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Abstract

The hierarchical deep-learning neural network (HiDeNN) (Zhang et al. Computational Mechanics, 67:207-230) provides
a systematic approach to constructing numerical approximations that can be incorporated into a wide variety of Partial
differential equations (PDE) and/or Ordinary differential equations (ODE) solvers. This paper presents a framework of the
nonlinear finite element based on HiDeNN approximation (nonlinear HIDeNN-FEM). This is enabled by three basic building
blocks employing structured deep neural networks: (1) A partial derivative operator block that performs the differentiation
of the shape functions with respect to the element coordinates, (2) An r-adaptivity block that improves the local and global
convergence properties and (3) A materials derivative block that evaluates the material derivatives of the shape function.
While these building blocks can be applied to any element, specific implementations are presented in 1D and 2D to illustrate
the application of the deep learning neural network. Two-step optimization schemes are further developed to allow for the
capabilities of r-adaptivity and easy integration with any existing FE solver. Numerical examples of 2D and 3D demonstrate that
the proposed nonlinear HIDeNN-FEM with r-adaptivity provides much higher accuracy than regular FEM. It also significantly
reduces element distortion and suppresses the hourglass mode.

Keywords Hierarchical deep neural network - Nonlinear finite element method - r-adaptivity - Shape function - Data-driven

1 Introduction

As a major branch of artificial intelligence, Machine Learn-
ing (ML) involves the development of algorithms to “learn”
based on given information (typically known as training data)
and then make predictions by applying the “knowledge” that
is learned. Such type of knowledge can be cast in differ-
ent forms, e.g., using neural networks (NN). NN mimics the
biological structure of a neuron network and consists of com-
binations of neurons as the fundamental unit that interacts
with the other neurons through information passage. Each
neuron processes the information passed through by first
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assigning the weight to each connection, summing up the
weighted inputs, and adding a bias. It will then process this
input through a so-called activation function and pass the
processed result to the other neurons that connect to it. Deep
Neural Network (DNN) [1] is a special case of NN in which
neurons are arranged in multiple layers: there is an input layer
that feeds the training data, an output layer that provides the
prediction, and in between, there are multiple internal layers
that process the data using combinations of weights, biases,
and activation functions.

DNN has found its applications in areas such as image
analysis [2-5], language processing [6], medical assistance
[7-10], strategic decision-making [11], and material design
[12, 13] and demonstrated its outstanding data process-
ing capabilities. There is a continuing interest in applying
DNN to solve ordinary and partial differential equations
(ODE/PDE) [14-18] that govern broad engineering and
science applications. The main motivations are two folds:
first, DNN is capable of establishing the so-called universal
approximation [19], which can be employed to build non-
linear approximations with arbitrary orders of resolution.
These are generally difficult to construct using single-scale
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approaches such as the finite element method (FEM). Sec-
ond, DNN employs back and forward propagation to “learn”
and “predict”. Advanced algorithms and hardware based
on parallel computing architectures are widely available
to accelerate these processes and are continuously being
improved. The existing approaches can be generally divided
into two categories based on whether they are purely data-
driven or not. In a purely data-driven approach, data collected
from experiments or simulations are fed to the DNN to cap-
ture the nonlinear mapping between the input and output
[20-23]. In most cases, large amounts of data are required
for accomplishing good prediction accuracy. This is a lim-
iting factor due to the cost or time it takes to generate the
data. On the other hand, the method may also suffer from
overfitting if the data provided does not fully represent the
whole spectrum of features. Although regularization meth-
ods have been established to alleviate the overfitting issue to
some extent, there are no general approaches available. In
addition, general training algorithms [24-26] such as those
based on the gradient descent approach are not always robust
due to the lack of insight into the physics of the problem.

Given the difficulties in directly applying a purely data-
driven approach, there has been a continuing interest in
integrating DNN with mechanistic principles that govern the
application. One of the successful examples is the physics-
informed neural network (PINN) in which loss functions
based on evaluating the residual errors associated with the
governing differential equations are introduced to accelerate
the convergence of data training [27]. For general science and
engineering applications, the application of DNN remains a
great challenge for problems that are featured by: 1) High
computational cost of purely physics-based model; 2) Lack
of insight on the physics governing the application, and 3)
High volume of data that is beyond the reach of the existing
data processing capability. In light of these challenges, Zhang
et al. have recently proposed the Hierarchical Deep Learn-
ing Neural Network (HiDeNN) framework[28]. Unlike most
of the existing approaches, HiDeNN establishes a hierarchi-
cal and structured framework to directly integrate the neural
network structure with the numerical approximation. Three
elementary building blocks that perform the operations of
linear transformation, multiplication, and inversion are intro-
duced to generate the DNN representations of the commonly
used interpolation functions, such as those based on FEM,
Lagrangian polynomial, spline functions, reproducing kernel
meshfree shape functions, NURBS, and Isogeometric anal-
ysis (IGA).

One of the key features of HiDeNN is that the weights
and biases of DNN are functions of the nodal positions.
As such, training of the HiDeNN leads to optimized nodal
positions. This is also known as r-adaptivity in the con-
text of finite element-based interpolations (HiDeNN-FEM).
When combined with a physics-based loss function such
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as the potential energy of the system, the robustness of
HiDeNN-FEM has been illustrated for 1D and 2D linear
elasticity problems [29]. It was also shown that HiDeNN-
FEM can be further enhanced with reduced-order modeling
using proper generalized decomposition (PGD), leading to
HiDeNN-PGD [30, 31]. In this work, we present the appli-
cation of HiDeNN-FEM to nonlinear problems in solid
mechanics. For these types of problems, Lagrangian meshes
are commonly used in which nonlinearity arises due to
large deformation and/or material nonlinearity. The shape
functions are typically constructed in the parent (element)
configuration and expressed in terms of the parent (element)
coordinates. Correspondingly, three building blocks employ-
ing HiDeNN are introduced: (1) A partial derivative operator
block that performs the differentiation of the shape functions
with respect to the element coordinate, (2) An r-adaptivity
block that improves the local and global convergence prop-
erties and (3) A materials derivative block that evaluates the
material derivatives of the shape function (in the case of total
Lagrangian formulation). While these building blocks are
generally applicable for any type of finite element shape func-
tions, specific cases in 1D and 2D are presented to illustrate
the application. We further show through 2D and 3D exam-
ples that convergence can be enhanced with a physics-based
loss function that employs either potential energy or out-of-
balance force.

The rest of the paper is organized as follows. In Sect. 2, the
basic formulation of HiIDeNN-FEM is reviewed. In Sect. 3,
we outline the three building blocks and the process to con-
struct the HIDeNN-FEM shape functions. This is followed by
a discussion on the general solution processes for nonlinear
problems in Sect. 4. Section 5 presents results and discus-
sions on several benchmark problems in both 2D and 3D.
Finally, conclusions are drawn in Sect. 6.

2 The basic formulation of HiDeNN-FEM

We first introduce the basic notations that are commonly used
for representing DNN. The basic unit of the DNN is an arti-
ficial neuron that is also known as perceptron as shown in
Fig. 1. Perceptron takes multiple inputs given as xg, x2, ...,
xp. Each input is multiplied by a weight, i.e., w; withi =1,
..., n. The weighted inputs are then summed and a bias b is
added to give wx+b, which serves as an input to the activation
function 7. The result o/ (wx + b) is assigned as the output
of the artificial neuron. Many choices of the activation func-
tion 7 have been proposed based on the applications. For
details we refer to the introduction in [32]. A DNN consists of
an arrangement of the perceptrons in multiple layers includ-
ing at least one internal (hidden) layer (Fig. 1). To describe
the information passing within the DNN, we introduce the
notation wl/_kl[ as the weight from the j-th neuron in the
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Perceptron
Y= (Wx, +wyx, +---+wx, )+b

nn

Fig. 1 An illustration of perceptron and Deep Neural Network (DNN)

(I — 1)-th layer to the k-th neuron in the /-th layer and bé. as
the bias of the j-th neuron in the /-th layer.

In HiDeNN-FEM, a structured DNN is developed to
realize the interpolation of the shape functions. This is
accomplished by establishing three basic building blocks as
shown in Fig. 2, i.e., linear, multiplication, and inversion.
The linear building block establishes the piecewise linear
function, defined as

L(x; xa, XB, YA, YB)

YAs X < X4,
— YB—YA _
=\ xpoxs X —Xa)+ya, Xa <X < xg,
VB, X > XB,

The multiplication building block M performs the multi-
plication of two functions F, F> that are represented in DNN,
ie., M(Fy, F) = F| - F>. The inversion building block V
provides the quotient of two DNN-represented functions Fi,
b, ie., V(F, F;) = F/F). For the detailed implemen-
tation of using DNN to establish these building blocks, we
refer to [28].

3 Nonlinear HiDeNN-FEM
3.1 A brief introduction to nonlinear FEM

The method outlined below applies to both total Lagrangian
(TL) and updated Lagrangian formulation (UL). In this work
we adopted the total Lagrangian (TL) formulation [33] to
illustrate the application of HiDeNN. We first introduce X as
the material coordinate and x as the spatial coordinate. The
weak form of the momentum equation is given as

f poil - SudQ + / P SFTdQ
Q0 Q0
—/b~8udQ—/T~8udP:0

Q0 o (1)

in whichu = x—Xis the displacement and the superimposed
dot denotes the time derivative. The symbol § represents vari-
ational operator and éu is the virtual displacement, pg is the
mass density defined in the initial configuration 2, P is
the 1% Piola—Kirchhoff (nominal) stress and F is deforma-
tion gradient,b is the body force and T is traction applied on
boundary I';g.

To solve Eq. (1) using FEM, we introduce Lagrangian
mesh and three configurations (Fig. 3):

(1) The parent element domain [J on which the shape func-
tion approximation is built. The element coordinates are
given as £ with e the element index;

(2) The initial (reference) configuration € with material
coordinate X

(3) The current configuration 2° with spatial coordinate X;

To describe the motion, the mapping from the initial to the
current configuration is introduced as x = ¢ (X, t). Addi-
tionally, the initial and current configurations are mapped
from the parent domain, given as X = X(£) and x = x(&, ?),
respectively. With the shape functions constructed in the par-
ent domain, these last two mappings are approximated as
X(§) = XNy (§) and x(§) = x; N (&) with Ny (§) the shape
function defined at the node I and evaluated at coordinate &.
Repeated nodal index of I indicates the summation within
the element. Substitution of the shape function approxima-
tion into the weak form of the TL formulation in Eq. (1) gives
the discretized form of the momentum equation, given as

Mu — fext _ fint (2)
with
. . 9N T
Fint — l_l;ll :/ {'PjidQO — /(B?]) PjidS 3)
dX;
Qo Q0
£ = et = / NypobidQ + / NTdT @)
Qo 1"2
M = M;j15 = §ij / PoNIN;d )
Qo

in which pg is the mass density in the initial configuration,
b; is the body force, f? is the traction applied over the nat-
ural boundary I‘g and the shape function derivative matrix
is defined through B(J)- ;= % in Eq. (3). In this paper, we
will focus on application of HIDeNN-FEM to nonlinear static
problems so that the inertia terms in Eq. (2) are neglected.
Extension to nonlinear dynamic problems will be described
in a separate publication.
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—L(X;%4,XpY 4VB)

¢. Multiplication building block
M(F,F,)

H(x)=x
by =x, b, =1 by=y,
O—O0—6
) =)
W, = W, =
2 X, —x, 3= Ve~ Va4

@_ L2 mda ey yay,
Xp =Xy

d. Inversion building block

V(F,F)

Fig.2 An illustration of a piecewise linear function b linear building block ¢ multiplication block and d inversion block

Current configuration. ()

3:‘

x=¢(X,1) :‘;‘:‘ ‘J‘,s" ’;’; ~_ ,

time 7

Parent element

| ;’ &
3 : !

\X(é)/

Fig.3 An illustration of the three configurations in nonlinear FE and
mapping relation

Initial configuration. Qo

3.2 HiDeNN-FEM building blocks for nonlinear FEM
Computing the internal force term in Eq. (3) requires evalua-

tion of the shape function derivative. This is carried through
the chain rule,

o ON; ON; oNp[oX\ !
T X, T 8X  ag \ 9t

The matrix notation of Eq. (6) is shown here for the case
of a general 2D element in which the element coordinates are
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given as £, n and material coordinates are X, Y. For a given
nodal index I, we have

-1
8N] T X/ X/
=N :[N N ]z[N N] s
9X 1,X 1,x N1y 1,6 N1,y Yie Vi
(N
Or equivalently

-1
_ Xrg Vg Ny
Xy Yy Niy ®)

Once the shape function derivatives are evaluated from
Eq. (8) for each nodal index I, the matrix notation of Eq. (6)
is given as

B(J)'I = [NI,X Nyx ... ] 9

For implementation in HIDeNN-FEM, the operations out-
lined above to evaluate B(; ; can be realized with three
building blocks as shown in Fig. 4. Using the element coor-
dinate as inputs, the block of partial derivative operator



Computational Mechanics (2023) 72:173-194

177

Fig. 4 Flowchart showing the
three building blocks for

Element
coordinate

performing shape function
derivative

operator

Partial derivative

Shape function
derivatives

- Material
r-adaptive block i
derivatives

g

evaluates the matrix Dy that contains the shape function
derivatives with respect to the element coordinates. The 1-
adaptive block computes the Jacobian of the mapping X =
X(£). Subsequently, the material derivatives are evaluated in
the third block, which gives the matrix that contains the shape
function derivative B(J)- Iz

3.2.1 Construction of shape functions and derivatives in 1D
elements

We first illustrate the construction of the shape functions and
derivatives using the three building blocks for the case of 1D
linear element. Configurations of the element in the physical
and parent domain are shown in Fig. 5a. The shape func-
tions at nodes 1 and 2 are N; = %(1 — &), Ny = %(1 +£&)
with —1 < & < 1. Figure 5b illustrates the DNN representa-
tion of the linear shape function in which two hidden layers
are introduced. The element coordinate £ is employed as the
input and the activation function .7 (x) = x is introduced.
The output of the DNN are the values of the shape functions
defined at the two nodes and evaluated at the element coor-
dinate &£. According to Fig. 5a, the DNN representations of
the shape functions are given as

Ni(6; W, b, o) =
N2(§; W, b, &) =

W o (WiEE + b))

W35 A (W3 + b)) 1o
These representations can be combined with additional
layers of NN to provide interpolations of the displacement.
For details we refer to [28].
Figure 5c shows the three building blocks for evaluating
the 1D shape function derivatives. To explain the function of
each building block, we recall that the 1D version of Eq. (6)

is B) = 331;/(’ = 31\57, ("?) . For the 2-node element, we

introduce
o= [o13]-

3
() [ s ]=ame

where J = % is the Jacobian for the coordinate transfor-
mation, Dy = [M M] = [—% %] The Jacobian is

X 09X
evaluated through

B,

12)

where X* = { X1 X» }T provides the physical coordinates
of the nodes.

Based on Egs. (11) and (12), the first building block in
Fig. S5c employs a single layer of NN to evaluate Dy . Since
Dy is a constant matrix for the 1D linear element, the input
to NN is a constant as well. It is called a partial derivative
operator block because the block performs differentiation (in
general partial differentiation) of the shape functions with
respect to the element coordinates. Subsequently, another
two layers are added to construct the second building block to
compute J. This block is called an r-adaptivity block since the
weights connecting these two layers are the physical coor-
dinates of the nodes and can be trained by optimizing the
loss function. This is generally regarded as a learning process
through which NN arrives at the optimum nodal positions. As
will be shown later, we establish physics-based loss functions
based on nonlinear FEM. The last block is called a materi-
als derivative block that evaluates B based on Eq. (11). This
block takes the computed J from the r-adaptivity block and
inverts it using the inversion building block V as established
in [28]. Another layer is then added to compute B = J~'Dy.
The computed shape function derivatives can be employed
to evaluate the deformation gradient given as

FE, W, b, o)
= (WP - (WA (Wi i (WE (WD)
+ (W31 (W35 A (W) ™)+
ur Ay (Wi - (W (e (Wi an (Wi aA (WD)

+ AW AWH AW +1 (13)

Figure 6 illustrates the construction of the shape functions
and their derivatives for the case of 1D quadratic element.
Configurations of the element in the physical and parent
domain are shown in Fig. 6a. The shape functions at nodes 1,
2 and 3 are derived from the well-known 2nd order Lagrange
polynomials, given as Ni = %E(l —&),N=1-— 52 and
N3 = %é(l + £). Two internal layers are introduced in build-
ing the shape function using the given element coordinate as
an input. The multiplication building block is introduced in
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Physical domain Parent domain
u u,
'] «— » L ']
X, X X, -1 1 ¢

Partial derivative . . o
r - adaptivity block Materials derivative block

operator block
(c).

Fig.5 a Mapping between physical domain and parent domain for 1D linear element. b Construction of the shape function and ¢ Construction of
the shape function derivative using HiDeNN

the second layer to realize the product form of the shape w3 Q{l(wllfg + bﬁ))]} (14)
functions. The DNN representations of the shape functions
are given as

with the specific weights and biases shown in Fig. 6b.

The shape function derivatives can be constructed using

the same three building blocks as in the case of 1D linear
Ni(&; W, b, o) =W} {M [("VZS«WI(Wf]2 £ +b7)), element and detailed NN structures are shown in Fig. 6c.
Unlike the linear element case, neither the Jacobian nor the

23 12 2
(WS (W€ + bz))]} shape function derivative is constant. To evaluate the shape

Na(&: W, b, o) :WZ?’;H M[(W23 P (W1132§ + b%)), .functlon deI’lV&thﬁ.‘,, the element coordm.ate is 1.1564 as the
input. Based on Fig. 6c¢, the shape function derivatives are

(WBa (W ke + bﬁ))]} evaluated according to B = J~'Dy in which the building

blocks for evaluating Dy, J and B are shown. The material

N3(& W, b, o) =W33 {M [(W23£71(W1122 £ +03)), coordinates are used as weights in constructing J and can
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Physical domain Parent domain
U u, Uy
'l ] —» L 3 Il
X, X, X, -1 0 1 ¢
X

v

1

Partial derivative

r - adaptivity block Materials derivative block

(©).

Fig.6 a Mapping between physical domain and parent domain for 1D quadratic element. b Construction of the 1D quadratic shape function and
¢ Construction of the shape function derivatives using HiDeNN

operator block
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n
y A sy s
1 3 4
2 Initial domain
1(=1,-1) | 2(1,-1)
X Parent domain / element domain

Fig.7 An illustration of the 2D 4-node element

be optimized through training. The deformation gradient is
given as
F(: W, b, o)
= M[WII, Wil A WE aWiEs + b))
oMWY, WA WE AW + D) )
wusM[WHI WA A WEE + )|

with

Wi (Wi e (WE ah (WTE + b))+

W3 (W3 o (W35 i (W3E + b3))+

W3i A (W3 oA (W o (WFE +b3)))
(16)

I =wbe

3.2.2 DNN Construction of the shape functions
and derivatives in 2D elements

We consider the 2D 4-node quadrilateral element. Configu-
rations of the parent and material configurations are shown
in Fig. 7.

The shape functions are given as

N = [N] Ny N3 N4]
1 1
Ny = Z(l =& —=mn), N» = 4_1(1 +&)(1 —n) (17)

1 1
N3 = Z(l +6)(1+n), Ny = Z(l =&)L +1n)

Figure 8 shows the construction of the shape func-
tions using DNN and the corresponding representations are
expressed as

Ni. o Wb, o) =WiH i (W AW 3% + 5,
wEaawizs + o) ||

NaG&, 1 W, b, ) =W [ M{(WRaA W35 + b)),
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N
N3
N4
Fig. 8 Construction of the 2D 4-node element shape function
WEaawizs + ) ||
N(&, 13 W, b, ) =W [ M{(WEaAW 75 + b)),
WEaAWSs +bD) ]
NG, 1 W, b, o) =W M| (W2 W 3¢ + b3)),
wEAWEs ]} a9

To establish the DNN for the shape function derivative,
we define

9N 9Ny 9Ny ONs D!
Do | 7% % @ @3 |_|Dy
N =1 9N 9Ny dN; dNs D2
an @ N

_ I =0=m d=n d+n —1+n)
19)

A 1= -1+ (1+E) (1-8)
X1 1
X* — X2 V> 20)
X3 Y3
X4 Yy
— * D}V'X*
J=Dy X —[ng.x*] @n

Figure 9a provides the building blocks for obtaining Dy,
J based on Egs. (19) to (21) and eventually shape function
derivative matrix By that is used to compute the deformation
gradient in 2D. Note that the HiDeNN multiplication and
inversion blocks have been used extensively. For instance,
computing J~! requires evaluating the determinant det(J)
and the detailed DNN is shown in Fig. 9b with the application
of the multiplication block M. To further evaluate J~! the
matrix inversion block V is applied as shown in Fig. 9c.
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D X

Partial derivative .. : o
r - adaptivity block Materials derivative block

(a)

operator block

X
N

J

(b). Matrix determinant building block. (c). Matrix inversion building block.

Fig.9 a Construction of the shape function derivatives for the 2D 4-node quadrilateral element using HiDeNN. b DNN representation of the
determinant (J) and ¢ the inverse of J
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4 Training of DNN in HiDeNN-FEM
and Solution Method

With the shape functions established in Sect. 3 using DNN,
the general expression for the displacement is given as

u" =NE; W, b, «7)d (22)

in which N is the shape function matrix and d is the
nodal displacement vector. Unlike the conventional FEM
approximation, this DNN-constructed approximation con-
tains additional NN parameters such as the weights W, the
biases b and the activation functions .27 In particular, the
weights for the r-adaptivity block are functions of the mate-
rial coordinates of the nodes. Thus, we rewrite Eq. (22) as

u" =N(& X*, b, &)d (23)

in which X* is the vector that contains all the material coor-
dinates of the nodes as part of the weight in the DNN. For
the given choices of the activation functions .27, X* can be
trained to achieve optimum accuracy. This is equivalent to
the r-adaptivity in FEM that is realized through a learning
process in DNN in HiDeNN-FEM.

The learning process in the general field of ML can
be categorized into supervised and unsupervised learning,
depending on whether any data that correlates the input (fea-
ture) to the output (label) is used for the training process. In
this work, an unsupervised learning approach is established
in which the NN parameters are optimized by defining a loss
function without using training data. For nonlinear FEM the
loss function is formulated based on the residual while using
Newton’s method. Here we focus on static problems so that
the inertia terms in Eq. (2) are neglected. In Newton’s method,
Eq. (2) is linearized and solved through iteration. The itera-
tive step starts with the residual vector r for the v-th iteration
that is expressed as

ry = r(dy, X}) = fit — f! (24)
Setting the conditions that r,+; = 0 and performing a

first-order Taylor expansion of the values at the v-th iteration
gives

ar(dy, X3) ar(dy, X3)
— + + AX = 0 25
Fy+1 ry ad 9xX* ( )
We define
0 d
A= andA* = 5 (26)
od 0X*

which represents the tangent stiffness associated with the
system itself and the mesh, respectively. Correspondingly,
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A and A* are called the system Jacobian matrix and mesh
Jacobian matrix, respectively. It can be shown that the matrix
components of A are given as

or;  ofper  afjc  ofy

Ajjy=—= + -
3dj 3(1] 3(1] 3d]

ext

_ / Bl [CSE1B,,d0 + 1 / Bl SBosdQ — =L
J

Qo Q0
27

in which 7" and £’ represents the contribution to the
internal nodal force due to the material and geometric non-

L . afert
linearity, respectively. ﬁ is denoted as the external load

stiffness due to loads that are changing with the configura-
tion of the body. This term is neglected in the current work.
B,); is the Voigt form of the /8, matrix for the shape function
defined at node /. The detailed step to form /3;; can be found
in ref [33]. C5% is the material tangent stiffness tensor that
relates the 2nd Piola—Kirchhoff stress S to Green-Lagrangian
strain E through § = CSF : E. I is the 2nd order identity
tensor.
The mesh Jacobian matrix is given as

or afint — ofext
) RS

A*

(28)

We assume that f¢**

nates and thus

. T
ofint B’
A* — - PdQ 29
IX* f (ax) 0 29

Qo

is independent of the nodal coordi-

With the system and mesh Jacobian matrix evaluated
based on Eqs.(27) and (29), the nodal displacement and
coordinates are updated by solving Eq. (25). Since this
equation can yield multiple sets of solutions due to the addi-
tional unknowns of the nodal coordinate, the computational
implementation seeks to improve the accuracy without sac-
rificing efficiency by establishing a two-step process: In the
first step, the nodal displacements are updated from solving
Ad = A~ 'r while the nodal coordinates are being held fixed.
In the second step, nodal coordinates are updated by solving
AX =(A*)"!rand neglecting the contribution from the sys-
tem Jacobian matrix. The Lagrangian mesh is then updated.
This process will continue iteratively until the loss function
(residual error) r is within the given tolerance. Figure 10
provides the detailed algorithm (Algorithm 1) for this imple-
mentation.

For conservative systems, setting the residual in Eq. (25)
to be zero is equivalent to the application of the stationary
potential energy principle. Based on this, we can introduce
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Fig. 10 A general algorithm
(Algorithm 1) for solving
nonlinear FEM with r-adaptivity

Algorithm 1

updated mesh X

new*

* 1. Initial conditions and initialization: set d°=0; ¢°; n=0; t=0; d.,=d’, Ad=0, X ..,=X,
AX=0, flag=1; (flag is the variable to control mesh update)
* 2. Newton iterations for load increment n+1:
a. compute f(Xuew7 duew > 11"1); r=f(due\v’ t”'l);
b. compute A(Xnewa dne\v)’ and A*(Xue\w duew);
¢. modify A(X ews dpew)> a0d A*(X ey dpey) for essential boundary conditions;
d. solve linear equations Ad=-A"!(r) and d,.,, € d,.,, + Ad;
e. check flag condition:
» if (flag equals 1): solve linear equations AX=-A"!(r) and X ., € X, e+ 0AX,
a is learning rate, set flag=0;
» if (flag equals 0): go to step 2g;
f. Interpolate field results (stress, strain, etc.) from previous iteration step mesh X to

g. check error criterion; if not met, go to 2a.
* 3. Update displacements d and nodal position X, step count and time: d**'=d,,,, X*"!=
Xpew 1ENT1, 1< 1HAL,
* 4. Output; if simulation not complete, go to step 2 and set flag=1.

the potential energy IT and solve the minimization problem
given below

Findd, X*, s..T1(d, X*) = W™ — W**'is minimized
(30)

Here Wi and W are the internal (strain) energy and
external work respectively. The specific expression for Wint
depends on the material model used, as long as it is conser-
vative. For instance, we have used hyperelastic material in
which the strain energy density function w is introduced. The
internal energy is then given as Wint = J wdS2. The spe-

Q
cific form of w has been provided in the f(:)xample problems
in Sect. 5. Wé' can be derived based on Eq. (4) assuming
the external forcing terms are conservative. Using indicial
notation, we have

W = 5 uip = uig /N1P0b5d§20+/le?dF0
Q0 1“2

€1y

Based on Eq. (30), one can define the loss function to be the
potential energy of the system and systematically minimize
it to solve for equilibrium and realize the mesh update.

Figure 11 provides the detailed algorithm (Algorithm 2)
used for solving the conservative system using DNN. A two-
step nested loops optimization scheme is developed. The
outer loop resolves the nodal displacement while keeping
mesh fixed and the inner loop then further provides the mesh
update. In both loops, the variables (the weight of DNN) are
updated using the gradient descent approach with associated
learning rate parameters « and y as shown in Fig. 11.

5 Nonlinear HiDeNN-FEM Numerical
Examples

In this section, we provide several numerical examples to
demonstrate the performance of nonlinear HiDeNN-FEM
and compare it with regular FEM. An in-house code has been
developed for this purpose. It should be noted that the degrees
of freedom (DoFs) referred in the following example prob-
lems are the nodal DoFs only. In HiDeNN-FEM, there are
additional DoFs associated with the nodal coordinates that
are also being optimized through r-adaptivity. Therefore, the
total DoFs in HiDeNN-FEM will be twice of that in regu-
lar FEM if all the nodal coordinates are being optimized. In
addition, the commercial code ABAQUS has been employed
to obtain reference solutions for validation. As described in
Sect. 4, we have established two classes of algorithms, one
for the general nonlinear problems (Algorithm 1) and one for
the conservative systems (Algorithm 2). In the first 4 exam-
ples to be described below, we focus on conservative systems
using Algorithm 2 and the last 2 examples dealing with the
general nonlinear plasticity problems are solved using Algo-
rithm 1. All computations were performed on a workstation
with Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz and
32 GB memory.

5.1 Plane stress problem of a hyperelastic plate
with a hole under tension

We consider a plane stress problem of a square plate of dimen-
sion 1 m by 1 m with the center hole of radius of 0.1 m. As
shown in Fig. 12, the plate is modeled as Neo-Hookean mate-
rial with the strain energy density function w given as
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Fig. 11 Algorithm 2 for solving

conservative systems with Algorithm 2
r-adaptivity * 1. Initial conditions and initialization: set dy=0; load step index n = 0;
* 2. Outer loop: set iterative index k = 0, start iteration for load increment n+1, :
a.k=k+l
oIl
b. computes (al
5 oIl oIl
= 22| |<ToL
¢. T (k> 1), check if ‘[ ad)m/(ad ) <

If yes, then go to step 3, otherwise continue to d

d. Update displacement according to d,., =d, +a- % and continue for next iteration

* 3. Inner loop: Update mesh coordinates according to X.., =X, +7 = while holding
displacement solution fixed
* 4. Output; if simulation not complete, go to step 2 and set n =n +1
100000Pa Max Mises Stress
— 1 L
(-0.5.0.5) (0.5.0.5) 8
g 0.95
5
o 09f
@
R=0.1. @ 0857
2
o 08¢
2 = = :Converged result
@ 075} —e—HiDeNN-FEM
—a
(-0.5.-0.5) (0.5.-0.5) = ‘ ‘ —Abaqus |
Fixed x and y. 102 10° 10" 10°  10° 107

Degree of Freedom
Fig. 12 2D plane stress problem of a square plate with a hole under

tension Fig. 13 Normalized maximum von Mises stress as a function of degrees
of freedom
- 1
w=C19(l1 —3) + D—(J— 1)2 32) Table 1 Plane stress tension problem results
1
_ Analysis Degrees of freedom  ¢,%%(Pa)  Difference

withT; = J~23] 1» J = det(F) and I is the first invariant

of the right Cauchy-Green deformation tensor. The material ~ Converged 10,120,464 320,120 -
parameters are given as Cyo = 115.385 kPa, D; = 4 x Solution

10~°Pa~!, and the plate is subjected to a traction of 100 kPa ~ FEM 284 241941 24.42%

. . . HiDeNN- 260,080 18.76%
on the top surface while the bottom surface is constrained. FEM
. Figure 13 and Table .1' show the result for the g%ven. trac- o 072 277,043 13.46%
tion and boundary condition. The converged result in Fig. 13 HiDeNN- 303.170  5.29%
(dashed line) is obtained from a very fine mesh of ~ 10 M FEM
degrees of freedom (DoFs) using the CPS4 (4-node plane FEM 3,600 296,765 7.30%
stress) element in ABAQUS. HiDeNN-FEM achieves much HiDeNN- 315,540 1.43%
faster convergence than the standard FEM using ABAQUS. FEM
For the same FE model using the standard 4-node quadrilat- ~ FEM 13,840 307,722 3.87%
. HiDeNN- 318,980 0.36%

eral element with 13,840 degrees of freedom, the error from FEM
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Material: Neo-Hookean
Apply compression displacement.

VIV VI WYYy Wiy vy Fixedx.

(-0.01,0.01) (0.01,0.01)
(-0.01,0) (0.01,0)
Fixed x and y.

Fig. 14 2D Plane strain model of a rectangular plate under compression

HiDeNN-FEM is 0.36% in terms of the maximum Mises
stress whereas the corresponding is 3.87% from ABAQUS.

5.2 Compression of a rectangular plate with 2
different aspect ratios

We consider a plane strain case of a rectangular plate with
the dimension of 0.02 m by 0.01 m as shown in Fig. 14.
The plate is modeled as nearly incompressible Neo-Hookean
material using the same form of strain energy density func-
tion as in the previous cases. The material parameters are
givenas C1o = 100.341 kPa, D1 = 1.02 x 10~ 7Pa~!. These
constants provide an equivalent Poisson’s ratio of 0.4949. In
terms of the loading condition, displacement is applied on
the top surface while the bottom surface is constrained.

This case aims to test the ability of HIDeNN-FEM method
in capturing large deformation and alleviating the issue of
mesh distortion with r-adaptivity. The initial domain was dis-
cretized using a standard 4-node quadrilateral element with
different mesh densities (40 x 10, 80 x 20, 160 x 40). For
the same mesh, both the standard FEM using ABAQUS and
HiDeNN-FEM with r-adaptivity were employed to capture
the compression response. Reduced integration with hour-
glass control was used to avoid mesh locking as well as
spurious modes. Figure 15 and Table 2 show the maximum
percentage of compression that has been reached for each
case. It is observed that the maximum compression ratio
reached in the case of HiDeNN-FEM with r-adaptivity is
consistently higher than the corresponding FEM with the
same initial mesh by ~ 66% to 75%. Figure 16 shows unde-
formed and deformed mesh obtained from regular FEM
and HiDeNN-FEM with r-adaptivity for the case of mesh
with total of 13,202 DoFs. The maximum compression ratio
was 33.11% for the regular FEM case and 55.08% for the
HiDeNN-FEM. Mesh updates were observed at the four cor-
ners in the HiDeNN-FEM case and are responsible for the
higher compression ratio achieved using HiDeNN-FEM.

In the next example, as shown in Fig. 17, the plate dimen-
sions were changed to a width of 0.1 m and height of 0.01 m,
leading to an aspect ratio of 10:1. The plate shown is dis-
cretized using the same 4-node quadrilateral element with
160 x 40 elements. The material model remains the same as

100

-e -FEM
—A—HiDeNN-FEM| |

80

60 \

40’ o.__o~

20} o

Compression Percentage (%)

0 L 1 i 1
102 10° 10* 10° 106
Degree of Freedom

Fig. 15 Compression percentage as a function of the degrees of freedom

Table 2 Compression percentage result of the incompressible material
plate

Analysis Degrees of Max Compression
freedom compression Capacity
Percentage improve (%)
(%)
FEM 902 37.69 75.21
HiDeNN- 66.51
FEM
FEM 3,402 36.80 66.47
HiDeNN- 61.26
FEM
FEM 13,202 33.11 66.14
HiDeNN- 55.08
FEM

in the last example. Figure 18 shows the initial and deformed
mesh before the simulation terminates due to mesh distor-
tion for the cases of regular FEM and HiDeNN-FEM. It is
observed that the maximum compression ratio nearly doubles
from FEM (20.6%) to HiDeNN-FEM (40.3%). A compari-
son between the HIDeNN-FEM mesh and the normal stress in
the Y direction shows a correlation between the area of high
stress gradient and the area where mesh has been updated to
alleviate the mesh distortion in these areas and capture the
high stress gradient (Fig. 19).

5.3 Compression for a 3D cubic block

We consider a 3D cubic block with dimensions of I m x 1 m
x 1 m as shown in Fig. 20. The block is modeled as hyper-
elastic Neo-Hookean material with the same set of material
parameters as in Sect. 5.1. In terms of the boundary condi-
tion, the block is subjected to a 0.1 m displacement on the
top surface while the bottom surface is constrained.
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U, U2

-2.759e-04
-5.518e-04
-8.276e-04
-1.104e-03
-1.379e-03
-1.655e-03
-1.931e-03

-3.311e-03

Regular Mesh 160x40

U, U2
+7.626e-05
-3.891e-04
-8.544e-04
-1.320e-03
-1.785e-03
-2.250e-03
-2.716e-03
-3.181e-03
-3.647e-03
-4.112e-03
-4.577e-03
-5.043e-03
-5.508e-03

HiDeNN-FEM Mesh 160x40

+0.000e+00

Max compression percentage 33.11%

=

Max compression percentage 55.08%

Fig. 16 Mesh of 160 by 40 case: Incompressible material compression percentage

Material: Neo-Hookean

Apply compression displacement.

Y YYYY WYY yew vy Fixedx.
(-0.05,0.01) (0.05,0.01)
(-0.05,0) (0.05,0)
Fixed x and y.

Fig. 17 Plane strain incompressible material compression case problem
statement (Aspect ratio 10:1)

For this example, we have run 4 different cases depending
on whether regular FEM (using ABAQUS) or HiIDeNN-FEM
with r-adaptivity is used and whether hourglass control is
implemented, as indicated in Table 3 below.

All four cases are discretized using 8 nodes hexahedron
element. To assess the accuracy of the results, a reference
solution is obtained by prescribing a very fine mesh with
10,155,231 degrees of freedom using the C3D8R element
(3,310,008 elements) with hourglass control. Figure 21 com-
pares the maximum transversal displacement obtained from
cases a and b in Table 3. Each case was run with three differ-
ent mesh densities with 768, 8670 and 42471 DoFs. It can be

S, S22
(Avg: 75%)
+1.037e+06

|

-4.988e+06 Y,

L,

Fig. 19 Compressive stress distribution in a plate of aspect ration of
10:1 and made of incompressible material

N

Fig. 20 Configuration of the 3D cubic block under compression

At compression percentage 40.3%
-8.000e+06

Regular Mesh 160x40

Max compression percentage 20.6%

LT

HiDeNN-FEM Mesh 160x40

|

Max compression percentage 40.3%

Fig. 18 Aspect ratio 10:1 plate incompressible material case compression result
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Table 3 Four cases on the 3D cubic block problem

Simulation Case Regular FEM or Hourglass
HiDeNN-FEM control

a Regular FEM N

b HiDeNN-FEM N

c Regular FEM Y

d HiDeNN-FEM Y

Max Transverse Displacement

. B Converged result
E)) 4l —e—HiDeNN-FEM
5 —&— Abaqus
E ﬁ—"\
33l
a
a
a 21 ]
0
a
X1 i}.@.—_.o _________ ™
=

102 10®  10* 105  10® 107
Degree of Freedom

Fig.21 Compression results between HiDeNN mesh and regular mesh

Table 4 Compression results between HiDeNN mesh and regular mesh

Analysis Degrees of Max transverse  Difference
freedom displacement (%)

FEM 10,155,213 0.016693
HiDeNN-FEM

FEM 768 0.0582458 248.92
HiDeNN-FEM 0.0215659 29.19

FEM 8,670 0.0587635 252.02
HiDeNN-FEM 0.0178751 7.08

FEM 42,471 0.0541853 224.60
HiDeNN-FEM 0.0172213 3.16

observed that the maximum displacement solved from reg-
ular FEM does not converge to the reference solution. On
the other hand, results from HiDeNN-FEM with r-adaptivity
converge to the reference solution as the mesh is refined,
indicating that the hourglass mode effect is suppressed. The
specific values of the maximum displacements obtained from
the mesh configuration and the reference solution are pro-
vided in Table 4.

To further verify whether hourglass mode is present,
Fig. 22 shows the deformed mesh from the case a and b in

7=0.8 —»

7=0.5 —»
7=0.3 —»

{ '»‘ NI
e
‘/‘{;,,V!

"! 7]
e

v/
1,4!',‘

(a). 32x32x12 (b). 32x32x12

Fig. 22 Results of deformed shape with DoF 42,471 between a regular
mesh and, b HiDeNN-FEM mesh

Table 3 for a total DoF of 42,471. The hourglass mode is vis-
ible from the regular FEM results, whereas HiDeNN-FEM
does not exhibit any. Figure 23 provides the cross-sectional
view from the two cases where the cross-sections are located
at 0.3 m, 0.5 m, and 0.8 m from the bottom surface. Again,
the hourglass mode is seen in the regular FEM case. Finally,
Fig. 24 compares von Mises stress distribution along the
left edge of the top surface of the cubic block. Hourglass
mode leads to stress oscillations in the cases of regular FEM,
whereas HiDeNN-FEM converges to the reference solution.

Since no hourglass mode is present for the applied dis-
placement of 0.1 m (compression ratio of 10%), we continue
to apply compression and observe the onset of hourglass
mode at a compression ratio of 30.6% for HiDeNN-FEM
(case b) with total DoFs of 42,471, whereas regular FEM
(case a) exhibited hourglass mode at a compression ratio of
12% with the same mesh. These results indicate the proposed
HiDeNN-FEM can significantly suppress the hourglass mode
effect in the case of large deformation.

In cases ¢ and d in Table 3, hourglass control was
implemented in both regular FEM and HiDeNN-FEM.
As described in Sect. 4, a 2-step optimization scheme is
introduced in HiDeNN-FEM. To assess the computational
efficiency of this implementation, the time consumption for
nodal position optimization was monitored and shown in
Table 5 for the different iterative steps. Table 5 shows that
the r-adaptivity realized through the nodal position update
loop adds a moderately less than 5% overhead to the overall
computational time. The detailed mesh updates are shown in
Fig. 25 with the cross-sectional view of the mesh at the 1st,
3rd, and 5th iterative steps.

Figure 26 compares the deformed shape between regular
FEM mesh and HiDeNN-FEM mesh and the cross-section
view. Results show that even with hourglass control, spurious
mode emerges in regular FEM at 24.50% compression ratio
and the computation stopped at 31.62% compression ratio
due to mesh distortion. On the other hand, the HiDeNN-
FEM mesh result does not show apparent hourglass mode
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Fig. 23 Cross-sectional view of
deformed shape with DoF of
42,471. The top row shows the
results from Regular FEM at a. Z
=03mb.Z=05m,¢c.Z=
0.8 m. The bottom row shows the
corresponding from
HiDeNN-FEM at d Z = 0.3 m,
eZ=05mfZ=08m
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Fig. 24 von Mises stress distribution along the left side of the top surface
for the case of 42,471 DoFs

at the same compression ratio (24.50%) and can be further
compressed to 35.97% before the simulation terminates.
Figure 27 compares the Z direction stress distribution
at the line along the Y direction (X = 1, Z = 1) between
cases ¢ and d in Table 3 and with the reference solution at

(e) )

24.50% compression ratio. Since the model with C3D8R ele-
ment in ABAQUS can not reach such a high compression
ratio, a different model using 12,288 C3D20RH elements
(20 node hybrid quadratic element with reduced integration)
was run to obtain the reference solution. These results show
that HIDeNN-FEM can better capture stress distribution and
matches well with the reference solution.

5.4 3D analysis of spot weld in a hat-stiffened panel

In this case, we consider a hat-stiffened panel with one stiff-
ener. Spot weld was applied to connect the panel skin with
the stiffener as shown in Fig. 28. A quarter of the part was
modeled due to symmetry. The dimension and boundary
conditions are also shown in Fig. 28. The spot welds are
0.07 inches in radius and 0.0005 inches thick. The thick-
ness values of the panel and the hat stiffener are 0.0625
inches and 0.032 inches respectively. We assume the same
Neo-Hookean material model with material constants of
Cio = 9.6154 x 108 psiand D; = 4.8 x 10~ %psi~!. For this
problem, a refined mesh is needed in regular FEM for model-
ing the stress accurately in the local spot weld area due to the

Table 5 Time consumption of 5
load steps to 10% compression

ratio

Iteration number 1st 2nd 3rd 4th 5th

Displacement solution loop 61.02s 60.69 s 64.80 s 61.92s 61.72s

Nodal position optimization loop 2.77s 2.73s 2.72s 2.71s 2.73s
(4.54%) (4.50%) (4.20%) (4.38%) (4.42%)
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Fig. 25 X-Z Plane cross-section

view of mesh update at different

iterative steps

/] LT 1

(a) 1st iteration step.
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(b) Top view.

(b) 3rd iteration step. (c) Sth iteration step.

RRRRRNNERRE AN RRRANN

(c) Z-X plane cross-section view.
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(f) Z-X plane cross-section view.

Fig. 26 Results from 32 x 32 x 12 mesh with hourglass control at 24.50% compression ratio. The deformed shape and cross-section view from
regular FEM are shown in (a, b, and ¢) and the corresponding from HiDeNN-FEM are shown in (d), (e), and (f)

small dimension, while HIDeNN-FEM is shown to provide
improved accuracy with the same initial mesh density.

The model is meshed by an 8-node hexahedron ele-
ment with four mesh densities that contain 5177, 8791,
10843, 18919 elements, respectively. The reference solution
is obtained by solving the same problem with C3D8R with
hourglass control in ABAQUS. A total of 2,871,396 elements
and 10,044,327 degrees of freedom were used. The results
are assessed in terms of the stress concentration as measured
by the maximum effective (von Mises) stress as shown in
Table 6 and Fig. 29. It is observed that for the case of 18,919
elements HIDeNN-FEM yields Max Mises stress value that is

within 0.29% error when compared with the reference solu-
tion, whereas the error was 2.53% for regular FEM. This
accuracy improvement only adds 7.3% overhead in comput-
ing time to implement r-adaptivity. The resolved effective
stress distribution from HiDeNN-FEM is shown in Fig. 30.

5.5 A 2D elastoplastic block subjected
to nonuniform body force
We consider a 2D rectangular block with dimensions of 0.2 m

by 2 m as shown in Fig. 31. The block is subjected to nonuni-
form body force while being fixed on the left end. The body
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Table 6 Computational results from the hat-stiffened panel with spot weld

Analysis Degrees of opo (psi) Difference (%) Time consumption (FEM time plus r-adaptivity time) (s)
freedom
Converged solution 10,044,327 44,689 - 5,506
(2,871,396
Elements)
FEM 26,235 48,148 7.74 47
HiDeNN-FEM 5,177 45,848 2.59 47 +4.54
Elements)
FEM 47,391 47,130 5.46 135
HiDeNN-FEM (8,791 45,166 1.07 135+ 8.25
Elements)
FEM 59,922 46,051 3.05 172
HiDeNN-FEM (10,843 45,029 0.76 172 +10.43
Elements)
FEM 109,158 45,818 2.53 203
HiDeNN-FEM (18,919 44,829 0.29 203 + 14.87
Elements)
-160 | E—— — — Max Mises Stress
——Regular 8 nodes element o '
162} ——HiDeNN-FEM 8 nodes element 3 = = +Converged result
- = :20 nodes element result 21.08 —e—HiDeNN-FEM
164 g —A— Abaqus
é_“ O 1.06
(2]
X L ~
< -166 %)
N = 1.041
)
o L 0
-168 >
s 1.02¢
(9]
-170 ¢ »n
] L e i T
L
-172 : : : : : : : : : =
0 010203040506 070809 1 0.98 '
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Fig. 27 Stress Z—Z distribution result at the top surface of mesh 32 x
32 x 12 case (24.50% compression ratio)
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Fig. 28 Geometry and loading/boundary conditions for a hat-stiffened
panel with spot weld
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Fig.29 Comparison of normalized maximum Mises stress as a function
of degrees of freedom in spot weld region

sstribution is o _ 3 [ 4n(10(X—0.25)2 27
force distribution is given as b, = by X025

and by = bg sin(10Y) with by = 65 MPa/m. An elastoplas-
tic constitutive model is introduced for the block. Before it
reaches plasticity, the material is assumed to be linear elastic
with Young’s modulus of E =200 GPa and Poisson’s ratio of
0.3. To describe the plastic response, we introduce the stan-
dard von Mises yield surface with linear hardening, given as
f =0 — oy in which & is the effective stress. Furthermore,
oy = o? +Hz ), with 019 = 100 MPa as the initial yield stress,
H = 100 MPa is the hardening modulus, £, is the effective
plastic strain. A standard radial return method is employed to
resolve the stress and strain when material enters plasticity.
Since the system is no longer conservative, we have
applied Algorithm 1 in HiDeNN-FEM implementation. A
reference solution is obtained by solving the same problem
in ABAQUS using a refined mesh of 5,017,600 CPS4 (4
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Fig.30 Distribution of effective
stress in the spot weld application
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Fig.31 A rectangular elastoplastic block subjected to non-uniform
body force

node plane stress) elements with ~ 10 million DoFs. Table
7 compares the solution and time consumption for different
implementations. Four different meshes were tested in com-
paring regular FEM with HiDeNN-FEM. As can be seen,
regular FEM fails to converge in the case of 100 elements,
whereas HiDeNN-FEM converges and yields a maximum
von Mises stress within 0.2% of the reference solution. Reg-
ular FEM does not yield comparable accuracy until it uses
6,400 elements while HIDeNN-FEM consistently maintains
high accuracy as the mesh is refined. In terms of time con-
sumption, it takes HiDeNN 8.86 s to arrive at a prediction

Table 7 A comparison of the prediction results with the reference solution

within 0.1% of the reference solution, whereas the same for
regular FEM was 107.92 s. The last column in Table 7 shows
the overhead time used for performing r-adaptivity and this
operation consumes ~ 10% of the overall computing time.
Figure 32 shows the effective stress contour along with the
mesh from both the regular FEM and HiDeNN-FEM.

5.6 An elastoplastic plate with a hole subjected
to tension

In this example, we consider a 2D plane strain problem of a
square plate of dimension 1 m by 1 m with a hole of radius
of 0.1 m located in the center as shown in Fig. 33. The left
side of the plate is fixed and the right side is subjected to uni-
form traction of 37 MPa. The same elastoplasticity model
as described in Sect. 5.5 is employed for modeling the plate
with the same material constants. Reference solutions are
obtained using ABAQUS by discretizing the problem domain
with 5,054,756 CPE4 (4-node plane strain) elements and total

Type of analysis Number of Degrees of opo" (Pa) Difference CPU-based Adaptivity time
elements freedom computational time (s) (s)
ABAQUS (reference 5,017,600 10,046,402 1.000e8 - 16,501 -
solution)
FEM 100 252 Diverge 100% 1.95 -
HiDeNN-FEM 1.002e8 0.2% 241 0.27(13.7%)
FEM 400 902 6.778¢7 32.2% 7.47 -
HiDeNN-FEM 1.001e8 0.1% 8.86 0.83(11.0%)
FEM 1,600 3,402 9.305¢7 6.9% 28.63 -
HiDeNN-FEM 1.001e8 0.1% 33.79 3.09(10.8%)
FEM 6,400 13,202 1.001e8 0.1% 107.92 -
HiDeNN-FEM 1.001e8 0.1% 126.64 11.22(10.4%)
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S, Mises

(Avg: 75%)
+1.000e+08
+9.175e+07
+8.350e+07
+7.525e+07
+6.700e+07
+5.875e+07
+5.050e+07
+4.225e+07
+3.400e+07
+2.575e+07
+1.750e+07
+9.250e+06
+1.000e+06

Fig.32 A comparison between
regular FEM mesh (a. 40 x 10)
and HiDeNN-FEM mesh (b. 40
x 10) on the prediction of
effective stress

\\\l

O

TV 37 MPa
R=0.1

—

:
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Fig. 33 FE model for a rectangular plate with a hole subjected to tension

DoFs of 10,120,464. For comparison between regular FEM
and HiDeNN-FEM, the domain is discretized with 4-node
quadrilateral elements with two different mesh densities. The

S, Mises

(Avg: 75%)
+1.001e+08
+9.178e+07
+8.346e+07
+7.515e+07
+6.684e+07
+5.853e+07
+5.022e+07
+4.190e+07
+3.359e+07
+2.528e+07
+1.697e+07
+8.656e+06
+3.435e+05

@

(b)

number of elements for the two meshes is respectively 436,
and 1700 with the corresponding DoFs of 972 and 3600
respectively. For each mesh, simulations using regular FEM
and HiDeNN-FEM are performed to compare the predic-
tions as well as the execution time. Similar to the last case,
Algorithm 1 was implemented in HIDeNN-FEM to perform
r-adaptivity.

Table 8 provides the computed maximum von Mises stress
from regular FEM and HiDeNN-FEM for the two meshes and
the difference when compared with the reference solution. It
is observed that HiDeNN-FEM yields high accuracy even
with a relatively coarse mesh, whereas for the same mesh
density the regular FEM prediction differs from the reference
solution by more than 10%. The total computing time from
HiDeNN-FEM is relatively higher due to the time it takes to
perform the r-adaptivity. When the mesh is further refined
to a total number of elements of 1700, both regular FEM
and HiDeNN-FEM converge while HiDeNN-FEM demon-
strates better accuracy with r-adaptivity. The computing time

Fig. 34 Predicted von Mises stress from (left) reference solution (middle) regular FEM and (right) HiDeNN-FEM. Meshes from regular FEM (436
elements) and HiDeNN-FEM (436 elements) are shown to demonstrate the differences

Table 8 A comparison of the prediction results with the reference solution

Type of analysis Number of Degrees of opo" (Pa) Difference CPU-based Adaptivity time
elements freedom computational time (s) (s)

ABAQUS (reference 5,054,756 10,120,464 1.001e8 - 15,894 -
solution)

FEM 436 972 8.886e7 11.23% 8.76 -
HiDeNN-FEM 1.014e8 1.3% 10.32 0.94(10.7%)

FEM 1,700 3,600 9.512¢7 4.98% 30.81 -
HiDeNN-FEM 1.007¢8 0.6% 35.94 3.22(10.46%)
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of HiDeNN-FEM is also higher than the regular FEM by ~
17%, much of which is due to the r-adaptivity as shown in
the last column. As can be seen from Fig. 34, the nodes in
the regions of high stress concentration are moved based on
Algorithm 1 and are responsible for the accurate prediction
without the use of a large number of elements as in regular
FEM. A separate simulation (not shown here) using regular
FEM shows that ~ 4 times the elements (6400) are needed to
accomplish the same order of accuracy in the prediction when
compared to the case of HiDeNN-FEM with 1700 elements.

6 Conclusion

In summary, we have presented a general framework of hier-
archical deep-learning Neural Network for nonlinear finite
element (nonlinear HiDeNN-FEM) by building on the prior
work by Zhang et al. [28] on linear HiDeNN-FEM and basic
building blocks. In nonlinear HIDeNN-FEM, the shape func-
tion approximations and material derivatives are constructed
through three new basic building blocks: The first building
block differentiates the shape functions with respect to the
element coordinates. The second building block evaluates the
Jacobian of the coordinate transformation and its inverse. It
also incorporates the material coordinates as the weights of
the DNN, thus enabling r-adaptivity through training. The
third building block evaluates the material derivatives of the
shape functions, which can then be used to form the shape
function derivative matrix as commonly used in nonlinear
FE. Since the building blocks are described independently of
the specific element formulation, it can be generally applied
to any 2D and 3D elements.

Aside from the HIDeNN-FEM approximation, implemen-
tations of the nonlinear solution scheme based on Newton’s
methods are also presented. A general linearization approach
was adopted and it is shown that this leads to an iterative
scheme that involves the optimization of the nodal solutions
as well as the nodal coordinates, i.e., r-adaptivity. For prac-
tical implementation and ease of integration with existing
FE codes, a 2-step iterative scheme is proposed to improve
computational efficiency, and this solution scheme is termed
Algorithm 1. For conservative systems, the problem can be
generalized into minimizing a loss function that represents
the potential of the system. A solution scheme featuring the
2-step nested loop is proposed for these types of problems
and is termed Algorithm 2. Both Algorithms 1 and 2 have
been implemented on multiple problems involving geomet-
ric and material nonlinearities. These benchmark problems
demonstrate that nonlinear HiDeNN-FEM achieves much
better accuracy than regular FEM without adding significant
overhead to the computational cost. In addition, it is also

shown that r-adaptivity can effectively reduce element dis-
tortion and suppress the hourglass mode, which are some of
the main issues faced in the application of nonlinear FEM.
The work presented has focused on nonlinear static
equilibrium problems and will be extended to incorporate
inertia effects and time-dependent properties by introducing
a space—time framework [34-36]. It is worth noting that the
integration with DNN offers a very interesting perspective
on nonlinear HiDeNN-FEM, as both advanced algorithms
and computing platforms are being developed for machine
learning applications. These integrations are expected to sig-
nificantly enhance the predictive capabilities of nonlinear
HiDeNN-FEM and will be the focus of future research.

Acknowledgements DQ and YJL would like to acknowledge the sup-
port from NIH under the Grant NIH/NIBIB RO1 EB025247 (through
a subcontract from the UT Southwestern Medical Center). WKL, SM,
and YL would like to acknowledge the support of National Science
Foundation (NSF, USA) Grants CMMI-1762035 and CMMI-1934367.
C. Park would like to thank the Division of Orthopedic Surgery and
Sports Medicine at Ann and Robert H. Lurie Children’s Hospital for
their philanthropic grant.

References

1. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT
Press, Cambridge

2. Zhao Z, Zheng P, Xu S et al (2019) Object detection with
deep learning: a review. IEEE Trans Neural Netw Learn Syst
30(11):3212-3232

3. Krizhevsky A, Sutskever I, Hinton G (2017) ImageNet classifi-
cation with deep convolutional neural networks. Commun ACM
60(6):84-90

4. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition (pp. 770-778)

5. Sermanet P, Eigen D, Zhang X, et al (2013) OverFeat: integrated
recognition, localization and detection using convolutional net-
works. arXiv preprint arXiv:1312.6229

6. Otter D, Medina J, Kalita J (2020) A survey of the usages of deep
learning for natural language processing. IEEE Trans Neural Netw
Learn Syst 32(2):604—-624

7. Walczak S (2005) Artificial neural network medical decision sup-
port tool: predicting transfusion requirements of ER patients. IEEE
Trans Inf Technol Biomed 9(3):468—-474

8. Tarca AL, Carey VJ, Chen XW et al (2007) Machine learning and
its applications to biology. Machine learning and its applications
to biology. PLoS Comput Biol 3(6):e116

9. Garcia-Cano E, Cosio F, Duong L et al (2018) Prediction of spinal
curve progression in adolescent idiopathic scoliosis using random
forest regression. Comput Biol Med 103:34-43

10. Halabi S, Prevedello L et al (2019) The RSNA pediatric bone age
machine learning challenge. Radiology 290(2):498

11. Silver D, Huang A, Maddison C et al (2016) Mastering the
game of Go with deep neural networks and tree search. Nature
529(7587):484-489

12. Liu Y, Zhao T, Ju W et al (2017) Materials discovery and design
using machine learning. J Materiom 3(3):159-177

13. Gomes C, Selman B et al (2019) Artificial intelligence for materials
discovery. MRS Bull 44(7):538-544

@ Springer


http://arxiv.org/abs/1312.6229

194

Computational Mechanics (2023) 72:173-194

14.

15.

16.

17.

20.

21.

22.

23.

24.

25.

26.

217.

28.

Weinan E, Bing Y (2018) The deep Ritz method: a deep learning-
based numerical algorithm for solving variational problems. Com-
mun Math Statist 6(1):1-12

Lagaris I, Likas A, Fotiadis D (1998) Artificial neural networks
for solving ordinary and partial differential equations. IEEE Trans
Neural Netw 9(5):987-1000

Asady B, Hakimzadegan F, Nazarlue R (2014) Utilizing artifi-
cial neural network approach for solving two-dimensional integral
equations. Math Sci 8(1):1-9

Piscopo M, Spannowsky M, Waite P (2019) Solving differential
equations with neural networks: applications to the calculation of
cosmological phase transitions. Phys Rev D 100(1):016002

. Lee H, Kang I (1990) Neural algorithm for solving differential

equations. J Comput Phys 91(1):110-131

Tang S, Yang Y (2021) Why neural networks apply to scientific
computing? Theor Appl Mech Lett 11(3):100242

Oishi A, Yagawa G (2017) Computational mechanics enhanced by
deep learning. Comput Methods Appl Mech Eng 327:327-351
Yao H, Gao Y, Liu Y (2020) FEA-Net: a physics-guided data-
driven model for efficient mechanical response prediction. Comput
Methods Appl Mech Eng 363:112892

WuJ, Wang J, Xiao H, Ling J (2017) A priori assessment of predic-
tion confidence for data-driven turbulence modeling. Flow Turbul
Combust 99(1):25-46

Xiao H, Wu J, Wang J et al (2016) Quantifying and reduc-
ing model-form uncertainties in Reynolds-averaged Navier-Stokes
simulations: a data-driven, physics-informed Bayesian approach. J
Comput Phys 324:115-136

Liu D, Nocedal J (1989) On the limited memory BFGS method for
large scale optimization. Math Program 45(1):503-528

Kingma D, Ba J (2014) Adam: a method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980

Ruder S (2016) An overview of gradient descent optimization algo-
rithms. arXiv preprint arXiv:1609.04747

Raissi M, Perdikaris P, Karniadakis G (2019) Physics-informed
neural networks: a deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equa-
tions. J Comput Phys 378:686-707

Zhang L, Cheng L, Li H et al (2021) Hierarchical deep-learning
neural networks: finite elements and beyond. Comput Mech
67(1):207-230

@ Springer

29.

30.

31.

32.

33.

34.

35.

36.

Saha S, Gan Z, Cheng L et al (2021) Hierarchical Deep Learning
Neural Network (HiDeNN): an artificial intelligence (Al) frame-
work for computational science and engineering. Comput Methods
Appl Mech Eng 373:113452

Zhang L, Lu Y, Tang S et al (2022) HiDeNN-TD: reduced-order
hierarchical deep learning neural networks. Comput Methods Appl
Mech Eng 389:114414

Lu Y, Li H, Saha S et al (2021) Reduced order machine learn-
ing finite element methods: concept, implementation, and future
applications. Comput Model Eng Sci 129(1):1351

Liu WK, Gan Z, Fleming M (2021) Mechanistic data science for
STEM education and applications. Springer

Belytschko T, Liu WK, Moran B, Elkhodary K (2013) Nonlinear
finite elements for continua and structures. Wiley, New York
Zhang R, Wen L, Xiao J, Qian D (2019) An efficient solution
algorithm for space—time finite element method. Comput Mech
63(3):455-470

Zhang R, Naboulsi S, Eason T, Qian D (2019) A high-performance
multiscale space-time approach to high cycle fatigue simulation
based on hybrid CPU/GPU computing. Finite Elem Anal Des
166:103320

Zhang R, Wen L, Naboulsi S, Eason T, Vasudevan V, Qian D
(2016) Accelerated multiscale space—time finite element simula-
tion and application to high cycle fatigue life prediction. Comput
Mech 58(2):329-349

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.


http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.04747

	HiDeNN-FEM: a seamless machine learning approach to nonlinear finite element analysis
	Abstract
	1 Introduction
	2 The basic formulation of HiDeNN-FEM
	3 Nonlinear HiDeNN-FEM
	3.1 A brief introduction to nonlinear FEM
	3.2 HiDeNN-FEM building blocks for nonlinear FEM
	3.2.1 Construction of shape functions and derivatives in 1D elements
	3.2.2 DNN Construction of the shape functions and derivatives in 2D elements


	4 Training of DNN in HiDeNN-FEM and Solution Method
	5 Nonlinear HiDeNN-FEM Numerical Examples
	5.1 Plane stress problem of a hyperelastic plate with a hole under tension
	5.2 Compression of a rectangular plate with 2 different aspect ratios
	5.3 Compression for a 3D cubic block
	5.4 3D analysis of spot weld in a hat-stiffened panel
	5.5 A 2D elastoplastic block subjected to nonuniform body force
	5.6 An elastoplastic plate with a hole subjected to tension

	6 Conclusion
	Acknowledgements
	References


