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Abstract
Efficient k-nearest neighbor search is a fun-
damental task, foundational for many prob-
lems in NLP. When the similarity is measured
by dot-product between dual-encoder vectors
or `2-distance, there already exist many scal-
able and efficient search methods. But not so
when similarity is measured by more accurate
and expensive black-box neural similarity mod-
els, such as cross-encoders, which jointly en-
code the query and candidate neighbor. The
cross-encoders’ high computational cost typi-
cally limits their use to reranking candidates
retrieved by a cheaper model, such as dual en-
coder or TF-IDF. However, the accuracy of
such a two-stage approach is upper-bounded by
the recall of the initial candidate set, and poten-
tially requires additional training to align the
auxiliary retrieval model with the cross-encoder
model. In this paper, we present an approach
that avoids the use of a dual-encoder for re-
trieval, relying solely on the cross-encoder. Re-
trieval is made efficient with CUR decomposi-
tion, a matrix decomposition approach that ap-
proximates all pairwise cross-encoder distances
from a small subset of rows and columns of the
distance matrix. Indexing items using our ap-
proach is computationally cheaper than training
an auxiliary dual-encoder model through distil-
lation. Empirically, for k > 10, our approach
provides test-time recall-vs-computational cost
trade-offs superior to the current widely-used
methods that re-rank items retrieved using a
dual-encoder or TF-IDF.

1 Introduction

Finding top-k scoring items for a given query is a
fundamental sub-routine of recommendation and
information retrieval systems (Kowalski, 2007; Das
et al., 2017). For instance, in question answering
systems, the query corresponds to a question and
the item corresponds to a document or a passage.
Neural networks are widely used to model the sim-
ilarity between a query and an item in such ap-
plications (Zamani et al., 2018; Hofstätter et al.,

2019; Karpukhin et al., 2020; Qu et al., 2021). In
this work, we focus on efficient k-nearest neigh-
bor search for one such similarity function – the
cross-encoder model.

Cross-encoder models output a scalar similarity
score by jointly encoding the query-item pair and
often generalize better to new domains and unseen
data (Chen et al., 2020; Wu et al., 2020; Thakur
et al., 2021) as compared to dual-encoder 1 models
which independently embed the query and the item
in a vector space, and use simple functions such as
dot-product to measure similarity. However, due
to the black-box nature of the cross-encoder based
similarity function, the computational cost for brute
force search with cross-encoders is prohibitively
high. This often limits the use of cross-encoder
models to re-ranking items retrieved using a sepa-
rate retrieval model such as a dual-encoder or a TF-
IDF-based model (Logeswaran et al., 2019; Zhang
and Stratos, 2021; Qu et al., 2021). The accuracy of
such a two-stage approach is upper bounded by the
recall of relevant items by the initial retrieval model.
Much of recent work either attempts to distill in-
formation from an expensive but more expressive
cross-encoder model into a cheaper student model
such as a dual-encoder (Wu et al., 2020; Hofstätter
et al., 2020; Lu et al., 2020; Qu et al., 2021; Liu
et al., 2022), or focuses on cheaper alternatives to
the cross-encoder model while attempting to cap-
ture fine-grained interactions between the query
and the item (Humeau et al., 2020; Khattab and
Zaharia, 2020; Luan et al., 2021).
In this work, we tackle the fundamental task

of efficient k-nearest neighbor search for a given
query according to the cross-encoder. Our pro-
posed approach, ANNCUR, uses CUR decompo-
sition (Mahoney and Drineas, 2009), a matrix fac-
torization approach, to approximate cross-encoder
scores for all items, and retrieves k-nearest neigh-
bor items while only making a small number of

1also referred to as two-tower models, Siamese networks
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( b)  Q u er y-it e m s c or e distri b uti o n

Fi g ur e 1:  M o d el ar c hit e ct ur e a n d s c or e distri b uti o n f or t hr e e n e ur al s c ori n g f u n cti o ns.  D u al- E n c o d ers ( D E) s c or e
a q u er y-it e m p air usi n g i n d e p e n d e ntl y c o m p ut e d q u er y a n d it e m e m b e d di n gs. [ C L S ]- C E c o m p ut es t h e s c or e b y
j oi ntl y e n c o di n g t h e q u er y-it e m p air f oll o w e d b y p assi n g t h e j oi nt q u er y-it e m e m b e d di n g t hr o u g h a li n e ar l a y er.  O ur
pr o p os e d [ E M B ]- C E e m b e ds s p e ci al t o k e ns a m o n gst q u er y a n d it e m t o k e ns, a n d c o m p ut es t h e q u er y-it e m s c or e
usi n g q u er y a n d it e m e m b e d di n gs e xtr a ct e d usi n g t h e s p e ci al t o k e ns aft er j oi ntl y e n c o di n g t h e q u er y-it e m p air.

c alls t o t h e cr oss- e n c o d er.  O ur pr o p os e d  m et h o d
s el e cts a  fix e d s et of a n c h or q u eri es a n d a n c h or
it e ms, a n d us es s c or es b et w e e n a n c h or q u eri es a n d
all it e ms t o g e n er at e l at e nt e m b e d di n gs f or i n d e xi n g
t h e it e m s et.  At t est ti m e,  w e g e n er at e l at e nt e m-
b e d di n g f or t h e q u er y usi n g cr oss- e n c o d er s c or es
f or t h e t est q u er y a n d a n c h or it e ms, a n d us e it t o
a p pr o xi m at e s c or es of all it e ms f or t h e gi v e n q u er y
a n d/ or r etri e v e t o p- k it e ms a c c or di n g t o t h e a p pr o x-
i m at e s c or es. I n c o ntr ast t o distill ati o n- b as e d a p-
pr o a c h es, o ur pr o p os e d a p pr o a c h d o es n ot i n v ol v e
a n y a d diti o n al c o m p ut e-i nt e nsi v e tr ai ni n g of a st u-
d e nt  m o d el s u c h as d u al- e n c o d er vi a distill ati o n.

I n g e n er al, t h e p erf or m a n c e of a  m atri x
f a ct ori z ati o n- b as e d  m et h o d d e p e n ds o n t h e r a n k of
t h e  m atri x b ei n g f a ct ori z e d. I n o ur c as e, t h e e ntri es
of t h e  m atri x ar e cr oss- e n c o d er s c or es f or q u er y-
it e m p airs.  T o f urt h er i m pr o v e r a n k of t h e s c or e
m atri x, a n d i n-t ur n p erf or m a n c e of t h e pr o p os e d
m atri x f a ct ori z ati o n b as e d a p pr o a c h,  w e pr o p os e
[ E M B ]- C E w hi c h us es a n o v el d ot- pr o d u ct b as e d
s c ori n g  m e c h a nis m f or cr oss- e n c o d er  m o d els (s e e
Fi g ur e 1 a ). I n c o ntr ast t o t h e  wi d el y us e d [ C L S ]-
C E a p pr o a c h of p o oli n g q u er y-it e m r e pr es e nt ati o n
i nt o a si n gl e v e ct or f oll o w e d b y s c ori n g usi n g a
li n e ar l a y er, [E M B ]- C E pr o d u c es a s c or e  m atri x
wit h a  m u c h l o w er r a n k  w hil e p erf or mi n g at p ar
wit h [ C L S ]- C E o n t h e d o w nstr e a m t as k.

We r u n e xt e nsi v e e x p eri m e nts  wit h cr oss-
e n c o d er  m o d els tr ai n e d f or t h e d o w nstr e a m t as k
of e ntit y li n ki n g.  T h e q u er y a n d it e m i n t his c as e
c orr es p o n d t o a  m e nti o n of a n e ntit y i n t e xt a n d a
d o c u m e nt  wit h a n e ntit y d es cri pti o n r es p e cti v el y.
F or t h e t as k of r etri e vi n g k - n e ar est n ei g h b ors a c-
c or di n g t o t h e cr oss- e n c o d er, o ur pr o p os e d a p-
pr o a c h pr es e nts s u p eri or r e c all- vs- c o m p ut ati o n al

c ost tr a d e- offs o v er usi n g d u al- e n c o d ers tr ai n e d
vi a distill ati o n as  w ell as o v er u ns u p er vis e d T F -
I D F- b as e d  m et h o ds ( §3. 2 ).  We als o e v al u at e t h e
pr o p os e d  m et h o d f or v ari o us i n d e xi n g a n d t est-ti m e
c ost b u d g ets as  w ell as st u d y t h e eff e ct of v ari o us
d esi g n c h oi c es i n § 3. 3 a n d § 3. 4 .

2  M at ri x  F a ct o ri z ati o n f o r  N e a r est
N ei g h b o r S e a r c h

2. 1  T as k  D es c ri pti o n a n d  B a c k g r o u n d

Gi v e n a s c ori n g f u n cti o n f θ : Q × I  → R t h at
m a ps a q u er y-it e m p air t o a s c al ar s c or e, a n d a
q u er y q ∈ Q , t h e k - n e ar est n ei g h b or t as k is t o
r etri e v e t o p-k s c ori n g it e ms a c c or di n g t o t h e gi v e n
s c ori n g f u n cti o n f θ fr o m a  fix e d it e m s et I .

I n  N L P, q u eri es a n d it e ms ar e t y pi c all y r e pr e-
s e nt e d as a s e q u e n c e of t o k e ns a n d t h e s c ori n g f u n c-
ti o n is t y pi c all y p ar a m et eri z e d usi n g d e e p n e ur al
m o d els s u c h as tr a nsf or m ers ( Vas w a ni et al. , 2 0 1 7 ).
T h er e ar e t w o p o p ul ar c h oi c es f or t h e s c ori n g f u n c-
ti o n – t h e cr oss- e n c o d er ( C E)  m o d el, a n d t h e d u al-
e n c o d er ( D E)  m o d el.  T h e  C E  m o d el s c or es a gi v e n
q u er y-it e m p air b y c o n c at e n ati n g t h e q u er y a n d t h e
it e m usi n g s p e ci al t o k e ns, p assi n g t h e m t hr o u g h a
m o d el (s u c h as a tr a nsf or m er T ) t o o bt ai n r e pr e-
s e nt ati o n f or t h e i n p ut p air f oll o w e d b y c o m p uti n g
t h e s c or e usi n g li n e ar  w ei g hts w ∈ R d .

f
( C E )
θ ( q, i ) = w ⊤ p o o l (T (c o n c a t (q, i )))

W hil e eff e cti v e, c o m p uti n g a si mil arit y b et w e e n
a q u er y-it e m p air r e q uir es a f ull f or w ar d p ass of t h e
m o d el,  w hi c h is oft e n q uit e c o m p ut ati o n all y b ur-
d e ns o m e.  As a r es ult, pr e vi o us  w or k us es a u xili ar y
r etri e v al  m o d els s u c h as  B M 2 5 (R o b erts o n et al. ,
1 9 9 5 ) or a tr ai n e d d u al- e n c o d er ( D E)  m o d el t o a p-
pr o xi m at e t h e  C E.  T h e  D E  m o d el i n d e p e n d e ntl y
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where

Figure 2: CUR decomposition of a matrix (Mcomb =

[
Manc
Mtest

]
) using a subset of its columns (Ccomb =

[
Canc
Ctest

]
) and

rows (Ranc). The blue rows (Ranc) corresponding to the anchor queries and U = C†
anc are used for indexing the

items to obtain item embeddings EI = U ×Ranc and the green row corresponds to the test query. Note that the test
row (Mtest) can be approximated using a subset of its columns (Ctest) and the latent representation of items (EI).

embeds the query and the item in Rd, for instance
by using a transformer T followed by pooling the
final layer representations into a single vector (e.g.
using CLS token). The DE score for the query-item
pair is computed using dot-product of the query
embedding and the item embedding.

f (DE)
θ (q, i) = pool(T (q))>pool(T (i))

In this work, we propose a method based on
CUR matrix factorization that allows efficient re-
trieval of top-k items by directly approximating the
cross-encoder model rather than using an auxiliary
(trained) retrieval model.

CUR Decomposition (Mahoney and Drineas,
2009) In CUR matrix factorization, a matrix M ∈
Rn×m is approximated using a subset of its rows
R = M [Sr, :] ∈ Rk1×m, a subset of its columns
C = M [:, Sc] ∈ Rn×k2 and a joining matrix U ∈
Rk2×k1 as follows

M̃ = CUR

where Sr and Sc are the indices corresponding to
rowsR and columnsC respectively, and the joining
matrix U optimizes the approximation error. In this
work, we set U to be the Moore-Penrose pseudo-
inverse of M [Sr, Sc], the intersection of matrices
C andR, in which case M̃ is known as the skeleton
approximation of M (Goreinov et al., 1997).

2.2 Proposed Method Overview
Our proposed method ANNCUR, which stands for
Approximate Nearest Neighbor search using CUR
decomposition, begins by selecting a fixed set of kq
anchor queries (Qanc) and ki anchor items (Ianc).

It uses scores between queries q ∈ Qanc and all
items i ∈ I to index the item set by generating
latent item embeddings. At test time, we compute
exact scores between the test query qtest and the
anchor items Ianc, and use it to approximate scores
of all items for the given query and/or retrieve top-
k items according to the approximate scores. We
could optionally retrieve kr > k items, re-rank
them using exact fθ scores and return top-k items.

Let Mcomb =

[
Manc
Mtest

]
and Ccomb =

[
Canc
Ctest

]

whereManc = Ranc ∈ Rkq×|I| contains scores for
the anchor queries and all items, Mtest ∈ R1×|I|

contains scores for a test query and all items,
Canc ∈ Rkq×ki contains scores for the anchor
queries and the anchor items, and Ctest ∈ R1×ki

contains scores for the test query paired with the
anchor items.

Using CUR decomposition, we can approximate
Mcomb using a subset of its columns (Ccomb) cor-
responding to the anchor items and a subset of its
rows (Ranc) corresponding to the anchor queries as

M̃comb = CcombURanc[
M̃anc

M̃test

]
=

[
Canc
Ctest

]
URanc

M̃anc = CancURanc and M̃test = CtestURanc

Figure 2 shows CUR decomposition of matrix
Mcomb. At test time, M̃test containing approximate
item scores for the test query can be computed us-
ing Ctest, U , and Ranc where Ctest contains exact fθ
scores between the test query and the anchor items.
Matrices U and Ranc can be computed offline as
these are independent of the test query.

2173



2.3 Offline Indexing
The indexing process first computes Ranc contain-
ing scores between the anchor queries and all items.

Ranc(q, i) = fθ(q, i), ∀(q, i) ∈ Qanc × I
We embed all items in Rki as

EI = U ×Ranc

where U = C†
anc is the pseudo-inverse of Canc.

Each column of EI ∈ Rki×|I| corresponds to a
latent item embedding.

2.4 Test-time Inference
At test time, we embed the test query q inRki using
scores between q and anchor items Ianc.

eq = [fθ(q, i)]i∈Ianc
We approximate the score for a query-item pair
(q, i) using inner-product of eq and EI [:, i] where
EI [:, i] ∈ Rki is the embedding of item i.

f̂θ(q, i) = e>q E
I [:, i]

We can use eq ∈ Rki along with an off-the-
shelf nearest-neighbor search method for maximum
inner-product search (Malkov and Yashunin, 2018;
Johnson et al., 2019; Guo et al., 2020) and retrieve
top-scoring items for the given query q according
to the approximate query-item scores without ex-
plicitly approximating scores for all the items.

2.5 Time Complexity
During indexing stage, we evaluate fθ for kq|I|
query-item pairs, and compute the pseudo-inverse
of a kq ×ki matrix. The overall time complexity of
the indexing stage is O(Cfθkq|I|+ Ckq ,ki

inv ), where
Ckq ,ki
inv is the cost of computing the pseudo-inverse

of a kq×ki matrix, and Cfθ is the cost of computing
fθ on a query-item pair. For CE models used in
this work, we observe that Cfθkq|I| � Ckq ,ki

inv .
At test time, we need to compute fθ for ki query-

item pairs followed by optionally re-ranking kr
items retrieved by maximum inner-product search
(MIPS). Overall time complexity for inference is
O
(
(ki+kr)Cfθ +C|I|,kr

MIPS

)
, whereO(C|I|,kr

MIPS ) is the
time complexity of MIPS over |I| items to retrieve
top-kr items.

2.6 Improving score distribution of CE
models for matrix factorization

The rank of the query-item score matrix, and in
turn, the approximation error of a matrix factor-
ization method depends on the scores in the ma-
trix. Figure 1b shows a histogram of query-item

score distribution (adjusted to have zero mean)
for a dual-encoder and [CLS]-CE model. We use
[CLS]-CE to refer to a cross-encoder model pa-
rameterized using transformers which uses CLS

token to compute a pooled representation of the
input query-item pair. Both the models are trained
for zero-shot entity linking (see §3.1 for details).
As shown in the figure, the query-item score dis-
tribution for the [CLS]-CE model is significantly
skewed with only a small fraction of items (enti-
ties) getting high scores while the score distribution
for a dual-encoder model is less so as it is gener-
ated explicitly using dot-product of query and item
embeddings. The skewed score distribution from
[CLS]-CE leads to a high rank query-item score
matrix, which results in a large approximation error
for matrix decomposition methods.

We propose a small but important change to the
scoring mechanism of the cross-encoder so that it
yields a less skewed score distribution, thus making
it much easier to approximate the corresponding
query-item score matrix without adversely affect-
ing the downstream task performance. Instead of
using CLS token representation to score a given
query-item pair, we add special tokens amongst
the query and the item tokens and extract contex-
tualized query and item representations using the
special tokens after jointly encoding the query-item
pair using a model such as a transformer T .

eCEq , eCEi = pool(T (concat(q, i)))

The final score for the given query-item pair is
computed using dot-product of the contextualized
query and item embeddings.

f
([EMB]-CE)
θ (q, i) = (eCEq )>eCEi

We refer to this model as [EMB]-CE. Figure 1a
shows high-level model architecture for dual-
encoders, [CLS]-CE and [EMB]-CE model.

As shown in Figure 1b, the query-item score dis-
tribution from an [EMB]-CE model resembles that
from a DE model. Empirically, we observe that
rank of the query-item score matrix for [EMB]-CE
model is much lower than the rank of a similar
matrix computed using [CLS]-CE, thus making it
much easier to approximate using matrix decompo-
sition based methods.

3 Experiments

In our experiments, we use CE models trained for
zero-shot entity linking on ZESHEL dataset (§3.1).
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We evaluate the proposed method and various base-
lines on the task of finding k-nearest neighbors
for cross-encoder models in §3.2, and evaluate the
proposed method for various indexing and test-
time cost budgets as well as study the effect of
various design choices in §3.3 and §3.4. All re-
sources for the paper including code for all ex-
periments and model checkpoints is available at
https://github.com/iesl/anncur

ZESHEL Dataset The Zero-Shot Entity
Linking (ZESHEL) dataset was constructed
by Logeswaran et al. (2019) from Wikia. The task
of zero-shot entity linking involves linking entity
mentions in text to an entity from a list of entities
with associated descriptions. The dataset consists
of 16 different domains with eight, four, and four
domains in training, dev, and test splits respectively.
Each domain contains non-overlapping sets of
entities, thus at test time, mentions need to be
linked to unseen entities solely based on entity
descriptions. Table 1 in the appendix shows
dataset statistics. In this task, queries correspond
to mentions of entities along with the surrounding
context, and items correspond to entities with their
associated descriptions.

3.1 Training DE and CE models on ZESHEL

Following the precedent set by recent papers (Wu
et al., 2020; Zhang and Stratos, 2021), we first
train a dual-encoder model on ZESHEL training
data using hard negatives. We train a cross-encoder
model for the task of zero-shot entity-linking on
all eight training domains using cross-entropy loss
with ground-truth entity and negative entities mined
using the dual-encoder. We refer the reader to Ap-
pendix A.1 for more details.

Results on downstream task of Entity Linking
To evaluate the cross-encoder models, we retrieve
64 entities for each test mention using the dual-
encoder model and re-rank them using a cross-
encoder model. The top-64 entities retrieved by the
DE contain the ground-truth entity for 87.95%men-
tions in test data and 92.04% mentions in dev data.
The proposed [EMB]-CE model achieves an aver-
age accuracy of 65.49 and 66.86 on domains in test
and dev set respectively, and performs at par with
the widely used and state-of-the-art 2 [CLS]-CE

2We observe that our implementation of [CLS]-CE obtains
slightly different results as compared to state-of-the-art (see
Table 2 in Zhang and Stratos (2021) ) likely due to minor
implementation/training differences.

architecture which achieves an accuracy of 65.87
and 67.67 on test and dev set respectively. Since
[EMB]-CE model performs at par with [CLS]-CE
on the downstream task of entity linking, and rank
of the score matrix from [EMB]-CE is much lower
than that from [CLS]-CE, we use [EMB]-CE in
subsequent experiments.

3.2 Evaluating on k-NN search for CE

Experimental Setup For all experiments in this
section, we use the [EMB]-CE model trained on
original ZESHEL training data on the task of
zero-shot entity linking, and evaluate the proposed
method and baselines for the task of retrieving k-
nearest neighbor entities (items) for a given men-
tion (query) according to the cross-encoder model.
We run experiments separately on five domains

from ZESHEL containing 10K to 100K items. For
each domain, we compute the query-item score
matrix for a subset or all of the queries (mentions)
and all items (entities) in the domain. We randomly
split the query set into a training set (Qtrain) and a
test set (Qtest). We use the queries in training data
to train baseline DE models. For ANNCUR, we
use the training queries as anchor queries and use
CE scores between the anchor queries and all items
for indexing as described in §2.3. All approaches
are then evaluated on the task of finding top-k CE
items for queries in the corresponding domain’s
test split. For a fair comparison, we do not train
DE models on multiple domains at the same time.

3.2.1 Baseline Retrieval Methods
TF-IDF: All queries and items are embedded us-
ing a TF-IDF vectorizer trained on item descriptions
and top-k items are retrieved using the dot-product
of query and item embeddings.

DE models: We experiment with DEBASE, the
DE model trained on ZESHEL for the task of en-
tity linking (see §3.1), and the following two DE
models trained via distillation from the CE.

• DEBERT+CE: DE initialized with BERT (Devlin
et al., 2019) and trained only using training
signal from the cross-encoder model.

• DEBASE+CE: DEBASE model further fine-tuned
via distillation using the cross-encoder model.

We refer the reader to Appendix A.3 for hyper-
parameter and optimization details.
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E v al u ati o n  m et ri c We e v al u at e all a p pr o a c h es
u n d er t h e f oll o wi n g t w o s etti n gs.

• I n t h e  first s etti n g,  w e r etri e v e k r it e ms f or
a gi v e n q u er y, r e-r a n k t h e m usi n g e x a ct  C E
s c or es a n d k e e p t o p- k it e ms.  We e v al u at e e a c h
m et h o d usi n g  T o p- k - R e c all @k r w hi c h is t h e
p er c e nt a g e of t o p- k it e ms a c c or di n g t o t h e  C E
m o d el pr es e nt i n t h e k r r etri e v e d it e ms.

• I n t h e s e c o n d s etti n g,  w e o p er at e u n d er a  fix e d
t est-ti m e c ost b u d g et  w h er e t h e c ost is d e fin e d
as t h e n u m b er of  C E c alls  m a d e d uri n g i nf er-
e n c e.  B as eli n es s u c h as  D E a n d T F - I D F will
us e t h e e ntir e c ost b u d g et f or r e-r a n ki n g it e ms
usi n g e x a ct  C E s c or es  w hil e o ur pr o p os e d a p-
pr o a c h  will h a v e t o s plit t h e b u d g et b et w e e n
t h e n u m b er of a n c h or it e ms (k i ) us e d f or e m-
b e d di n g t h e q u er y ( § 2. 4 ) a n d t h e n u m b er of
it e ms (k r ) r etri e v e d f or  fin al r e-r a n ki n g.

We r ef er t o o ur pr o p os e d  m et h o d as A N N C U R k i

w h e n usi n g  fix e d s et of k i a n c h or it e ms c h os e n u ni-
f or ml y at r a n d o m, a n d  w e r ef er t o it as A N N C U R
w h e n o p er ati n g u n d er a  fix e d t est-ti m e c ost b u d g et
i n  w hi c h c as e diff er e nt v al u es of k i a n d k r ar e us e d
i n e a c h s etti n g.

3. 2. 2  R es ults

Fi g ur es 3 a a n d 3 b s h o w r e c all of t o p- k cr oss-
e n c o d er n e ar est n ei g h b ors f or k ∈ { 1 , 1 0 , 5 0 , 1 0 0 }
o n  Z E S H E L d o m ai n = Y u G i O h w h e n usi n g 5 0 0
q u eri es f or tr ai ni n g, a n d e v al u ati n g o n t h e r e m ai n-
i n g 2 8 7 4 t est q u eri es. Fi g ur e 3 a s h o ws r e c all  w h e n
e a c h  m et h o d r etri e v es t h e s a m e n u m b er of it e ms
a n d Fi g ur e 3 b s h o ws r e c all  w h e n e a c h  m et h o d o p-
er at es u n d er a  fix e d i nf er e n c e c ost b u d g et.

P e rf o r m a n c e f o r k ≥ 1 0 I n Fi g ur e 3 a , o ur pr o-
p os e d a p pr o a c h o ut p erf or ms all b as eli n es at  fin di n g
t o p-k = 1 0 , 5 0 , a n d 1 0 0 n e ar est n ei g h b ors  w h e n
all  m o d els r etri e v e t h e s a m e n u m b er of it e ms f or
r e-r a n ki n g. I n Fi g ur e 3 b ,  w h e n o p er ati n g u n d er
t h e s a m e c ost b u d g et, A N N C U R o ut p erf or ms  D E
b as eli n es at l ar g er c ost b u d g ets f or k = 1 0 , 5 0 , a n d
1 0 0 .  R e c all t h at at a s m all er c ost b u d g et, A N N C U R
is a bl e t o r etri e v e f e w er n u m b er of it e ms f or e x a ct
r e-r a n ki n g t h a n t h e b as eli n es as it n e e ds t o us e a
fr a cti o n of t h e c ost b u d g et i. e.  C E c alls t o c o m p ar e
t h e t est- q u er y  wit h a n c h or it e ms i n or d er t o e m b e d
t h e q u er y f or r etri e vi n g r el e v a nt it e ms.  G e n er all y,
t h e o pti m al b u d g et s plit b et w e e n t h e n u m b er of a n-
c h or it e ms ( k i ) a n d t h e n u m b er of it e ms r etri e v e d
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a m o u nt of e ntit y li n ki n g d at a ( all ei g ht tr ai ni n g
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is n at ur al f or t o p-1 n e ar est n ei g h b or f or b ot h of
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pr o p os e d  m et h o d, A N N C U R , al w a ys s h o ws c o n-
sist e nt i m pr o v e m e nts as  w e i n cr e as e t h e n u m b er
of q u eri es i n tr ai ni n g d at a, a n d a v oi ds t h e p erils
of gr a di e nt- b as e d tr ai ni n g t h at oft e n r e q uir e l ar g e
a m o u nts of tr ai ni n g d at a t o a v oi d o v er fitti n g as  w ell
e x p e nsi v e h y p er- p ar a m et er t u ni n g i n or d er t o c o n-
sist e ntl y  w or k  w ell a cr oss v ari o us d o m ai ns.

Eff e ct of d o m ai n si z e Fi g ur e 5 s h o ws  T o p- 1 0 0-
R e c all @ C ost = 5 0 0 f or A N N C U R a n d  D E b as eli n es
o n pri m ar y y- a xis a n d si z e of t h e d o m ai n i. e. t ot al
n u m b er of it e ms o n s e c o n d ar y y- a xis f or  fiv e diff er-
e nt d o m ai ns i n  Z E S H E L .  G e n er all y, as t h e n u m b er
of it e ms i n t h e d o m ai n i n cr e as es, t h e p erf or m a n c e
of all  m et h o ds dr o ps.

I n d e xi n g  C ost T h e i n d e xi n g pr o c ess st arts b y
c o m p uti n g q u er y-it e m  C E s c or es f or q u eri es i n
tr ai n s plit. A N N C U R us es t h es e s c or es f or i n d e x-
i n g t h e it e ms (s e e §2. 3 )  w hil e  D E b as eli n es us e
t h es e s c or es t o  fin d gr o u n d-tr ut h t o p-k it e ms f or
e a c h q u er y f oll o w e d b y tr ai ni n g  D E  m o d els us-
i n g  C E q u er y-it e m s c or es. F or d o m ai n =Y u G i O h
wit h 1 0 0 3 1 it e ms, a n d | Qtr ai n| = 5 0 0 , t h e ti m e
t a k e n t o c o m p ut e q u er y-it e m s c or es f or tr ai n/ a n c h or
q u eri es ( tC E- M at ) ≈ 1 0 h o urs o n a n  N VI DI A
G e F or c e  R T X 2 0 8 0 Ti  G P U/ 1 2 G B  m e m or y, a n d
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Fi g ur e 6:  T o p- 1 0- R e c all @ 5 0 0 of A N N C U R f or n o n-
a n c h or q u eri es o n d o m ai n = Y u G i O h f or t w o cr oss-
e n c o d er  m o d els – [ C L S ]- C E a n d [ E M B ]- C E.

tr ai ni n g a  D E  m o d el f urt h er t a k es a d diti o n al ti m e
(tD E-tr ai n ) ≈ 4. 5 h o urs o n t w o i nst a n c es of t h e s a m e
G P U.  B ot h tC E- M at a n d tD E-tr ai n i n cr e as e li n e arl y
wit h d o m ai n si z e a n d | Qtr ai n|, h o w e v er t h e q u er y-
it e m s c or e c o m p ut ati o n c a n b e tri vi all y p ar all eli z e d.
We i g n or e t h e ti m e t o b uil d a n e ar est- n ei g h b or
s e ar c h i n d e x o v er it e m e m b e d di n gs pr o d u c e d b y
A N N C U R or  D E as t h at is n e gli gi bl e i n c o m p aris o n
t o ti m e s p e nt o n  C E s c or e c o m p ut ati o n a n d tr ai ni n g
of  D E  m o d els.  We r ef er t h e r e a d er t o  A p p e n di x A. 3
f or  m or e d et ails.

3. 3  A n al ysis of A N N C U R

We c o m p ut e t h e q u er y-it e m s c or e  m atri x f or b ot h
[ C L S ]- C E a n d [ E M B ]- C E a n d c o m p ut e t h e r a n k of
t h es e  m atri c es usi n g n u m p y (H arris et al. , 2 0 2 0 ) f or
d o m ai n = Y u G i O h wit h 3 3 7 4 q u eri es ( m e nti o ns) a n d
1 0 0 3 1 it e ms ( e ntiti es).  R a n k of t h e s c or e  m atri x f or
[ C L S ]- C E = 3 1 5  w hi c h is  m u c h hi g h er t h a n r a n k
of t h e c orr es p o n di n g  m atri x f or [ E M B ]- C E = 4 5
d u e t o t h e q u er y-it e m s c or e distri b uti o n pr o d u c e d
b y [ C L S ]- C E m o d el b ei n g  m u c h  m or e s k e w e d t h a n
t h at pr o d u c e d b y [E M B ]- C E  m o d el (s e e Fi g. 1 b ).

Fi g ur es 6 a a n d 6 b s h o w  T o p- 1 0- R e c all @ 5 0 0 o n
d o m ai n = Y u G i O h f or [ C L S ]- C E a n d [ E M B ]- C E r e-
s p e cti v el y o n diff er e nt c o m bi n ati o ns of n u m b er of
a n c h or q u eri es ( k q ) a n d a n c h or it e ms (k i ).  B ot h a n-
c h or q u eri es a n d a n c h or it e ms ar e c h os e n u nif or ml y
at r a n d o m, a n d f or a gi v e n s et of a n c h or q u eri es,
w e e v al u at e o n t h e r e m ai ni n g s et of q u eri es.

[ C L S ]- C E v e rs us [ E M B ]- C E F or t h e s a m e
c h oi c e of a n c h or q u eri es a n d a n c h or it e ms, t h e
pr o p os e d  m et h o d p erf or ms b ett er  wit h [ E M B ]- C E
m o d el as c o m p ar e d [ C L S ]- C E d u e t o t h e q u er y-
it e m s c or e  m atri x f or [E M B ]- C E h a vi n g  m u c h
l o w er r a n k t h us  m a ki n g it e asi er t o a p pr o xi m at e.

Eff e ct of k q a n d k i R e c all t h at t h e i n d e xi n g ti m e
f or A N N C U R is dir e ctl y pr o p orti o n al t o t h e n u m-
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Fi g ur e 7:  B ar pl ot s h o wi n g  T o p- 1 0 0- R e c all f or d o-
m ai n = Y u G i O h w h e n i n d e xi n g usi n g 5 0 0 a n c h or it e ms
f or FI X E D I T E M a n d I T E MC U R a n d 5 0 0 a n c h or q u eri es
f or A N N C U R.

b er of a n c h or q u eri es ( k q )  w hil e t h e n u m b er of
a n c h or it e ms ( k i ) i nfl u e n c es t h e t est-ti m e i nf er-
e n c e l at e n c y.  U ns ur prisi n gl y, p erf or m a n c e of A N -
N C U R i n cr e as es as  w e i n cr e as e k i a n d k q , a n d
t h es e c a n b e t u n e d as p er us er’s r e q uir e m e nt t o
o bt ai n d esir e d r e c all- vs-i n d e xi n g ti m e a n d r e c all-
vs-i nf er e n c e ti m e tr a d e- offs.  We r ef er t h e r e a d er
t o  A p p e n di x B. 2 f or a d et ail e d e x pl a n ati o n f or t h e
dr o p i n p erf or m a n c e  w h e n k q = k i .

3. 4 It e m-It e m Si mil a rit y  B as eli n es

We a d diti o n all y c o m p ar e  wit h t h e f oll o wi n g b as e-
li n es t h at i n d e x it e ms b y c o m p ari n g a g ai nst a  fix e d
s et of a n c h or it e ms 3 i nst e a d of a n c h or q u eri es.

• FI X E D I T E M:  E m b e d all it e ms a n d t est- q u er y
i n R k i u si n g  C E s c or es  wit h a  fix e d s et of
k i it e ms c h os e n u nif or ml y at r a n d o m, a n d r e-
tri e v e t o p-k r it e ms f or t h e t est q u er y b as e d o n
d ot- pr o d u ct of t h es e k i - di m e m b e d di n gs.  We
us e k i = 5 0 0 .

• I T E MC U R -k i :  T his is si mil ar t o t h e pr o p os e d
a p pr o a c h e x c e pt t h at it i n d e x es t h e it e ms b y
c o m p ari n g t h e m a g ai nst k i n d

i a n c h or it e ms i n-
st e a d of a n c h or q u eri es f or c o m p uti n g R a n c

a n d C a n c m atri c es i n t h e i n d e xi n g st e p i n § 2. 3 .
At t est ti m e, it p erf or ms i nf er e n c e j ust li k e
A N N C U R (s e e §2. 4 ) b y c o m p ari n g a g ai nst a
diff er e nt s et of  fix e d k i a n c h or it e ms.  We us e
k i n d

i = 5 0 0 .

Fi g ur e 7 s h o ws  T o p- 1 0 0- R e c all f or FI X E D I T E M,
I T E MC U R , a n d A N N C U R o n d o m ai n = Y u G i O h .
I T E MC U R p erf or ms b ett er t h a n FI X E D I T E M i n-
di c ati n g t h at t h e l at e nt it e m e m b e d di n gs pr o d u c e d
usi n g  C U R d e c o m p ositi o n of t h e it e m-it e m si mil ar-
it y  m atri x ar e b ett er t h a n t h os e b uilt b y c o m p ari n g

3 S e e a p p e n di x A. 2 f or d et ails o n c o m p uti n g it e m-it e m
s c or es usi n g a  C E  m o d el tr ai n e d t o s c or e q u er y-it e m p airs.
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the items against a fixed set of anchor items. ITEM-
CUR performs worse than ANNCUR apparently
because the CE was trained on query-item pairs
and was not calibrated for item-item comparisons.

4 Related Work

Matrix Decomposition Classic matrix decompo-
sition methods such as SVD, QR decomposition
have been used for approximating kernel matrices
and distance matrices (Musco and Woodruff, 2017;
Tropp et al., 2017; Bakshi and Woodruff, 2018;
Indyk et al., 2019). Interpolative decomposition
methods such as Nyström method and CUR decom-
position allow approximation of the matrix even
when given only a subset of rows and columns of
the matrix. Unsurprisingly, performance of these
methods can be further improved if given the entire
matrix as it allows for a better selection of rows
and columns on the matrix used in the decomposi-
tion process (Goreinov et al., 1997; Drineas et al.,
2005; Kumar et al., 2012; Wang and Zhang, 2013).
Recent work, Ray et al. (2022) proposes sublinear
Nyström approximations and considers CUR-based
approaches for approximating non-PSD similarity
matrices that arise in NLP tasks such as coreference
resolution and document classification. Unlike pre-
vious work, our goal is to use the approximate
scores to support retrieval of top scoring items. Al-
though matrix decomposition methods for sparse
matrices based on SVD (Berry, 1992; Keshavan
et al., 2010; Hastie et al., 2015; Ramlatchan et al.,
2018) can be used instead of CUR decomposition,
such methods would require a) factorizing a sparse
matrix at test time in order to obtain latent em-
beddings for all items and the test query, and b)
indexing the latent item embeddings to efficiently
retrieve top-scoring items for the given query. In
this work, we use CUR decomposition as, unlike
other sparse matrix decomposition methods, CUR
decomposition allows for offline computation and
indexing of item embeddings and the latent embed-
ding for a test query is obtained simply by using its
cross-encoder scores against the anchor items.

Cross-Encoders and Distillation Due to high
computational costs, use of cross-encoders (CE) is
often limited to either scoring a fixed set of items or
re-ranking items retrieved by a separate (cheaper)
retrieval model (Logeswaran et al., 2019; Qu et al.,
2021; Bhattacharyya et al., 2021; Ayoola et al.,
2022). CE models are also widely used for train-
ing computationally cheaper models via distilla-

tion on the training domain (Wu et al., 2020; Reddi
et al., 2021), or for improving performance of these
cheaper models on the target domain (Chen et al.,
2020; Thakur et al., 2021) by using cross-encoders
to score a fixed or heuristically retrieved set of
items/datapoints. The DE baselines used in this
work, in contrast, are trained using k-nearest neigh-
bors for a given query according to the CE.

Nearest Neighbor Search For applications
where the inputs are described as vectors in Rn,
nearest neighbor search has been widely studied
for various (dis-)similarity functions such as `2 dis-
tance (Chávez et al., 2001; Hjaltason and Samet,
2003), inner-product (Jegou et al., 2010; John-
son et al., 2019; Guo et al., 2020), and Bregman-
divergences (Cayton, 2008). Recent work on
nearest neighbor search with non-metric (para-
metric) similarity functions explores various tree-
based (Boytsov and Nyberg, 2019b) and graph-
based nearest neighbor search indices (Boytsov
and Nyberg, 2019a; Tan et al., 2020, 2021). In con-
trast, our approach approximates the scores of the
parametric similarity function using the latent em-
beddings generated using CUR decomposition and
uses off-the-shelf maximum inner product search
methods with these latent embeddings to find k-
nearest neighbors for the CE. An interesting avenue
for future work would be to combine our approach
with tree-based and graph-based approaches to fur-
ther improve efficiency of these search methods.

5 Conclusion

In this paper, we proposed, ANNCUR, a matrix
factorization-based approach for nearest neighbor
search for a cross-encoder model without relying
on an auxiliary model such as a dual-encoder for
retrieval. ANNCUR approximates the test query’s
scores with all items by scoring the test-query only
with a small number of anchor items, and retrieves
items using the approximate scores. Empirically,
for k > 10, our approach provides test-time recall-
vs-computational cost trade-offs superior to the
widely-used approach of using cross-encoders to re-
rank items retrieved using a dual-encoder or a TF-
IDF-based model. This work is a step towards en-
abling efficient retrieval with expensive similarity
functions such as cross-encoders, and thus, moving
beyond using such models merely for re-ranking
items retrieved by auxiliary retrieval models such
as dual-encoders and TF-IDF-based models.
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Limitations

In this work, we use cross-encoders parameter-
ized using transformer models. Computing query-
item scores using such models can be computa-
tionally expensive. For instance, on an NVIDIA
GeForce RTX 2080Ti GPU with 12GB memory,
we can achieve a throughput of approximately 140
scores/second, and computing a score matrix for
100 queries and 10K items takes about two hours.
Although this computation can be trivially paral-
lelized, the total amount of GPU hours required for
this computation can be very high. However, note
that these scores need to be computed even for dis-
tillation based DE baselines as we need to identify
k-nearest neighbors for each query according to the
cross-encoder model for training a dual-encoder
model on this task.
Our proposed approach allows for indexing the

item set only using scores from cross-encoder with-
out any additional gradient based training but it
is not immediately clear how it can benefit from
data on multiple target domains at the same time.
Parametric models such as dual-encoders on the
other hand can benefit from training and knowledge
distillation on multiple domains at the same time.

Ethical Consideration

Our proposed approach considers how to speed
up the computation of nearest neighbor search for

cross-encoder models. The cross-encoder model,
which our approach approximates, may have cer-
tain biases / error tendencies. Our proposed ap-
proach does not attempt to mitigate those biases. It
is not clear how those biases would propagate in
our approximation, which we leave for future work.
An informed user would scrutinize both the cross-
encoder model and the resulting approximations
used in this work.
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Domain |E| |M| |Mk−NN|
Training Data

Military 104520 13063 2400
Pro Wrestling 10133 1392 1392
Doctor Who 40281 8334 4000
American Football 31929 3898 -
Fallout 16992 3286 -
Star Wars 87056 11824 -
World of Warcraft 27677 1437 -

Validation Data

Coronation Street 17809 1464 -
Muppets 21344 2028 -
Ice Hockey 28684 2233 -
Elder Scrolls 21712 4275 -

Test Data

Star Trek 34430 4227 4227
YuGiOh 10031 3374 3374
Forgotten Realms 15603 1200 -
Lego 10076 1199 -

Table 1: Statistics on number of entities |E| (items),
total number of mentions |M| (queries), and number of
mentions used in k-NN experiments (|Mk−NN|) in §3.2
for each domain in ZESHEL dataset.

A Training Details

A.1 Training DE and CE for Entity Linking
on ZESHEL

We initialize all models with bert-base-uncased
and train using Adam (Kingma and Ba, 2015) op-
timizer with learning rate = 10−5, and warm-up
proportion=0.01 for four epochs. We evaluate on
dev set five times during each epoch, and pick the
model checkpoint that maximises accuracy on dev
set. While training the dual-encoder model, we
update negatives after each epoch using the latest
dual-encoder model parameters to mine hard nega-
tives. We trained the cross-encoder with a fixed set
of 63 negatives items (entities) for each query (men-
tion) mined using the dual-encoder model. We use
batch size of 8 and 4 for training the dual-encoder
and cross-encoder respectively.
Dual-encoder and cross-encoder models took

34 an 44 hours respectively for training on two
NVIDIA GeForce RTX 8000 GPUs each with
48GB memory. The dual-encoder model has
2×110M parameters as it consists of separate query
and item encoder models while the cross-encoder
model has 110M parameters.

Tokenization details We use word-piece tok-
enization (Wu et al., 2016) for with a maximum of

128 tokens including special tokens for tokenizing
entities and mentions. The mention representation
consists of the word-piece tokens of the context
surrounding the mention and the mention itself as

[CLS] ctxtl [Ms] ment [Me] ctxtr [SEP]

where ment, ctxtl, and ctxtr are word-piece to-
kens of the mention, context before and after the
mention respectively, and [Ms], [Me] are special
tokens to tag the mention.
The entity representation is also composed of

word-piece tokens of the entity title and description.
The input to our entity model is:

[CLS] title [ENT] description [SEP]

where title, description are word-pieces to-
kens of entity title and description, and [ENT] is a
special token to separate entity title and description
representation.

The cross-encoder model takes as input the con-
catenated query (mention) and item (entity) rep-
resentation with the [CLS] token stripped off the
item (entity) tokenization as shown below

[CLS] ctxtl [Ms] ment [Me] ctxtr [SEP]

title [ENT] description [SEP]

A.2 Using query-item CE model for
computing item-item similarity

We compute item-item similarity using a cross-
encoder trained to score query-item pairs as fol-
lows. The query and item in our case correspond
to mention of an entity with surrounding context
and entity with its associated title and description
respectively. We feed in first entity in the pair in the
query slot by using mention span tokens around the
title of the entity, and using entity description to fill
in the right context of the mention. We feed in the
second entity in the entity slot as usual. The con-
catenated representation of the entity pair (e1, e2)
is given by

[CLS] [Ms] te1 [Me] de1 [SEP] te2 [E] de2 [SEP]

where te1, te2 are the tokenized titles of the enti-
ties, de1, de2 are the tokenized entity descriptions,
[Me], [Ms] are special tokens denoting mention
span boundary and [E] is a special token separat-
ing entity title from its description.
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A.3 Training DE for k-NN retrieval with CE
We train dual-encoder models using k-nearest
neighbor items according to cross-encoder model
for each query using two loss functions. Let S(DE)

and S(CE) be matrices containing score for all items
for each query in training data. Let TCE

kd
(q), TDE

kd
(q)

be top-kd items for query q according to the cross-
encoder and dual-encoder respectively, and let
NDE

kd
(q) be top-kd items for query q according to

dual-encoder that are not present in TCE
kd
(q).

We use loss functions Lmatch and Lpair described
below for training the dual-encoder model using a
cross-encoder model.

Lmatch =
∑

q∈Qtrain

H
(
σ(S(DE)

[q,:] ), σ(S
(CE)
[q,:] )

)

where H is the cross-entropy function, and σ(.)
is the softmax function. In words, Lmatch is the
cross-entropy loss between the dual-encoder and
cross-encoder query-item score distribution over
all items. Due to computational and memory limi-
tations, we train by minimizing Lmatch using items
in TCE

kd
(q) for each query q ∈ Qtrain.

Lpair =
∑

q∈Qtrain

∑

(i,j)∈Pq

H([0, 1], σ([S(DE)
q,i , S(DE)

q,j ]))

where,Pq = {(TCE
kd
(q)j ,NDE

kd
(q)j)}kdj=0

Lpair treats items in TCE
kd
(q) as a positive item, pairs

it with hard negatives from NDE
kd

(q), and minimiz-
ing Lpair increases dual-encoder’s score for items
in TCE

kd
(q), thus aligning TDE

kd
(q) with TCE

kd
(q) for

queries in training data.

Training and optimization details We train all
dual-encoder models using Adam optimizer with
learning rate=10−5 for 10 epochs. We use a sepa-
rate set of parameters for query and item encoders.
We use 10% of training queries for validation and
train on the remaining 90% of the queries. For each
domain and training data size, we train with both
Lmatch and Lpair loss functions, and pick the model
that performs best on validation queries for k-NN
retrieval according to the cross-encoder model.
We train models for with loss Lpair on two

NVIDIA GeForce RTX 2080Ti GPUs with 12GB
GPUmemory and with loss Lmatch on two NVIDIA
GeForce RTX 8000 GPUs with 48GB GPU mem-
ory as we could not train with kd = 100 on 2080Tis

due to GPU memory limitations. For loss Lpair,
we update the the list of negative items (NDE

kd
(q)

) for each query after each epoch by mining hard
negative items using the latest dual-encoder model
parameters.

|Qtrain| Model tCE-Mat ttrain ttotal

100 DE-Lpair 2 2.5 4.5
100 DE-Lmatch 2 0.5 2.5
100 ANNCUR 2 - 2

500 DE-Lpair 10 4.5 14.5
500 DE-Lmatch 10 1 11
500 ANNCUR 10 - 10

2000 DE-Lpair 40 11 51
2000 DE-Lmatch 40 3 43
2000 ANNCUR 40 - 40

(a) Indexing time (in hrs) for ANNCUR and distillation
based DE baselines for different number of anchor/train
queries (|Qtrain|) for domain=YuGiOh.

Domain (w/ size) Model tCE-Mat ttrain ttotal

YuGiOh-10K DE-Lpair 10 4.5 14.5
YuGiOh-10K ANNCUR 10 - 10

Pro_Wrest-10K DE-Lpair 10 4.4 14.4
Pro_Wrest-10K ANNCUR 10 - 10

Star_Trek-34K DE-Lpair 40 5.1 45.1
Star_Trek-34K ANNCUR 40 - 40

Doctor_Who-40K DE-Lpair 40 5.2 45.2
Doctor_Who-40K ANNCUR 40 - 40

Military-104K DE-Lpair 102 5.1 107.1
Military-104K ANNCUR 102 - 102

(b) Indexing time (in hrs) for ANNCUR and distilla-
tion based DE baselines for various domains when using
|Qtrain|=500 anchor/train queries.

Table 2: Indexing time breakdown for ANNCUR and
DE models trained via distillation.

Indexing and Training Time Table 2a shows
overall indexing time for the proposed method AN-
NCUR and for DE models trained using two distil-
lation losses – Lpair and Lmatch on domain=YuGiOh.
Training time (ttrain) for loss Lmatch is much less as
compared to that for Lpair as the former is trained
on more powerful GPUs (two NVIDIA RTX8000s
with 48GB memory each) due to its GPU mem-
ory requirements while the latter is trained on two
NVIDIA 2080Ti GPUs with 12 GB memory each.
The total indexing time (ttotal) for DE models in-
cludes the time taken to compute CE score matrix
(tCE-Mat) because in order to train a DE model for
the task of k-nearest neighbor search for a CE, we
need to first find exact k-nearest neighbor items
for the training queries. Note that this is different
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Tr ai ni n g D e v S et Test S et
N e g ati v es [ C L S ]- C E [ E M B ]- C E [ C L S ]- C E [ E M B ]- C E

R a n d o m 5 9. 6 0 5 7. 7 4 5 8. 7 2 5 6. 5 6
T F - I D F 6 2. 1 9 6 2. 2 9 5 8. 2 0 5 8. 3 6

D E 6 7. 6 7 6 6. 8 6 6 5. 8 7 6 5. 4 9

( a)  M a cr o- A v er a g e of  E ntit y  Li n ki n g  A c c ur a c y f or [ C L S ]- C E a n d
[ E M B ]- C E  m o d els o n t est a n d d e v s et i n  Z E S H E L.

Tr ai ni n g
[ C L S ]- C E [ E M B ]- C E

N e g ati v es

R a n d o m 8 1 6 3 5 4
T F - I D F 3 9 6 6 7

D E 3 1 5 4 5

( b)  R a n k of 3 3 7 4 × 1 0 0 3 1 m e nti o n- e ntit y cr oss-
e n c o d er s c or e  m atri x f or t est d o m ai n = Y u G i O h

Ta bl e 3:  A c c ur a c y o n t h e d o w nstr e a m t as k of e ntit y li n ki n g a n d r a n k of q u er y-it e m ( m e nti o n- e ntit y) s c or e  m atri x
f or [ C L S ]- C E a n d [ E M B ]- C E tr ai n e d usi n g diff er e nt t y p es of n e g ati v es.

fr o m t h e "st a n d ar d "  w a y of tr ai ni n g of  D E  m o d els
vi a distill ati o n  w h er e t h e  D E is oft e n distill e d us-
i n g  C E s c or es o n a fi x e d or h e uristi c all y r etri e v e d
s et of it e ms, a n d n ot o n k - n e ar est n ei g h b or it e ms
a c c or di n g t o t h e cr oss- e n c o d er f or a gi v e n q u er y.

Ta bl e 2 b s h o ws i n d e xi n g ti m e f or A N N C U R a n d
D Es tr ai n e d vi a distill ati o n f or  fiv e d o m ai ns i n
Z E S H E L .  As t h e si z e of t h e d o m ai n i n cr e as es, t h e
ti m e t a k e f or c o m p uti n g cr oss- e n c o d er s c or es o n
tr ai ni n g q u eri es (tC E- M at ) als o i n cr e as es.  T h e ti m e
t a k es t o tr ai n d u al- e n c o d er vi a distill ati o n r o u g hl y
r e m ai ns t h e s a m e as  w e tr ai n  wit h  fix e d n u m b er of
p ositi v e a n d n e g ati v e it e ms d uri n g distill ati o n.

B  A d diti o n al  R es ults a n d  A n al ysis

B. 1  C o m p a ri n g [ E M B ]- C E a n d [ C L S ]- C E

I n a d diti o n t o tr ai ni n g cr oss- e n c o d er  m o d els  wit h
n e g ati v es  mi n e d usi n g a d u al- e n c o d er,  w e tr ai n
b ot h [ C L S ]- C E a n d [ E M B ]- C E m o d els usi n g r a n-
d o m n e g ati v es a n d n e g ati v es  mi n e d usi n g T F - I D F

e m b e d di n gs of  m e nti o ns a n d e ntiti es.  T o e v al u at e
t h e cr oss- e n c o d er  m o d els,  w e r etri e v e 6 4 e ntiti es
f or e a c h t est  m e nti o n usi n g a d u al- e n c o d er  m o d el
a n d r e-r a n k t h e m usi n g a cr oss- e n c o d er  m o d el.

Ta bl e 3 a s h o ws  m a cr o- a v er a g e d a c c ur a c y o n t h e
d o w nstr e a m t as k of e ntit y li n ki n g o v er t est a n d
d e v d o m ai ns i n  Z E S H E L d at as et, a n d  Ta bl e 3 b
s h o ws r a n k of q u er y-it e m s c or e  m atri c es o n d o-
m ai n = Y u G i O h f or b ot h cr oss- e n c o d er  m o d els.  T h e
pr o p os e d [ E M B ]- C E m o d el p erf or ms at p ar  wit h
t h e  wi d el y us e d [C L S ]- C E ar c hit e ct ur e f or all t hr e e
ki n ds of n e g ati v e  mi ni n g str at e gi es  w hil e pr o d u c-
i n g a q u er y-it e m s c or e  m atri x  wit h l o w er r a n k as
c o m p ar e d t o [ C L S ]- C E.

Fi g ur e 8 s h o ws a p pr o xi m ati o n err or of A N -
N C U R f or diff er e nt c o m bi n ati o ns of n u m b er of
a n c h or q u eri es a n d a n c h or it e ms f or [ C L S ]- C E
a n d [ E M B ]- C E. F or a gi v e n s et of a n c h or q u eri es,
t h e a p pr o xi m ati o n err or is e v al u at e d o n t h e r e-
m ai ni n g s et of q u eri es.  T h e err or b et w e e n a  m a-
tri x M a n d its a p pr o xi m ati o n ˜M is  m e as ur e d as

∥ M − ˜M ∥ F / ∥ M ∥ F w h er e ∥ .∥ F i s t h e Fr o b e ni us
n or m of a  m atri x. F or t h e s a m e c h oi c e of a n c h or
q u eri es a n d a n c h or it e ms, t h e a p pr o xi m ati o n er-
r or is l o w er f or [ E M B ]- C E m o d el as c o m p ar e d t o
[ C L S ]- C E.  T his ali g ns  wit h t h e o bs er v ati o n t h at
r a n k of t h e q u er y-it e m s c or e  m atri x fr o m [ E M B ]-
C E is l o w er t h a n t h e c orr es p o n di n g  m atri x fr o m
[ C L S ]- C E as s h o w n i n  Ta bl e 3 b .
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( b) [ E M B ]- C E

Fi g ur e 8:  M atri x a p pr o xi m ati o n err or e v al u at e d o n n o n-
a n c h or q u eri es f or  C U R d e c o m p ositi o n o n d o m ai n =
Y u G i O h f or [ C L S ]- C E a n d [ E M B ]- C E m o d els.  T h e
t ot al n u m b er of q u eri es i n cl u di n g b ot h a n c h or a n d n o n-
a n c h or (t est) q u eri es is 3 3 7 4 a n d t h e t ot al n u m b er of
it e ms is 1 0 0 3 1.

B. 2  U n d e rst a n di n g p o o r p e rf o r m a n c e of
A N N C U R f o r k i = k q

Fi g ur e 6 i n §3. 3 s h o ws  T o p- 1 0- R e c all @ 5 0 0 o n
d o m ai n = Y u G i O h f or [ C L S ]- C E a n d [ E M B ]- C E r e-
s p e cti v el y o n diff er e nt c o m bi n ati o ns of n u m b er of
a n c h or q u eri es ( k q ) a n d a n c h or it e ms (k i ).  N ot e
t h at t h e p erf or m a n c e of A N N C U R dr o ps si g ni fi-
c a ntl y  w h e n k q = k i .  R e c all t h at t h e i n d e xi n g
st e p ( § 2. 3 ) r e q uir es c o m p uti n g ps e u d o-i n v ers e of
m atri x A = M [Q a n c , I a n c ] c o nt ai ni n g s c or es
b et w e e n a n c h or q u eri es ( Q a n c ) a n d a n c h or it e ms
(I a n c ). P erf or m a n c e dr o ps si g ni fic a ntl y  w h e n A is
a s q u ar e  m atri x i. e. k q = k i a s t h e  m atri x t e n ds t o
b e ill- c o n diti o n e d,  wit h s e v er al v er y s m all ei g e n v al-
u es t h at ar e ‘ bl o w n u p’ i n A † , t h e ps e u d o-i n v ers e
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( b)  M atri x  A p pr o x.  Err or

Fi g ur e 9: P erf or m a n c e of A N N C U R o n n o n- a n c h or/t est
q u eri es o n d o m ai n = Y u G i O h usi n g U = C † M R † f or
[ E M B ]- C E.  T h e t ot al n u m b er of q u eri es i n cl u di n g b ot h
a n c h or a n d n o n- a n c h or (t est) q u eri es is 3 3 7 4 a n d t h e
t ot al n u m b er of it e ms is 1 0 0 3 1.

of A .  T his, i n-t ur n, l e a ds t o a si g ni fic a nt a p pr o xi-
m ati o n err or ( R a y et al. , 2 0 2 2 ).  C h o osi n g diff er e nt
n u m b er of a n c h or q u eri es a n d a n c h or it e ms yi el ds
a r e ct a n g ul ar  m atri x A w h os e ei g e n v al u es ar e u n-
li k el y t o b e s m all, t h us r es ulti n g i n  m u c h b ett er
a p pr o xi m ati o n of t h e  m atri x M .

O r a cl e  C U R  D e c o m p ositi o n A n alt er n at e  w a y
of c o m p uti n g t h e  m atri x U i n  C U R d e c o m p ositi o n
of a  m atri x M f or a gi v e n s u bs et of r o ws (R ) a n d
c ol u m ns ( C ) is t o s et U = C † M R † .  T his c a n

pr o vi d e a  m u c h st a bl e a p pr o xi m ati o n of t h e  m atri x
M e v e n  w h e n k q = k i (M a h o n e y a n d  Dri n e as ,
2 0 0 9 ).  H o w e v er, it r e q uir es c o m p uti n g all v al u es
of M b ef or e c o m p uti n g its l o w-r a n k a p pr o xi m ati o n.
I n o ur c as e,  w e ar e tr yi n g t o a p pr o xi m at e a  m atri x
M w hi c h als o c o nt ai ns s c or es b et w e e n t est- q u eri es
a n d all it e ms i n or d er t o a v oi d s c ori n g all it e ms
usi n g t h e  C E  m o d el at t est-ti m e, t h us  w e c a n n ot
us e U = C † M R † . Fi g ur e 9 s h o ws r es ults f or a n
or a cl e e x p eri m e nt  w h er e  w e us e U = C † M R † , a n d
as e x p e ct e d it pr o vi d es si g ni fic a nt i m pr o v e m e nt
w h e n k q = k i a n d  mi n or i m pr o v e m e nt ot h er wis e
o v er usi n g U = M [Q a n c , I a n c ]

† .

B. 3 k - N N e x p e ri m e nt r es ults f o r all d o m ai ns

F or br e vit y,  w e s h o w r es ults f or all t o p- k v al u es
o nl y f or d o m ai n = Y u G i O h i n t h e  m ai n p a p er. F or
t h e s a k e of c o m pl et e n ess a n d f or i nt er est e d r e a d ers,
w e a d d r es ults f or c o m bi n ati o ns of t o p- k v al u es,
d o m ai ns, a n d tr ai ni n g d at a si z e v al u es. Fi g ur e 1 0
- 2 4 c o nt ai n r es ults f or t o p- k ∈ { 1 , 1 0 , 5 0 , 1 0 0 } ,
f or d o m ai n Y u G i O h , P r o _ W r e s t l i n g , D o c t o r _ W h o ,
S t a r _ T r e k , M i l i t a r y , a n d tr ai ni n g d at a si z e
| Qtr ai n| ∈ {1 0 0 , 5 0 0 , 2 0 0 0 } . F or P r o _ W r e s t l i n g ,
si n c e t h e d o m ai n c o nt ai ns 1 3 9 2 q u eri es,  w e us e
m a xi m u m v al u e of | Qtr ai n| = 1 0 0 0 i nst e a d of 2 0 0 0.
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( a)  T o p-k - R e c all @k r f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds r etri e v e a n d r er a n k t h e s a m e n u m b er of it e ms ( k r ) .
T h e s u bs cri pt k i i n A N N C U R k i r ef ers t o t h e n u m b er of a n c h or it e ms us e d f or e m b e d di n g t h e t est q u er y.

5 0 1 0 0 2 0 0 5 0 0 1 0 0 0
I nf er e n c e  C ost

0

2 5

5 0

7 5

1 0 0

To
p-

k
-

Re
ca

ll

k = 1

5 0 1 0 0 2 0 0 5 0 0 1 0 0 0

k = 1 0

1 0 0 2 0 0 5 0 0 1 0 0 0

k = 5 0

2 0 0 5 0 0 1 0 0 0

k = 1 0 0

T F- I D F D E b a s e D E b a s e + c e D E b e r t + c e a n n C U R

( b)  T o p-k - R e c all f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds o p er at e u n d er a  fix e d t est-ti m e c ost b u d g et.  R e c all t h at
c ost is t h e n u m b er of  C E c alls  m a d e d uri n g i nf er e n c e f or r e-r a n ki n g r etri e v e d it e ms a n d, i n c as e of A N N C U R , it als o
i n cl u d es  C E c alls t o e m b e d t h e t est q u er y b y c o m p ari n g  wit h a n c h or it e ms.

Fi g ur e 1 0:  T o p- k - R e c all r es ults f or d o m ai n =Y u G i O h a n d | Qtr ai n| = 1 0 0
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( a)  T o p-k - R e c all @k r f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds r etri e v e a n d r er a n k t h e s a m e n u m b er of it e ms ( k r ) .
T h e s u bs cri pt k i i n A N N C U R k i r ef ers t o t h e n u m b er of a n c h or it e ms us e d f or e m b e d di n g t h e t est q u er y.
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( b)  T o p-k - R e c all f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds o p er at e u n d er a  fix e d t est-ti m e c ost b u d g et.  R e c all t h at
c ost is t h e n u m b er of  C E c alls  m a d e d uri n g i nf er e n c e f or r e-r a n ki n g r etri e v e d it e ms a n d, i n c as e of A N N C U R , it als o
i n cl u d es  C E c alls t o e m b e d t h e t est q u er y b y c o m p ari n g  wit h a n c h or it e ms.

Fi g ur e 1 1:  T o p- k - R e c all r es ults f or d o m ai n =Y u G i O h a n d | Qtr ai n| = 5 0 0
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( a)  T o p-k - R e c all @k r f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds r etri e v e a n d r er a n k t h e s a m e n u m b er of it e ms ( k r ) .
T h e s u bs cri pt k i i n A N N C U R k i r ef ers t o t h e n u m b er of a n c h or it e ms us e d f or e m b e d di n g t h e t est q u er y.
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( b)  T o p-k - R e c all f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds o p er at e u n d er a  fix e d t est-ti m e c ost b u d g et.  R e c all t h at
c ost is t h e n u m b er of  C E c alls  m a d e d uri n g i nf er e n c e f or r e-r a n ki n g r etri e v e d it e ms a n d, i n c as e of A N N C U R , it als o
i n cl u d es  C E c alls t o e m b e d t h e t est q u er y b y c o m p ari n g  wit h a n c h or it e ms.

Fi g ur e 1 2:  T o p- k - R e c all r es ults f or d o m ai n =Y u G i O h a n d | Qtr ai n| = 2 0 0 0
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( a)  T o p-k - R e c all @k r f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds r etri e v e a n d r er a n k t h e s a m e n u m b er of it e ms ( k r ) .
T h e s u bs cri pt k i i n A N N C U R k i r ef ers t o t h e n u m b er of a n c h or it e ms us e d f or e m b e d di n g t h e t est q u er y.
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( b)  T o p-k - R e c all f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds o p er at e u n d er a  fix e d t est-ti m e c ost b u d g et.  R e c all t h at
c ost is t h e n u m b er of  C E c alls  m a d e d uri n g i nf er e n c e f or r e-r a n ki n g r etri e v e d it e ms a n d, i n c as e of A N N C U R , it als o
i n cl u d es  C E c alls t o e m b e d t h e t est q u er y b y c o m p ari n g  wit h a n c h or it e ms.

Fi g ur e 1 3:  T o p- k - R e c all r es ults f or d o m ai n =P r o _ W r e s t l i n g a n d | Qtr ai n| = 1 0 0
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( a)  T o p-k - R e c all @k r f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds r etri e v e a n d r er a n k t h e s a m e n u m b er of it e ms ( k r ) .
T h e s u bs cri pt k i i n A N N C U R k i r ef ers t o t h e n u m b er of a n c h or it e ms us e d f or e m b e d di n g t h e t est q u er y.
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( b)  T o p-k - R e c all f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds o p er at e u n d er a  fix e d t est-ti m e c ost b u d g et.  R e c all t h at
c ost is t h e n u m b er of  C E c alls  m a d e d uri n g i nf er e n c e f or r e-r a n ki n g r etri e v e d it e ms a n d, i n c as e of A N N C U R , it als o
i n cl u d es  C E c alls t o e m b e d t h e t est q u er y b y c o m p ari n g  wit h a n c h or it e ms.

Fi g ur e 1 4:  T o p- k - R e c all r es ults f or d o m ai n =P r o _ W r e s t l i n g a n d | Qtr ai n| = 5 0 0
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( a)  T o p-k - R e c all @k r f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds r etri e v e a n d r er a n k t h e s a m e n u m b er of it e ms ( k r ) .
T h e s u bs cri pt k i i n A N N C U R k i r ef ers t o t h e n u m b er of a n c h or it e ms us e d f or e m b e d di n g t h e t est q u er y.
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( b)  T o p-k - R e c all f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds o p er at e u n d er a  fix e d t est-ti m e c ost b u d g et.  R e c all t h at
c ost is t h e n u m b er of  C E c alls  m a d e d uri n g i nf er e n c e f or r e-r a n ki n g r etri e v e d it e ms a n d, i n c as e of A N N C U R , it als o
i n cl u d es  C E c alls t o e m b e d t h e t est q u er y b y c o m p ari n g  wit h a n c h or it e ms.

Fi g ur e 1 5:  T o p- k - R e c all r es ults f or d o m ai n =P r o _ W r e s t l i n g a n d | Qtr ai n| = 1 0 0 0
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( a)  T o p-k - R e c all @k r f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds r etri e v e a n d r er a n k t h e s a m e n u m b er of it e ms ( k r ) .
T h e s u bs cri pt k i i n A N N C U R k i r ef ers t o t h e n u m b er of a n c h or it e ms us e d f or e m b e d di n g t h e t est q u er y.
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( b)  T o p-k - R e c all f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds o p er at e u n d er a  fix e d t est-ti m e c ost b u d g et.  R e c all t h at
c ost is t h e n u m b er of  C E c alls  m a d e d uri n g i nf er e n c e f or r e-r a n ki n g r etri e v e d it e ms a n d, i n c as e of A N N C U R , it als o
i n cl u d es  C E c alls t o e m b e d t h e t est q u er y b y c o m p ari n g  wit h a n c h or it e ms.

Fi g ur e 1 6:  T o p- k - R e c all r es ults f or d o m ai n =D o c t o r _ W h o a n d | Qtr ai n| = 1 0 0
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( a)  T o p-k - R e c all @k r f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds r etri e v e a n d r er a n k t h e s a m e n u m b er of it e ms ( k r ) .
T h e s u bs cri pt k i i n A N N C U R k i r ef ers t o t h e n u m b er of a n c h or it e ms us e d f or e m b e d di n g t h e t est q u er y.
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( b)  T o p-k - R e c all f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds o p er at e u n d er a  fix e d t est-ti m e c ost b u d g et.  R e c all t h at
c ost is t h e n u m b er of  C E c alls  m a d e d uri n g i nf er e n c e f or r e-r a n ki n g r etri e v e d it e ms a n d, i n c as e of A N N C U R , it als o
i n cl u d es  C E c alls t o e m b e d t h e t est q u er y b y c o m p ari n g  wit h a n c h or it e ms.

Fi g ur e 1 7:  T o p- k - R e c all r es ults f or d o m ai n =D o c t o r _ W h o a n d | Qtr ai n| = 5 0 0
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( a)  T o p-k - R e c all @k r f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds r etri e v e a n d r er a n k t h e s a m e n u m b er of it e ms ( k r ) .
T h e s u bs cri pt k i i n A N N C U R k i r ef ers t o t h e n u m b er of a n c h or it e ms us e d f or e m b e d di n g t h e t est q u er y.
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( b)  T o p-k - R e c all f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds o p er at e u n d er a  fix e d t est-ti m e c ost b u d g et.  R e c all t h at
c ost is t h e n u m b er of  C E c alls  m a d e d uri n g i nf er e n c e f or r e-r a n ki n g r etri e v e d it e ms a n d, i n c as e of A N N C U R , it als o
i n cl u d es  C E c alls t o e m b e d t h e t est q u er y b y c o m p ari n g  wit h a n c h or it e ms.

Fi g ur e 1 8:  T o p- k - R e c all r es ults f or d o m ai n =D o c t o r _ W h o a n d | Qtr ai n| = 2 0 0 0
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( a)  T o p-k - R e c all @k r f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds r etri e v e a n d r er a n k t h e s a m e n u m b er of it e ms ( k r ) .
T h e s u bs cri pt k i i n A N N C U R k i r ef ers t o t h e n u m b er of a n c h or it e ms us e d f or e m b e d di n g t h e t est q u er y.
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( b)  T o p-k - R e c all f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds o p er at e u n d er a  fix e d t est-ti m e c ost b u d g et.  R e c all t h at
c ost is t h e n u m b er of  C E c alls  m a d e d uri n g i nf er e n c e f or r e-r a n ki n g r etri e v e d it e ms a n d, i n c as e of A N N C U R , it als o
i n cl u d es  C E c alls t o e m b e d t h e t est q u er y b y c o m p ari n g  wit h a n c h or it e ms.

Fi g ur e 1 9:  T o p- k - R e c all r es ults f or d o m ai n =S t a r _ T r e k a n d | Qtr ai n| = 1 0 0
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( a)  T o p-k - R e c all @k r f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds r etri e v e a n d r er a n k t h e s a m e n u m b er of it e ms ( k r ) .
T h e s u bs cri pt k i i n A N N C U R k i r ef ers t o t h e n u m b er of a n c h or it e ms us e d f or e m b e d di n g t h e t est q u er y.
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( b)  T o p-k - R e c all f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds o p er at e u n d er a  fix e d t est-ti m e c ost b u d g et.  R e c all t h at
c ost is t h e n u m b er of  C E c alls  m a d e d uri n g i nf er e n c e f or r e-r a n ki n g r etri e v e d it e ms a n d, i n c as e of A N N C U R , it als o
i n cl u d es  C E c alls t o e m b e d t h e t est q u er y b y c o m p ari n g  wit h a n c h or it e ms.

Fi g ur e 2 0:  T o p- k - R e c all r es ults f or d o m ai n =S t a r _ T r e k a n d | Qtr ai n| = 5 0 0
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( a)  T o p-k - R e c all @k r f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds r etri e v e a n d r er a n k t h e s a m e n u m b er of it e ms ( k r ) .
T h e s u bs cri pt k i i n A N N C U R k i r ef ers t o t h e n u m b er of a n c h or it e ms us e d f or e m b e d di n g t h e t est q u er y.
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( b)  T o p-k - R e c all f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds o p er at e u n d er a  fix e d t est-ti m e c ost b u d g et.  R e c all t h at
c ost is t h e n u m b er of  C E c alls  m a d e d uri n g i nf er e n c e f or r e-r a n ki n g r etri e v e d it e ms a n d, i n c as e of A N N C U R , it als o
i n cl u d es  C E c alls t o e m b e d t h e t est q u er y b y c o m p ari n g  wit h a n c h or it e ms.

Fi g ur e 2 1:  T o p- k - R e c all r es ults f or d o m ai n =S t a r _ T r e k a n d | Qtr ai n| = 2 0 0 0
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( a)  T o p-k - R e c all @k r f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds r etri e v e a n d r er a n k t h e s a m e n u m b er of it e ms ( k r ) .
T h e s u bs cri pt k i i n A N N C U R k i r ef ers t o t h e n u m b er of a n c h or it e ms us e d f or e m b e d di n g t h e t est q u er y.
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( b)  T o p-k - R e c all f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds o p er at e u n d er a  fix e d t est-ti m e c ost b u d g et.  R e c all t h at
c ost is t h e n u m b er of  C E c alls  m a d e d uri n g i nf er e n c e f or r e-r a n ki n g r etri e v e d it e ms a n d, i n c as e of A N N C U R , it als o
i n cl u d es  C E c alls t o e m b e d t h e t est q u er y b y c o m p ari n g  wit h a n c h or it e ms.

Fi g ur e 2 2:  T o p- k - R e c all r es ults f or d o m ai n =M i l i t a r y a n d | Qtr ai n| = 1 0 0
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( a)  T o p-k - R e c all @k r f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds r etri e v e a n d r er a n k t h e s a m e n u m b er of it e ms ( k r ) .
T h e s u bs cri pt k i i n A N N C U R k i r ef ers t o t h e n u m b er of a n c h or it e ms us e d f or e m b e d di n g t h e t est q u er y.
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( b)  T o p-k - R e c all f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds o p er at e u n d er a  fix e d t est-ti m e c ost b u d g et.  R e c all t h at
c ost is t h e n u m b er of  C E c alls  m a d e d uri n g i nf er e n c e f or r e-r a n ki n g r etri e v e d it e ms a n d, i n c as e of A N N C U R , it als o
i n cl u d es  C E c alls t o e m b e d t h e t est q u er y b y c o m p ari n g  wit h a n c h or it e ms.

Fi g ur e 2 3:  T o p- k - R e c all r es ults f or d o m ai n =M i l i t a r y a n d | Qtr ai n| = 5 0 0
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( a)  T o p-k - R e c all @k r f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds r etri e v e a n d r er a n k t h e s a m e n u m b er of it e ms ( k r ) .
T h e s u bs cri pt k i i n A N N C U R k i r ef ers t o t h e n u m b er of a n c h or it e ms us e d f or e m b e d di n g t h e t est q u er y.
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( b)  T o p-k - R e c all f or A N N C U R a n d b as eli n es  w h e n all  m et h o ds o p er at e u n d er a  fix e d t est-ti m e c ost b u d g et.  R e c all t h at
c ost is t h e n u m b er of  C E c alls  m a d e d uri n g i nf er e n c e f or r e-r a n ki n g r etri e v e d it e ms a n d, i n c as e of A N N C U R , it als o
i n cl u d es  C E c alls t o e m b e d t h e t est q u er y b y c o m p ari n g  wit h a n c h or it e ms.
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