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Abstract

The hierarchical deep-learning neural network (HiDeNN) (Zhang et al. Computational Mechanics, 67:207–230) provides

a systematic approach to constructing numerical approximations that can be incorporated into a wide variety of Partial

differential equations (PDE) and/or Ordinary differential equations (ODE) solvers. This paper presents a framework of the

nonlinear finite element based on HiDeNN approximation (nonlinear HiDeNN-FEM). This is enabled by three basic building

blocks employing structured deep neural networks: (1) A partial derivative operator block that performs the differentiation

of the shape functions with respect to the element coordinates, (2) An r-adaptivity block that improves the local and global

convergence properties and (3) A materials derivative block that evaluates the material derivatives of the shape function.

While these building blocks can be applied to any element, specific implementations are presented in 1D and 2D to illustrate

the application of the deep learning neural network. Two-step optimization schemes are further developed to allow for the

capabilities of r-adaptivity and easy integration with any existing FE solver. Numerical examples of 2D and 3D demonstrate that

the proposed nonlinear HiDeNN-FEM with r-adaptivity provides much higher accuracy than regular FEM. It also significantly

reduces element distortion and suppresses the hourglass mode.

Keywords Hierarchical deep neural network · Nonlinear finite element method · r-adaptivity · Shape function · Data-driven

1 Introduction

As a major branch of artificial intelligence, Machine Learn-

ing (ML) involves the development of algorithms to “learn”

based on given information (typically known as training data)

and then make predictions by applying the “knowledge” that

is learned. Such type of knowledge can be cast in differ-

ent forms, e.g., using neural networks (NN). NN mimics the

biological structure of a neuron network and consists of com-

binations of neurons as the fundamental unit that interacts

with the other neurons through information passage. Each

neuron processes the information passed through by first
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assigning the weight to each connection, summing up the

weighted inputs, and adding a bias. It will then process this

input through a so-called activation function and pass the

processed result to the other neurons that connect to it. Deep

Neural Network (DNN) [1] is a special case of NN in which

neurons are arranged in multiple layers: there is an input layer

that feeds the training data, an output layer that provides the

prediction, and in between, there are multiple internal layers

that process the data using combinations of weights, biases,

and activation functions.

DNN has found its applications in areas such as image

analysis [2–5], language processing [6], medical assistance

[7–10], strategic decision-making [11], and material design

[12, 13] and demonstrated its outstanding data process-

ing capabilities. There is a continuing interest in applying

DNN to solve ordinary and partial differential equations

(ODE/PDE) [14–18] that govern broad engineering and

science applications. The main motivations are two folds:

first, DNN is capable of establishing the so-called universal

approximation [19], which can be employed to build non-

linear approximations with arbitrary orders of resolution.

These are generally difficult to construct using single-scale
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approaches such as the finite element method (FEM). Sec-

ond, DNN employs back and forward propagation to “learn”

and “predict”. Advanced algorithms and hardware based

on parallel computing architectures are widely available

to accelerate these processes and are continuously being

improved. The existing approaches can be generally divided

into two categories based on whether they are purely data-

driven or not. In a purely data-driven approach, data collected

from experiments or simulations are fed to the DNN to cap-

ture the nonlinear mapping between the input and output

[20–23]. In most cases, large amounts of data are required

for accomplishing good prediction accuracy. This is a lim-

iting factor due to the cost or time it takes to generate the

data. On the other hand, the method may also suffer from

overfitting if the data provided does not fully represent the

whole spectrum of features. Although regularization meth-

ods have been established to alleviate the overfitting issue to

some extent, there are no general approaches available. In

addition, general training algorithms [24–26] such as those

based on the gradient descent approach are not always robust

due to the lack of insight into the physics of the problem.

Given the difficulties in directly applying a purely data-

driven approach, there has been a continuing interest in

integrating DNN with mechanistic principles that govern the

application. One of the successful examples is the physics-

informed neural network (PINN) in which loss functions

based on evaluating the residual errors associated with the

governing differential equations are introduced to accelerate

the convergence of data training [27]. For general science and

engineering applications, the application of DNN remains a

great challenge for problems that are featured by: 1) High

computational cost of purely physics-based model; 2) Lack

of insight on the physics governing the application, and 3)

High volume of data that is beyond the reach of the existing

data processing capability. In light of these challenges, Zhang

et al. have recently proposed the Hierarchical Deep Learn-

ing Neural Network (HiDeNN) framework[28]. Unlike most

of the existing approaches, HiDeNN establishes a hierarchi-

cal and structured framework to directly integrate the neural

network structure with the numerical approximation. Three

elementary building blocks that perform the operations of

linear transformation, multiplication, and inversion are intro-

duced to generate the DNN representations of the commonly

used interpolation functions, such as those based on FEM,

Lagrangian polynomial, spline functions, reproducing kernel

meshfree shape functions, NURBS, and Isogeometric anal-

ysis (IGA).

One of the key features of HiDeNN is that the weights

and biases of DNN are functions of the nodal positions.

As such, training of the HiDeNN leads to optimized nodal

positions. This is also known as r-adaptivity in the con-

text of finite element-based interpolations (HiDeNN-FEM).

When combined with a physics-based loss function such

as the potential energy of the system, the robustness of

HiDeNN-FEM has been illustrated for 1D and 2D linear

elasticity problems [29]. It was also shown that HiDeNN-

FEM can be further enhanced with reduced-order modeling

using proper generalized decomposition (PGD), leading to

HiDeNN-PGD [30, 31]. In this work, we present the appli-

cation of HiDeNN-FEM to nonlinear problems in solid

mechanics. For these types of problems, Lagrangian meshes

are commonly used in which nonlinearity arises due to

large deformation and/or material nonlinearity. The shape

functions are typically constructed in the parent (element)

configuration and expressed in terms of the parent (element)

coordinates. Correspondingly, three building blocks employ-

ing HiDeNN are introduced: (1) A partial derivative operator

block that performs the differentiation of the shape functions

with respect to the element coordinate, (2) An r-adaptivity

block that improves the local and global convergence prop-

erties and (3) A materials derivative block that evaluates the

material derivatives of the shape function (in the case of total

Lagrangian formulation). While these building blocks are

generally applicable for any type of finite element shape func-

tions, specific cases in 1D and 2D are presented to illustrate

the application. We further show through 2D and 3D exam-

ples that convergence can be enhanced with a physics-based

loss function that employs either potential energy or out-of-

balance force.

The rest of the paper is organized as follows. In Sect. 2, the

basic formulation of HiDeNN-FEM is reviewed. In Sect. 3,

we outline the three building blocks and the process to con-

struct the HiDeNN-FEM shape functions. This is followed by

a discussion on the general solution processes for nonlinear

problems in Sect. 4. Section 5 presents results and discus-

sions on several benchmark problems in both 2D and 3D.

Finally, conclusions are drawn in Sect. 6.

2 The basic formulation of HiDeNN-FEM

We first introduce the basic notations that are commonly used

for representing DNN. The basic unit of the DNN is an arti-

ficial neuron that is also known as perceptron as shown in

Fig. 1. Perceptron takes multiple inputs given as x1, x2, …,

xn . Each input is multiplied by a weight, i.e., wi with i � 1,

..., n. The weighted inputs are then summed and a bias b is

added to give wx+b, which serves as an input to the activation

function A . The result A (wx + b) is assigned as the output

of the artificial neuron. Many choices of the activation func-

tion A have been proposed based on the applications. For

details we refer to the introduction in [32]. A DNN consists of

an arrangement of the perceptrons in multiple layers includ-

ing at least one internal (hidden) layer (Fig. 1). To describe

the information passing within the DNN, we introduce the

notation w
l−1, l
j , k as the weight from the j-th neuron in the
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Fig. 1 An illustration of perceptron and Deep Neural Network (DNN)

(l − 1)-th layer to the k-th neuron in the l-th layer and bl
j as

the bias of the j-th neuron in the l-th layer.

In HiDeNN-FEM, a structured DNN is developed to

realize the interpolation of the shape functions. This is

accomplished by establishing three basic building blocks as

shown in Fig. 2, i.e., linear, multiplication, and inversion.

The linear building block establishes the piecewise linear

function, defined as

L(x ; xA, xB , yA, yB)

�

⎧

⎪

⎨

⎪

⎩

yA, x < xA,
yB−yA

xB−xA
(x − xA) + yA, xA ≤ x ≤ xB ,

yB , x > xB ,

The multiplication building block M performs the multi-

plication of two functions F1, F2 that are represented in DNN,

i.e., M(F1, F2) � F1 · F2. The inversion building block V

provides the quotient of two DNN-represented functions F1,

F2, i.e., V (F1, F2) � F2/F1. For the detailed implemen-

tation of using DNN to establish these building blocks, we

refer to [28].

3 Nonlinear HiDeNN-FEM

3.1 A brief introduction to nonlinear FEM

The method outlined below applies to both total Lagrangian

(TL) and updated Lagrangian formulation (UL). In this work

we adopted the total Lagrangian (TL) formulation [33] to

illustrate the application of HiDeNN. We first introduce X as

the material coordinate and x as the spatial coordinate. The

weak form of the momentum equation is given as

(1)

∫

�0

ρ0ü · δud� +

∫

�0

P :δF
Td�

−

∫

�0

b · δud� −

∫

Ŵt0

T·δudŴ � 0

in which u � x−X is the displacement and the superimposed

dot denotes the time derivative. The symbol δ represents vari-

ational operator and δu is the virtual displacement, ρ0 is the

mass density defined in the initial configuration �0, P is

the 1st Piola–Kirchhoff (nominal) stress and F is deforma-

tion gradient,b is the body force and T is traction applied on

boundary Ŵt0.

To solve Eq. (1) using FEM, we introduce Lagrangian

mesh and three configurations (Fig. 3):

(1) The parent element domain � on which the shape func-

tion approximation is built. The element coordinates are

given as ξe with e the element index;

(2) The initial (reference) configuration �e
0 with material

coordinate X;

(3) The current configuration �e with spatial coordinate x;

To describe the motion, the mapping from the initial to the

current configuration is introduced as x � φ(X, t). Addi-

tionally, the initial and current configurations are mapped

from the parent domain, given as X � X(ξ) and x � x(ξ, t),

respectively. With the shape functions constructed in the par-

ent domain, these last two mappings are approximated as

X(ξ) � XI NI (ξ) and x(ξ) � xI NI (ξ) with NI (ξ) the shape

function defined at the node I and evaluated at coordinate ξ.

Repeated nodal index of I indicates the summation within

the element. Substitution of the shape function approxima-

tion into the weak form of the TL formulation in Eq. (1) gives

the discretized form of the momentum equation, given as

Mü � f
ext − f

int (2)

with

f
int � f int

i I �

∫

�0

∂ NI

∂ X j

Pj i d�0 �

∫

�0

(

B
0
I j

)T

Pj i d�0 (3)

f
ext � f ext

i I �

∫

�0

NI ρ0bi d�0 +

∫

Ŵ0
ti

NI t
0
i dŴ0 (4)

M � Mi j I J � δi j

∫

�0

ρ0 NI NJ d�0 (5)

in which ρ0 is the mass density in the initial configuration,

bi is the body force, t
0
i is the traction applied over the nat-

ural boundary Ŵ0
ti

and the shape function derivative matrix

is defined through B
0
j I �

∂ NI

∂ X j
in Eq. (3). In this paper, we

will focus on application of HiDeNN-FEM to nonlinear static

problems so that the inertia terms in Eq. (2) are neglected.

Extension to nonlinear dynamic problems will be described

in a separate publication.
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Fig. 2 An illustration of a piecewise linear function b linear building block c multiplication block and d inversion block

Fig. 3 An illustration of the three configurations in nonlinear FE and

mapping relation

3.2 HiDeNN-FEM building blocks for nonlinear FEM

Computing the internal force term in Eq. (3) requires evalua-

tion of the shape function derivative. This is carried through

the chain rule,

B
0
j I �

∂ NI

∂ X j

�
∂ NI

∂X
�

∂ NI

∂ξ

(

∂X

∂ξ

)−1

(6)

The matrix notation of Eq. (6) is shown here for the case

of a general 2D element in which the element coordinates are

given as ξ , η and material coordinates are X , Y . For a given

nodal index I , we have

∂ NI

∂X
� N T

I , X �

[

NI , X NI , Y

]

�

[

NI , ξ NI , η

]

[

X ′ξ X ′η

Y′ξ Y′ξ

]−1

(7)

Or equivalently

(8)

NI , X �

{

NI , X

NI , Y

}

�

[

X ′ξ X ′η

Y′ξ Y′η

]−T {

NI , ξ

NI , η

}

�

[

X ′ξ Y′ξ

X ′η Y′η

]−1 {

NI , ξ

NI , η

}

Once the shape function derivatives are evaluated from

Eq. (8) for each nodal index I , the matrix notation of Eq. (6)

is given as

B
0
j I �

[

N1, X N2, X ...

]

(9)

For implementation in HiDeNN-FEM, the operations out-

lined above to evaluate B
0
j I can be realized with three

building blocks as shown in Fig. 4. Using the element coor-

dinate as inputs, the block of partial derivative operator
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Fig. 4 Flowchart showing the

three building blocks for

performing shape function

derivative

evaluates the matrix DN that contains the shape function

derivatives with respect to the element coordinates. The r-

adaptive block computes the Jacobian of the mapping X �

X(ξ). Subsequently, the material derivatives are evaluated in

the third block, which gives the matrix that contains the shape

function derivative B
0
j I .

3.2.1 Construction of shape functions and derivatives in 1D

elements

We first illustrate the construction of the shape functions and

derivatives using the three building blocks for the case of 1D

linear element. Configurations of the element in the physical

and parent domain are shown in Fig. 5a. The shape func-

tions at nodes 1 and 2 are N1 � 1
2
(1 − ξ), N2 � 1

2
(1 + ξ)

with −1 ≤ ξ ≤ 1. Figure 5b illustrates the DNN representa-

tion of the linear shape function in which two hidden layers

are introduced. The element coordinate ξ is employed as the

input and the activation function A1(x) � x is introduced.

The output of the DNN are the values of the shape functions

defined at the two nodes and evaluated at the element coor-

dinate ξ . According to Fig. 5a, the DNN representations of

the shape functions are given as

N1(ξ ; W, b, A ) � W 23
11 A1(W 12

11 ξ + b))

N2(ξ ; W, b, A ) � W 23
22 A1(W 12

12 ξ + b))
(10)

These representations can be combined with additional

layers of NN to provide interpolations of the displacement.

For details we refer to [28].

Figure 5c shows the three building blocks for evaluating

the 1D shape function derivatives. To explain the function of

each building block, we recall that the 1D version of Eq. (6)

is B
0
I �

∂ NI

∂ X
�

∂ NI

∂ξ

(

∂ X
∂ξ

)−1
. For the 2-node element, we

introduce

B �

[

B
0
1 B

0
2

]

�

[

∂ N1
∂ X

∂ N2
∂ X

]

�

(

∂ X

∂ξ

)−1
[

∂ N1
∂ξ

∂ N2
∂ξ

]

� J
−1

DN (11)

where J � ∂ X
∂ξ

is the Jacobian for the coordinate transfor-

mation, DN �

[

∂ N1
∂ X

∂ N2
∂ X

]

�

[

− 1
2

1
2

]

. The Jacobian is

evaluated through

J �
∂ X

∂ξ
�

[

∂ N1
∂ξ

∂ N2
∂ξ

]

{

X1

X2

}

� DN X
∗ (12)

where X∗ �

{

X1 X2

}T

provides the physical coordinates

of the nodes.

Based on Eqs. (11) and (12), the first building block in

Fig. 5c employs a single layer of NN to evaluate DN . Since

DN is a constant matrix for the 1D linear element, the input

to NN is a constant as well. It is called a partial derivative

operator block because the block performs differentiation (in

general partial differentiation) of the shape functions with

respect to the element coordinates. Subsequently, another

two layers are added to construct the second building block to

compute J. This block is called an r-adaptivity block since the

weights connecting these two layers are the physical coor-

dinates of the nodes and can be trained by optimizing the

loss function. This is generally regarded as a learning process

through which NN arrives at the optimum nodal positions. As

will be shown later, we establish physics-based loss functions

based on nonlinear FEM. The last block is called a materi-

als derivative block that evaluates B based on Eq. (11). This

block takes the computed J from the r-adaptivity block and

inverts it using the inversion building block V as established

in [28]. Another layer is then added to compute B � J−1DN .

The computed shape function derivatives can be employed

to evaluate the deformation gradient given as

F(ξ ; W, b, A )

� u1A1(W 56
11 · (W 45

11 (A1(W 34
11 A1(W 23

11 A1(W 12
11 )))

+ A1(W 34
21 A1(W 23

22 A1(W 12
12 )))))−1)+

u2A1(W 56
11 · (W 45

11 (A1(W 34
11 A1(W 23

11 A1(W 12
11 )))

+ A1(W 34
21 A1(W 23

22 A1(W 12
12 )))))−1) + I (13)

Figure 6 illustrates the construction of the shape functions

and their derivatives for the case of 1D quadratic element.

Configurations of the element in the physical and parent

domain are shown in Fig. 6a. The shape functions at nodes 1,

2 and 3 are derived from the well-known 2nd order Lagrange

polynomials, given as N1 � 1
2
ξ(1 − ξ), N2 � 1 − ξ2 and

N3 � 1
2
ξ(1 + ξ). Two internal layers are introduced in build-

ing the shape function using the given element coordinate as

an input. The multiplication building block is introduced in
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Fig. 5 a Mapping between physical domain and parent domain for 1D linear element. b Construction of the shape function and c Construction of

the shape function derivative using HiDeNN

the second layer to realize the product form of the shape

functions. The DNN representations of the shape functions

are given as

N1(ξ ; W, b, A ) �W 34
11

{

M
[

(W 23
A1(W 12

11 ξ + b2
1)),

(W 23
A1(W 12

12 ξ + b2
2))

]}

N2(ξ ; W, b, A ) �W 34
22

{

M
[

(W 23
A1(W 12

13 ξ + b2
3)),

(W 23
A1(W 12

14 ξ + b2
4))

]}

N3(ξ ; W, b, A ) �W 34
33

{

M
[

(W 23
A1(W 12

12 ξ + b2
2)),

(W 23
A1(W 12

14 ξ + b2
4))

]}

(14)

with the specific weights and biases shown in Fig. 6b.

The shape function derivatives can be constructed using

the same three building blocks as in the case of 1D linear

element and detailed NN structures are shown in Fig. 6c.

Unlike the linear element case, neither the Jacobian nor the

shape function derivative is constant. To evaluate the shape

function derivative, the element coordinate is used as the

input. Based on Fig. 6c, the shape function derivatives are

evaluated according to B � J−1DN in which the building

blocks for evaluating DN , J and B are shown. The material

coordinates are used as weights in constructing J and can
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Fig. 6 a Mapping between physical domain and parent domain for 1D quadratic element. b Construction of the 1D quadratic shape function and

c Construction of the shape function derivatives using HiDeNN
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Fig. 7 An illustration of the 2D 4-node element

be optimized through training. The deformation gradient is

given as

F(ξ ; W, b, A )

� u1 M
[

W 67
11 J

−1, W 37
11 A1(W 23

11 A1(W 12
11 ξ + b2

1))
]

+u2 M
[

W 67
12 J

−1, W 37
22 A1(W 23

22 A1(W 12
12 ξ + b2

2))
]

+u3 M
[

W 67
13 J

−1, W 37
33 A1(W 23

33 A1(W 12
13 ξ + b2

3))
]

(15)

with

J
−1 � W 56

11 A1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

W 45
11 A1(W 34

11 A1(W 23
11 A1(W 12

11 ξ + b2
1)))+

W 45
21 A1(W 34

22 A1(W 23
22 A1(W 12

12 ξ + b2
2)))+

W 45
31 A1(W 34

33 A1(W 23
33 A1(W 12

13 ξ + b2
3)))

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(16)

3.2.2 DNN Construction of the shape functions

and derivatives in 2D elements

We consider the 2D 4-node quadrilateral element. Configu-

rations of the parent and material configurations are shown

in Fig. 7.

The shape functions are given as

N �

[

N1 N2 N3 N4

]

N1 �
1

4
(1 − ξ )(1 − η), N2 �

1

4
(1 + ξ )(1 − η)

N3 �
1

4
(1 + ξ )(1 + η), N4 �

1

4
(1 − ξ )(1 + η)

(17)

Figure 8 shows the construction of the shape func-

tions using DNN and the corresponding representations are

expressed as

N1(ξ , η; W, b, A ) �W 34
11

{

M
[

(W 23
A1(W 12

12 ξ + b2
2)),

(W 23
A1(W 12

24 ξ + b2
4))

]}

N2(ξ , η; W, b, A ) �W 34
22

{

M
[

(W 23
A1(W 12

11 ξ + b2
1)),

Fig. 8 Construction of the 2D 4-node element shape function

(W 23
A1(W 12

24 ξ + b2
4))

]}

N3(ξ , η; W, b, A ) �W 34
33

{

M
[

(W 23
A1(W 12

11 ξ + b2
1)),

(W 23
A1(W 12

23 ξ + b2
3))

]}

N4(ξ , η; W, b, A ) �W 34
44

{

M
[

(W 23
A1(W 12

12 ξ + b2
2)),

(W 23
A1(W 12

23 ξ + b2
3))

]}

(18)

To establish the DNN for the shape function derivative,

we define

(19)

DN �

[

∂ N1
∂ξ

∂ N2
∂ξ

∂ N3
∂ξ

∂ N4
∂ξ

∂ N1
∂η

∂ N2
∂η

∂ N3
∂η

∂ N4
∂η

]

�

[

D1
N

D2
N

]

�
1

4

[

−(1 − η) (1 − η) (1 + η) −(1 + η)

−(1 − ξ ) −(1 + ξ ) (1 + ξ ) (1 − ξ )

]

X
∗ �

⎡

⎢

⎢

⎢

⎣

X1 Y1

X2 Y2

X3 Y3

X4 Y4

⎤

⎥

⎥

⎥

⎦

(20)

J � DN · X
∗ �

[

D1
N · X∗

D2
N · X∗

]

(21)

Figure 9a provides the building blocks for obtaining DN ,

J based on Eqs. (19) to (21) and eventually shape function

derivative matrix B0 that is used to compute the deformation

gradient in 2D. Note that the HiDeNN multiplication and

inversion blocks have been used extensively. For instance,

computing J−1 requires evaluating the determinant det(J)

and the detailed DNN is shown in Fig. 9b with the application

of the multiplication block M . To further evaluate J−1 the

matrix inversion block V is applied as shown in Fig. 9c.

123



Computational Mechanics (2023) 72:173–194 181

Fig. 9 a Construction of the shape function derivatives for the 2D 4-node quadrilateral element using HiDeNN. b DNN representation of the

determinant (J) and c the inverse of J
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4 Training of DNN in HiDeNN-FEM
and SolutionMethod

With the shape functions established in Sect. 3 using DNN,

the general expression for the displacement is given as

u
h � N(ξ; W, b, A )d (22)

in which N is the shape function matrix and d is the

nodal displacement vector. Unlike the conventional FEM

approximation, this DNN-constructed approximation con-

tains additional NN parameters such as the weights W, the

biases b and the activation functions A . In particular, the

weights for the r-adaptivity block are functions of the mate-

rial coordinates of the nodes. Thus, we rewrite Eq. (22) as

u
h � N

(

ξ; X
∗, b, A

)

d (23)

in which X∗ is the vector that contains all the material coor-

dinates of the nodes as part of the weight in the DNN. For

the given choices of the activation functions A , X∗ can be

trained to achieve optimum accuracy. This is equivalent to

the r-adaptivity in FEM that is realized through a learning

process in DNN in HiDeNN-FEM.

The learning process in the general field of ML can

be categorized into supervised and unsupervised learning,

depending on whether any data that correlates the input (fea-

ture) to the output (label) is used for the training process. In

this work, an unsupervised learning approach is established

in which the NN parameters are optimized by defining a loss

function without using training data. For nonlinear FEM the

loss function is formulated based on the residual while using

Newton’s method. Here we focus on static problems so that

the inertia terms in Eq. (2) are neglected. In Newton’s method,

Eq. (2) is linearized and solved through iteration. The itera-

tive step starts with the residual vector r for the υ-th iteration

that is expressed as

rυ � r
(

dυ , X
∗
υ

)

� f
int
υ − f

ext
υ (24)

Setting the conditions that rυ+1 � 0 and performing a

first-order Taylor expansion of the values at the υ-th iteration

gives

rυ+1 � rυ +
∂r

(

dυ , X∗
υ

)

∂d
�d +

∂r
(

dυ , X∗
υ

)

∂X∗
�X � 0 (25)

We define

A �
∂r

∂d
and A

∗ �
∂r

∂X∗
(26)

which represents the tangent stiffness associated with the

system itself and the mesh, respectively. Correspondingly,

A and A∗ are called the system Jacobian matrix and mesh

Jacobian matrix, respectively. It can be shown that the matrix

components of A are given as

AI J �
∂rI

∂dJ

�
∂fmat

I

∂dJ

+
∂f

geo

I

∂dJ

−
∂fext

I

∂dJ

�

∫

�0

B
T
0I [CSE ]B0J d�0 + I

∫

�0

B
T
0I SB0J d�0 −

∂fext
I

∂dJ

(27)

in which fmat
I and f

geo

I represents the contribution to the

internal nodal force due to the material and geometric non-

linearity, respectively.
∂fext

I

∂dJ
is denoted as the external load

stiffness due to loads that are changing with the configura-

tion of the body. This term is neglected in the current work.

B0I is the Voigt form of the B0 matrix for the shape function

defined at node I . The detailed step to form B0I can be found

in ref [33]. CSE is the material tangent stiffness tensor that

relates the 2nd Piola–Kirchhoff stress S to Green-Lagrangian

strain E through Ṡ � CSE : Ė. I is the 2nd order identity

tensor.

The mesh Jacobian matrix is given as

A
∗ �

∂r

∂X∗
�

∂f int − ∂fext

∂X∗
(28)

We assume that fext is independent of the nodal coordi-

nates and thus

A
∗ �

∂f int

∂X∗
�

∫

�0

(

∂B
0

∂X∗

)T

Pd�0 (29)

With the system and mesh Jacobian matrix evaluated

based on Eqs.(27) and (29), the nodal displacement and

coordinates are updated by solving Eq. (25). Since this

equation can yield multiple sets of solutions due to the addi-

tional unknowns of the nodal coordinate, the computational

implementation seeks to improve the accuracy without sac-

rificing efficiency by establishing a two-step process: In the

first step, the nodal displacements are updated from solving

�d � A−1r while the nodal coordinates are being held fixed.

In the second step, nodal coordinates are updated by solving

�X �(A∗)−1
r and neglecting the contribution from the sys-

tem Jacobian matrix. The Lagrangian mesh is then updated.

This process will continue iteratively until the loss function

(residual error) r is within the given tolerance. Figure 10

provides the detailed algorithm (Algorithm 1) for this imple-

mentation.

For conservative systems, setting the residual in Eq. (25)

to be zero is equivalent to the application of the stationary

potential energy principle. Based on this, we can introduce
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Fig. 10 A general algorithm

(Algorithm 1) for solving

nonlinear FEM with r-adaptivity

the potential energy � and solve the minimization problem

given below

Find d, X
∗, s.t .�

(

d, X
∗
)

� W int − W ext is minimized

(30)

Here W int and W ext are the internal (strain) energy and

external work respectively. The specific expression for W int

depends on the material model used, as long as it is conser-

vative. For instance, we have used hyperelastic material in

which the strain energy density function w is introduced. The

internal energy is then given as W int �
∫

�0

wd�0. The spe-

cific form of w has been provided in the example problems

in Sect. 5. W ext can be derived based on Eq. (4) assuming

the external forcing terms are conservative. Using indicial

notation, we have

W ext � f ext
i I ui I � ui I

⎛

⎜

⎜

⎝

∫

�0

NI ρ0bi d�0 +

∫

Ŵ0
ti

NI t
0
i dŴ0

⎞

⎟

⎟

⎠

(31)

Based on Eq. (30), one can define the loss function to be the

potential energy of the system and systematically minimize

it to solve for equilibrium and realize the mesh update.

Figure 11 provides the detailed algorithm (Algorithm 2)

used for solving the conservative system using DNN. A two-

step nested loops optimization scheme is developed. The

outer loop resolves the nodal displacement while keeping

mesh fixed and the inner loop then further provides the mesh

update. In both loops, the variables (the weight of DNN) are

updated using the gradient descent approach with associated

learning rate parameters α and γ as shown in Fig. 11.

5 Nonlinear HiDeNN-FEMNumerical
Examples

In this section, we provide several numerical examples to

demonstrate the performance of nonlinear HiDeNN-FEM

and compare it with regular FEM. An in-house code has been

developed for this purpose. It should be noted that the degrees

of freedom (DoFs) referred in the following example prob-

lems are the nodal DoFs only. In HiDeNN-FEM, there are

additional DoFs associated with the nodal coordinates that

are also being optimized through r-adaptivity. Therefore, the

total DoFs in HiDeNN-FEM will be twice of that in regu-

lar FEM if all the nodal coordinates are being optimized. In

addition, the commercial code ABAQUS has been employed

to obtain reference solutions for validation. As described in

Sect. 4, we have established two classes of algorithms, one

for the general nonlinear problems (Algorithm 1) and one for

the conservative systems (Algorithm 2). In the first 4 exam-

ples to be described below, we focus on conservative systems

using Algorithm 2 and the last 2 examples dealing with the

general nonlinear plasticity problems are solved using Algo-

rithm 1. All computations were performed on a workstation

with Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz and

32 GB memory.

5.1 Plane stress problem of a hyperelastic plate
with a hole under tension

We consider a plane stress problem of a square plate of dimen-

sion 1 m by 1 m with the center hole of radius of 0.1 m. As

shown in Fig. 12, the plate is modeled as Neo-Hookean mate-

rial with the strain energy density function w given as
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Fig. 11 Algorithm 2 for solving

conservative systems with

r-adaptivity

Fig. 12 2D plane stress problem of a square plate with a hole under

tension

w�C10(I 1 − 3) +
1

D1
(J−1)2 (32)

with I 1 � J−2/ 3 I1, J � det(F) and I1 is the first invariant

of the right Cauchy-Green deformation tensor. The material

parameters are given as C10 � 115.385 kPa, D1 � 4 ×

10−6Pa−1, and the plate is subjected to a traction of 100 kPa

on the top surface while the bottom surface is constrained.

Figure 13 and Table 1 show the result for the given trac-

tion and boundary condition. The converged result in Fig. 13

(dashed line) is obtained from a very fine mesh of ~ 10 M

degrees of freedom (DoFs) using the CPS4 (4-node plane

stress) element in ABAQUS. HiDeNN-FEM achieves much

faster convergence than the standard FEM using ABAQUS.

For the same FE model using the standard 4-node quadrilat-

eral element with 13,840 degrees of freedom, the error from

Fig. 13 Normalized maximum von Mises stress as a function of degrees

of freedom

Table 1 Plane stress tension problem results

Analysis Degrees of freedom σ von
max (Pa) Difference

Converged

Solution

10,120,464 320,120 –

FEM

HiDeNN-

FEM

284 241,941

260,080

24.42%

18.76%

FEM

HiDeNN-

FEM

972 277,043

303,170

13.46%

5.29%

FEM

HiDeNN-

FEM

3,600 296,765

315,540

7.30%

1.43%

FEM

HiDeNN-

FEM

13,840 307,722

318,980

3.87%

0.36%
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Fig. 14 2D Plane strain model of a rectangular plate under compression

HiDeNN-FEM is 0.36% in terms of the maximum Mises

stress whereas the corresponding is 3.87% from ABAQUS.

5.2 Compression of a rectangular plate with 2
different aspect ratios

We consider a plane strain case of a rectangular plate with

the dimension of 0.02 m by 0.01 m as shown in Fig. 14.

The plate is modeled as nearly incompressible Neo-Hookean

material using the same form of strain energy density func-

tion as in the previous cases. The material parameters are

given as C10 � 100.341 kPa, D1 � 1.02×10−7Pa−1. These

constants provide an equivalent Poisson’s ratio of 0.4949. In

terms of the loading condition, displacement is applied on

the top surface while the bottom surface is constrained.

This case aims to test the ability of HiDeNN-FEM method

in capturing large deformation and alleviating the issue of

mesh distortion with r-adaptivity. The initial domain was dis-

cretized using a standard 4-node quadrilateral element with

different mesh densities (40 × 10, 80 × 20, 160 × 40). For

the same mesh, both the standard FEM using ABAQUS and

HiDeNN-FEM with r-adaptivity were employed to capture

the compression response. Reduced integration with hour-

glass control was used to avoid mesh locking as well as

spurious modes. Figure 15 and Table 2 show the maximum

percentage of compression that has been reached for each

case. It is observed that the maximum compression ratio

reached in the case of HiDeNN-FEM with r-adaptivity is

consistently higher than the corresponding FEM with the

same initial mesh by ~ 66% to 75%. Figure 16 shows unde-

formed and deformed mesh obtained from regular FEM

and HiDeNN-FEM with r-adaptivity for the case of mesh

with total of 13,202 DoFs. The maximum compression ratio

was 33.11% for the regular FEM case and 55.08% for the

HiDeNN-FEM. Mesh updates were observed at the four cor-

ners in the HiDeNN-FEM case and are responsible for the

higher compression ratio achieved using HiDeNN-FEM.

In the next example, as shown in Fig. 17, the plate dimen-

sions were changed to a width of 0.1 m and height of 0.01 m,

leading to an aspect ratio of 10:1. The plate shown is dis-

cretized using the same 4-node quadrilateral element with

160 × 40 elements. The material model remains the same as

Fig. 15 Compression percentage as a function of the degrees of freedom

Table 2 Compression percentage result of the incompressible material

plate

Analysis Degrees of

freedom

Max

compression

Percentage

(%)

Compression

Capacity

improve (%)

FEM

HiDeNN-

FEM

902 37.69

66.51

75.21

FEM

HiDeNN-

FEM

3,402 36.80

61.26

66.47

FEM

HiDeNN-

FEM

13,202 33.11

55.08

66.14

in the last example. Figure 18 shows the initial and deformed

mesh before the simulation terminates due to mesh distor-

tion for the cases of regular FEM and HiDeNN-FEM. It is

observed that the maximum compression ratio nearly doubles

from FEM (20.6%) to HiDeNN-FEM (40.3%). A compari-

son between the HiDeNN-FEM mesh and the normal stress in

the Y direction shows a correlation between the area of high

stress gradient and the area where mesh has been updated to

alleviate the mesh distortion in these areas and capture the

high stress gradient (Fig. 19).

5.3 Compression for a 3D cubic block

We consider a 3D cubic block with dimensions of 1 m × 1 m

× 1 m as shown in Fig. 20. The block is modeled as hyper-

elastic Neo-Hookean material with the same set of material

parameters as in Sect. 5.1. In terms of the boundary condi-

tion, the block is subjected to a 0.1 m displacement on the

top surface while the bottom surface is constrained.
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Fig. 16 Mesh of 160 by 40 case: Incompressible material compression percentage

Fixed x and y.

Apply compression displacement.

(-0.05,0) (0.05,0)

(0.05,0.01)(-0.05,0.01)

Fixed x.

Material: Neo-Hookean

Fig. 17 Plane strain incompressible material compression case problem

statement (Aspect ratio 10:1)

For this example, we have run 4 different cases depending

on whether regular FEM (using ABAQUS) or HiDeNN-FEM

with r-adaptivity is used and whether hourglass control is

implemented, as indicated in Table 3 below.

All four cases are discretized using 8 nodes hexahedron

element. To assess the accuracy of the results, a reference

solution is obtained by prescribing a very fine mesh with

10,155,231 degrees of freedom using the C3D8R element

(3,310,008 elements) with hourglass control. Figure 21 com-

pares the maximum transversal displacement obtained from

cases a and b in Table 3. Each case was run with three differ-

ent mesh densities with 768, 8670 and 42471 DoFs. It can be

At compression percentage 40.3%x

y

Fig. 19 Compressive stress distribution in a plate of aspect ration of

10:1 and made of incompressible material

Fig. 20 Configuration of the 3D cubic block under compression

Regular Mesh 160x40 Max compression percentage 20.6%

HiDeNN-FEM Mesh 160x40 Max compression percentage 40.3%

x

y

Fig. 18 Aspect ratio 10:1 plate incompressible material case compression result
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Table 3 Four cases on the 3D cubic block problem

Simulation Case Regular FEM or

HiDeNN-FEM

Hourglass

control

a Regular FEM N

b HiDeNN-FEM N

c Regular FEM Y

d HiDeNN-FEM Y

Fig. 21 Compression results between HiDeNN mesh and regular mesh

Table 4 Compression results between HiDeNN mesh and regular mesh

Analysis Degrees of

freedom

Max transverse

displacement

Difference

(%)

FEM

HiDeNN-FEM

10,155,213 0.016693

FEM

HiDeNN-FEM

768 0.0582458

0.0215659

248.92

29.19

FEM

HiDeNN-FEM

8,670 0.0587635

0.0178751

252.02

7.08

FEM

HiDeNN-FEM

42,471 0.0541853

0.0172213

224.60

3.16

observed that the maximum displacement solved from reg-

ular FEM does not converge to the reference solution. On

the other hand, results from HiDeNN-FEM with r-adaptivity

converge to the reference solution as the mesh is refined,

indicating that the hourglass mode effect is suppressed. The

specific values of the maximum displacements obtained from

the mesh configuration and the reference solution are pro-

vided in Table 4.

To further verify whether hourglass mode is present,

Fig. 22 shows the deformed mesh from the case a and b in

(a). 32x32x12     (b). 32x32x12 

Z=0.3

Z=0.5

Z=0.8

Fig. 22 Results of deformed shape with DoF 42,471 between a regular

mesh and, b HiDeNN-FEM mesh

Table 3 for a total DoF of 42,471. The hourglass mode is vis-

ible from the regular FEM results, whereas HiDeNN-FEM

does not exhibit any. Figure 23 provides the cross-sectional

view from the two cases where the cross-sections are located

at 0.3 m, 0.5 m, and 0.8 m from the bottom surface. Again,

the hourglass mode is seen in the regular FEM case. Finally,

Fig. 24 compares von Mises stress distribution along the

left edge of the top surface of the cubic block. Hourglass

mode leads to stress oscillations in the cases of regular FEM,

whereas HiDeNN-FEM converges to the reference solution.

Since no hourglass mode is present for the applied dis-

placement of 0.1 m (compression ratio of 10%), we continue

to apply compression and observe the onset of hourglass

mode at a compression ratio of 30.6% for HiDeNN-FEM

(case b) with total DoFs of 42,471, whereas regular FEM

(case a) exhibited hourglass mode at a compression ratio of

12% with the same mesh. These results indicate the proposed

HiDeNN-FEM can significantly suppress the hourglass mode

effect in the case of large deformation.

In cases c and d in Table 3, hourglass control was

implemented in both regular FEM and HiDeNN-FEM.

As described in Sect. 4, a 2-step optimization scheme is

introduced in HiDeNN-FEM. To assess the computational

efficiency of this implementation, the time consumption for

nodal position optimization was monitored and shown in

Table 5 for the different iterative steps. Table 5 shows that

the r-adaptivity realized through the nodal position update

loop adds a moderately less than 5% overhead to the overall

computational time. The detailed mesh updates are shown in

Fig. 25 with the cross-sectional view of the mesh at the 1st,

3rd, and 5th iterative steps.

Figure 26 compares the deformed shape between regular

FEM mesh and HiDeNN-FEM mesh and the cross-section

view. Results show that even with hourglass control, spurious

mode emerges in regular FEM at 24.50% compression ratio

and the computation stopped at 31.62% compression ratio

due to mesh distortion. On the other hand, the HiDeNN-

FEM mesh result does not show apparent hourglass mode
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Fig. 23 Cross-sectional view of

deformed shape with DoF of

42,471. The top row shows the

results from Regular FEM at a. Z

� 0.3 m, b. Z � 0.5 m, c. Z �

0.8 m. The bottom row shows the

corresponding from

HiDeNN-FEM at d Z � 0.3 m,

e. Z � 0.5 m, f Z � 0.8 m

Fig. 24 von Mises stress distribution along the left side of the top surface

for the case of 42,471 DoFs

at the same compression ratio (24.50%) and can be further

compressed to 35.97% before the simulation terminates.

Figure 27 compares the Z direction stress distribution

at the line along the Y direction (X � 1, Z � 1) between

cases c and d in Table 3 and with the reference solution at

24.50% compression ratio. Since the model with C3D8R ele-

ment in ABAQUS can not reach such a high compression

ratio, a different model using 12,288 C3D20RH elements

(20 node hybrid quadratic element with reduced integration)

was run to obtain the reference solution. These results show

that HiDeNN-FEM can better capture stress distribution and

matches well with the reference solution.

5.4 3D analysis of spot weld in a hat-stiffened panel

In this case, we consider a hat-stiffened panel with one stiff-

ener. Spot weld was applied to connect the panel skin with

the stiffener as shown in Fig. 28. A quarter of the part was

modeled due to symmetry. The dimension and boundary

conditions are also shown in Fig. 28. The spot welds are

0.07 inches in radius and 0.0005 inches thick. The thick-

ness values of the panel and the hat stiffener are 0.0625

inches and 0.032 inches respectively. We assume the same

Neo-Hookean material model with material constants of

C10 � 9.6154×108 psi and D1 � 4.8×10−10psi−1. For this

problem, a refined mesh is needed in regular FEM for model-

ing the stress accurately in the local spot weld area due to the

Table 5 Time consumption of 5

load steps to 10% compression

ratio

Iteration number 1st 2nd 3rd 4th 5th

Displacement solution loop 61.02 s 60.69 s 64.80 s 61.92 s 61.72 s

Nodal position optimization loop 2.77 s

(4.54%)

2.73 s

(4.50%)

2.72 s

(4.20%)

2.71 s

(4.38%)

2.73 s

(4.42%)
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Fig. 25 X–Z Plane cross-section

view of mesh update at different

iterative steps

(a) 1st iteration step. (b) 3rd iteration step. (c) 5th iteration step.

(a) Deformed shape.         -X plane cross-section view.(b) Top view. (c) Z

Regular Mesh

(d) Deformed shape.    (e) Top v iew.    (f)  Z -X plane cross-section view.

HiDeNN-FEM Mesh

Fig. 26 Results from 32 × 32 × 12 mesh with hourglass control at 24.50% compression ratio. The deformed shape and cross-section view from

regular FEM are shown in (a, b, and c) and the corresponding from HiDeNN-FEM are shown in (d), (e), and (f)

small dimension, while HiDeNN-FEM is shown to provide

improved accuracy with the same initial mesh density.

The model is meshed by an 8-node hexahedron ele-

ment with four mesh densities that contain 5177, 8791,

10843, 18919 elements, respectively. The reference solution

is obtained by solving the same problem with C3D8R with

hourglass control in ABAQUS. A total of 2,871,396 elements

and 10,044,327 degrees of freedom were used. The results

are assessed in terms of the stress concentration as measured

by the maximum effective (von Mises) stress as shown in

Table 6 and Fig. 29. It is observed that for the case of 18,919

elements HiDeNN-FEM yields Max Mises stress value that is

within 0.29% error when compared with the reference solu-

tion, whereas the error was 2.53% for regular FEM. This

accuracy improvement only adds 7.3% overhead in comput-

ing time to implement r-adaptivity. The resolved effective

stress distribution from HiDeNN-FEM is shown in Fig. 30.

5.5 A 2D elastoplastic block subjected
to nonuniform body force

We consider a 2D rectangular block with dimensions of 0.2 m

by 2 m as shown in Fig. 31. The block is subjected to nonuni-

form body force while being fixed on the left end. The body
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Table 6 Computational results from the hat-stiffened panel with spot weld

Analysis Degrees of

freedom

σ von
max (psi) Difference (%) Time consumption (FEM time plus r-adaptivity time) (s)

Converged solution 10,044,327

(2,871,396

Elements)

44,689 – 5,506

FEM

HiDeNN-FEM

26,235

(5,177

Elements)

48,148

45,848

7.74

2.59

47

47 + 4.54

FEM

HiDeNN-FEM

47,391

(8,791

Elements)

47,130

45,166

5.46

1.07

135

135 + 8.25

FEM

HiDeNN-FEM

59,922

(10,843

Elements)

46,051

45,029

3.05

0.76

172

172 + 10.43

FEM

HiDeNN-FEM

109,158

(18,919

Elements)

45,818

44,829

2.53

0.29

203

203 + 14.87

Fig. 27 Stress Z–Z distribution result at the top surface of mesh 32 ×

32 × 12 case (24.50% compression ratio)

Apply 5000 psi.

Fix x

Fix z

Fix y

7.5 in

2.2 in

1.037 in

Fig. 28 Geometry and loading/boundary conditions for a hat-stiffened

panel with spot weld

Fig. 29 Comparison of normalized maximum Mises stress as a function

of degrees of freedom in spot weld region

force distribution is given as bx � b0

[

−
4π2(10(X−0.25))2−2π

eπ (10(X−0.25))2

]

and by � b0 sin(10Y ) with b0 � 65 MPa/m. An elastoplas-

tic constitutive model is introduced for the block. Before it

reaches plasticity, the material is assumed to be linear elastic

with Young’s modulus of E � 200 GPa and Poisson’s ratio of

0.3. To describe the plastic response, we introduce the stan-

dard von Mises yield surface with linear hardening, given as

f � σ − σY in which σ is the effective stress. Furthermore,

σY � σ 0
Y + Hε p with σ 0

Y � 100 MPa as the initial yield stress,

H � 100 MPa is the hardening modulus, ε p is the effective

plastic strain. A standard radial return method is employed to

resolve the stress and strain when material enters plasticity.

Since the system is no longer conservative, we have

applied Algorithm 1 in HiDeNN-FEM implementation. A

reference solution is obtained by solving the same problem

in ABAQUS using a refined mesh of 5,017,600 CPS4 (4
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Fig. 30 Distribution of effective

stress in the spot weld application

2 m

0.2 m x

y

(-1,-0.1)

(-1,0.1) (1,0.1)

(1,-0.1)

Fig. 31 A rectangular elastoplastic block subjected to non-uniform

body force

node plane stress) elements with ~ 10 million DoFs. Table

7 compares the solution and time consumption for different

implementations. Four different meshes were tested in com-

paring regular FEM with HiDeNN-FEM. As can be seen,

regular FEM fails to converge in the case of 100 elements,

whereas HiDeNN-FEM converges and yields a maximum

von Mises stress within 0.2% of the reference solution. Reg-

ular FEM does not yield comparable accuracy until it uses

6,400 elements while HiDeNN-FEM consistently maintains

high accuracy as the mesh is refined. In terms of time con-

sumption, it takes HiDeNN 8.86 s to arrive at a prediction

within 0.1% of the reference solution, whereas the same for

regular FEM was 107.92 s. The last column in Table 7 shows

the overhead time used for performing r-adaptivity and this

operation consumes ~ 10% of the overall computing time.

Figure 32 shows the effective stress contour along with the

mesh from both the regular FEM and HiDeNN-FEM.

5.6 An elastoplastic plate with a hole subjected
to tension

In this example, we consider a 2D plane strain problem of a

square plate of dimension 1 m by 1 m with a hole of radius

of 0.1 m located in the center as shown in Fig. 33. The left

side of the plate is fixed and the right side is subjected to uni-

form traction of 37 MPa. The same elastoplasticity model

as described in Sect. 5.5 is employed for modeling the plate

with the same material constants. Reference solutions are

obtained using ABAQUS by discretizing the problem domain

with 5,054,756 CPE4 (4-node plane strain) elements and total

Table 7 A comparison of the prediction results with the reference solution

Type of analysis Number of

elements

Degrees of

freedom

σ von
max (Pa) Difference CPU-based

computational time (s)

Adaptivity time

(s)

ABAQUS (reference

solution)

5,017,600 10,046,402 1.000e8 – 16,501 –

FEM

HiDeNN-FEM

100 252 Diverge

1.002e8

100%

0.2%

1.95

2.41

–

0.27(13.7%)

FEM

HiDeNN-FEM

400 902 6.778e7

1.001e8

32.2%

0.1%

7.47

8.86

–

0.83(11.0%)

FEM

HiDeNN-FEM

1,600 3,402 9.305e7

1.001e8

6.9%

0.1%

28.63

33.79

–

3.09(10.8%)

FEM

HiDeNN-FEM

6,400 13,202 1.001e8

1.001e8

0.1%

0.1%

107.92

126.64

–

11.22(10.4%)
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Fig. 32 A comparison between

regular FEM mesh (a. 40 × 10)

and HiDeNN-FEM mesh (b. 40

× 10) on the prediction of

effective stress
(a)

(b)

37 MPa

x

y

1m

1m

R=0.1

Fig. 33 FE model for a rectangular plate with a hole subjected to tension

DoFs of 10,120,464. For comparison between regular FEM

and HiDeNN-FEM, the domain is discretized with 4-node

quadrilateral elements with two different mesh densities. The

number of elements for the two meshes is respectively 436,

and 1700 with the corresponding DoFs of 972 and 3600

respectively. For each mesh, simulations using regular FEM

and HiDeNN-FEM are performed to compare the predic-

tions as well as the execution time. Similar to the last case,

Algorithm 1 was implemented in HiDeNN-FEM to perform

r-adaptivity.

Table 8 provides the computed maximum von Mises stress

from regular FEM and HiDeNN-FEM for the two meshes and

the difference when compared with the reference solution. It

is observed that HiDeNN-FEM yields high accuracy even

with a relatively coarse mesh, whereas for the same mesh

density the regular FEM prediction differs from the reference

solution by more than 10%. The total computing time from

HiDeNN-FEM is relatively higher due to the time it takes to

perform the r-adaptivity. When the mesh is further refined

to a total number of elements of 1700, both regular FEM

and HiDeNN-FEM converge while HiDeNN-FEM demon-

strates better accuracy with r-adaptivity. The computing time

Fig. 34 Predicted von Mises stress from (left) reference solution (middle) regular FEM and (right) HiDeNN-FEM. Meshes from regular FEM (436

elements) and HiDeNN-FEM (436 elements) are shown to demonstrate the differences

Table 8 A comparison of the prediction results with the reference solution

Type of analysis Number of

elements

Degrees of

freedom

σ von
max (Pa) Difference CPU-based

computational time (s)

Adaptivity time

(s)

ABAQUS (reference

solution)

5,054,756 10,120,464 1.001e8 – 15,894 –

FEM

HiDeNN-FEM

436 972 8.886e7

1.014e8

11.23%

1.3%

8.76

10.32

–

0.94(10.7%)

FEM

HiDeNN-FEM

1,700 3,600 9.512e7

1.007e8

4.98%

0.6%

30.81

35.94

–

3.22(10.46%)
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of HiDeNN-FEM is also higher than the regular FEM by ~

17%, much of which is due to the r-adaptivity as shown in

the last column. As can be seen from Fig. 34, the nodes in

the regions of high stress concentration are moved based on

Algorithm 1 and are responsible for the accurate prediction

without the use of a large number of elements as in regular

FEM. A separate simulation (not shown here) using regular

FEM shows that ~ 4 times the elements (6400) are needed to

accomplish the same order of accuracy in the prediction when

compared to the case of HiDeNN-FEM with 1700 elements.

6 Conclusion

In summary, we have presented a general framework of hier-

archical deep-learning Neural Network for nonlinear finite

element (nonlinear HiDeNN-FEM) by building on the prior

work by Zhang et al. [28] on linear HiDeNN-FEM and basic

building blocks. In nonlinear HiDeNN-FEM, the shape func-

tion approximations and material derivatives are constructed

through three new basic building blocks: The first building

block differentiates the shape functions with respect to the

element coordinates. The second building block evaluates the

Jacobian of the coordinate transformation and its inverse. It

also incorporates the material coordinates as the weights of

the DNN, thus enabling r-adaptivity through training. The

third building block evaluates the material derivatives of the

shape functions, which can then be used to form the shape

function derivative matrix as commonly used in nonlinear

FE. Since the building blocks are described independently of

the specific element formulation, it can be generally applied

to any 2D and 3D elements.

Aside from the HiDeNN-FEM approximation, implemen-

tations of the nonlinear solution scheme based on Newton’s

methods are also presented. A general linearization approach

was adopted and it is shown that this leads to an iterative

scheme that involves the optimization of the nodal solutions

as well as the nodal coordinates, i.e., r-adaptivity. For prac-

tical implementation and ease of integration with existing

FE codes, a 2-step iterative scheme is proposed to improve

computational efficiency, and this solution scheme is termed

Algorithm 1. For conservative systems, the problem can be

generalized into minimizing a loss function that represents

the potential of the system. A solution scheme featuring the

2-step nested loop is proposed for these types of problems

and is termed Algorithm 2. Both Algorithms 1 and 2 have

been implemented on multiple problems involving geomet-

ric and material nonlinearities. These benchmark problems

demonstrate that nonlinear HiDeNN-FEM achieves much

better accuracy than regular FEM without adding significant

overhead to the computational cost. In addition, it is also

shown that r-adaptivity can effectively reduce element dis-

tortion and suppress the hourglass mode, which are some of

the main issues faced in the application of nonlinear FEM.

The work presented has focused on nonlinear static

equilibrium problems and will be extended to incorporate

inertia effects and time-dependent properties by introducing

a space–time framework [34–36]. It is worth noting that the

integration with DNN offers a very interesting perspective

on nonlinear HiDeNN-FEM, as both advanced algorithms

and computing platforms are being developed for machine

learning applications. These integrations are expected to sig-

nificantly enhance the predictive capabilities of nonlinear

HiDeNN-FEM and will be the focus of future research.
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