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Pose Measurement and Contact Training of a Fabric-reinforced
Inflatable Soft Robot

Phuc D.H. Bui! and Joshua A. Schultz!

Abstract— This paper proposes a new method to measure the
pose and localize the contacts with the surrounding environment
for an inflatable soft robot by using optical sensors (photocells),
inertial measurement units (IMUs), and a pressure sensor. These
affordable sensors reside entirely aboard the robot and will be
effective in environments where external sensors, such as motion
capture, are not feasible to use. The entire bore of the robot
is used as a waveguide to transfer the light. When the robot is
working, the photocell signals vary with the current shape of the
robot and the IMUs measure the orientation of its tip. Analytical
functions are developed to relate the photocell signals and the
robot pose. Since the soft robot is deformable, the occurrence
of contact at any location on its body will modify the sensor
signals. This simple measurement approach generates enough
information to allow contact events to be detected and classified
with high precision using a machine learning algorithm.

I. INTRODUCTION

Soft robots are designed with soft bodies and comple-
tion of tasks may involve contacts with any part of their
bodies, not just their tips. Because they are made of soft
materials, soft robots will be compliant in response to their
environment, interact more safely with humans, and survive
after collisions or falls. Since the body of a soft robot
is a continuum, reconstructing its motions using sensory
feedback is challenging [1] [2], especially when the robot
makes contact with the environment.

There have been many soft sensing approaches proposed
to measure the pose of soft robots. The most popular ones
are based on resistive strain sensors [3], [4], [5], capacitive
strain sensors [6], [7], [8], and optical waveguide sensors [9],
[10], [11], [12], [13]. Among these sensing strategies, optical
waveguide sensors tend to be more reliable because they can
avoid soft-rigid connections between the sensing parts [2]. It
can be found that nearly all existing optical sensing meth-
ods used optical fibers or created a standalone stretchable
waveguide so that the light can propagate internally. Those
sensors can track the bending or expansion of the soft robots.
However, it’s extremely technologically complex for them to
perform tactile sensing to detect contacts at various locations
on the body of the soft robots. Furthermore, embedding those
sensors would also change the stiffness of the surrounding
elastomer matrix where it is located.
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In efforts to create tactile sensing similar to that of human
skin, researchers have created several examples of electronic
“skin” for robotics applications, such as the smart braid
[14], E-skin [15], electronic skin [16], and artificial skin
[17]. However, the techniques are still in their infancy and
applications are still very limited. The challenges include
sensor integration, the embedding of high-resolution but
large-area sensor arrays, and sensor fusion with increasing
volumes of data [16].

In this study, instead of using tactile skin, we propose
a sensing approach that enables the soft robot to localize
contact events using photocells, IMUs, and a pressure sen-
sor. These sensors can also track the current pose of the
robot in free space. They are much easier to implement
than tactile sensors. We installed these sensors in our soft
robot “Squishy” [18] [19] which is an inflatable elastomeric
chamber made of Smooth-On Dragon Skin 30 silicone with a
thin band of fabric embedded longitudinally to reinforce one
side (see Fig. 1). More information about its characteristics,
such as the workspace volume and inflation-displacement
behavior can be found in [20]. The novel idea in this work
is that we used the entire bore of the robot chamber as a
waveguide to transmit the light. When inflated pneumatically,
the unreinforced side can undergo large strains while the
fabric side maintains a constant length, causing the chamber
to bend and turn. Due to the original shape of the chamber
and the calculated position of the fabric, the robot can
perform a motion in R3 space with only a single chamber.

(@ (b)

Fig. 1. Soft robot Squishy: (a) The robot before painting the outer surface
shows the embedded fabric, the light source at the base and red color inside;
(b) Completed robot with the black paint outside and the cap. The numbers
on its body show the positions of ground-truth sensors.

The light source is installed at the base of the robot
chamber and four photocells are installed at the tip. When
the soft robot’s shape is changing or making contact with
the environment, the light incident on each photocell varies,
depending on the illumination reflected by the chamber
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wall. Thus, the voltages from the photocells will have a
relationship with the states of the robot. The relationship
will be calculated through developed analytical equations.

In addition to the photocells, a pair of IMUs is installed
at the tip of the robot. They provide information about the
tip’s orientation with roll, pitch, and yaw angle. These IMUs
also generate richer information to support the classifica-
tion process used in defining contact events. The Random
Forest algorithm will be applied to classify contact events
using contact data from the sensors. Besides the ability to
perform both shape measurement and contact localization,
this sensing approach also has other advantages: the sensors
are affordable and easy to install, they do not affect the
elasticity of the host robot, and they are embedded entirely
within the robot, allowing it to be used in the field with no
need to instrument the environment. This study contributes
a sensing approach that can help the soft robot sense not
only its current pose but also contacts on its body, which is
unable to be achieved by the other sensing approaches.

The rest of this paper is structured as follows. In Section
II, we describe the configuration of the sensors and the
acquisition of sensor signals. Section III is about how to
reconstruct the configuration of the soft robot from the
sensor measurements. Section IV describes the strategy for
characterizing contact events and training the robot to rec-
ognize the contact location and direction. In section V we
experimentally evaluate the proposed approach and compare
with simulation results. Section VI concludes the work.

II. SENSOR CONFIGURATION AND SIGNAL ACQUISITION
A. Optical Sensing

The body of the robot is a fabric-reinforced silicone
chamber. The space inside the chamber contains nothing
but air. Therefore, we can use the entire body of the robot
as the waveguide for the light. We placed a white light-
emitting diode (LED) (Adafruit 754) at the robot’s base
to serve as the light source (see Fig. 1a). To measure the
light, we installed four mini photocells (Sparkfun GL5528)
on the inner-side surface of the cap as shown in Fig. 2, where
photocell number 4 is aligned with the fabric. This photocell
has a quick response, small size, high sensitivity, and reliable
performance. The inside of the robot chamber is painted red
to reflect the light. We selected the red color because the
photocells are least sensitive to the red wavelength (700 nm)
to avoid chattering in the photocell’s outputs when the robot
vibrates during a motion. The outer surface of the robot is
painted black to prevent infiltration from ambient light. We
used a mixture of Smooth-On color Silc Pigment, Psycho
Paint, and Novocs solvent which can be painted on silicone
surfaces. The colors painted can be seen in Fig. 1. When the
robot is operating, the reflection from the inner wall of the
robot body will vary and the level of bending and turning
will be reflected in the output voltages from each photocell.
Fig. 3 shows the signals from each photocell as the robot is
inflated from 6.89 kPa (1 PSI) to 20.68 kPa (3 PSI), then
subsequently deflated back to 6.89 kPa, undergoing a free
space motion.

(@) (b)

Fig. 2. The sensing configuration: (a) The cap with the sensors; (b)
The position of the photocells at the cap and direction labels for contact
characterization (at all discs)

output (volt)
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Fig. 3. Responses of the photocells during Squishy’s operation:
Vi1, Va, V3, Vs are the output voltages from photocell 1, photocell 2,
photocell 3, and photocell 4, respectively

B. IMUs

A popular method to track the orientation of an object
is using IMUs; they have low cost, low latency, and need
no line-of-sight [21]. For our soft robot with a deformable
body, the tip’s orientation calculated using the light sensors
is possible but there is the possibility for errors. However,
the IMU gives us the signal directly, with reliable accuracy.
We chose BNOOOS which is a 9-DOF sensor that has an
embedded fusion algorithm to provide orientation and other
data from an accelerometer, magnetometer, and gyroscope.
However, a key drawback of BNOQOOS (and any IMU) is drift.

We found that only the yaw data from the chosen IMU has
large drifts, whereas the pitch and roll signals are stable. The
reason is that the embedded sensor fusion can help compen-
sate for drifts relating to pitch and roll well by measurements
from the accelerometer sensing earth’s gravity; whereas yaw
drift is not well compensated by the measurement from the
magnetometer sensing earth’s magnetic field. To avoid the
drift, we use a pair of BNOOOSs, installed perpendicular to
one another inside the cap at the tip of the robot as shown
in Fig. 2a. In this configuration, the drift-prone yaw signals
are unused. The pitch of the second IMU is used in place
of the yaw signal of the first. Hence, we can access the full
orientation data of the robot tip without drifting. Because
the state of the robot tip varies when the robot is contacted,
the IMUs also contribute richer information in the training
process for Squishy to learn the contact events.
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C. The Pressure Sensor

We use a Honeywell pressure sensor (SSC-
SANNOOIBGAAS) to measure the pressure inside the
robot chamber. Its working range is from 0 to 100 kPa. The
sensor provides feedback pressure information for the robot
control and a feature for the contact training process.

III. MEASURING THE POSE OF THE SOFT ROBOT
A. Squishy’s Geometry

The robot is a circular chamber made of silicone. The
longitudinal shape of the chamber is a quadrant of an
annulus. It contains an embedded fabric on its left side which
has the same radius R. The full dimensions of the robot in
the undeformed state can be found in Fig. 4a. We installed
the robot vertically, with disc 1 fixed to a bench and the tip
closed by a cap. The initial state was set at 6.89 kPa. The
initial curve’s radius of the robot is Ry which is smaller than
the undeformed R, due to gravity. The operation of the robot
during the inflation process includes two major motions:
changing its curve’s radius R from the initial radius Ry and
turning angle « (see Fig. 4b). Therefore, we can reconstruct
the robot using the Piece-wise Constant Curvature (PCC)
modeling approach [22] that characterizes a robot’s pose
based on its bending and turning motion.

To compare the measured pose of the robot with the
ground truth and to address the contact localization spanning
along the body of this soft robot, we discretized it into a
series of discs (4 discs for this test case (see Fig. 4a)). The
first and last discs are at the base and the tip of the robot,
correspondingly. This discretization allows a more detailed
illustration of the robot’s shape so that more contact locations
along the robot’s body can be addressed, compared to the
original PCC model. The robot is assumed to:

« Have all the disc centers lie along the same circular arc.

« Have no lateral bending (e.g. transverse to the fabric

reinforcement).

The position of the center of each disc distal to disc 1 can
be defined through the PCC parameters (R, ¢;, ), where ¢;
is the bending angle between disc ¢ + 1 and disc 1 (see Fig.
4a).

For the bending motion, because the robot is equally
divided into parts, each bending angle ¢; between disc ¢+ 1
(1 € N,i € [1,3]) and disc 1 (the base) is calculated from

The robot, when inflated, will deform so as to turn about
the Z axis. The turning angle « is defined as the angle
between the current plane containing the robot and the X Z
plane in which the undeformed robot lies (see Fig. 4b).

Given the bending radius and turning angle of the robot,
the location of each disc can be defined using the following
usual homogeneous transformation from the arc base to the
current disc [22]:

1
7 = {Rzéa) (1)] [Ry(()@) pllﬂ] 0
where R, () is the rotation matrix about Z axis in the world
frame and R, (¢;) is the rotation matrix about y axis in the

local frame. !p; 1 is the in-plane position of each disc center
given as:

Ypi1 = [R(1—cos(¢;) 0 Rsin(gbi)}T )

Proceeding with the multiplication, the homogeneous
transformation has the following form:

Tii1 Tihe Tias Tha
T, T T, T,
1 121 122 123 124
Tt = 3
+ Tiz1 Tizz Tizz Tiza )

0 0 0 1

where the individual elements are as follow:
T;11 = cos(a) cos(e;) T;23 = sin(«) sin(¢;)
Ti12 = —sin(a) Ti24 = Rsin(a)(1 — cos(¢;))
T;13 = cos(«) sin(¢;) Ti31 = —sin(¢;)
Ti14 = Rcos(a)(1 —cos(¢:)) Tiz2 =0
T;201 = sin(«) cos(¢;) T;33 = cos(¢;)
Ti00 = cos(a) Ti34 = Rsin(¢;)
4)
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(a) 2D drawing with bending angles (b) 3D model of the robot at the
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Fig. 4. Robot’s dimensions and PCC parameters

B. Calculation of PCC Parameters

One important task in measuring the robot using this
sensing approach is to define the correspondence between
the bending and turning motions and the signals at each pho-
tocell. By observing the responses of the photocells in Fig.
3 and comparing them to the bending and turning calculated
from the ground truth data, we got good agreements from
the empirical fit after some trials to find a combination of
the photocell signals that best represent the robot’s motions.
The fitting process shows that the two free-space motions of
the robot can be represented by a combination of the outputs
from photocells 3 and 4 according to the following equations:

Vy = eVatVa) (5)
V, = (Vs Vi ™ (6)

where V}, is the signal with the unit of voltage that represents

bending and V; is the one that represents turning motion.
Inspired by the work in [9], we developed analytical

equations to calculate the two major PCC parameters: the
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chamber’s radius R(t) and the turning angle «(¢), using the
voltages measured by the photocells. First, we use equation
(7) to describe the relationship between the chamber’s radius
R and the bending voltage.

i)\ . R()
(Vbo> =1In Ro +1 @)

where Vj is the voltage measured with the robot at the initial
state in free space with a chamber pressure of 6.89 kPa,
R(t) the chamber’s current radius, Ry the initial radius. The
tuning parameter J; allows us to shift the bending signal in
the calibration process.

Given the output voltage representing bending level V; (),
the current radius of the robot chamber can be calculated by
inverting equation (7) as:

Vb(t))ﬁb_l

R(t) = Rg.e\ Vo (8)

In the same manner as with equation (7), the relationship
between the turning angle «(t) and the turning voltage is
given by equation (9)

Bt

(Vt(t)) zln@—kl )
Vio Qo

where Vjo is the initial turning voltage, «(t) the current

turning angle, o the initial turning angle. [, is the added

tuning parameter allowing us to shift the turning signal in

the calibration process. Finally, by inverting equation (9), the

turning angle is calculated as:

Vi (1) )ﬁt_l

a(t) = ao.e( Vio (10)

The above equations calculate the spine of the robot and
are valid for motions less than 12°. For larger working
ranges, we can develop other equations and apply them
to our new Disc-Thread model [23], which needs more
computational load. The diameter D of each disc will also
vary with the chamber pressure. When inflating, the radii
of the free discs in the middle are approximated using
pressure-based empirical equations. For the robot used in
our experiments, the diameter of symmetric disc 2 and disc
3 (measured in cm) can be approximated by:

Dy 3 =5+ 0.003P + 0.001P? (11)

with P is the pressure inside the chamber, measured in kPa.
The fitting has a coefficient of determination (R?) as high as
0.99.

IV. CONTACT LOCALIZATION AND TRAINING

This section describes how we collected contact data to
train the robot using machine learning. The goal is to help the
soft robot localize contacts at various locations along its body
and from different directions using the equipped sensors.
We realized that when we made contact with the robot
at different positions and directions, it will cause different
movements at its tip as well as deform its body shape in
distinctive manners. With the IMUs at the tip and the optical
sensing working along the whole body, all changes in the

robot’s states during a contact event can be fully recognized.
To build the data set for the training process, we pushed the
robot at different locations and directions. Even though the
contacts can be performed at any position along the body,
in this test case, we discretized the robot into four discs
and set a plan to make contact with the robot at the three
distal-most discs (as disc 1 is stationary). At each disc, the
contacts were made in four different directions, including the
contact at “East”, “West”, “South”, and “North” point (see
Fig. 2b), with the contact force directed toward the center
of the disc. Note that the “West” point is aligned with the
fabric and the “South” point is facing the ground. A virtual
bounding sphere is set around the free-space position of the
tip corresponding to the current pressure. The radius of this
sphere is selected after some contact experiments to examine
the translation of the robot’s tip. Whenever the center of
the tip disc falls outside the bounding sphere, a contact
event is detected. Based on that, we ran ten trials for each
contact case and recorded the data from the sensors. The
same process is repeated to generate data for different contact
cases at different pressure values (6.89, 10.34, 13.78, 17.23,
and 20.68 kPa), locations, and directions. In this experiment,
four contact directions at three discs result in a total of
twelve classification labels. The training features include the
chamber’s pressure, Euler angles from the IMUs, and four
photocell voltages. The complete data set was then split into
80% for training and 20% for testing.

A set of classifiers were tested in this step including Lo-
gistic Regression, Naive Bayes, Support Vector Machine, K-
Nearest Neighbors, Decision Tree, and Random Forest (RF).
Random Forest Classification [24] resulted in the highest
training score (96%) among all the classifiers tested. Hence,
we selected RF classification for our work. In addition to
the highest accuracy score for this data set, this algorithm is
fast and effective for real-time training purposes [25]. The
comparison between the performance of all the classifiers
tested and the fusion matrix resulting from RF classification
is shown in Fig. 5.

100

a )
true label

2W 25 2B N 3W 35 3E 3N 4W 48 4E 4N

classifier predicted label

(@ (b)

Fig. 5. Training result: (a) Classifier comparison: LR = Logistic Regression,
NB = Naive Bayes, SVM = Support Vector Machine, K-NN = K-Nearest
Neighbors, DT = Decision Tree, and RF = Random Forest; (b) Fusion
matrix: the numbers in the labels are for the disc number and the following
letters are abbreviations for the directions. W = West, S = South, E = East,
N = North

With the data collected directly from the embedded sen-
sors, by recurring the RF classification, we can perform real-
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time training for the robot to learn various contact cases. For
that purpose, we developed a user interface by Python which
allows us to contact the robot the way we want and save the
contact data instantly. This work is important to help the
robot perceive new types of contacts in new environments.

V. RESULTS

As stated in Section III-B, the chamber radius R and the
turning angle « can be calculated from the outputs of the
photocells, specifically through equation (8) and equation
(10). Having R and «, together with the chamber pressure
P and the fabric lengths L, the discs representing the
current shape of Squishy are defined by the homogeneous
transformation in equation (3). In order to validate our
calculation, we measured the ground-truth data using an
electromagnetic motion tracking system (Polhemus Liberty)
to compare with the results. To synchronize the ground-truth
data and our calculation, we set the same start point and the
same sampling rate at 5 Hz for all sensors. The soft robot
was measured while it was moving in free space making
a turning angle around 9° and turning back. This working
range was set to assure that the soft robot will last for a
longer working time. The first result of the calculation for
major PCC parameters during a motion of the robot in the
free space is depicted in Fig. 6. In this figure, the calculated
chamber’s radius and turning angle are well-fitted to those of
the ground-truth data. It is noticed that there are some lags
in the sensor responses at some points. This is because the
wall of the robot is expandable, which sometimes balances
the light changing caused by the bending and turning motion
of the robot. However, the lags are small and will disappear
when the robot is in a static state.

— calculated

iR
ii5, f’@ — ground truth
d\

/ *\\

o 20 ) 6 s 100 120 140 20 ) 50 s0 100 120 10
time (s) time (s)

(a) Robot’s radius (R) fitting

— calculated

— ground truth

robot radius (cm)
tum angle (deg)

"

(b) Turning angle (o) fitting

Fig. 6. Validation of PCC parameters

Fig. 7 illustrates the alignment between the calculated pose
and the ground-truth pose at different pressure values. Note
that the calculated pose is the animation with blue discs and
centers and the ground-truth pose is the one with red discs
and centers. We can see that all the disc centers at each disc
location are close together. Note that the location of each
disc and its center can be found in Fig. 4a.

The result from our measurement is also validated through
the pose errors which are represented by the distances
between the disc centers of the calculated pose and those of
the ground-truth pose, as shown in Fig. 8. All the observed
errors are less than 0.7 cm. There are several peaks but they

Ll

(a) At 6.89 kPa (b) At 12.27 kPa

(c) At 17.23 kPa (d) At 20.68 kPa

Fig. 7. Validation of the sensing approach at different pressure values.
The calculated pose is the robot with blue discs and center points. The
ground-truth is the robot with red discs and center points

are very brief. The calculated average errors for Oq, O3, and
Oy are 0.174, 0.227, and 0.237 cm, correspondingly.

—— distance between 025
—— distance between 03s
— distance between 04s

distance (cm)

0 20 40 60 80 100 120 140
time (s)

Fig. 8. The errors between the calculated pose and the ground truth

The result from the online training process for contact
characterization is illustrated in Fig. 9. Of all the exam-
ples tested, we selected four representative cases to show
here. Additional contact cases can be found in the attached
video. In each sub-figure, the actual contact is shown in
the photograph on the left, and the contact identified by
the algorithm is illustrated by the red arrow in the frame
from the animation shown on the right. Notice how the
two seem to agree well where the contacts have been well-
localized case by case. This measuring approach certainly
allows us to perform contact localization at more places
with higher computational load trade-offs. This achievement
would support the robot control system in providing more
suitable control actions adaptive to each specific contact case
defined. Note that this work is only to define the contact
position and direction. The pose of the robot during the
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(a) Contact at disc 2, West (b) Contact at disc 3, South

(c) Contact at disc 3, East
Fig. 9.

(d) Contact at disc 2, North

Some contact localization at 12.78 kPa

contacts cannot be properly tracked by the optical sensors
using PCC modeling anymore because the shape of the robot
violates the PCC assumptions. Tracking the robot pose in
contact cases is another challenging work and is not within
the scope of this paper.

VI. CONCLUSION

The work in this paper provides a means for tracking the
robot in free space and localization of contact events, using
optical sensors, IMUs, and a pressure sensor. The sensing
devices are affordable and widely available. We used a pair
of orthogonal IMUs to avoid drift. The entire bore of the
robot is used to transmit the light from the LED at the base
to the photocells at the tip. This configuration utilizes the
deformable characteristic of the soft robot to define contact
events. Analytical equations are developed to characterize
PCC parameters from the signals of optical devices. When
compared against motion capture measurements, the results
show that the sensor set has successfully tracked the pose
of the robot in the free space with an average error of
less than 0.3 cm. When the robot makes contact with the
environment, the proposed sensors provide a rich data set
that serves the training process well so that all the contact
events are localized with a correctness of 96%. This sensing
approach can be an alternative to tactile sensing skin for soft
robots. The future works will be about the application of our
new Disc-Thread model to track the pose of the soft robot
during a contact event and the estimation of contact forces.
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