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A B S T R A C T   

Structural defects such as porosity have detrimental effects on additively manufactured parts which can be 
reduced by choosing optimal process conditions. In this work, the relationship between process parameters and 
lack-of-fusion (LOF) porosity has been studied for the laser powder bed fusion (L-PBF) process of the Ti-6Al-4V 
alloy (Ti64). A physics-based thermo-fluid model is used to predict LOF porosity in the multilayer multitrack PBF 
process. To effectively map the high-dimensional processing parameters with porosity, an active learning 
framework has been adopted for the optimal design of experiments. Furthermore, a customized neural network- 
based symbolic regression tool has been utilized to identify a mechanistic relationship between processing 
conditions and LOF porosity. Results indicate that combining the physics-based thermo-fluid model for PBF 
porosity prediction with active learning and symbolic regression can find an appropriate mechanistic relation-
ship of LOF porosity that is predictive for a wide range of processing conditions. This mechanistic relationship 
was further tested for other metal AM materials systems (IN718, SS316L) through non-dimensional numbers. The 
presented workflow effectively explores the high-dimensional process design space for different additive 
manufacturing materials systems.   

1. Introduction 

Additive manufacturing (AM), also known as 3D printing, is a highly 
promising technology for making complex parts by layer-wise deposi-
tion of materials [1]. A wide range of materials, including metals and 
alloys [2], ceramics [3], and polymers and their composites [4], have 
been tested for use in this disruptive manufacturing technology. 
Different techniques have been developed over the years to print metals 
and polymers, such as selective laser melting (SLM) [5–7], laser powder 
bed fusion (L-PBF) [8,9], direct energy deposition (DED) [10], fused 
deposition modeling (FDM) [11], etc. While the technology is becoming 
increasingly robust, the key challenge remains in qualifying and certi-
fying parts, as the manufacturing process can lead to significant vari-
ability in material performance, such as fatigue [12–14]. Metal 3D 
printing processes such as L-PBF [15], SLM [16], and DED [17] often 
encounter defects such as porosity, spattering, and gas trapping, making 
it challenging to ensure the desired level of build quality necessary to be 
used in sophisticated applications like aviation and medical science 
[18]. 

Porosity is one of the common defects in additively manufactured 
parts due to the inherent nature of AM process. Porosity defects are 
common both in metal and polymer additive manufacturing [9,19]. 
Porosity can be attributed to several mechanisms, such as lack-of-fusion 
(LOF), vaporization of the materials, keyhole instability, powder shape, 
and size distribution. The L-PBF process is often plagued by LOF 
porosity, which occurs when powder particles fail to fully fuse together 
due to factors such as poor choice of processing conditions, low energy 
density, fast cooling rate, thick layers, and poor powder bed quality 
[20]. This lack of fusion is caused by a portion of the powder bed ma-
terials not reaching the melting temperature when considering a single 
layer thickness and applied laser power. Various methods can be 
implemented to combat this issue, such as optimizing process condi-
tions, using high-quality powders, controlling layer thickness, devel-
oping advanced control systems, and post-processing [15]. In 
experiments, it can be difficult to separate LOF porosity from other 
mechanisms. However, it can be identified in thermo-fluid simulations 
of the additive manufacturing process [18] by identifying the regions 
under the melting temperature. These simulations, however, can be 
expensive to perform on a full-scale AM part. Quantifying the porosity 

* Corresponding author. 
E-mail address: w-liu@northwestern.edu (W.K. Liu).  

Contents lists available at ScienceDirect 

Additive Manufacturing 
journal homepage: www.elsevier.com/locate/addma 

https://doi.org/10.1016/j.addma.2023.103500 
Received 22 November 2022; Received in revised form 6 March 2023; Accepted 13 March 2023   

mailto:w-liu@northwestern.edu
www.sciencedirect.com/science/journal/22148604
https://www.elsevier.com/locate/addma
https://doi.org/10.1016/j.addma.2023.103500
https://doi.org/10.1016/j.addma.2023.103500


Additive Manufacturing 68 (2023) 103500

2

through simulation is challenging as it requires multilayer multitrack 
scanning of the laser over the powder bed. Experiments are also costly, 
and varying different process parameters (laser speed, laser power, 
hatch spacing, layer thickness, scan orientations, etc.) to understand 
their effects on the structure properties, such as LOF porosity, can 
become infeasible. While identifying the relationship between process 
parameters and LOF porosity is useful, it is a challenging problem due to 
the high dimensionality of the process design space and the large 
number of simulations or experiments required to evaluate all process-
ing conditions [18,21]. In the current work, we aim to address these 
challenges by:  

i. obtaining reliable LOF porosity data through compute-intensive 
physics-based thermo-fluid models that vary different process 
parameters,  

ii. developing an optimal design of experiment (DOE) strategy to 
reduce the high-dimensional process design space of numerical 
and physical experiments, 

iii. establishing a mechanistic relationship among process parame-
ters and LOF porosity from fewer experiments and numerical 
simulations. 

The thermo-fluid-based simulation data can be used as an alternative 
to experimental data if it is validated against experiments. With the 
advancement of the AM field, quite a few experimental studies are now 
available for several AM materials systems, such as Inconel 718 (IN718) 
[21,22], Stainless Steel (SS) [23–25], Ti64 alloy [20,26], and so on. 
These experimental study results can be used to calibrate the numerical 
simulation model. Recently, Gan et al. [27,28] developed an AM-CFD 
simulation tool that successfully predicted the melt pool dynamics of 
metal AM materials. AM-CFD has been validated against AFRL [28] and 
NIST [27] benchmark studies for single-layer and multilayer scanning in 
the PBF process. However, predicting LOF porosity using a 
thermo-fluid-based model requires calibration of the laser parameters. 

In this work, we extended the capability of the previously developed 
AM-CFD tool to predict LOF porosity and understand its relationship 
with processing conditions. 

To understand the relationship between process parameters and 
their effects on the LOF porosity, many experiments and numerical 
simulations are required to effectively sample the high-dimensional 
process parameter space. The challenge is to learn this high- 
dimensional process parameter space relationship with LOF porosity 
through the optimal design of experiments. Active learning is a branch 
of machine learning that focuses on reducing the training dataset by 
sampling only the important instances that contain most of the infor-
mation. The active learning process learns from previously sampled 
instances (also known as the labeled pool) and guides the next sampling 
points from the unlabeled pool [29,30]. Previously, Houtum and Vlesea 
[31] used an adaptive weighted uncertainty sampling-based active 
learning for an additive manufacturing image dataset from a DED pro-
cess and reported more than 85% computational cost reduction. Tei-
chert et al. [32] used an active learning workflow to learn the free 
energy derivative in a high-dimensional input space for a phase field 
model. Active learning techniques efficiently sample the process design 
space, reducing the number of simulations required to effectively map 
the process conditions to LOF porosity. 

Once reliable porosity data is obtained, a regression tool is required 
to identify the underlying relationship between process parameters and 
LOF porosity. Regression is a widely used data science tool that uses 
linear and nonlinear functions to map input and output features. 
Recently, Xie et al. [33] used Convolutional Neural Networks (CNN) to 
establish a relationship between the thermal histories of the processing 
conditions in the AM process and printed materials properties such as 
ultimate tensile strength. Symbolic regression has an advantage over 
linear and nonlinear regression in the sense that it provides a 
closed-form expression to identify the relation between the input and 
output. Gan et al. [18] used genetic programming to learn a scaling law 
relationship between energy density and experimental porosity data for 

Nomenclature 

Symbols 
hc convective heat transfer coefficient (W⋅m−2⋅K−1). 
Hf latent enthalpy of fusion (kJ⋅kg−1). 
Tm melting temperature (K). 
cp specific heat(J⋅kg−1⋅K−1). 
fl volume fraction of liquid. 
rb laser beam radius (m). 
ztop z-coordinate of the top surface (m). 
ŷ predicted output feature. 
B numerical parameter. 
d depth of the heat source (m). 
g gravitational acceleration (m⋅s−2). 
h enthalpy (J). 
H scan spacing (m). 
k thermal conductivity (W⋅m−1⋅K−1). 
Ke keyhole number. 
L layer thickness (m). 
NED normalized energy density. 
p dimensional pressure (Pa). 
P laser power (W). 
Q laser heat (W). 
RMSE root mean square error. 
t dimensional time (s). 
T temperature (K). 
u velocity (m⋅s−1). 
Vs scan speed (m⋅s−1). 

x coordinate system (m). 
X input features vector (processing parameters). 
y output feature (porosity). 
Greek symbols 
L labeled pool. 
U unlabeled pool. 
α consolidation factor. 
β thermal expansion coefficient (K−1). 
γ surface tension (N⋅m−1). 
δ dendritic spacing (m). 
ε emissivity. 
η absorptivity. 
μ dynamic viscosity (Pa⋅s). 
ξ volume fraction of consolidated domain. 
ρ density (kg⋅m−3). 
σ Stefan-Boltzmann constant (W⋅m−2⋅K−4). 
ϕ porosity. 
Subscripts 
bulk bulk material properties. 
i variable index. 
j variable index. 
k variable index. 
l liquid phase. 
powder powder material properties. 
ref reference. 
s solid phase.  
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different AM material systems. While many symbolic regression tools 
are available, deep learning-based symbolic regression has the benefit of 
using the universal approximation of the nonlinear functions and solving 
an optimization problem [34]. Neural network-based symbolic regres-
sion can be more powerful than genetic programming because neural 
networks are able to learn complex, nonlinear relationships in data, 
whereas genetic programming typically relies on brute-force search 
through a space of possible solutions [34,35]. Additionally, neural net-
works can be trained on much larger data sets and more easily 
fine-tuned, whereas genetic programming can struggle with scaling and 
require significant hand-tuning. Finally, neural networks can be more 
easily interpretable as they can be visualized as a set of layers and 
weights, whereas genetic programming solutions can be difficult to 
understand. However, neural network-based symbolic regression tends 
to have higher model complexity than genetic programming, which can 
make them more powerful but also more prone to over fitting. Genetic 
programming can be adjusted to control the complexity of the models 
generated but can be difficult to implement. To establish the relation-
ship between processing conditions and LOF porosity, we propose a 
customized neural network architecture to identify the relationship 
through symbolic regression. 

To address the computational challenges of relating the processing 
conditions of L-PBF to LOF porosity, the following contributions have 
been made in this work:  

• The capability of a previously developed AM-CFD tool was extended 
to predict LOF porosity and understand its relationship with the 
processing conditions. This allows for more accurate predictions and 
an understanding of the factors that affect porosity in L-PBF, which is 
crucial for improving the quality and consistency of printed parts.  

• An active learning-based sampling method was adopted to reduce 
the computational effort needed to evaluate the process design space. 
This approach efficiently samples the design space, which helps to 
keep the number of simulations required to a reasonable number, 
effectively mapping the process to LOF porosity while minimizing 
the computational burden.  

• A customized neural network architecture was proposed to establish 
the relationship between processing conditions and LOF porosity 
through symbolic regression. This approach utilizes the universal 
approximation capabilities of neural networks, enabling the efficient 
modeling of the complex relationship between the process conditions 
and porosity. 

This paper is organized as follows. Section 2 describes the thermo- 
fluid modeling and prediction of the LOF porosity. Section 3 shows 
the optimal design for the number of simulations using the active 
learning workflow. A customized neural network architecture for sym-
bolic regression is described in Section 4. Section 5 shows the results 
with necessary interpretation and discussion. Finally, a conclusion sec-
tion is provided in Section 6. 

2. Thermal-fluid modeling for LOF porosity prediction 

2.1. Additive manufacturing process modeling 

To simulate the L-PBF process, a thermal-fluid model is used for 
multilayer simulation and prediction of LOF porosity. The thermal-fluid 
AM process model is a transient three-dimensional model that predicts 
the velocity field for the melt pool region and the thermal field for the 
entire part. The governing equations solve the mass, momentum, and 
energy conservation equations are given as follows: 
∂ρ

∂t
+ ∂ρui

∂xi
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where ρ is the density, t is the time, ui is the i th component of the ve-
locity, and xi is the local coordinates. μ, k, β are the viscosity, thermal 
conductivity, and thermal expansion coefficient, respectively. gi is the 
acceleration of gravity and considered as 9.8 m/s2 in the vertical di-
rection. For this study, we set μ as a constant value and primary dendritic 
spacing is set to 1μm. B is set to a value of 0.001 to avoid division by 
zero. The enthalpy (h) and temperature (T) are related by the following 
equation 

ρh =
∫ T

0
ρcp(T

′ )dT
′ + ρHf fl (4)  

where cpis temperature-dependent heat capacity, Hf is the latent 
enthalpy of fusion, and fl is the volume fraction of the liquid phase. 

The heat transfer by laser (Q) into the materials system is modeled 
using a cylindrical shape heat source with Gaussian distribution as 
shown below: 

Q =

⎧
⎪⎨
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2Pη

πr2
bd

exp

(
− 2(x2 + y2)

r2
b

)
; ztop − z ≤ d
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⎫
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⎪⎭

(5)  

where P is the laser power, η is the absorptivity, rb is the laser beam 
radius, d is the depth of the heat source, and ztop is the z-coordinate of the 
top surface of the computational domain. In Eq. 5, we assume that the 
laser power is an important process parameter that varies from process 
to process, and η, rb are parameters that remains fixed for a material 
system during printing. However, these parameters require calibration 
with the physical experiment described in Section 2.3. 

The thermal boundary conditions are specified as 
qener = − hc(T −T∞)− σε(T4 − T4

ref ) (6)  

where hc, σ, ε,Tref are the convective heat transfer coefficient, Stefan- 
Boltzmann constant, emissivity, and reference temperature, respec-
tively. The boundary conditions for the momentum conservation equa-
tion (Eq. 2) are set as follows for the top surface: 

μ
∂u1

∂z
= fl

dγ

dT

∂T

∂x
(7a)  

μ
∂u2

∂z
= fl

dγ

dT

∂T

∂y
(7b)  

u3 = 0 (7c)  

where γ is the surface tension, dγ

dT is the Marangoni coefficient, and ui is 
the i th component of the velocity. To distinguish between the powder 
layer and consolidated layer, a consolidation factor (α) is defined as 
given below, and its values vary in the range between 0 (no consolida-
tion) to 1 (fully consolidated). 

α = Tpeak − Ts

Tl − Ts

(8) 

The materials properties depend on this consolidated factor (state 
variable), and we consider a linear dependence of it on the effective 
material properties, shown in the following expression. 
λ = λbulkα+ λpowder(1−α) (9) 

For this study, we considered the material properties of the Ti64 as 
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summarized in Table 1 [28]. 

2.2. Porosity prediction 

LOF porosity in the L-PBF process can be attributed to interaction 
among different processing conditions such as lower power, higher 
scanning speed, higher layer thickness, and hatch spacing which does 
not allow the materials to absorb sufficient energy to fuse the powders. 
Here, we considered the powder layers as continuous media and tracked 
the region where the temperature history is below the melting temper-
ature. Based on that, we identified the region for possible LOF porosity 
and quantified that using the following equation. 
ϕ = 1− ξ (10)  

where ξ denotes the volume fraction of the domain with a temperature 

history above the melting temperature(T ≥ Tm). 
In the thermo-fluid simulation model, multitrack and multilayer 

materials are printed. Fig. 1(a) and (c) show a prediction of the LOF 
porosity for a multitrack, single-layer printing using the AM-CFD tool. 
An experimental observation (see Fig. 1b) also shows similar LOF 
porosity for the unmelted powder in the bed. To reduce the computa-
tional effort, two layers are printed and then repeated to obtain the 
printed part height of 2.1 mm, which is of the same size as the experi-
mental observation performed by du Plessis [20]. It is worth noting that 
the dwell time considered in printing each layer is sufficient to ensure 
the thermal stability of the melt pool, and printing more than two layers 
and repeating them will not change the results significantly. To ensure 
solidification of the deposited materials, a dwell time is provided 
following each laser scan to change the position of the laser. The tem-
perature of the different layers is plotted against the dwell time in Fig. 1 
(d) and a temperature evolution movie during the scan is provided as a 
supplementary material for the simulation set up of Fig. 1. The results 
indicate that the effect of residual heat on the subsequent layer can be 
disregarded if the dwell time is greater than 1 s. This is consistent with 
our model, which only considers two layers, as a sufficient dwell time of 
8–10 s between scans allows for cooling of the substrate. Using two 
layers instead of one accommodates for variations in toolpaths between 
even and odd layers. 

2.3. Model calibration and validation 

As mentioned earlier, several printing parameters, such as absorp-
tivity and laser spot radius, need to be calibrated to predict the experi-
mental LOF porosity for a specific materials system. In this study, we 
calibrated our model for the Ti64 materials. The calibration has been 
performed against the experimental results published by du Plessis [20] 
for the Ti64 materials system. Note that the knowledge of stochastic 
calibration is applied in this work [37,38], in which the process pa-
rameters are not deterministic but follow a statistical distribution. The 
stochastic scheme can add uncertain information into melt pool 

Table 1 
Ti64 materials properties used for LOF porosity prediction [28].  

Property Ti 64 
Solid density (kg⋅m−3) 4420 
Liquid density (kg⋅m−3) 3920 
Powder density (kg⋅m−3) 2210 
Solidus temperature (K) 1878 
Liquidus temperature (K) 1923 
Boiling temperature (K) 3000 
Solid specific heat capacity (J⋅kg−1⋅K−1) 0.2012 + 410.97 T 
Liquid specific heat capacity (J⋅kg−1⋅K−1) 830 
Solid thermal conductivity (W⋅m−1⋅K−1) 0.0118 + 4.243 T 
Liquid thermal conductivity (W⋅m−1⋅K−1) 34.6 
Powder thermal conductivity (W⋅m−1⋅K−1) 0.995 T 
Latent heat of fusion (kJ⋅kg−1) 1126.6 
Dynamic viscosity (Pa⋅s) 3.0 × 10−3 

Thermal expansion (K−1) 5.85 × 10−5 

Marangoni coefficient (N⋅m−1⋅K−1) -2.6 × 10−4 

Convection coefficient (W⋅m−2⋅K−1) 5 
Absorptivity 0.527 
Emissivity 0.3  

Fig. 1. (a) LOF porosity predicted using thermo-fluid modeling for Ti64 materials with laser power of 300 W, scan speed of 1230 mm/s, layer thickness of 0.04 mm, 
hatch spacing of 0.1 mm for 30 tracks, (b) experiment showing the unmelted powder region which turns into LOF porosity [36], (c) LOF porosity (on blue color) 
predicted using the multitrack simulations, (d) Variation of part temperature with dwell time. 
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geometry and help in the prediction of defects like porosity. The details 
of the stochastic calibration process are presented in Appendix A. The 
laser spot size (diameter) is considered as 50μm. We varied the ab-
sorptivity as shown in Fig. 2(a) and a value of 0.527 is chosen for the rest 
of the simulations. 

It is important to note that the current numerical model has limita-
tions. Specifically, this work uses a cylindrical heat source with gaussian 
distribution to model the heat source. While various heat source models, 
such as ellipsoid, double ellipsoid, parabolic, and cylindrical, have been 
proposed in the literature [39,40], none have been found to be entirely 
accurate without extensive calibration with experimental data. Our 
model, however, has undergone extensive calibration against the NIST 
AM bench [27,41] and AFRL AM modeling [28] challenges for 

predicting melt-pool shape in L-PBF processes. Additionally, the model 
does not consider multiphase or multi-species flow and assumes that 
materials are fully melted when their temperature exceeds the melting 
point, leading to a simplified mechanism of porosity formation. 
Furthermore, the materials properties used in the research are taken 
from literature and may vary considerably with temperature, which is 
assumed to be constant. 

3. Active learning for optimal design of processing parameters 

The PBF process of additive manufacturing involves several pro-
cessing parameters that make the problem high dimensional. Obtaining 
the LOF porosity data by varying all these process parameters is quite 
expensive. Active learning can adaptively sample the process parame-
ters from the DOE space and significantly reduce the required number of 
simulations or experiments for the porosity calculation. The details of 
the active learning workflow are shown in Fig. 3 and the steps are 
described below. 

3.1. Dataset preparation 

For the dataset preparation, important process parameters such as 

Fig. 2. (a) Calibration of the laser absorptivity parameter with the experimental data[20] (b) Comparison of the experimentally measured porosity with the pre-
dicted value. 

Fig. 3. (a) A sample design of experiment for the process parameters where the dataset is categorized as labeled and unlabeled pool. (b) Active learning workflow.  

Table 2 
DOE range of the process parameters.  

Process parameters Value 
Laser power, P [J/s] 100–220 
Scan speed, Vs [m/s] 0.8–1.2 
Scan spacing, H [μm] 140–200 
Layer thickness, L [μm] 30–60  
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laser power, scan speed, scan spacing, and layer thickness are consid-
ered, and they are varied within the ranges shown in Table 2. Two non- 
dimensional numbers, normalized energy density (NED) and keyhole 
number (Ke), can be obtained using these processing conditions. The 
normalized energy density and keyhole number relate processing pa-
rameters and materials parameters, such as materials density, heat ca-
pacity, and liquidus temperature, and are expressed as follows: 

NED = ηmP

VsHL

1
ρCp(Tl − T0)

,Ke = ηmP

(Tl − T0)πρCp√(βVsr
3
0)

(11) 

To generate the DOE for the process design space, the Latin hyper-
cube sampling strategy is adopted. Latin hypercube sampling [42,43] is 
a constrained version of the Monte Carlo sampling scheme that yields 
more precise estimates than the Monte Carlo random sampling approach 
[38]. In Latin hypercube sampling, n different values from each of k 
variables (X1,…,Xk) are sampled by dividing the range of each variable 
into n nonoverlapping intervals based on equal probability. From each 
interval, one value is selected randomly with respect to the probability 
mass of the interval. Then the n values selected for the variable X1 are 
randomly combined with n values of variable X2 and continued for the k 
number of variables. This process gives n k-dimensional input vectors, 
which can be considered as the (n × k) matrix shown in Fig. 3(a). For the 
current work, 300 sampling points are generated for the input process 
parameters as shown in Fig. 4. Initially, all these sampling points are 
part of our unlabeled pool of the dataset. Labeling means that the LOF 
porosity for the corresponding process parameters are known either by 
experiment or simulation. Ten experimental porosity data [20] are 
validated using our thermo-fluid model; the porosity data for those 
sampling points are known and included in the dataset as seed data. For 
these process parameters, the porosity data is known and termed the 
labeled pool. Therefore, the whole data set consists of two pools: the 
labeled pool (L (Xi,y)), where the input process parameters and porosity 
are known, and the unlabeled pool U (Xi, ?) of input process parameters 
for which the label or porosity is unknown. For the unlabeled pool, 
AM-CFD simulations are performed to obtain the porosity label for a 
given set of processing parameters (from DOE). The DOE dataset and 

Fig. 4. Latin hypercube sampling of the process design space.  

Box 1 
Algorithm of active learning for the process design space. 

.  
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their corresponding predicted porosity data is available in the GitHub 
link in the Data Availability section. 

3.2. Gaussian process surrogate model 

In the active learning framework, a Gaussian process (GP) surrogate 
model is fitted on the labeled dataset iteratively. The trained GP model is 
then utilized to predict the label for a sub-sample of the unlabeled data 
pool (sampled in a pool-based sampling strategy). The GP surrogate 
model has the inherent prediction of the variance of the unlabeled 
dataset along with its label, which is further used for the ranking and 
query selection of the unlabeled samples. More details on the GP sur-
rogate model and prediction variance are provided in Appendix B. 

The GP surrogate model is trained using the Gaussian process 
regression module [44] available in the scikit-learn machine learning 
tool using Python for the present work. The input dataset is four 
dimensional with four process parameters (laser power, scan speed, scan 
spacing, and layer thickness), and the output is the porosity. The 
hyperparameters of the GP surrogate model are chosen as σf = 1, and l1 

= l2 = l3 = l4 = 0.1 initially and optimized during the training process 
for a Matern class covariance function. For an input set the GP surrogate 
model predicts the porosity label along with the variance of porosity 
prediction. The trained surrogate models for different seed data, 
sub-sample sizes, and queries are available in the GitHub link in the Data 
Availability section. 

3.3. Pool-based sampling strategy, ranking of sub-sample, and quires 
selection 

Based on the classification of the sampling strategy of the active 
learning process, we have used the pool-based sampling strategy. In 
pool-based sampling, a sub-sample from the unlabeled data pool (drawn 
randomly from the input space generated using Latin hypercube sam-
pling) is used for the prediction of variance. This prediction is done using 
the GP surrogate model, trained on previously labeled samples as 
described in the earlier section. We select a sub-sample from the unla-
beled pool of m samples and pass it to the GP surrogate model. The GP 
surrogate model predicts the porosity and associated variance for the 
input process parameters. Based on the variance of the predicted 
porosity of the sub-sample, they are ranked in descending order based on 
the predicted variance using Eq. B7. 

3.4. Queries selection and labeling process 

Based on the variance associated with the sub-sample of the unla-
beled pool, a predefined number of samples (p) are selected based on the 
ranking of the variance 

{X∗(U )}p

u=1 = Xk, k = argmax

k

{
σ
∼

max,k, k = 1,…, p

}
(12) 

This p number of unlabeled sub-samples with the most variance 
({X∗(U )}p

u=1 ∈ U ) are the most promising candidate samples for the 
simulations of experiments that can add useful information on the pro-
cess parameters and LOF porosity relationship. 

Once the queries are selected for the labeling, these samples’ process 
parameters are simulated using the thermo-fluid model described in 
Section 2. From the post-processing of the simulation results, the LOF 
porosity is predicted, and the unlabeled query sample is labeled for 
porosity. The labeled data is fed into the GP surrogate model in subse-
quent iteration and trained to have better predictability for the next sub- 
sample from the unlabeled pool. 

3.5. Stopping criteria and metrics 

The stopping criterion depends on the number of seed data available 
and how many instances are taken for each sub-sampling of the unla-
beled pool. Based on that, the active learning process is iterated for the 
whole design of experiments covering the input process parameter 
space. We used the root mean square error (RMSE) as a metric to eval-
uate the performance of the active learning process in each subsequent 
iteration for a validation dataset of 50 samples. The RMSE is defined 
based on the true labels of porosity from experiments or simulations and 
the predicted labels from the GP surrogate model as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N

i=1

(
f̃ i − fi

)2

√√√√ (13) 

The details of the active learning algorithm are presented in Box 1. 

4. Neural network-based symbolic regression 

In this work, a customized neural network is used for symbolic 
regression to identify the relationship between process parameters and 
porosity. Instead of using the individual process parameters as input, the 

Fig. 5. Neural network architecture for the symbolic regression.  

Fig. 6. (a) Printed part structure with laser power 120 W, scan speed 0.8 m/s, 
scan spacing 0.140 mm, and layer thickness of 0.03 mm. The predicted porosity 
of 5.8% volume fraction is shown in (b). (c) Variation of LOF porosity with NED 
for the Ti64 alloy. 
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normalized energy density [18] is used to map the relationship. Using 
the normalized energy density (NED), the obtained process parameters 
to porosity relationship can be material independent as such materials 
parameters are captured in this non-dimensional number. 

4.1. Neural network architecture 

The neural network-based symbolic regression tool is based on a 
similar architecture proposed for the equation learner network [45,46]. 

Fig. 7. GP model RMSE prediction on the validation set trained on (a) 20 seed data, 5 queries, (b) 20 seed data, 10 queries, (c) 40 seed data, 5 queries, (d) 40 seed 
data, 10 queries for a subsample size of 20 in each iteration. 

Fig. 8. GP model RMSE prediction on the validation set trained on 20 seed data, 5 queries for a subsample size of (a) 30, (b) 40, and (c) 60 in each iteration.  
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The general architecture of the neural network is shown in Fig. 5. The ith 
layer of this fully connected neural network is given by 
gi = wihi−1  

hi = f(gi) (14)  

where wi is the weight matrix of the ith layer, and the input layer x can 
be obtained by h0. f(g) denotes the activation function which is different 
than the conventional machine learning activation functions. The output 
layers are given by the following relations 
ŷ = hn+1 = wn+1hn (15) 

The output layer does not have any activation function and is just a 
summation of the previous layer’s output. In conventional machine 
learning, activation functions such as rectified linear unit (ReLU), sig-
moid, tangent sigmoid, etc., are used. To construct the functional form of 
the input and output data, we customized the activation functions with 
several candidate mathematical functions such as sine, square, cubic, 

exponential, logarithmic, unity, etc. We also define operators, such as 
multiplication, in an activation function format that take input numbers 
and output the multiplied value of the two numbers. No additional bias 
term is defined as they can be absorbed into the f(g), which is given by 
the following form: 

f (g) =

⎡
⎢⎢⎢⎢⎣

f1(g1)
f2(g2)
f3(g3)

⋮

fnh

(
gng−1, gng

)

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

1

sin(.)

()3

⋮

(a × b)

⎤
⎥⎥⎥⎦ (16) 

These activation functions are the primitive functions that are the 
building blocks of the symbolic regression, and their combinations try to 
approximate the functions by minimizing the loss functions. Along with 
the functions shown in Fig. 5, we also considered sigmoid and expo-
nential functions as the activation function for the current work. Same 
functions are repeated within the layer to reduce the sensitivity of the 

Fig. 9. Process design space learning pattern through active learning using 20 seed data, 5 queries for a subsample size of (a) 30, (b)40, and (c) 60 in each iteration. 
Legend on the right shows the data index and the first 20 samples are the seed data for each plot. 

Fig. 10. GP surrogate model prediction with 95% confidence interval for a model trained on (a) 20 seed data, 5 queries, (b) 20 seed data, 10 queries, (c) 40 seed data, 
5 queries, (d) 40 seed data, 10 queries for a subsample size of 20 in each iteration. 
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random initializations. The number of hidden layers considered for this 
work is two, which can be increased for a more complex system. This is 
analogous to the tree depth used in the genetic programming approach 
for symbolic regression. For the given one-dimensional input of the 
normalized energy density with the porosity, three layers are good 
enough to predict the relationship. Sparsity is ensured by enforcing a L0.5 
regularization in the loss function. More details of the sparsity and 
regularization for the current network are discussed in Appendix C. 

4.2. Training of neural network 

Based on the prediction of the neural network, a mean square error 

loss function can be used with the regularization term as given below 

θ∗ = 1
N

∑
(yi − ŷi)2 + λL0.5 (17)  

where yi is the true value, ŷi is the predicted value, and λ is a hyper-
parameter that balances the mean squared error and the regularization 
term. 

The training is performed in three stages. In the first stage, a small 
value of λ is selected, and the network evolves freely to calculate the 
latent parameter. In the second stage, λ is increased to enforce sparsity. 
In the third stage, a certain threshold (α) is selected, and the weights 
below that threshold are set as zero. In the final stage, the L0.5 regula-
rization term is dropped to fine-tune the weights of the model. 

5. Results and discussion 

The focus of this work is to predict the LOF porosity using a physics- 
based thermo-fluid model and reduce the number of simulations via an 
active learning framework. Further, a relationship between the pro-
cessing conditions and porosity is established using a neural network- 
based symbolic regression tool. First, the porosity is predicted using 
the thermo-fluid model. Later the predicted porosity data for different 
processing conditions are used to show the efficacy of the active learning 
framework to reduce the number of simulations to effectively map the 
process design space. Finally, the actively learned samples are used to 
predict the processing conditions and porosity relationship. 

5.1. Porosity prediction using physics-based thermo-fluid model 

Section 2 presents the details of the thermo-fluid model used for the 
prediction of LOF porosity for varying processing conditions such as 
laser power, scan speed, hatch spacing, and layer thickness. Based on the 
thermo-fluid model, the melt pool due to the laser absorption can be 

Fig. 11. Plot of the predicted expressions with the original dataset for (a) 20 seed data, (b) 40 seed data with a subsampling of 20, and queries of 10.  

Table 3 
Identified equations using the symbolic regression tools for the actively learned space with 20 and 40 seed data.   

Identified expression (NED ≤ 5)
Eq. no Seed data= 20, Subsampling data= 20, query data= 10 Seed data= 40, Subsampling data= 20, query data= 10 
i 

ϕ = 0.47
0.07e9.46∗sin(0.3∗NED) + 1 ϕ = 0.46

0.065e9.46∗sin(0.32∗NED) + 1 
ii 

ϕ = 0.19(1−sin
(14.21+ 7.85

e1.35∗NED + 1
))

ϕ = 0.30
0.02e9.72∗sin(0.32∗NED) + 1 

iii 
ϕ = 0.19 ∗ sin

(29.93+ 7.85
e1.35∗NED + 0.59

)
ϕ = 0.26

274.23e−6.76sin(1.19∗NED)−1.88sin(2.82∗NED) + 1   

Fig. 12. Predictive ability of the proposed expression for different metal ad-
ditive materials systems (IN718 [21,22], SS316L [23–25], Ti64 [20,26]). 
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estimated, which in turn provides the melting region in the powder bed. 
If the laser power is low, in some scanning region the powder remains 
unmelted, introducing LOF porosity. In the process modeling, similar 
phenomena are observed when the process parameters are varied. For 
different processing conditions, a certain region of the track reaches 
below the melting point, as shown in Fig. 6(a). The unmelted region 
from the multilayer multitrack scanning corresponds to the shape of the 
structure shown in Fig. 6(b). The results shown in Figs. 6a and 6(b) are 
for laser power 120 W, scan speed 0.8 m/s, scan spacing 0.140 mm, 
layer thickness 0.03 mm, and a predicted porosity of 5.8% of the 2.1 mm 
printed cube structure. The porosity data for all samples was generated 
using a DOE of process parameters, as outlined in Section 3.1. The 
predicted porosity for each sample is displayed in relation to the non- 
dimensional number normalized energy density (NED) in Fig. 6(c). At 
a low NED, the porosity is high, and the primary mode of the porosity 
formation is a lack of fusion. As the NED increases, the porosity de-
creases significantly, and the conduction porosity mode becomes active. 
From the experimental data for various AM materials such as IN718 [21, 
22], SS316L [23–25], and Ti64 [20,26], it has been observed that for 
NED values below 5, the pore formation mechanism primarily follows 
the lack of fusion mechanism. The predicted porosity from the 
thermo-fluid simulation also shows similar findings for the Ti64 alloy. 

5.2. Active learning for the optimal design of experiments for simulation 

The physics-based thermo-fluid simulation is expensive since a high- 
resolution mesh (~2.5 million finite volume cells) is needed to resolve 
the melt pool correctly and obtain the porosity data. Each of these 
simulations has a wall time of ~6 h in a single node with 24 processors 
using adaptive meshing. Therefore, for a high-dimensional process- 
design space, it is infeasible to simulate all the samples of the DOE. Using 
active learning techniques, an optimal DOE can be obtained with a fewer 
number of samples to simulate while achieving a similar level of con-
fidence in mapping the process to porosity features. 

The physics-based simulations have been performed for all the 
samples to obtain the ground truth, and then we show the efficacy of the 
active learning techniques based on the RMSE of the GP regression 
model fitted using the actively learned sample vs. the random sampling 
from the original DOE. The seed data, subsampling size, and the number 
of queries are varied to see their effects on the model performance using 
RMSE metrics. Fig. 7 shows the RMSE of the GP model (fitted on the 
labeled data after each iteration), varying the seed data from 20 to 40, 
and queries from 5 to 10 for a subsample size of 20. The active learning 
shows a lower RMSE value (in the validation set of 50 samples) 
compared to random sampling indicating that the GP model trained with 
actively learned samples performs better than with random samples. As 
the actively learned samples have higher uncertainty variance in the 
porosity prediction, it provides an effective way to train the model, 
which reflects in the RMSE of the validation set. Increasing the number 
of queries from 5 to 10 for the same seed data, sometimes the random 
sampling may perform better; however, it is not guaranteed. On the 
other hand, active learning samples always converged better compared 
to random sampling. As the number of seed data is increased from 20 to 
40, the initial RMSE is decreased, which is expected (see Figs. 7c and d). 

The effect of choosing different subsampling sizes is presented in 
Fig. 8. The number of seed data and the queries are fixed at 20 and 5, 
while the subsample size is varied to 30, 40, and 60. For the subsample 
sizes of 30 and 40, more iterations are required, and the model learns 
better from subsequent iterations. On the other hand, for a larger sub-
sample size of 60, a smaller number of iterations are required for sam-
pling, which results in a higher RMSE prediction. From the three 
parameters (seed data, subsample size, and queries), higher seed data 
(based on availability), moderate subsampling size, and fewer queries 
perform better for finding optimal samples of the process design space. 

It is clear from the above discussion that active learning effectively 
samples the design space more efficiently than random sampling. Also, 

important information about the physics of the model can be captured 
by analyzing the learning pattern through the active learning process. 
Fig. 9 shows the learning pattern through active learning for different 
subsampling. As is evident from Fig. 9, the model effectively identifies 
the important region for sampling and captures the exponential decrease 
of the LOF porosity with the normalized energy density. The most un-
certainty for the porosity can be found between a NED value of 1–3, and 
the active learning technique is able to capture the important physics by 
acquiring samples on these regions. 

A Gaussian process (GP) surrogate model is trained as an active 
learning acquisition function. Following the iteration process of the 
active learning, the GP surrogate model can be used for predicting the 
porosity with uncertainty associated with the predictions. In Fig. 10, the 
predictive capability of the GP surrogate models trained with different 
seed data and queries is shown for a new set of process parameters. The 
trained GP surrogate models show similar predictions for these process 
parameters. One interesting observation is that the predicted un-
certainties of all the models show higher error bounds near the elbow 
region of the NED vs. porosity curves. From Fig. 10(c), the elbow region 
shows higher uncertainty in the porosity predictions, which clearly re-
flects in the surrogate model prediction. Also, at higher NED, the error 
bound is higher due to the lower number of samples available for 
training. (Fig. 11). 

5.3. Symbolic regression for process-structure relationship 

Identifying a mechanistic relationship between the processing con-
ditions (combined in NED) and the porosity can provide insight into 
choosing the right processing conditions for an AM process. Based on the 
actively learned samples with 20 and 40 seed data, a symbolic regression 
model is trained, and the predicted equations are presented in Table 3. 
Symbolic regression has been performed multiple times, and only the 
top 3 expressions with the lowest errors are shown in the Table. It should 
be noted that these expressions occurred most frequently over multiple 
regression trials. A plot of these equations with the original data is 
visualized in Fig. 12. While all these equations can predict the pattern of 
the LOF porosity, the first equation gives the simplest expression. We 
choose this simple expression (Eq. i) as the relationship between the 
normalized energy density and the porosity as it holds for both trials, 
each with different numbers of seed data. Further, the expressions are 
plotted against the observed porosity from thermo-fluid simulations to 
understand their predictive capabilities. All the expressions show similar 
predictions and correctly capture the physics of the LOF porosity for-
mation mechanism. 

In the identified expression through symbolic regression, the process 
parameters relate the LOF porosity in terms of the non-dimensional 
process parameters normalized energy density. The normalized energy 
density has both the processing conditions with the materials-dependent 
parameter. Therefore, the identified relationship can be interpreted as a 
material independent relationship. Fig. 12 shows the porosity data for 
IN718 [21,22], SS316L [23–25], and Ti64 [20,26] with NED. The 
experimental data from the literature are compared with our identified 
expressions for LOF porosity. The porosity prediction of the proposed 
expression is within the error bar found from those experimental data. 
Therefore, the proposed mechanistic expression holds for the metal AM 
system and is predictive of LOF porosity for a wide range of process 
parameters while NED ≤ 5. 

In this work, only the LOF porosity has been studied; therefore, all 
the mechanistic equations are only valid for such porosity. As the NED 
increases, the other mechanisms of porosity formation (e.g., conduction, 
keyhole porosity) manifest, which cannot be captured in the current 
physics-based model. Also, the choice of the NED≤5 as a LOF porosity 
mode is a rough estimate from the experimental observations. The 
transition of the porosity formation mechanisms with NED needs further 
investigation to identify a proper range. It should be noted that many 
mechanistic equations can be identified using the symbolic regression- 
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based approach and the identified expression is one of many possible 
cases demonstrated here. 

6. Conclusions 

The high dimensionality of the process design space for metal AM 
poses a challenge in determining the optimal processing windows to 
ensure printed part quality. Both experiment and computation can cause 
prohibitive costs in evaluating the process design space to identify a 
feasible processing window. In the present work, a physics-based 
thermo-fluid modeling approach is demonstrated to predict the LOF 
porosity and is validated against experiments. Further, the model is used 
to evaluate a design of experiment for processing conditions to predict 
porosity. The active learning technique has been utilized to reduce the 
numerical experiments and effectively map the process design space. 
Additionally, a neural network-based symbolic regression tool is used to 
identify a mechanistic relationship between the processing parameters 
and the porosity. The observations are summarized as follows: 

i) The thermo-fluid model is predictive of the LOF porosity; how-
ever, at low NED, the uncertainty on the predicted porosity is 
higher due to the variation of processing conditions.  

ii) Active learning effectively samples the process design space and 
outperforms random sampling of the design space. Seed data, 
subsampling size, and the number of queries are three important 
parameters for better sampling through active learning. Higher 
seed data, lower subsampling, and moderate query selection yield 
better performance for the active learning process.  

iii) The neural network-based symbolic regression tool generates 
many possible expressions for the process-structure relations. The 
simpler expression is preferred over a complex expression with 
good predictive accuracy. The identified mechanistic expression 
is general enough that it holds for other metal AM systems as 
well. 

Using the proposed mechanistic relation, the LOF porosity for a wide 
variety of metal AM systems can be predicted, saving a lot of 

experimental effort and cost. This also identifies the process-structure 
relationship of the metal AM system, and the framework can be 
extended to polymer and ceramic materials systems as well to identify 
the key governing mechanisms of porosity formation. 
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Appendix A. Stochastic calibration for process parameters 

The processing conditions of an AM process can vary during the experiment. To consider these stochastic variations in the processing parameters in 
physics-based thermo-fluid simulations, extensive calibrations should be performed considering stochasticity. Calibration of simulation model pa-
rameters is challenging, especially when the number of unknown parameters becomes important and local minima exist. To have an efficient cali-
bration process, HOPGD [47,48], a non-intrusive data learning and constructing reduced order surrogate models, can be used to handle the model 
parameter calibration problem. In the thermo-fluid model, the inputs are heat source parameters P1,P2,P3 and energy density e = P

V, and melt pool 
width W and the melt pool depth D, are outputs. P is the laser power and V is the scan speed. Based on HOPGD separation idea, surrogate model for 
stochastic AM simulation can be written as: 

Ys =
[

Ws

Ds

]
= F(e,P1,P2,P3) =

∑k

m=1
F

(m)
1 (e)F(m)

2 (P1)F(m)
3 (P2)F(m)

4 (P3) (A1)  

where Ys represents the simulation output, Ws and Ds are the simulated width and depth, respectively. Fi (i = 1,., 4) are components for the HOPGD 
method, m is the mode number, and k is the total number of modes. 

Difference between experimental and simulation parameters distribution (fWe(x), fDe(x),fWs(x), fDs(x)) are estimated using kernel density estimate 
(KDE) [49] in the current model. 
FindfWs(i)(W), fDs(i)(D)

min
∑11

i=1

∫
fWe(i)(W)log

fWe(i)(W)
fWs(i)(W)dW +

∑11

i=1

∫
fDe(i)(D)log

fDe(i)(D)
fDs(i)(D) dD (A2) 

The distributions of experiment and simulation can be obtained through KDE: 

fWs(i)(W) = 1
nh

∑n

j=1

K(W − Wsj

h
), fDs(i)(D) = 1

nh

∑n

j=1

K(D − Dsj

h
)fWe(i)(W) = 1

nh

∑n

j=1

K(W − Wej

h
), fDe(i)(D) = 1

nh

∑n

j=1

K(D − Dej

h
) (A3) 
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where i defines the i−th melt pool experiment case (i = 1,…,11). j is the number of measurement points for each melt pool case, K defines the 
Gaussian kernel function, n is the number of sample points, and h is the bandwidth. The processes involved in the stochastic simulation model are 
given in Box B1. 

Appendix B. Gaussian process surrogate model 

With the small amount of labeled dataset, a Gaussian process (GP) surrogate model is constructed to assess the labels of the unlabeled data pool and 
their variance. GP is a collection of random variables, and their finite collection has a multivariate normal distribution. Using the labeled data set we 
can construct a model f(x) as follows: 
f (x) ∼ GP(μ(x), k(x, x′ )) (B1)  

where μ(x) is a mean function with covariance function k(x,x′ ). We define a nonlinear model g(x) that takes N inputs X = {x1,…, xN} and predict the 
outputs g = {g(x1),…,g(xN)}. As the GP model we defined earlier is an interpolation model, there should be f = g where f(xi) = g(xi) for each input xi. 

Now, we take M inputs X∗ =
{x∗1,…, x∗M

} for the predictions using our previously constructed GP surrogate model and the predictions are f∗ =
{f(x∗1,…,x∗M}. Based on the definition, the finite sampling set and the predictions form a joint Gaussian distribution as follows 

P

(
f

f ∗

)
= N

({
μ

μ∗

}[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(B2) 

The conditional distribution of the predictive set on the sampling set is a Gaussian distribution and can be obtained using the Bayes’ rules as 
P (f ∗|f ) = N (μ̃,K̃) (B3)  

where μ̃andK̃ is given using the following relations 
μ̃ = μ∗ +K(X∗,X)K−1(f − μ),

K̃ = K∗ −K(X∗,X)K−1K(X,X∗). (B4) 
The posterior of the GP model can be expressed as 

f (x)|X, f ∼ GP(μ̃(x)k̃(x, x
′ )) (B5)  

where the μ̃ and k̃ are the updated mean and covariance functions and expressed as following 
μ̃ = μ(x)+K(x,X)K−1(f − μ),

k̃ = k(x, x′ )−K(x,X)K−1K(X, x′ ). (B6) 
For the prediction of new arbitrary input x∗, the prediction f(x∗) can be shown as 

P (f |x∗,X, f ) = N (μ̃(x∗), σ̃2(x∗)) (B7)  

Box B1 
Algorithm for the stochastic simulation process. 

.  
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which is a gaussian distribution with variance, σ̃2(x∗) = k(x∗,x∗). 
For the implementation of the GP model, a constant zero value is assumed for the mean function μ(x) which gives the whole GP model defined 

based on the covariance function k(x, x′ ). In practice, different functions are used for estimating the covariance function such as the radial basis 
function. The radial basis function is a squared exponential function, and it is very smooth. The smoothness of our data is not ensured; therefore, we 
choose a Matern class covariance function which is defined as the following: 

k(r) = σf

21−ν

Γ(ν)
( ̅̅̅̅̅̅̅

2νr
√ )ν

Kv(
̅̅̅̅̅̅̅
2νr

√
) (B8)  

where σf is a multiplier, Γ() is the Gamma function, Kν is the modified Bessel function for a positive number ν and r is the distance between two inputs x 
and x′ given as 

r(x, x′ ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑d

i

(
xi − x

′
i

li

)2
√√√√ (B9)  

where d is the number of the input dimension and li is the length scale in each dimension. The length scale controls the correlation of the approxi-
mation functions. 

To train the surrogate model, the hyperparameters θ = {σf , l1,…, ld} are defined and calibrated by maximizing the log marginal likelihood 
logP (f |X). 

Appendix C. Sparsity and regularization 

The customized neural network activation functions for each node of a layer turn off and on for different combinations of the functions to fit the 
input and output data. Therefore, sparsity is a key element of this neural network. In the training process, the goal is to set as many zero weights 
parameters as possible by enforcing the sparsity in the neural network. One of the simplest approaches to enforce sparsity is adding a regularization 
term in the loss function of the neural network. The regularization term is a function of the weight matrices of the neural network and is given as 
Lq =

∑n+1

i=0
‖Wi‖q (C1)  

where ‖Wi‖q is the element-wise norm of the matrix and q sets the norm of the matrix. The element-wise norm can be approximated as 
‖Wi‖q =

∑

j,k

⃒⃒
wj,k

⃒⃒q (C2) 

Setting the value of q = 0, gives the L0 regularization which ensures the sparsity by penalizing the non-zero weights regardless of their magnitude. 
While L0 regularization pushes the solution towards sparsity, it is not compatible with the gradient descent optimization used in the optimization of 
the neural networks. Previously, Lampert et al. [45] used L1 regularization to make the optimization problem convex and push the solution towards 
sparsity. Recently, Kim et al. [34] proposed a modified L0.5 regularization that performs better than L1 regularization while being compatible with the 
gradient descent based optimization algorithm. The modified L0.5 regularization can be expressed as 

L0.5(w) =

⎧
⎪⎪⎨
⎪⎪⎩

|w|1/2|w| ≥ a

(
− w4

8a3 +
3w2

4a
+ 3a

8

)1/2

|w| < a

⎫
⎪⎪⎬
⎪⎪⎭

(C3)  

where w is the weight and a is a constant value. 

Appendix D. Supporting information 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.addma.2023.103500. 

References 
[1] M. Markl, C. Körner, Powder layer deposition algorithm for additive manufacturing 

simulations, Powder Technol. 330 (2018) 125–136, https://doi.org/10.1016/j. 
powtec.2018.02.026. 

[2] L.E. Murr, A metallographic review of 3D printing/additive manufacturing of metal 
and alloy products and components, Metallogr. Microstruct. Anal. 7 (2018) 
103–132, https://doi.org/10.1007/s13632-018-0433-6. 

[3] Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, 3D printing of 
ceramics: a review, J. Eur. Ceram. Soc. 39 (2019) 661–687, https://doi.org/ 
10.1016/j.jeurceramsoc.2018.11.013. 

[4] S. Yuan, F. Shen, C.K. Chua, K. Zhou, Polymeric composites for powder-based 
additive manufacturing: materials and applications, Prog. Polym. Sci. 91 (2019) 
141–168, https://doi.org/10.1016/j.progpolymsci.2018.11.001. 

[5] C. Wei, L. Li, X. Zhang, Y.-H. Chueh, 3D printing of multiple metallic materials via 
modified selective laser melting, CIRP Ann. 67 (2018) 245–248, https://doi.org/ 
10.1016/j.cirp.2018.04.096. 

[6] N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague, 3D printing 
of aluminium alloys: additive manufacturing of aluminium alloys using selective 
laser melting, Prog. Mater. Sci. 106 (2019), 100578, https://doi.org/10.1016/j. 
pmatsci.2019.100578. 

[7] M. Drexler, M. Lexow, D. Drummer, Selective laser melting of polymer powder – 
part mechanics as function of exposure speed, Phys. Procedia 78 (2015) 328–336, 
https://doi.org/10.1016/j.phpro.2015.11.047. 

[8] S. Sun, M. Brandt, M. Easton, 2 - Powder bed fusion processes: an overview, in: 
M. Brandt (Ed.), Laser Additive Manufacturing, Woodhead Publishing, 2017, 
pp. 55–77, https://doi.org/10.1016/B978-0-08-100433-3.00002-6. 

[9] E.D. Bain, E.J. Garboczi, J.E. Seppala, T.C. Parker, K.B. Migler, AMB2018-04: 
benchmark physical property measurements for powder bed fusion additive 
manufacturing of polyamide 12, Integr. Mater. Manuf. Innov. 8 (2019) 335–361, 
https://doi.org/10.1007/s40192-019-00146-3. 

S. Mojumder et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.indcrop.2023.116593
https://doi.org/10.1016/j.powtec.2018.02.026
https://doi.org/10.1016/j.powtec.2018.02.026
https://doi.org/10.1007/s13632-018-0433-6
https://doi.org/10.1016/j.jeurceramsoc.2018.11.013
https://doi.org/10.1016/j.jeurceramsoc.2018.11.013
https://doi.org/10.1016/j.progpolymsci.2018.11.001
https://doi.org/10.1016/j.cirp.2018.04.096
https://doi.org/10.1016/j.cirp.2018.04.096
https://doi.org/10.1016/j.pmatsci.2019.100578
https://doi.org/10.1016/j.pmatsci.2019.100578
https://doi.org/10.1016/j.phpro.2015.11.047
https://doi.org/10.1016/B978-0-08-100433-3.00002-6
https://doi.org/10.1007/s40192-019-00146-3


Additive Manufacturing 68 (2023) 103500

15

[10] W.J. Oh, W.J. Lee, M.S. Kim, J.B. Jeon, D.S. Shim, Repairing additive- 
manufactured 316L stainless steel using direct energy deposition, Opt. Laser 
Technol. 117 (2019) 6–17, https://doi.org/10.1016/j.optlastec.2019.04.012. 

[11] D.P. Cole, F. Gardea, T.C. Henry, J.E. Seppala, E.J. Garboczi, K.D. Migler, C. 
M. Shumeyko, J.R. Westrich, S.V. Orski, J.L. Gair, AMB2018-03: benchmark 
physical property measurements for material extrusion additive manufacturing of 
polycarbonate, Integr. Mater. Manuf. Innov. 9 (2020) 358–375, https://doi.org/ 
10.1007/s40192-020-00188-y. 

[12] T.H. Becker, P. Kumar, U. Ramamurty, Fracture and fatigue in additively 
manufactured metals, Acta Mater. 219 (2021), 117240, https://doi.org/10.1016/j. 
actamat.2021.117240. 

[13] P. Kumar, U. Ramamurty, High cycle fatigue in selective laser melted Ti-6Al-4V, 
Acta Mater. 194 (2020) 305–320, https://doi.org/10.1016/j.actamat.2020.05.041. 

[14] P. Kumar, R. Jayaraj, J. Suryawanshi, U.R. Satwik, J. McKinnell, U. Ramamurty, 
Fatigue strength of additively manufactured 316L austenitic stainless steel, Acta 
Mater. 199 (2020) 225–239, https://doi.org/10.1016/j.actamat.2020.08.033. 

[15] T. Mukherjee, T. DebRoy, Mitigation of lack of fusion defects in powder bed fusion 
additive manufacturing, J. Manuf. Process. 36 (2018) 442–449, https://doi.org/ 
10.1016/j.jmapro.2018.10.028. 

[16] S. Coeck, M. Bisht, J. Plas, F. Verbist, Prediction of lack of fusion porosity in 
selective laser melting based on melt pool monitoring data, Addit. Manuf. 25 
(2019) 347–356, https://doi.org/10.1016/j.addma.2018.11.015. 

[17] L.E. dos Santos Paes, M. Pereira, F.A. Xavier, W.L. Weingaertner, L.O. Vilarinho, 
Lack of fusion mitigation in directed energy deposition with laser (DED-L) additive 
manufacturing through laser remelting, J. Manuf. Process. 73 (2022) 67–77, 
https://doi.org/10.1016/j.jmapro.2021.10.052. 

[18] Z. Gan, O.L. Kafka, N. Parab, C. Zhao, L. Fang, O. Heinonen, T. Sun, W.K. Liu, 
Universal scaling laws of keyhole stability and porosity in 3D printing of metals, 
Nat. Commun. 12 (2021) 2379, https://doi.org/10.1038/s41467-021-22704-0. 

[19] J. Ning, W. Wang, B. Zamorano, S.Y. Liang, Analytical modeling of lack-of-fusion 
porosity in metal additive manufacturing, Appl. Phys. A 125 (2019) 797, https:// 
doi.org/10.1007/s00339-019-3092-9. 

[20] A. du Plessis, Effects of process parameters on porosity in laser powder bed fusion 
revealed by X-ray tomography, Addit. Manuf. 30 (2019), 100871, https://doi.org/ 
10.1016/j.addma.2019.100871. 

[21] Z. Wang, M. Liu, Dimensionless analysis on selective laser melting to predict 
porosity and track morphology, J. Mater. Process. Technol. 273 (2019), 116238, 
https://doi.org/10.1016/j.jmatprotec.2019.05.019. 

[22] P. Kumar, J. Farah, J. Akram, C. Teng, J. Ginn, M. Misra, Influence of laser 
processing parameters on porosity in Inconel 718 during additive manufacturing, 
Int J. Adv. Manuf. Technol. 103 (2019) 1497–1507, https://doi.org/10.1007/ 
s00170-019-03655-9. 

[23] J.A. Cherry, H.M. Davies, S. Mehmood, N.P. Lavery, S.G.R. Brown, J. Sienz, 
Investigation into the effect of process parameters on microstructural and physical 
properties of 316L stainless steel parts by selective laser melting, Int J. Adv. Manuf. 
Technol. 76 (2015) 869–879, https://doi.org/10.1007/s00170-014-6297-2. 

[24] A. Leicht, M. Rashidi, U. Klement, E. Hryha, Effect of process parameters on the 
microstructure, tensile strength and productivity of 316L parts produced by laser 
powder bed fusion, Mater. Charact. 159 (2020), 110016, https://doi.org/10.1016/ 
j.matchar.2019.110016. 

[25] J.C. Simmons, X. Chen, A. Azizi, M.A. Daeumer, P.Y. Zavalij, G. Zhou, S. 
N. Schiffres, Influence of processing and microstructure on the local and bulk 
thermal conductivity of selective laser melted 316L stainless steel, Addit. Manuf. 
32 (2020), 100996, https://doi.org/10.1016/j.addma.2019.100996. 

[26] G. Kasperovich, J. Haubrich, J. Gussone, G. Requena, Correlation between porosity 
and processing parameters in TiAl6V4 produced by selective laser melting, Mater. 
Des. 105 (2016) 160–170, https://doi.org/10.1016/j.matdes.2016.05.070. 

[27] Z. Gan, Y. Lian, S.E. Lin, K.K. Jones, W.K. Liu, G.J. Wagner, Benchmark study of 
thermal behavior, surface topography, and dendritic microstructure in selective 
laser melting of inconel 625, Integr. Mater. Manuf. Innov. 8 (2019) 178–193, 
https://doi.org/10.1007/s40192-019-00130-x. 

[28] Z. Gan, K.K. Jones, Y. Lu, W.K. Liu, Benchmark study of melted track geometries in 
laser powder bed fusion of inconel 625, Integr. Mater. Manuf. Innov. 10 (2021) 
177–195, https://doi.org/10.1007/s40192-021-00209-4. 

[29] P. Kumar, A. Gupta, Active learning query strategies for classification, regression, 
and clustering: a survey, J. Comput. Sci. Technol. 35 (2020) 913–945, https://doi. 
org/10.1007/s11390-020-9487-4. 

[30] B. Settles, Active Learning Literature Survey, University of Wisconsin-Madison 
Department of Computer Sciences, 2009. 〈https://minds.wisconsin.edu/handle/ 
1793/60660〉 (Accessed 19 December 2021). 

[31] G.J.J. van Houtum, M.L. Vlasea, Active learning via adaptive weighted uncertainty 
sampling applied to additive manufacturing, Addit. Manuf. 48 (2021), 102411, 
https://doi.org/10.1016/j.addma.2021.102411. 

[32] G.H. Teichert, A.R. Natarajan, A. Van der Ven, K. Garikipati, Scale bridging 
materials physics: active learning workflows and integrable deep neural networks 
for free energy function representations in alloys, Comput. Methods Appl. Mech. 
Eng. 371 (2020), 113281, https://doi.org/10.1016/j.cma.2020.113281. 

[33] X. Xie, J. Bennett, S. Saha, Y. Lu, J. Cao, W.K. Liu, Z. Gan, Mechanistic data-driven 
prediction of as-built mechanical properties in metal additive manufacturing, Npj 
Comput. Mater. 7 (2021) 1–12, https://doi.org/10.1038/s41524-021-00555-z. 

[34] S. Kim, P.Y. Lu, S. Mukherjee, M. Gilbert, L. Jing, V. Čeperić, M. Soljačić, 
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