) (Scarborough
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et al., 2022), hydrolysate from dairy manure (38 MAGs) (Ingle et al., 2021; Ingle et al., 2022), ultra-
filtered milk permeate (123 MAGs) (Walters et al., 2022; Walters et al., 2023), and starch ethanol
thin stillage (51 MAGs) (Fortney et al., 2021; Fortney et al., 2022). In all cases, only the best-quality
representative MAGs determined in each study were used. In total, we used an initial dataset of 240
MAGs (Table S1).

2.2 MAG dereplication and taxonomic classification

The program dRep (v3.2.2; dereplicate command) (Olm et al., 2017) was used to identify
redundant MAGs using default settings, except -conW was set to 0.5 and -N50W was set to 5. This
reduced the total MAG number from 240 to 217 non-redundant MAGs (Table S2). CheckM (v1.0.11;
lineage wf and ga commands with default parameters) (Parks et al., 2015) was used to determine
relevant quality parameters for each of the 217 MAGs (Table S2). All 217 MAGs were
taxonomically classified using GTDB-Tk (v1.5.1; database release 202; classify wf command with
default parameters) (Table S3).

2.3 Alignment and relative abundance calculations

To predict the relative abundance of microorganisms represented by the 217-MAG dataset in
samples from the different bioreactors, the genome FASTA files of all the MAGs were concatenated,
and then, Bowtie2 (v2.2.2 with default parameters) (Langmead and Salzberg, 2012) was used to align
the FASTQ sequencing files. Resulting SAM files were converted into BAM files and sorted using
samtools (v1.15.1; view and sort commands with default parameters) (Li et al., 2009). CoverM
(v0.4.0; coverm genome command with default parameters) (https://github.com/wwood/CoverM)
was used to generate relative abundance statistics of mapped reads in the sorted BAM files (Table
S2). We identified 131 MAGs with at least 1% relative abundance in at least one sample across all
experiments, which we define as the high-abundance MAG dataset (Table S4).

2.4 Phylogenetic analyses

Maximum likelihood phylogenetic trees were generated using RAXML-NG (v0.9.0; model
LG+G8+F) (Kozlov et al., 2019) using 1000 bootstraps. GTDB-Tk (v1.5.1; database release 202;
ani_rep command with default parameters) (Chaumeil et al., 2019) was used to identify closest
related genomes, which were downloaded from NCBI. The MAGs and closest genomes were
compared using GTDB-Tk (identify and align commands with default parameters) using a set of 120
bacterial single-copy marker genes (Bac120) for all trees. Prevotella intermedia (GCF_001953955.1)
was used as an outgroup to root the trees.

An additional analysis was performed to compare homologs of subunit B of the electron
transfer flavoprotein (EtfB). For this, EtfB homologs were identified using known protein sequences
(Walters et al., 2023) and tBLASTn (v2.8.1, default parameters) (Camacho et al., 2009) with “pident”
(percent identity to the query sequence) > 25% and “qcovhsp” (coverage of the query sequence) >
70%. EtfB homologs were aligned using MUSCLE (v3.8.31, default parameters) and a phylogenetic
tree was constructed using RAXML-NG using 500 bootstraps (see Data Availability).

2.5 Non-metric multidimensional scaling plots

Non-metric multidimensional scaling (NMDS) plots were generated from the relative
abundance calculations for the 217 non-redundant MAGs using R (v4.1.0) (Core Team, 2018).
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Specifically, the vegdist command with the “bray” index (from the vegan package) was used to
determine the distance metrics and the metaMDS command (from the vegan package) was used to
generate the NMDS values. Plots were constructed using ggplot2 (Wickham, 2016) from the NMDS
values and edited for clarity using Adobe Illustrator (v27.2). The R script used to generate the NMDS
plot is available on GitHub (see Data Availability).

2.6 Homology-based gene identification

A homology-based analysis was performed to identify genes encoding enzymes of
fermentation and central carbon metabolism in each MAG. The query protein sequences used were
manually vetted through either EcoCyc (Keseler et al., 2011), MetaCyc (Caspi et al., 2020), SWISS-
PROT via UniProtKB (Boutet et al., 2016), or other published datasets. Query protein amino acid
sequences and metadata were downloaded from the UniProtKB database. tBLASTn (v2.8.1)
(Camacho et al., 2009) was used to identify homologs using default parameters. Subject sequences
that had an e-value less than 1x107'°, a “pident” (percent identity to the query sequence) value greater
than 25%, and a “qcovhsp” (coverage of the query sequence) value greater than 70% were used to
determine gene homologs (Table S5). All files and scripts are available on GitHub (see Data
Availability).

2.7 Multiclass classification machine learning algorithm

MAGs were classified into four functional groups. The first group, “Ferment to
Intermediates”, consists of MAGs that ferment carbohydrates into intermediate extracellular
products, such as ethanol or lactic acid. The second group, “Intermediate Chain Elongators”, consists
of MAGs that convert intermediate extracellular products (e.g., ethanol or lactic acid) into medium
chain fatty acids (MCFAs) using reverse -oxidation. The third group, “Carbohydrate Chain
Elongators”, consists of MAGs that ferment carbohydrates directly into MCFAs. A fourth group,
“uninvolved”, was used to bin MAGs that could not be classified into the three functional groups.

Multiclass classification machine learning was utilized to categorize the MAGs based on gene
homologs of key fermentation pathways that were detected. A training set was constructed using
organisms known to fit into one of the four groups (Table S6). Bifidobacterium species and lactic
acid bacteria were used for the Ferment to Intermediates training set (Okada et al., 1979; Pokusaeva
et al., 2011; Pruckler et al., 2015; Tanner et al., 2016; Eckel and Vogel, 2020; Ferrero et al., 2021;
Kasmaei et al., 2022; Ksiezarek et al., 2022), Clostridium and Megasphaera species were used for
the Intermediate Chain Elongators training set (Wallace et al., 2003; Seedorf et al., 2008; Jeon et al.,
2017; Kobayashi et al., 2017; Tao et al., 2017; Yang et al., 2018; Yoshikawa et al., 2018; Litty and
Muller, 2021), Caproicibacter and Roseburia species were used for the Carbohydrate Chain
Elongators training set (Kim et al., 2015; Tamanai-Shacoori et al., 2017; Flaiz et al., 2020;
Schoelmerich et al., 2020), and Acetobacter, Prevotella, and Sphaerochaeta species were used for the
uninvolved training set.

Multiple multiclass classification machine learning algorithms were tested using the auto ml
module (v2.9.10) (https://github.com/ClimbsRocks/auto_ml). The algorithms tested against baseline
were Decision Tree (Pedregosa et al., 2011), Random Forest (Pedregosa et al., 2011), Linear
Regression (Pedregosa et al., 2011), XGBoost (https://xgboost.readthedocs.io/en/stable/index.html),
Neural Network (Pedregosa et al., 2011), Nearest Neighbors (Pedregosa et al., 2011), Extra Trees
(Pedregosa et al., 2011), CatBoost (Prokhorenkova et al., 2018), and LightGBM (Zhang et al., 2017).
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The machine learning algorithms were evaluated for correct classification of training set genomes
into functional groups using multiple analyses: the logloss metric (-log(p), where p is the probability
of correctly categorizing the training set) (Bian and Tao, 2011) for each algorithm compared to the
baseline value of no algorithm, precision-recall (PR) curves for each algorithm and receiver operating
characteristic (ROC) curves for each algorithm (Haibo and Garcia, 2009). These evaluations showed
that using the LightGBM model provided the largest decrease in logloss metric (a 99.91%
improvement compared to baseline alone) while maximizing true positives and minimizing false
positives. The script, files used for the machine learning analysis, and the results of the multiclass
classification machine learning analysis are available on GitHub (see Data Availability).

2.9 Hierarchical clustering

MAGs were classified into predicted functional groups using hierarchical clustering based on
the detected genes in metabolic pathways important in MCFA production (Walters et al., 2023).
Hierarchical clustering was performed in R (v4.1.0) (Core Team, 2018) using the gplots R package
(v3.1.3, heatmap.2 command with default parameters, https://github.com/talgalili/gplots/). MAGs
were classified using the hierarchical clustering results in the Fermentation to Intermediates group if
they had high percentage of genes detected in the bifid shunt or phosphoketolase pathways and low
percentage of genes detected in the lactic acid utilization and reverse B-oxidation pathways, in the
Intermediate Chain Elongators group if they had low percentage of genes detected in the bifid shunt
or phosphoketolase pathways and high percentage of genes detected in the lactic acid utilization and
reverse 3-oxidation pathways, and in the Carbohydrate Chain Elongators group if they had low
percentage of genes detected in the bifid shunt, phosphoketolase, and lactic acid utilization pathways
but high percentage of genes detected in the reverse 3-oxidation pathway (Table S2). The script, files
used, and results of this analysis are available on GitHub (see Data Availability).

3 Results
3.1 Analysis of the non-redundant MAG dataset

For this study we used MAGs assembled from 10 different bioreactors that were fed various
agroindustrial residues (Figure 1). The microbial communities that were enriched in these bioreactors
originated from the same inoculum source, an acid-phase anaerobic digester used in the solids
handling treatment train at the local wastewater treatment plant (Madison, WI, USA). In addition to
the type of agroindustrial residue used as the feedstock, parameters such as temperature and pH were
also different in some bioreactor experiments (Table 1). Bioreactor performance has been described
elsewhere for a bioreactor fed xylose-rich thin stillage from cellulosic ethanol production
(Scarborough et al., 2018b), one fed a carbohydrate-rich hydrolysate created from chemical
pretreatment of dairy manure (Ingle et al., 2021), five bioreactors fed thin stillage from starch ethanol
biorefining (Fortney et al., 2021), and one bioreactor fed lactose-rich ultra-filtered milk permeate
(Walters et al., 2023). Two additional bioreactors complete the set of 10 bioreactors used in this
study; one fed a xylose-rich synthetic medium and a second one operated with ultra-filtered milk
permeate as the feedstock. The MAGs assembled from all of the bioreactors have been reported and
are publicly available (Scarborough et al., 2018a; Fortney et al., 2022; Ingle et al., 2022; Scarborough
et al., 2022; Walters et al., 2022). The main fermentation products that accumulated in the medium of
these bioreactors include lactic and succinic acids, ethanol, as well as the short chain fatty acids
(SCFAs) acetic and propionic acids and the MCFAs butyric, hexanoic, and octanoic acids (Figure 2).
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Combined, there are a total of 240 MAGs across these bioreactors (Figure 1B, Table S1).
Given the similarities in the inoculum source and in the accumulated fermentation products, we
hypothesized that the MAGs assembled from these microbial communities would have a high degree
of similarity. However, when the program dRep (Olm et al., 2017) was used to identify MAGs with
at least 99% average nucleotide identity (ANI), only 23 MAGs were highly similar among the 240
MAGs (Figure 1B, Table S1). This dereplication analysis resulted in a library of 217 non-redundant
MAGs that we used to further evaluate the microbial communities in the bioreactors (Table S2).

This collection of 217 non-redundant MAGs represented median relative abundances ranging
from 63.5% to 90.3% in the bioreactor samples, but a median relative abundance of only 11.6% for
the inoculum (Table 2). The low percentage for the inoculum indicates that most of the 217 MAGs in
the library represented microbial community members that were not abundant in the acid-phase
digester inoculum, but were instead enriched during the operation of the bioreactors.

A non-metric multidimensional scaling (NMDS) analysis of the relative abundance of MAGs
in the analyzed samples reveals divergence in the microorganisms that were enriched during growth
in the different agroindustrial residues (Figure 3). The lack of overlap of the abundant MAGs among
agroindustrial residue media used indicates that the media played a large role in shaping the
microbial communities in these bioreactors. The dataset includes samples collected from bioreactors
operated with the same agroindustrial residue but different operational conditions. In these cases, the
NDMS plot suggests that agroindustrial residue used had a larger impact in shaping the microbial
community compared to the operational condition. For example, several bioreactors were operated
using starch ethanol thin stillage (Fortney et al., 2021), and in the NDMS plot (Figure 3) the samples
from these bioreactors clustered together and separate from the samples from bioreactors that used
other agroindustrial residues. The dataset also includes samples collected from bioreactors operated
under identical conditions but receiving different agroindustrial residues. This is the case for the Milk
Permeate 1, Xylose, and the Starch-EtOH 1 experiments (Figure 3). Although they were all operated
under identical conditions, there is no overlap of the abundant MAGs from these reactors in the
NDMS plot, supporting the argument that the agroindustrial residue used had a larger impact in the
microbial communities than the operational conditions used.

The set of non-redundant MAGs has a diverse composition (Table 3, Table S3), with MAGs
belonging to 8 phyla and 12 families within these phyla. 24 MAGs were classified to the genus level
based on the coverage in the metagenomic data sets. In addition, this non-redundant set includes
MAGs assembled with short-read Illumina (149 MAGs) and long-read PacBio technologies (68
MAGs). Estimates of completion and contamination in this dataset are greater than 75% and less than
7.5%, respectively. The MAGs resulting from Illumina sequencing had assemblies with 1 to 558
contigs, whereas the MAGs obtained from PacBio sequencing were assembled in 1 to 44 contigs
(Table 3, Table S2).

3.2 Enzymes in metabolic pathways identified in the non-redundant MAG dataset

We sought to make predictions on the role of different members of the microbial communities
enriched in the bioreactors and to evaluate the microbial ecology model for MCFA production that
hypothesizes the presence of some community members that produce MCFA directly from
carbohydrates (Carbohydrate Chain Elongators), other community members that produce MCFA
from lactic acid or ethanol as intermediate fermentation products (Intermediate Chain Elongators),
and other community members that produce these intermediate products but do not perform chain
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elongation (Ferment to Intermediates) (Scarborough et al., 2018a). To this end, we queried the MAGs
for the presence of homologs of individual proteins present in different fermentation pathways
(Figure 4, Table S5) (Walters et al., 2023). This allowed categorization of MAGs by association of
similar patterns of the presence of homologous proteins from each metabolic pathway examined.
Using the hierarchical clustering of the MAGs based on the percentage of homologs present per
pathway, we categorized the MAGs into the functional groups. Based on this analysis, 79 MAGs are
predicted to ferment carbohydrates to intermediate products (Ferment to Intermediates), 59 MAGs
are predicted to produce MCFA from the intermediate products (Intermediate Chain Elongators), and
13 MAGs are predicted to produce MCFA from carbohydrates (Carbohydrate Chain Elongators,
Figure 4, Table S2).

3.3 Machine learning-based classification

We also wanted to test if we could use multiclass classification machine learning to generate
similar predictions, as a way to evaluate large MAG datasets quickly and to remove any bias in
functional assignments based on enzyme assignments. For this evaluation, we constructed a training
set of isolated organisms predicted to perform the three specific functions in the model, plus
organisms not known or likely to participate in these activities (Table S6). As input to the machine
learning algorithm, we used the information gathered about detection of protein homologs in the
metabolic pathways relevant to the ecological model (Table S5). The training set was then used to
investigate a number of possible multiclass classification machine learning algorithms, with the
LightGBM algorithm (Zhang et al., 2017) producing the best results of binning the genomes into the
correct functional groups based on multiple methods of evaluation (logloss comparison to baseline,
PR curve, and ROC curve).

To evaluate the machine learning multiclass classifications, a subset of the most abundant
MAGs was selected for further analysis. The 217 non-redundant MAGs across the experiments were
filtered to include only MAGs with at least 1% relative abundance in at least one experiment sample
(Figure 1B, Table S4). The resultant 131 high-abundance MAGs include ones assembled from short
read [llumina technology (74 MAGs) and long read PacBio technology (57 MAGs) and were
categorized into one of four functional groups using the trained multiclass machine learning model.
Overall, 63 MAGs were predicted as being able to ferment carbohydrates to intermediate products
(Ferment to Intermediates), 17 MAGs were predicted as being able to convert intermediate products
to MCFAs (Intermediate Chain Elongators), 12 MAGs were categorized as being able to ferment
carbohydrates to MCFAs (Carbohydrate Chain Elongators), and 39 MAGs were predicted not to be
involved in MCFA production (Figure 5A, Table S4). The MAGs in each category were derived
from several different agroindustrial residue experiments (Figure 5B), showing that similar functions
occurred with the different agroindustrial residues.

Comparison of the MAGs classified into the functional groups by the machine learning
algorithm to classification by hierarchical pathway clustering reveals differences based on the
approaches (Figure 5C-E). The Fermentation to Intermediates group shows a large amount of overlap
between the two methods (Figure 5C). The hierarchical pathway clustering method identified more
MAGs than the machine learning algorithm for the Intermediate Chain Elongators group while there
was little overlap among the methods for the Carbohydrate Chain Elongators group (Figure 5D, SE).

Focusing on the machine learning classification, and to further investigate the MAGs present
in functional groups responsible MCFA production, phylogenetic trees were constructed comparing
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the genomes used in the training set and the MAGs classified into each functional group (Figures 6-
8). The MAGs were taxonomically classified using GTDB-Tk (Chaumeil et al., 2019). For each
functional group examined, we found multiple taxonomic groups across taxonomic levels, ranging
from phyla to family (Figures 6-8). Indeed, a subset of the MAGs in groups share no overlap at the
class or family level with genomes in the training set, suggesting the machine learning algorithm is
identifying new taxonomic groups that may perform the specific biological function.

3.4 MAGs predicted to participate in fermentation to intermediate products

The majority of the MAGs predicted in the Ferment to Intermediates group belonged to the
Lactobacillaceae, Bifidobacteriaceae, and Atopobiaceae families (Figure 6). In general, the MAGs in
Bifidobacteriaceae and Lactobacilaceae clustered with the genomes from the same taxonomic group
used in the training set. Further, the machine learning algorithm classified MAGs of the
Atopobiaceae family into this group, despite no member of this family being present in the training
set. A small subset of the MAGs in this functional group belonged to other taxonomic groups: class
Bacilli (3 MAGs) and phylum Proteobacteria (3 MAGs) (Figure 6).

3.5 MAGs predicted to participate in chain elongation from intermediate products

The majority of the MAGs in the Intermediate Chain Elongators group, predicted to convert
fermentation intermediates into MCFAs, were predicted to belong to five families:
Megasphaeraceae, Acidaminococcaceae, Clostridaceae, Anaerovoracaceae, and Eubacteriaceae
(Figure 7). This included a MAG (UW_SG_EUBI, Ca. Pseudoramibacter fermentans) that was
studied at the transcriptomic level and predicted to ferment intermediates into MCFAs (Scarborough
et al., 2020). The MAGs in four of the five families were clustered with genomes in the same
families used in the training set. However, there were no genomes in the training set that belonged to
the family Acidaminococcaceae, Lachnospiraceae, or Oscillospiraceae. Two MAGs belonged to
phylum Bacteroidota (order Bacteroidales).

3.6 MAGs predicted to participate in chain elongation from carbohydrates

The MAGs predicted to belong to the Carbohydrate Chain Elongators group, one which
convert carbohydrates directly to MCFAs, belonged primarily to two families: Lachnospiraceae and
Acutalibacteraceae (Figure 8). Included in this group is a MAG (UW_SG_LCO1, Ca. Weimeria
bifida) previously studied in-depth and suggested to perform chain elongation from carbohydrate
substrates (Scarborough et al., 2020). Seven of the MAGs present in the Carbohydrate Chain
Elongators group belonged to other taxonomic groups: class Bacilli, class Clostridia as well as phyla
Proteobacteria and Spirochaetota (Figure 8).

4 Discussion

We have used a dataset of over 200 MAGs from 10 previously published bioreactor
experiments to evaluate the prevalence of the emerging microbial ecological model for chain
elongation microbiomes. In this model, MCFAs can be produced either from intermediates, such as
lactic acid, or directly from carbohydrates. Using machine learning and protein homology
predictions, we find that this ecology model is conserved across various microbial communities from
bioreactors fed various carbohydrate rich agroindustrial residues. While the MAGs assembled from
each microbial community were not found to be identical in terms of sequence similarity, the
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biological functions of the microbial communities are predicted to be maintained in MAGs from
various taxonomic groups with different relative abundances (Figure 9). Below we discuss
observations about the organisms classified into each group.

4.1 A taxonomically diverse set of MAGs is predicted to ferment carbohydrates to
intermediates

The Ferment to Intermediates functional group was comprised of many MAGs classified in
the phylum Firmicutes, specifically lactic acid bacteria, which are associated with carbohydrate
fermentation to lactic acid and other intermediates (Garde et al., 2002; Ganzle and Follador, 2012;
Ginzle, 2015; Zhang and Vadlani, 2015). Indeed, Firmicutes, specifically those in the family
Lactobacillaceae, make up a large portion of the microbial community in most of the bioreactors
analyzed when using cumulative relative genomic abundance as a measure (Figure 9), suggesting
MAG:s in this phylum may play a key role in fermentation to intermediates across the agroindustrial
residues examined. There were other taxonomic groups classified in this group. MAGs from both
family Atopobiaceae and family Bifidobacteriaceae (phylum Actinobacteriota) were found to be
fairly abundant in a subset of the experiments, specifically Milk Permeate 1 and 2, as well as
Cellulosic Ethanol Thin Stillage and Xylose (Figure 9), which supports previous observations of the
relationship between these two families (Scarborough et al., 2018a; Carvajal-Arroyo et al., 2019;
Walters et al., 2023). Three MAGs in the class Bacilli but not part of the Lactobacillaceae family as
well as three MAGs in the phylum Proteobacteria were both categorized as being in this functional
group (Figure 9) and were found to be of high abundance in two Starch-EtOH experiments that were
conducted at a higher temperature and did not result in accumulation of MCFA chain elongation
products (Figure 2, Table 1) (Fortney et al., 2021).

From a metabolic potential perspective, fermentation to intermediates can be accomplished as
homolactic fermentation wherein only lactic acid is produced, or heterolactic fermentation, either by
the phosphoketolase pathway or the bifid shunt pathway, wherein lactic acid and other products
(ethanol or acetate) are produced (Pokusaeva et al., 2011; Génzle, 2015). The percentage of detected
gene homologs that encode enzymes unique to each fermentative pathway can be used to evaluate
which fermentative pathways may be present in each MAG (Figure S1A). In the majority of MAGs,
greater than 60% of the unique proteins in the homolactic and the heterolactic bifid shunt pathways
were detected, suggesting these are the primary sources of lactic acid across the microbial
communities. This included the MAGs in the phylum Proteobacteria and the non-Lactobacillaceae
MAG:s in the class Bacilli, suggesting this is a key reason these MAGs from unexpected taxonomic
groups were categorized into this functional group (Figure S1A). No MAGs contained more than
60% of the unique proteins in the heterolactic phosphoketolase fermentation pathway, with the
majority containing less than 40% of the unique enzymes (Figure S1A), suggesting this is a not a key
pathway in abundant members of the communities that are found when using these agroindustrial
residues. Nearly all the MAGs in the family Bifidobacteriaceae have over 80% of the unique
enzymes in the heterolactic bifid shunt fermentative pathway, which is to be expected for members of
this family (Figure S1A)(Pokusaeva et al., 2011). Future research can explore the proposal that these
MAG:s that perform lactic acid fermentation and do so using the homolactic fermentation pathway or
heterolactic bifid shunt fermentation pathway.

4.2 MAGs from several taxonomic groups are predicted to use intermediates for chain
elongation
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The Intermediate Chain Elongators functional group was comprised of MAGs from a variety
of taxonomic classifications (Figure 7). While nearly all the MAGs were part of the phyla
Firmicutes A or Firmicutes C, the lower taxonomic levels were more differentiated (Figures 7 and
9), suggesting a variety of microorganisms capable of performing this transformation in these
microbial communities. Several of these MAGs belonged to families included in the training set,
supporting the functional classification — Anaerovoracaceae, Clostridiaceae, Eubacteriaceae, and
Megasphaeraceae — and were the MAGs with the highest relative level of genomic abundance in the
experimental microbial communities (Figure 9). This suggests that these MAGs may play a key role
in converting intermediates to MCFAs. Interestingly, the machine learning approach predicted
MAGs from other families may also perform this biological function. These included MAGs from
the phylum Bacteroidia and the families Acidaminococcaceae, Lachnospiraceae, and
Oscillospiraceae (Figure 7). A member of the family Oscillospiraceae, Caproicibacterium
lactatifermentans, was shown to utilize lactic acid, a function unique from other members of this
family (Wang et al., 2022), and the Oscillospiraceae MAG has homologs of the key proteins for
conversion of lactic acid to MCFAs (Figure S1B). MAGs that belong to family Lachnospiraceae
have been shown to convert carbohydrates directly to MCFAs (Scarborough et al., 2018a;
Scarborough et al., 2020), but our analysis suggests they may also convert fermentation intermediates
into these products. Indeed, UW_MP LCO2 1 contains all three proteins key for conversion of lactic
acid to MCFAs, supporting a possible alternative role of the MAG from this family (Figure S1B).

However, neither the Lachnospiraceae MAG nor the Oscillospiraceae MAG were highly
abundant in any of the datasets analyzed (Figure 9), suggesting they may not play a large role, even if
they do perform generate MCFA from intermediates. Interestingly, the Acidaminococcaceae and
Bacteroidia MAGs have relatively high abundance in the Milk Permeate 1 experiment (Figure 9),
raising the possibility that the unique conditions of that experiment (Walters et al., 2023) may lead to
the enrichment of these MAGs to convert fermentation intermediates to MCFAs. However, the two
MAGs belonging to phylum Bacteroidota are the only two MAGs for which a majority of genes
encoding for lactic acid utilization and reverse B-oxidation were not detected (Figure S1B). This
raises the possibility that these MAGs were misclassified, but their metabolic potential deserves
future exploration since phylogenetically related organisms have recently been associated with SCFA
production in microbial communities (Ho et al., 2021; Watanabe et al., 2021; Liu et al., 2022).

4.3 MAGs from various taxonomic groups are predicted to use carbohydrates for chain
elongation

A majority of the MAGs classified in the Carbohydrate Chain Elongators group by the
machine learning algorithm we used belong to the phylum Firmicutes and specifically five families:
Lachnospiraceae, Acutalibacteraceae, Bacillaceae, Sporolactobacillaceae, and Clostridiaceae
(Figure 9). Of these MAGs, Lachnospiraceae has been shown to produce MCFAs from
carbohydrates in other microbial communities (Scarborough et al., 2018a; Scarborough et al., 2020).
Indeed, the Lachonospiraceae MAGs are the most abundant across the largest number of reactor
experiments, suggesting they are key players in MCFA synthesis from carbohydrate (Figure 9).
Interestingly, for two of these MAGs we were not able to identify homologs to three of the four
enzymes involved in chain elongation (Figure S1C). While this may indicate mis-classification, it
also raises the possibility that other enzymes may perform these processes in these organisms or that
the enzymes have diverged enough in these MAGs so the homologs were below our thresholds.
Additional research into these MAGs will be required to examine these hypotheses.
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Most of the MAGs in this group contain homologs for the chain elongation genes, although
many of them outside the Lachnospiraceae family also contain at least one homolog of the lactic acid
utilization genes (Figure S1C). These results suggest that these MAGs may be able to convert both
carbohydrates as well as lactic acid into MCFAs. This has been observed in other microbes including
Caproicibacterium lactatifermentans (family Acutalibacteraceae) (Wang et al., 2022) and
Megasphaera hexanoica (family Megasphaeraceae) (Jeon et al., 2017; Kang et al., 2022).
Interestingly, MAGs within the same family (Acutalibacteraceae) differ in the presence of lactic acid
utilization homologs (Figure S1C), suggesting this difference may be on the genus or species level.
Recent results suggest members of this family can produce MCFAs from lactic acid (Wang et al.,
2022) as well as carbohydrates (Van Nguyen et al., 2023). Further research into these MAGs and
related isolated organisms will be valuable to evaluate this new hypothesis.

Of the two MAGs in the class Bacilli that are classified as Carbohydrate Chain Elongators,
UW_MP_SPORI 1 (family Sporolactobacillaceae) lacked homologs to the electron bifurcating
acyl-CoA dehydrogenase and the acetyl-CoA C-acetyltransfase enzymes while UW_TS BAC2 1
(family Bacillaceae) contained homologs for all examined enzymes (Figure S1C). Members of the
family Sporolactobacillaceae are known to produce lactic acid (Chang et al., 2008; Tolieng et al.,
2017), so our findings raise the possibility that some members of class Bacilli may be able to produce
MCFAs as well. Similarly, the MAG in the family Clostridiaceae contained homologs for all
enzymes examined, including the lactic acid utilization proteins, suggesting that this MAG may
produce MCFAs from lactic acid as well as carbohydrates. Members of the phyla Spirochaetota and
Proteobacteria are not known to perform chain elongation, but the MAGs contain at least some of
the genes encoding enzymes important for chain elongation, raising the possibility of an expanded
functional role of MAGs from these taxonomic groups (Figure S1C). Taken together, the results from
the machine learning analysis both support previous research and suggest potential new groups of
organisms that may be able to perform the specific biological function.

4.4 Phylogenetic analysis of EtfB homologs can differentiate between lactic acid utilization and
chain elongation

The electron flavoprotein (EtfAB) can for a complex with both electron confurcating lactate
dehydrogenase (ecLDH, involved in lactic acid utilization) and acyl-CoA dehydrogenase (ACD,
involved in chain elongation) (Garcia Costas et al., 2017; Detman et al., 2019) and phylogenetic
analysis of the beta subunit (EtfB) can be used to differentiate between the ability to use lactic acid
and to perform chain elongation (Walters et al., 2023). This analysis suggests that three MAGs in the
Intermediate Chain Elongators group contain multiple copies of EtfB, one associated with ecLDH
and one associated with ACD (Figure 10, Figure S2), supporting the functional classification that
these MAGs use lactic acid to perform chain elongation. Three MAGs in the Carbohydrate Chain
Elongators group contain a single copy of EtfB associated with ACD (Figure 10, Figure S2),
supporting the classification that these MAGs can produce MCFAs but not utilize lactic acid.
However, a majority of the MAGs in both functional groups contain EtfB homologs for which the
phylogenetic analysis cannot predict a metabolic function. Additional research into the metabolism of
microorganisms represented by these MAGs will be required to elucidate the function of these EtfB
homologs.

4.5 Additional data needed to better understand and predict operation of these microbial
communities
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All of the analyses in this study were performed using metagenomic data for the MAGs
across the 10 experiments. Importantly, metagenomics data can inform what genes are present in a
microbial community, and thus we can use this presence to classify MAGs using machine learning.
However, presence of a gene does not indicate how much that gene is expressed and thus how
important the protein is to the microbial community. Previous work has shown a dramatic disconnect
in MAG abundance when calculated using metagenomics (DNA) data or metatranscriptomics (RNA)
data (Jewell et al., 2016; Lawson et al., 2017; Beach et al., 2021; Wang et al., 2021). The addition of
metatranscriptomics to study this ecological microbial model would not only indicate the expression
level of the genes in each MAG, but would also provide more information about the functional
abundance of each MAG within each functional group.

For the machine learning analysis, we selected isolated bacteria that had been shown to
perform the biological function for each group. This meant we were limited in how many organisms
were available to use to build our training set. One key example is the lack of isolated organisms
shown to convert ethanol to MCFAs. The only isolated organism we were able to find supported
evidence for this biological process was the well-studied species Clostridium kluyveri (Seedorf et al.,
2008; Han et al., 2018). Due to the limited available genomes that represent isolated organisms
known to produce MCFA from ethanol by chain elongation, we did not attempt to predict this as a
separate functional group. As more bacteria are isolated and studied for this biological process, it is
likely the machine learning model can be updated to distinguish between MAGs that using ethanol
and those that use lactic acid to produce MCFAs, adding more value to this type of classification
procedure.

This study suggests that the ecological microbial model of different functional groups
(Ferment to Intermediates, Intermediate Chain Elongators, and Carbohydrate Chain Elongators) is
common among microbial communities enriched in carbohydrate-rich agroindustrial residues seeded
with anaerobic digester sludge from the wastewater treatment plant. Examination of a microbial
community enriched in food waste, a carbohydrate-rich liquid medium, and an inoculum of anaerobic
digester sludge from a wastewater treatment plant suggested a similar ecological model (Crognale et
al., 2021). A key question that remains is how widespread this ecological model is when applied to
other microbial communities, especially in terms of different inocula and feedstock used. Additional
research into the composition and genomic make up of other microbial communities would be
fascinating and reveal how universal this model is among microbial communities performing chain
elongation to produce MCFAs.

4.6 Concluding Remarks

Examining the 240 MAGs across 10 experiments provided us an opportunity to develop new
tools to better understand the microbial communities present across the bioreactors. Specifically, the
large data set enabled the use of multiclass classification machine learning to categorize the MAGs
into distinct functional groups in an unbiased manner. These tools can be adapted to evaluate other
microbial ecology models by changing or expanding the functional groups included in the models.
Thus, this analysis not only further explained the core functional groups for MCFA production in
carbohydrate rich agroindustrial residues but also demonstrated a new way to quickly examine and
explore microbial communities. Such knowledge will help generate hypotheses about microbial
community members that could be experimentally tested, helping in the development of better
strategies to manage microbiomes to produce desired products, as well as to better characterize
microbial functions in a wide variety of microbiomes.
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Figure 1. Overview of bioreactors operated with the different agroindustrial feedstocks and
their contribution to the non-redundant MAG dataset. A) Graphical overview of inoculum source
and enrichments with different feedstocks, indicating the number of MAGs assembled from each
source. All reactors were completely mixed flow-through reactors, except for Milk Permeate 2,
which was an upflow sludge blanket reactor. See Table 1 for operational conditions. B) Flow chart
indicating how the MAGs were filtered for this work. From a total of 240 MAGs, dRep (Olm et al.,
2017) was used to identify redundant MAGs and define a set of 217 non-redundant MAGs.
Abundance was then used to define a set of 131 high-abundance and non-redundant MAGs.
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Figure 4. Clustering 217 MAGs using metabolic pathways. Identified homologous proteins in the
indicated metabolic pathways (columns) for each of the 217 non-redundant MAGs (rows). Colors
represent the percentage of protein homologs for each pathway for each MAG as indicated in the key.
The MAGs were hierarchically clustered resulting the dendrogram on the left. Functional group
assignments based on hierarchical clustering is indicated on the right, and color coded as Ferment to
Intermediates (blue), Intermediate Chain Elongation (ICE, green), Carbohydrate Chain Elongation
(CCE, red), and uninvolved in MCFA production (purple).
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Figure 5. Summary of machine learning categorization. A) Distribution of the 131 MAGs in the
different functional groups used for machine learning classification. B) Distribution of the 131
MAGs according to the experiment from which each was identified in according to how they were
classified in by machine learning. Venn diagrams show comparison of the hierarchical pathway
clustering classification and the machine learning classification for Fermentation to Intermediates
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Figure 6. Phylogenetic tree of MAGs classified in the Ferment to Intermediates group and the
genomes used in the training set. A maximum-likelihood phylogenetic tree constructed using
RAxML-ng (Kozlov et al., 2019) with 1000 bootstraps (values >50 shown) and using the 120
bacterial housekeeping gene concatenations generated by GTDB-Tk (Chaumeil et al., 2019).

€S

Taxonomic classification performed using GTDB-Tk (database version 202) (Chaumeil et al., 2019).
The scale bar indicates the number of nucleotide substitutions per sequence site. Genomes used in the

training set are shown (labeled Training Set) and NCBI Accession Numbers are found in Table S6.

Color dots indicate experiment the MAG was identified in (experiments with no MAGs present in the

tree are not shown). Ba., Bacteroidota; Pro., Proteobacteria.
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Figure 7. Phylogenetic tree of MAGs classified in the Intermediate Chain Elongators group and
genomes used in the training set. A maximum-likelihood phylogenetic tree constructed using
RAxML-ng (Kozlov et al., 2019) with 1000 bootstraps (values >50 shown) and using the 120
bacterial housekeeping gene concatenations generated by GTDB-Tk (Chaumeil et al., 2019).
Taxonomic classification performed using GTDB-Tk (database version 202) (Chaumeil et al., 2019).
The scale bar indicates the number of nucleotide substitutions per sequence site. Genomes used in the
training set for this group are shown (labeled Training Set) and NCBI Accession Numbers are found
in Table S6. Color dots indicate experiment the MAG was identified in (experiments with no MAGs
present in the tree are not shown). Ba., Bacteroidota; Acida., Acidaminococcales; Acida.,
Acidaminococcaceae; Peptostr., Peptostretococcales; Anaerov., Anaerovoracaceae; Eubacteriac.,
Eubacteriaceae; Ls., Lachnospirales; La., Lachnospiraceae; Oscil., Oscillospirales, Os.
Oscillospiraceae.
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Figure 8. Phylogenetic tree of MAGs classified in the Carbohydrate Chain Elongators group
and genomes used in the training set. A maximum-likelihood phylogenetic tree constructed using
RAxXML-ng (Kozlov et al., 2019) with 1000 bootstraps (values >50 shown) and using the 120
bacterial housekeeping gene concatenations generated by GTDB-Tk (Chaumeil et al., 2019).
Taxonomic classification performed using GTDB-Tk (database version 202) (Chaumeil et al., 2019).
The scale bar indicates the number of nucleotide substitutions per sequence site. Genomes used in the
training set for this group are shown (labeled Training Set) and NCBI Accession Numbers are found
in Table S6. Color dots indicate experiment the MAG was identified in (experiments with no MAGs
present in the tree are not shown). Ba., Bacteroidota; Pro., Proteobacteria; Baci., Bacillales; So.,
Sporolactobacillaceae; Bl., Bacillaceae; Acutalibacter., Acutalibacteraceae,; CI., Clostridiales; Co.,
Clostridiaceae; Sp., Spirochaetota.
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Figure 9. Cumulative relative abundances for taxa within each group reveal common biological
functions across agroindustrial residues. Cumulative relative abundances for each taxa across the

10 experiments for MAGs classified in the Ferment to Intermediates group, the Intermediate Chain

Elongators group, and the Carbohydrate Chain Elongators group as labeled. For each panel, the heat

map represents the cumulative relative abundance, with white indicating a cumulative relative

abundance <1. Asterisks indicate taxa present in the machine learning training set. MCFA, Medium

Chain Fatty Acid.
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Figure 10. Association of EtfB homologs with lactic acid utilization, chain elongation, or other
functions. Summary of the phylogenetic analysis (Figure S2) examining EtfB homologs in the
MAGs from the Intermediate Chain Elongators group (A) and the Carbohydrate Chain Elongators
group (B). MAGs with an EtfB homolog that the phylogenetic analysis suggests is associated with
lactic acid utilization have a blue box in the first column while MAGs with an EtfB homolog that the
phylogenetic analysis suggests is associated with chain elongation have a blue box in the second
column. A blue box in the Other column indicates that a MAG has an EtfB homolog for which the
phylogenetic analysis cannot indicate a clear function.
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860  Tables
861
862  Table 1. Bioreactor operational conditions
. a Main organic substrates in the SRT® HRT®
Feedstock Experiment feedstock (days) (days) Temperature pH Reference
Manure Manure o
Hydrolysate Hydrolysate glucose, xylose 6 6 35°C 5.5 (Ingle et al., 2021)
Milk Permeate 1 o ..
Ultra-Filtered (CSTR) lactose 6 6 35°C 5.5 (Walters this issue)
Milk Permeate Milk Permeate 2 lactose >40 0.5 room temp 5.5 This Study
(USB)
. . (Scarborough et al.,
C?l"lllllililoglt(izli t(ZH C?l}ﬁﬂlo;ﬁli t(zH xylose 6 6 35°C 5.5 2018a; Scarborough et
g g al., 2020)
Xylose Synthetic o :
Medium Xylose xylose 6 6 35°C 5.5 This Study
Starch-EtOH 1 glycerol, carbohydrates, lactic acid 6 6 35°C 5.5 (Fortney et al., 2021)
Starch EtOH SR-Starch-EtOH 2 glycerol, carbohydrates, lactic acid 6 6 35°C 5.5 (Fortney et al., 2021)
Thin Stillace SR-Starch-EtOH 3 glycerol, carbohydrates, lactic acid 1 1 35°C 5.5 (Fortney et al., 2021)
& SR-Starch-EtOH 4 glycerol, carbohydrates, lactic acid 6 6 55°C 5.0  (Fortney et al., 2021)
SR-Starch-EtOH 5 glycerol, carbohydrates, lactic acid 1 1 55°C 5.0  (Fortney et al., 2021)

863 2 CSTR = Continuously stirred tank reactor; USB = Upflow sludge blanket reactor; SR = Solids removed from the thin stillage by decanting.
864 P SRT = Solid Retention Time; HRT = Hydraulic Retention Time
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865  Table 2. Relative abundance of all 217 non-redundant MAGs across all experiments

Experiment N“‘B’;’f:cf: dl\:‘:‘Gs Min-Max Relative Median Relative
Abundance Range® (%)  Abundance (%)
Present?
Inoculum 21 10.3-13.0 11.6
Manure Hydrolysate 99 68.9-77.9 74.7
Milk Permeate 1 148 9.3-91.1 74.6
Milk Permeate 2 139 7.9 —-80.1 69.2
Cellu1051g EtOH Thin 75 33.0_873 36.6
Stillage

Xylose 21 88.0 — 88.5 88.5
Starch-EtOH 1 100 8.5-87.0 63.5
SR-Starch-EtOH 2 55 87.9-92.6 90.3
SR-Starch-EtOH 3 52 80.8 — 88.8 85.2
SR-Starch-EtOH 4 53 84.6 —89.7 86.1
SR-Starch-EtOH 5 24 749 —177.4 76.4

866 * A MAG was defined to be present in a sample if the relative abundance was greater than 0%.
867 P Minimum and maximum relative abundances represented by the non-redundant MAG dataset
868  among all the samples from each bioreactor experiment and from the inoculum samples.

869
870  Table 3. General information on the 217 MAGs
871

Characteristic Value

Phyla Identified 8

Families Identified 12

Genera Identified 24

[Nlumina Total (contig range) 149 (1-558)
PacBio Total (contig range) 68 (1-44)
Completion Minimum 75%

1)
Contamination Maximum 7.5%

872
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1 Supplementary Tables

Table S1. 240 MAGs collected from the inoculum and 10 experiments with different agroindustrial
residues. (Excel File)

Table S2. 217 MAGs deemed non-redundant by dRep. (Excel File)

Table S3. Organization and distribution of GTDB-Tk determined taxonomy for all 217 non-
redundant MAGs. (Excel File)

Table S4. 131 MAGs with at least 1% relative abundance in at least 1 experimental sample and
machine learning functional group classification. (Excel File)

Table S5. Enzyme list and reaction presence or absence in all MAGs used for metabolic make up of
MAGs and genomes. (Excel File)

Table S6. Genomes and results used as a training set for the machine learning algorithm. (Excel File)
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Supplementary Figures (Separate Images)
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Figure S1. Summary of key metabolic pathway and enzyme presence and absence across the MAGs in
each functional group. A) Summary of enzyme presence or absence in three fermentative pathways for each
MAG classified in the Ferment to Intermediates group, bold name indicates MAG generated from long-read
PacBio sequencing data. The percentage of each protein unique to one of the three fermentative pathways
examined (homolactic, heterolactic phosphoketolase, and heterolactic bifid shunt) is represented by the
different colored boxes. Note the high abundance of enzymes in the heterolactic bifid shunt for MAGs in the
family Bifidobacteriaceae. Also shown is the taxonomic grouping from Figure 5. Pro., Proteobacteria. B)
Summary of enzyme presence or absence known to be required for lactic acid conversion to MCFA for MAGs
classified in the Intermediate Chain Elongation group, bold name indicates MAG generated from long-read
PacBio sequencing data. Blue boxes indicate protein presence while yellow boxes indicate protein absence for
each MAG. Shown is the taxonomic grouping from Figure 6. Ba., Bacteroidota; Euba., Eubacteriales; Eub.,
Eubacteriaceae; Pep., Peptostretococcales; Ana., Anaerovoracaceae, Clostr., Clostridales, Clostrid.,
Clostridiaceae; Acida., Acidaminococcales; Acida., Acidaminococcaceae; Ls., Lachnospirales; La.,
Lachnospiraceae; Ol., Oscillospirales,; Os. Oscillospiraceae. C) Summary of enzyme presence or absence
known to be required for lactic acid conversion to MCFA for MAGs classified in the Carbohydrate Chain
Elongators group, bold name indicates MAG generated from long-read PacBio sequencing data. Shown is the
taxonomic grouping from Figure 7. Pro., Proteobacteria,; Osc., Oscillospirales; Acu., Acutalibacteraceae;
Baci., Bacillales; So., Sporolactobacillaceae; Bl., Bacillaceae,; Cl., Clostridiales, Co., Clostridiaceae; Sp.,
Spirochaetota.
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Figure S2. Phylogenetic analysis of EtfB homologs from genomes and MAGs in the Intermediate Chain
Elongators and Carbohydrate Chain Elongators functional groups. A maximum-likelihood phylogenetic
tree constructed using RAXML-ng (Kozlov et al., 2019) with 500 bootstraps (values >50 shown) of the EtfB
homologs identified from genomes previously used (black genome name) (Walters et al., 2023), MAGs in the
Intermediate Chain Elongators group (orange MAG name), and the Carbohydrate Chain Elongators group
(green MAG name). More than one EtfB homolog could be identified in each MAG and is indicated with
numbers. The scale bar indicates the number of nucleotide substitutions per sequence site. Genomic position
was determined previously (Walters et al., 2023). Genomes wherein effB was in the same neighborhood as



lactic acid utilization genes encoding electron confurcating lactate dehydrogenase (ecLDC) and lactate
permease (LacT) are indicated with green circles. Genomes wherein etfB was in the same neighborhood as
chain elongation genes encoding acyl-CoA dehydrogenase (ACD), acetyl-CoA acetotransferase (ACAT), 3-
hydroxyacyl-CoA dehydrogenase (HAD), and enoyl-CoA hydratase (EcOAH) are indicated with purple
circles. Green bars indicate MAGs and genomes where in EtfB is predicted to associate with lactic acid
utilization proteins and purple bars indicate MAGs and genomes where EtfB is predicted to associate with
chain elongation proteins.
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