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Abstract

To date, the search for radio technosignatures has focused on sky location as a primary discriminant between
technosignature candidates and anthropogenic radio frequency interference (RFI). In this work, we investigate the
possibility of searching for technosignatures by identifying the presence and nature of intensity scintillations
arising from the turbulent, ionized plasma of the interstellar medium. Past works have detailed how interstellar
scattering can both enhance and diminish the detectability of narrowband radio signals. We use the NE2001
Galactic free electron density model to estimate scintillation timescales to which narrowband signal searches would
be sensitive, and discuss ways in which we might practically detect strong intensity scintillations in detected
signals. We further analyze the RFI environment of the Robert C. Byrd Green Bank Telescope with the proposed
methodology and comment on the feasibility of using scintillation as a filter for technosignature candidates.

Unified Astronomy Thesaurus concepts: Technosignatures (2128); Search for extraterrestrial intelligence (2127);
Astrobiology (74); Interstellar plasma (851); Interstellar scintillation (855); Astronomy data modeling (1859)

1. Introduction

The Search for Extraterrestrial Intelligence (SETI) aims to
answer one of the most important scientific questions: are we
alone in the universe? Complementing other subfields of
astrobiology in the attempt to detect life outside our planet,
radio SETI strives to detect and constrain the existence of
technosignatures, signals that betray the presence of intelligent
extraterrestrial civilizations.

Radio and microwave astronomy has played an important
role in modern SETI since the initial suggestion by Cocconi &
Morrison (1959) to search near the neutral hydrogen line at
1.42 GHz for continuous narrowband emission. Out of the
whole electromagnetic spectrum, radio frequencies are a strong
candidate for searches since such emission is expected to arise
from advanced civilizations for a portion of their technological
activity,” radio photons are efficient to produce, and radio
waves travel relatively unimpeded by the atmosphere, dust, and
the ISM (Oliver & Billingham 1971; Siemion et al. 2015).
Narrowband emission is particularly tantalizing as a discrimi-
nant from natural astrophysical radio phenomena, whose
emission bandwidth is usually, at minimum, hundreds of hertz
at microwave frequencies due to broadening effects (Tar-
ter 2001). From the relative ease at which our own civilization
produces continuous, hertz-width signals, we anticipate that
extraterrestrial civilizations will similarly emit narrowband
signals.

7 Judging from the technological development of our own civilization, we
expect intelligent civilizations to emit radio waves as intentional transmissions
or as unintentional leakage from normal activity.
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From the first dedicated radio search for technosignatures by
Drake (1961), SETI experiments have vastly expanded along
multiple axes to cover larger frequency bandwidths, higher
resolutions, and additional signal types (Werthimer et al. 1985;
Tarter 2001; Siemion et al. 2013; Wright et al. 2014;
MacMahon et al. 2018; Price et al. 2018; Gajjar et al. 2021).
The Breakthrough Listen (BL) initiative began in 2016 as the
most comprehensive SETI search program to date, observing
with large instantaneous bandwidths at facilities across the
world, including the Robert C. Byrd Green Bank Telescope
(GBT) in West Virginia, USA and the CSIRO Parkes telescope
in New South Wales, Australia (Worden et al. 2017,
MacMahon et al. 2018; Price et al. 2018).

While the technology used in radio SETT has developed and
improved throughout the decades, the requirements for a
theoretical technosignature detection have not changed sig-
nificantly. Narrowband signals are assumed to be non-natural
in origin, but there is yet an ever-present background of human-
made radio frequency interference (RFI), comprising both
ground- and space-based transmissions. Having a robust way of
differentiating technosignature candidates from RFI is para-
mount if we are to ever have a convincing detection (Horowitz
& Sagan 1993).

The primary strategy for RFI rejection in radio SETI is sky
localization. If a signal is detected in multiple telescope
directions, it is considered RFI, since a bona fide extra-solar
technosignature should originate from a single location on the
sky. To this end, BL uses ON-OFF observations, in which
different pointings on the sky are observed in a cadence
according to a ABABAB or ABACAD pattern (Enriquez et al.
2017; Price et al. 2020). To further tighten the directional filter,
we require that a signal must appear in all three ON (A)
observations to be considered a candidate.

For a directional filter to properly work, signals must be
continuous throughout the observational cadence. Ideally, a
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candidate would be detected in repeat observations localized in
the sky, requiring even longer signal durations. However, as in
terrestrial emissions, extra-solar narrowband signals could
appear pulsed and otherwise have low duty-cycles. In such
cases, signals could appear in only one or two ON observations
in a cadence and for a subsection of those observations, causing
them to be missed by current filters.

On the other hand, RFI can also appear in only ON
observations. For example, RFI signals could exhibit intensity
modulations that follow the observational cadence of 5 minutes
per pointing, a false positive that would pass the directional
filter. While we observe false positives like this in practice,
having directional requirements still serves as an interpretable
basis for determining candidates, which would induce follow-
up observations for potential re-detection.

This begs the question: can we differentiate narrowband
signals as RFI based on morphology alone? Since ETI signals
must travel to us through interstellar space, are there effects that
would be observable and sufficiently unique compared to RFI
modulations?

One possibility is that radio frequency scattering effects,
such as diffractive scintillation and spectra broadening, could
imprint on extra-solar narrowband signals, altering them
enough to be resolved and distinguished from terrestrial RFI.
A signal filter based on astrophysical properties would be an
important tool, when applicable, for evaluating candidate
technosignatures. For signals that fail the directional filter, a
scattering-based filter might preserve missed candidates; for
those that pass, it would amplify the likelihood of a true
detection.

Radio wave scattering has been studied extensively since the
onset of radio astronomy. Weak scattering from the ionosphere
and solar wind or interplanetary medium (IPM) was observed
to scintillate radio emission from stars (Smith 1950; Hewish
et al. 1964). Pulsars themselves were discovered during one
such study, and subsequent pulsar observations revealed strong
scattering from the ISM (Hewish et al. 1968; Scheuer 1968;
Roberts & Ables 1982). Since then, much of our understanding
of ISM scattering has come about by observing pulsars,
especially by analyzing pulse broadening and intensity
fluctuations in time—frequency space (Narayan 1992). This
observational work has led to models describing the stochastic
nature of scintillation and broadening.

Plasma effects on narrowband signals have been analyzed by
Cordes & Lazio (1991) and Cordes et al. (1997). Spectral
broadening from the IPM has been observed in the transmis-
sions of artificial probes and studied extensively (Goldstein
1969; Woo & Armstrong 1979; Harmon & Coles 1983;
Woo 2007). For the ISM, scintillation has been historically
interesting to SETT as a factor that changes the detectability of a
technosignature. Most of the time, the signal intensity is
reduced, but occasionally the intensity will spike as a result of
constructive interference. Cordes & Lazio (1991) recom-
mended multiple observations spaced in time to maximize
the chance of catching at least one detection.

In this work, we investigate the parameter space of scattering
relevant to narrowband radio SETI and investigate whether
resolved scattering effects can be used to flag technosignature
candidates in the proverbial haystack of RFI. In Section 2, we
review scattering theory relevant to narrowband signals. In
Section 3, we introduce methods for identifying the presence of
scintillation in radio spectrogram data and for producing
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synthetic scintillated intensity time series. In Section 4, we
present an approach for estimating likely scattering properties
as a function of observation parameters using the NE2001
model. In addition to examining theoretical properties of
scintillated narrowband signals, in Section 5, we perform a
statistical analysis on detected narrowband signals in multiple
radio bands using the GBT. We compare properties of real RFI
signals with those of theoretical scintillated ETI signals to
determine the conditions under which scattering effects can be
used as effective SETI filters. Finally, we summarize our
results, discuss limitations, and give recommendations on
potential scintillation-based technosignature searches in
Section 6.

While examples in this paper use certain values for
observational parameters, such as observation length and time
resolution, the methods developed in this work are meant to be
broadly applicable to various radio observations. As such, we
provide a Python library blscint® that implements many of
the key components of our scintillation search methodology.

2. Scattering Theory and SETI

Observational and theoretical work on radio scattering have
been done to characterize both the bulk power spectrum of
electron density fluctuations as well as the effect of localized
ionized scattering structures along the line of sight (Rick-
ett 2007). In this work, we limit our considerations to the
wavenumber spectrum of ISM plasma fluctuations as a first-
order approximation of scattering along any line of sight.

The dominant effect causing radio scattering in ionized
plasma is refraction due to variations in electron density. The
changes in refractive index give rise to changes in phase when
a plane radio wave is passing through the scattering layer.
These phase variations, along with path-induced phase delays,
are propagated to the observer’s plane, creating an interference
pattern.

Since ionized plasma is a complex, stochastic medium, it is
most useful to describe the power spectrum of turbulent scales.
In practice, it is common to use the phase structure function:

Dy(x,y) = ([p(x + X',y + ) — o, WP ey (1)

where x, y are coordinates in the scattering plane. This equation
can also be expressed in terms of a vector baseline r = (x, y),
which is useful when describing interferometer measurements.
For single-dish measurements, this “baseline” is set by the
relative transverse velocity Vy of the diffraction pattern during
an observation of length 7, so that r = V;7. Here, we assume
that the pattern is effectively “frozen,” in that V7 dominates the
intrinsic random motion of material in the scattering medium.
The structure function is usually taken to be a power law in
wavenumber (length scale), so that

Dy(r) oc r® @

for some power a (Rickett 1990; Narayan 1992).

The phase spectrum of the scattering medium determines the
type of diffraction pattern seen by the observer, so it is
important to constrain this at a high level. A common
assumption is that ionized scattering media are isotropic and
follow Kolmogorov turbulence, such that energy cascades from
large turbulent structures with an outer length scale down to an

8 https://github.com/bbrzycki/blscint
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inner length scale. Long-term pulsar observations show
evidence that ISM scattering exhibits a Kolmogorov spectrum
over many orders of magnitude (Ramachandran et al. 2000).
Kolmogorov turbulence is described by a=5/3 in
Equation (2).

Another important case of turbulence is the square-law
regime, for which o = 2. This typically applies when the spatial
wavenumber probed by the observation (i.e., r=Vy7) is
smaller than the inner scale. This regime yields nice analytical
expressions for scattering behavior, such as the spectral
broadening function being a Gaussian. Some ISM scattering
studies have accordingly used Gaussian models derived
using a=2 as approximations for the Kolmogorov case
(e =5/3; Roberts & Ables 1982; Cordes 1986; Gupta et al.

1994).

2.1. Weak and Strong Scattering

Since turbulence and scattering are inherently stochastic
processes, it helps to compare characteristic scales to describe
the underlying physics.

The so-called diffractive length scale rye is defined as the
characteristic transverse distance over which the rms phase
difference is 1rad. This can be compared with the Fresnel
radius rg, which describes the size of the largest cross section
along the observer-source path for which waves arrive
coherently in free space, with path-induced phase delays less
than 7.

If rgiee > rp, we are in the weak scattering regime, in which
refractive phase changes are small compared to path-induced
phase differences, and the characteristic size of a coherent
emission patch on the sky is rr (Narayan 1992). If rgie << 1,
we are instead in the strong scattering regime, in which the
characteristic coherent patch size becomes ryir, and plasma-
induced phase changes span many radians over the Fresnel
radius. The strength of scattering depends on a variety of
factors, such as the free electron number density, the strength of
turbulence, the emission frequency, and the distance of the
source. Along a given line of sight, the scattering strength
increases and eventually transitions from weak to strong
(Cordes & Lazio 1991). The transition distance, for which
Taite ~ 7'r, depends on the emission frequency.

In the strong scattering regime, there are two types of
scintillation. Diffractive scintillation is relatively fast (on the
order of minutes to hours) and requires a compact source, such
as a pulsar, while refractive scintillation is weaker and slower
(on the order of days to years; Narayan 1992). Diffractive
scintillation arises from multipath propagation from emission
across the scattering medium, while refractive scintillation is a
larger-scale geometric effect that can itself modulate diffractive
scintillation effects. Since potential narrowband ETI emission
would have a compact source, we focus on strong diffractive
scintillation in this paper.

The “modulation index” my is the rms of the fractional flux
variation due to scintillation. In weak scattering, m,; < 1,
whereas in strong scattering, m, ~ 1.

2.2. Effects of Strong Scintillation on Narrowband Signals

Pulsar observations are effective probes of intensity
scintillations in time and frequency given their persistent,
broadband signals. On the other hand, since narrowband
signals are by definition restricted in spectral extent, we are
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mostly limited to studying temporal effects. To guide the
discussion, we can write a basic model for the intensity of a
scintillated narrowband signal:

Licinc (1) = (S + N (1), 3)

where g(7) is the scintillation gain, S is the fixed intensity of the
original signal, and N(¢) is the background noise.

One observable effect is that for independent observations,
the detected signal intensity will follow an exponential
probability density function (PDF):

1o (8) = exp(—g)H (g), “

where H is the Heaviside step function (Cordes & Lazio 1991;
Cordes et al. 1997). If we assume a continuous-wave (CW)
transmitter and think of radio waves as complex phasors, we
start with signals of constant amplitude modulus. As the signal
refracts at different points across the scattering medium, it
picks up random phase changes. Due to multipath propagation,
many independent de-phased versions of the signal are
summed together at the observing plane. The asymptotic result
is that an ISM scintillated signal can be modeled as a random
complex Gaussian variable, whose amplitude follows a
Rayleigh distribution and whose intensity therefore follows
an exponential distribution (Goodman 1975).

Another effect arising from the statistical power density
spectrum of plasma turbulence is that the diffraction pattern at
the observing plane has a spatial autocorrelation function
(ACF) with a characteristic spatial scale r4;. Though this work
limits discussion to the effects on narrowband signals, strong
diffractive scintillations also have a spectral ACF with a
characteristic scintillation bandwidth (also known as the
decorrelation bandwidth).

For a single-dish telescope taking a long radio observation,
the diffraction pattern will sweep across the telescope at a
relative transverse velocity, so that observations display a
temporal ACF in diffracted intensity. In terms of the phase
structure function, the temporal ACF of g is given by

Ii(7) = |Te(D P = exp[—Dy(Vr7)] )

in the Rayleigh limit (Cordes & Lazio 1991; Coles et al. 2010).
Note that in this work, we use the normalized autocorrelation.

The ACF thus has a representative timescale Aty = rgier/Vr
over which scintillation occurs. By convention, Atf; is
measured as the half-width at 1/e-height of the ACF, which
has been historically estimated to be a Gaussian function. In

other words,
2
i
( Atd )

However, under the Kolmogorov assumption, it is more precise

to use
5/3
]. 7

The Kolmogorov form is near-Gaussian, as shown in Figure 1.
In this work, we use the Kolmogorov form I'y throughout, but
all methods can be performed with the square-law form as well.

We note that an additional scattering effect on narrowband
signals is spectral broadening. This causes power at a single

Liq() = exp : (6)

Tx(7) = exp

.
A[d
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Figure 1. Comparison of the Kolmogorov and square-law ACF models. Both
functions are computed using a scintillation timescale of Az, = 30 s and a time
resolution of At =4.65s. The 1/e-height is shown as a dotted line.

frequency to spread over a bandwidth
Avg, = G/ 2 Atg), (®)

where C, is a constant of order unity that depends on the
scattering medium; C, =2.02 is used in Cordes & Lazio
(1991). However, at microwave frequencies, spectral broad-
ening is typically smaller than commonly used frequency
resolutions in SETI, so this effect would be difficult to observe
except in lines of sight with extreme scattering.

3. Identifying Strong Scintillation in Detected Signals

Since scintillation is inherently stochastic, we have to use
statistical indicators to identify its presence in a detected
narrowband signal. Accordingly, we extract time series
intensity data from signals in radio Stokes I spectrograms and
identify several “diagnostic statistics” that probe the theoretical
asymptotic behavior described in Section 2.2. For our
scintillation analysis, we think of each signal detected within
an observation of length 7,,s and spectrogram time resolution
At as a sequence of N,=Tups/At statistically dependent
random intensity samples drawn from the asymptotic
distributions.

3.1. Diagnostic Statistics

Given time series intensity data for a detected narrowband
signal, we can compute diagnostic statistics for the expected
asymptotic behavior of a scintillated signal. This process is
analogous to feature engineering in machine learning, where
these statistical “features” are designed to have a physical basis
behind them. The closer a given diagnostic statistic is to the
expected asymptotic value, the higher the likelihood that the
original signal is scintillated. As such, we can create thresholds
using these statistics to function as filters for interesting
candidate signals.

In this paper, we offer a few examples of useful diagnostic
statistics, but note that the list is in no way exhaustive and that
there may be other interesting statistical features that help
determine whether a given signal may be exhibiting scintilla-
tions. These can be found in Table 1, as well as asymptotic
values in the absence of noise.

First, we want statistics that can probe the expected
exponential distribution of intensities. For this discussion,
assume that the time series for an idealized scintillated signal is
normalized to mean 1. The standard deviation of intensity
samples lends itself naturally to evaluating the degree of
scintillation and tends to 1 for a normalized exponential
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distribution. In other words, m; = ({g(1)*)/{g(®))*> — D'/ ~ 1
for strong diffractive scintillation.

For a strongly scintillated signal, we expect to see complete
destructive interference, leading to a minimum intensity near 0.
In reality, signals are embedded in random voltage noise, so
that during periods of destructive interference, measured
intensities can actually be below the mean noise level. As a
necessary pre-processing step to help isolate signal intensities
(Section 5.1), we subtract the noise mean from data spectro-
grams, which can result in minimum signal “intensities” that
are negative.

Another statistical measure that addresses this directly is the
Kolmogorov—Smirnoff (K-S) statistic, which is used to
compare a sample distribution to a target ideal distribution
using the empirical cumulative distribution function (CDF). In
this case, we compute the K-S statistic against an ideal
exponential distribution with rate A =1, keeping in mind that
our time series have an assumed mean of 1. In practice, we do
not know the actual mean intensities of our signals, so we can
only estimate a sample mean as we normalize the time series to
mean 1. So, instead of using established tables of statistic
values to determine p-values, we use the statistic itself to set
thresholds. The lower the K-S statistic for an intensity time
series, the closer the intensities are to being exponentially
distributed.

We must note that the assumption of an unmodulated CW
signal, or at least a high duty-cycle signal, is important for these
statistics. For example, radio transmissions on Earth are usually
modulated, so for such signals, the exponential intensity
distribution arising from scintillation would be convolved with
the distribution of the modulation. If the modulation is faster
than the spectrogram time resolution At, then the modulation
averages out within time bins, essentially giving us a CW
signal. However, if the timescale of modulation is in between
At and Ty, it is likely that the intensities of the scintillated
modulated signal would no longer be exponential at the
observer.

A scintillated signal will yield a flux time series with a
characteristic ACF width equal to At,. From time series signal
data, we can compute the ACF at all lags k, normalized to 1 at
lag 0. We can then compare the empirical ACF with the
theoretical model I'y by using raw values or by fitting with least
squares. In the presence of noise, the ACF spikes at lag 0
compared to nonzero lags, since the random fluctuations add in
quadrature. This is especially significant for low-intensity
signals. Instead of only using raw (normalized) ACF values, it
is therefore more reliable to fit Iy and the noise spike in one
shot using least squares and to derive the corresponding
scintillation timescale At;. Following the treatment in (Reardon
et al. 2019), we fit the following expression to the empirical
ACF:

Lin(7) = ALW(TA(T, Tobs) + Wo(7), (&)

where A, W are multiplicative factors, ¢ is the Kronecker delta
or discrete unit impulse function, and A is the triangle function
with zeros at 47, used to model the sample autocorrelation.
The least-squares fit gives values for A, W, and At; within T'y.
This process yields consistent results as if we first excluded lag
0 from the fit, which is also commonly done (Rickett et al.
2014). Since detected signals may be RFI and have complex
ACFs, having values for A and W can help us identify and
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Table 1
Diagnostic Statistics Chosen to Probe Theoretical Scintillation Effects

Statistic Data Type Theoretical Behavior Asymptotic Value
Standard Deviation (rms) Intensity Exponential 1
Minimum Intensity Exponential 0
Kolmogorov—Smirnoff Statistic Intensity Exponential 0
Autocorrelation Function ACF(7) Autocorrelation Near-Gaussian I'y(7)
Least-squares Fit for Az, Autocorrelation Near-Gaussian Aty

Note. For each statistic, we list the type of data used for computation, the theoretical behavior of that data type, and the asymptotic value of the statistic (in the absence

of noise) as the observation length goes to infinity.

exclude poor fits (i.e., if A is close to 0, it is unlikely that the
signal’s ACF truly matches I'}).

3.2. Constraints on Identifying Scintillation

There are various factors at play that affect the possibility of
detecting scintillation. The first is that the time resolution must
be high enough to sufficiently resolve scintles (scintillation
maxima). Similarly, the integration time per observation has to
be long enough to collect enough scintles for better
convergence to the theoretical ACF.

However, the observation length should be short enough that
the receiver gain is stable. Gain fluctuations would change the
underlying noise as well as the detected signal intensities over
time. While this is an effect that can theoretically be corrected
for using data at signal-free frequencies, for practical purposes,
it is simpler to limit the observation length such that we can
assume gain stability. This further avoids the potential problem
of basing calculations on a ‘“signal-free” region in time-
frequency space that in actuality is occupied by dim RFI that
escaped detection.

The detected narrowband signal must be bright enough to
compute accurate statistics while embedded in noise. Noise
fluctuations in the time series representation of a scintillated
signal’s intensity will move the empirical distribution away
from exponential and mask the ACF structure. Note that since
the ACF of white noise is an impulse at lag 0 and that the ACF
operation is linear for uncorrelated functions, we can still fit a
scaled version of the ideal profile I'y for a scintillated signal’s
ACF, adding an additional term to fit for the noise impulse.
However, for signals with low signal-to-noise ratios (S/Ns),
the impulse will be the overwhelming part of the extracted
ACF, which can make it harder to make an accurate fit.

As one might expect in radio SETI, the RFI environment is a
significant obstacle for detection. Our present tools for
detecting narrowband signals make simplifying assumptions
as to the kinds of signals that we hope to be sensitive to.
Broadband RFI can be modulated at different frequencies, so
sometimes a bright enough broadband signal passes our S/N
thresholds and is falsely flagged as a “narrowband” detection.
Broadband RFI can also overlap real narrowband signals,
majorly distorting the extracted intensity time series data. It is
also possible that certain modulation schemes in narrowband
RFI present confounding factors for scintillation detection;
perhaps some forms of RFI already appear to be scintillated (at
least according to the theoretical properties identified). In
Section 5, we perform an initial analysis of the narrowband RFI
environment at the GBT, computing the various diagnostic
statistics and comparing them with those predicted for
scintillated signals.

3.3. Synthesizing Scintillated Signals with Autoregressive-to-
anything (ARTA)

Since observations are necessarily limited in time, we have a
finite number of samples per target. Furthermore, we work with
large search parameter spaces for which there is a trade-off
between the length of time per target and the number of targets
searched. Unless a specific pointing is otherwise scientifically
interesting, it may be more useful to spend a shorter integration
time on a larger number of pointings. Taken together, in most
cases, we will be working with a low number of time samples
per observation, which implicitly adds measurement error to
each diagnostic statistic.

We would like to better understand the relationship between
observation parameters, the scintillation timescale, and the
expected natural error in our diagnostic statistics. Since there
are a number of factors involved, it is difficult to quantify the
expected errors analytically. Instead, we designed a method to
create synthetic scintillated time series data, allowing us to
compute the empirical distribution for each diagnostic statistic
and observe the corresponding spread from the asymptotic
values.

Theoretical studies have created models of scintillation phase
screens and simulated light waves passing through each screen
as a function of space and frequency, such as Coles & Filice
(1984), Hamidouche & Lestrade (2007), Coles et al. (2010),
and Ravi & Deshpande (2018). While this gives the best
physical intuition for a given set of parameters, for our work,
we need to be able to quickly produce a large quantity of
synthetic scintillated narrowband signals over different scintil-
lation and observation parameters. Since we are specifically
interested in asking when scintillation might be detectable for
SETI, we choose to rely on predictions from established theory
to more efficiently create synthetic data rather than to generate
our own rigorous simulations, although this may be a valuable
direction for the future.

One method to produce synthetic scintillated data is to first
compute the power spectrum S of scintillations using a fast
Fourier transform (FFT) of the target autocorrelation (in the
voltage domain, F}(/ 2). One may then produce a complex
voltage time series by taking the inverse FFT of complex
Gaussian noise multiplied by si2, Finally, taking the squared
magnitude of the voltage series yields an intensity time series
following an exponential distribution and ACF of I'y. While
this method is relatively straightforward and satisfies asympto-
tic scintillation properties, we would like to present an
alternative synthesis technique that may have broader uses in
SETI for future applications.

Synthetic time series data following overarching statistical
distributions can be produced using autoregressive models.
Cario & Nelson (1996) developed a model called the
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Figure 2. Synthetic scintillated intensities (N = 10%) generated using ARTA, using a sample interval of Ar=4.65s and scintillation timescale Az, = 30s. Top:
synthetic intensity time series data, showing first 1000 samples. Bottom left: histogram of intensities, showing the expected exponential distribution. Bottom right:

sample ACF plotted up to lag 64, with the target ACF I'y shown overlaid.

“autoregressive-to-anything” (ARTA) process for generating
time series data with arbitrary marginal distribution and
autocorrelation structure (up to a specified number of lags).
While this work focuses on the effects of scintillation on CW
narrowband signals, having the ability to match arbitrary target
distributions for first- and second-order statistics could be
useful for SETI applications that aim to model other
astrophysical effects or even certain types of RFIL.

In our case, the target marginal distribution is exponential
and the autocorrelation structure is the near-Gaussian curve I'.
We construct ARTA processes to model the noise-free
scintillation gain g(f) of a 100% modulated narrowband signal
over time. In the style of Equation (3), we can produce
synthetic intensities with () = g(#)S, for any choice of signal
intensity S. Figure 2 shows an example of synthetic scintillated
intensities generated in this way with S=1, along with a
histogram and ACF plot demonstrating the asymptotic
behavior.

To construct an ARTA process Y,, we provide a marginal
distribution with CDF Fy and an autocorrelation structure
py=(Corrl[Y;, Yi;1]....,.Corr [Y;, Y1y ,]), where p is the number
of lags specified (Cario & Nelson 1996). Since the model is
computed numerically, py is finite, and the model will only
attempt to match the ACF up to lag p. The computation
involves solving the Yule-Walker equations for a p x 1 vector
of autoregressive process parameters, which in turn requires
inverting a p X p matrix. This limits the number of lags out to
which we can effectively compute, but for scintillation
analysis, this will rarely be an issue.

While this procedure results in an ARTA process with
correlations close to py, Cario & Nelson (1996) described
methods to improve convergence to the target correlations. By
perturbing the input correlations to the model and doing a grid
search in the parameter space, we can arrive numerically at
final correlations that have higher accuracy. In this work and in
blscint routines, we choose to forego this additional step,
since it increases computational time significantly without
much reward. Since using a finite observation length means

that, by definition, we are performing small sample experi-
ments, any marginal increase in the asymptotic correlation
accuracy is quickly overshadowed by intrinsic sampling error.

With this tool, for any set of parameters (At, Tops, Aty), We
can create data sets with many time series realizations to
analyze the measurement error implicit in our limited-length
observations. Note that we control the observational para-
meters, such as Ar and 7, but not the scintillation timescale
At,. This implies that we should choose observational
parameters in such a way that we minimize our measurement
error with respect to the most likely scintillation timescales. So
to make this process most useful, we should attempt to estimate
the most likely or most detectable scintillation timescales; this
is addressed in more detail in Section 4.

The parameter spaces involved are vast, but we can focus on
representative values close to those commonly used in radio
SETI today. In other words, we try to only make slight
perturbations to observational parameters used by modern
spectrogram searches and similarly limit the range of scintilla-
tion timescales to practically consider. Ideally, it will be
possible to directly analyze SETI observations taken for other
purposes for evidence of scintillation using the methods
developed in this paper.

For example, suppose we want to evaluate our sensitivity to
scintillation timescales in the range of 10-100s. The high
spectral resolution data format used by BL has 2.79 Hz and
18.3 s resolution for 5 minutes, resulting in 16 time samples per
observation. If we instead take observations for 10 minutes at
4.65 s resolution, yielding 128 time samples, our diagnostic
statistics are more accurate and sensitive to a larger range of
scintillation timescales. With these parameters, we create
synthetic noise-free time series observations with ARTA,
compute the diagnostic statistics, and plot histograms of each
as a function of scintillation timescale as shown in Figure 3.

The different scintillation timescales yield observable
differences in the empirical PDF for each diagnostic statistic.
Panels 1-3 all show diagnostic statistics that target the
asymptotic exponential distribution of intensities. As the
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Figure 3. Histograms of diagnostic statistics computed using N = 1000 ARTA-produced intensity time series realizations for representative scintillation timescales of
10, 30, and 100 s. Each time series is produced using Ar=4.65s and 7,,s = 600 s and does not include additive background noise. We plot histograms of the
standard deviation, minimum, Kolmogorov—Smirnoff statistic, and least-squares fit for the scintillation timescale, computed for each time series realization.

scintillation timescale decreases and approaches the time
resolution, each scintle will generally be covered by individual
time samples. As Atf;~ At, the ACF structure becomes
irrelevant and the observed intensity samples better match the
theoretical intensity distribution. In each of panels 1-3, the 10 s
histogram is the tightest around the asymptotic statistic value,
whereas the 100 s histogram has the largest spread and general
deviation from the asymptotic value. As the scintillation
timescale increases relative to the time resolution, more
samples cover individual scintles, and so the ACF structure
reduces the apparent exponentiality of the intensities within a
single observation or time series realization. Panel 4 shows the
least-squares fit for the scintillation timescale; this similarly has
the largest error for the largest scintillation timescales, since
there are fewer scintles during the same observation length.
Once again, note that here that the diagnostic statistics are
calculated for time series intensities with no additive back-
ground noise to observe how a low sample count effects the
measurement error.

4. Exploring the Parameter Space of ISM Scintillation with
NE2001

The likelihood of detecting scintillation depends heavily on
our physical location in our Galaxy and the lines of sight at
which we observe. To determine the best targets for detecting
scintillation, we need to estimate the quantitative effects of
scintillation on narrowband signals in various directions on the
sky. This depends on the plasma free electron number density
and strength of turbulence along the line of sight.

Cordes & Lazio (2002) developed the NE2001 free electron
density model for our galaxy, based on pulsar observations and
scattering studies. NE2001 models various Galactic features
and estimates the dispersion measure (DM) and characteristic
scattering scales to distance d along any given line of sight
through the galaxy. The scattering scales computed include the
scintillation timescale, spectral broadening, scintillation band-
width, and temporal broadening. This allows us to uniquely
estimate the asymptotic statistical properties of scintillation,
which can help decide promising targets for scintillation
analysis.

Given a distance d and Galactic coordinates (I, b), the
publicly available code for NE2001 model estimates the
expected scintillation timescale and bandwidth at frequency
v =1GHz and transverse velocity V= 100 kms~'. From this
point, we have the scaling relation:

Aty o V2oV (10)

where av=5/3 for Kolmogorov turbulence and a=2 for
square-law turbulence (Cordes et al. 1997; Coles et al. 2010).
With Equation (10), we can scale raw NE2001 values to
estimate scintillation properties for specific observational
setups.

We would like to narrow the parameter space of possible
observing configurations and scintillation timescales to those
that are most amenable to detection with current facilities. With
the NE2001 model, we can estimate scintillation properties for
a given set of input parameters, including the sky direction,
distance, frequency, and transverse velocity. However, these
inputs constitute an enormous parameter space, with no clear
a priori preference from an SETI perspective. Even with
bounds for each individual parameter, it would be prohibitively
computationally expensive to calculate properties across each
combination of potential parameters. Instead, we choose to use
Monte Carlo sampling over the parameter space, using enough
samples to sufficiently capture the core statistics of the
distribution of scintillation properties.

For sampling, we fix a sky direction (/, ) and a target radio
frequency band. We then sample the frequency v uniformly
within that band (as a narrowband signal could be found
anywhere in the band). In this paper, we will refer to common
radio bands used with the GBT, including L (1.15-1.73 GHz),
S (1.73-2.6 GHz), C (3.95-8.0 GHz), and X (8.0-11.6 GHz;
GBT Support Staff 2017; MacMahon et al. 2018).

For the distance d, we have to specify a maximum distance
dmax, but the minimum distance d,, is that at which weak
scattering transitions to strong scattering. We can sample
uniformly from [dy;, dmax], but we can also attempt to match the
potential distribution of distances that ETI would actually
occur. For example, we can sample distances based on the
expected distribution of stellar number densities along the line
of sight through the galaxy. For this, we use model parameters
from Gowanlock et al. (2011), who adapted a model from
Carroll & Ostlie (2007) that matches the observed density in
the solar neighborhood. To see the effects on our sampling, we
can also sample by stellar mass density, though this is less
precise, since we typically expect ETI to reside around less-
massive stars. We use the model provided in McMillan (2016)
to compute stellar mass density along a line of sight. In
Figure 4, we compare these models as a function of distance
along Galactic coordinates (I, b)= (1, 0), showing them
alongside NE2001-generated scintillation timescales. As
expected, the mass density profile is significantly sharper than
the number density, but both more heavily weight the Galactic
center region compared to uniform distance sampling.
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Figure 4. Comparison between methods for distance sampling, including
uniformly, by stellar number density, and by stellar mass density. We use a line
of sight of (/, b) = (1, 0) out to a distance of 20 kpc. The bottom panel shows
NE2001-produced scintillation timescales as a function of distance.

Finally, the transverse velocity V7 is perhaps the hardest to
constrain in general. For scintillation, V; depends on the
relative transverse velocities of the source, observer, and
scattering screen, each of which is difficult to predict. A
representative transverse velocity for Galactic pulsars is about
100 kms™! (Cordes 1986). The transverse velocity for an ETI
source, especially in our solar neighborhood, might be on the
order of 10 kms™! instead (Cordes & Lazio 1991; Cordes &
Rickett 1998). Depending on the line of sight, for sources far
across the galaxy (i.e., 10kpc or so), differential Galactic
rotation can add components to the transverse velocity on the
order of 100 kms ™' as well. An emitter’s orbital velocity and
spin velocity can also contribute. Since all of these independent
effects are nontrivial and stochastic, we can at best set heuristic
transverse velocity ranges and sample uniformly between them,
understanding that even the limits themselves are only useful to
an order of magnitude.

Taking all of these parameters together, we can create
sampled distributions for each scintillation scale. Figure 5
shows a realization of Monte Carlo simulations for the C band
in the (1, 0) direction with N = 10,000 realizations, using a
number density-based weighting on distance samples. We use a
maximum distance of 20 kpc and a transverse velocity range of
10-150 kms~'. It is readily apparently that the resultant
distributions are significantly skewed. For example, short
distances from the observer will lead to long scintillation
timescales. Since the goal of the parameter space analysis is to
evaluate the observational setup that gives us the best
likelihood for detecting scintillation in narrowband signals,
we focus on the central statistics. For skewed distributions, we
choose to calculate the median and interquartile ranges (IQR)
as representative values for each scale.

From Figure 5, we conclude that signals at the C band in the
direction (1, 0) are likely to have scintillation timescales
ranging between 10 and 28 s. Indeed, since this is the IQR, only
half of the sampled timescales lie in that range, and there is an
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implicit bias toward the lower end of that range and below.
What this really tells us is that if we are searching in that sky
direction and at that frequency, we should make sure to choose
observational parameters so that we are sensitive to scintillation
timescales between 10 and 28s. Also, note that spectral
broadening is on the order of 0.01 Hz, which is negligible
compared to typical spectral resolutions used in modern
radio SETIL.

With this tool, we can estimate which range of scintillation
timescales to target for a given sky direction and fre-
quency band.

5. Temporal Analysis of Detected Narrowband RFI

To evaluate whether it is viable to detect scattering effects
like scintillation in detected narrowband signals, we must
characterize the standard RFI environment within which SETI
observations are taken. The majority of narrowband RFI is
generated from communication applications; therefore, it is
common for RFI to show intensity modulation in frequency or
time. Depending on the nature of this modulation and the free
electron column density along a line of sight, RFI could
confound the detection of actual scintillated extra-solar signals.
We must therefore analyze the RFI environment, regardless of
sky direction, with respect to temporal statistics that can be
used to identify the presence of ISM scintillation. In this paper,
we focus on RFI present in GBT observations, which comprise
a significant fraction of BL data.

We must note that it is technically possible that any given
detected signal in this “RFI” analysis is actually a techno-
signature. However, we can confidently say that the over-
whelming majority of signals encountered will be
anthropogenic in origin. Furthermore, in this analysis, we take
observations in a direction where At is long compared to 7.
This way, detected signals will not be modulated by ISM
scintillation within a single observation, so whether or not a
given signal is a technosignature is irrelevant to our analysis.

5.1. Finding and Characterizing Signals

In this section, we outline the general process for detecting
signals and extracting intensity time series data, from which we
can compute diagnostic statistics and run our scintillation
analysis. Figure 6 demonstrates the step-by-step process on a
real GBT RFI signal.

The first step in analyzing the RFI environment is curating a
data set of detected signals. We need some form of energy
detection to pinpoint the frequencies and preferably the drift
rates of narrowband signals. The most common method for
detection used by BL is the tree deDoppler code turboSETI,’
which efficiently implements a matched filter for linearly
drifting narrowband signals (Enriquez et al. 2017; Enriquez &
Price 2019). turboSETTI gives us the signal frequency at the
beginning of the observation and the best-fit drift rate.
However, to extract intensity data for scintillation analysis,
we additionally need the frequency bandwidth that the signal
occupies.

Ultimately, we aim to construct a “bounding box” of sorts
around each narrowband signal. Since narrowband signals can
have an overarching Doppler drift rate, these bounding boxes
are defined by a starting central frequency, a drift rate, and a

° hitps: //github.com/UCBerkeleySETI/turbo_seti
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Figure 5. Set of Monte Carlo—sampled distributions of scintillation parameters at the C band, using N = 10,000 realizations. We use a line of sight of (/, b) = (1, 0) out
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signal bandwidth. In time—frequency space, these become
bounding parallelograms, since we take the signal bandwidth to
follow the extracted drift rate at each time step. Given a fit for
the drift rate, we can de-drift a spectrogram containing the
signal by shifting each individual spectrum accordingly,
reducing the problem to finding the frequency bandwidth that
overwhelmingly captures the signal’s power.

There is no singular correct way to bound radio signals
found in spectrogram data. There are many morphologies of
narrowband signals, such as those with unstable oscillator
frequencies or varying intrinsic bandwidths. Signal leakage
also affects bright signals and spreads the power into
neighboring spectral bins. Background noise and nearby
spurious signals can additionally complicate the bandwidth
calculation.

Signal bound estimation has been done before in radio
astronomy. For pulsars, van Straten et al. (2012) measured the
size of individual pulses as the width at a user-specified fraction
of the peak intensity. In one of the rare instances of bandwidth
estimation in narrowband SETI, Pinchuk et al. (2019)
calculated signal bounds at the 5o level, regardless of the
detected signal’s peak S/N.

Our goal is to find the tightest frequency bounds that do not
exclude a significant amount of signal power, so that we can
accurately represent the intensity behavior over time. If our
bounds are too tight, we risk excluding and distorting
information; if they are too loose, noise fluctuations can take
over and wash out the signal.

In this work, we choose to bound signals at 1% of their
maximal intensity. First, we de-drift and integrate a spectro-
gram along the time axis to get a spectrum centered on the

signal. To make a fit of the noise background, we first exclude
most of the bright data points with sigma clipping up to 3o.
Then, we fit a straight line to the remaining points and obtain
the final corrected spectrum by subtracting this fit from the
original spectrum. The signal bounds are calculated as the
frequency bins on the left and right of the signal center whose
intensities dip below 1% of the maximum intensity in the
corrected spectrum. This method is balanced, capturing most of
the power from signals that have apparent bandwidths ranging
from a few hertz to a kilohertz. Figure 6(B) shows an example
of such a fit.

To analyze the properties of a signal’s intensity over time,
we need to isolate the signal as best as possible from the noise
background. To estimate the noise background, we use sigma
clipping along the frequency axis to calculate the mean and
standard deviation of noise at each time step. We then
normalize the de-drifted spectrogram at every subspectrum by
subtracting the according noise mean and dividing by the
according noise standard deviation. Theoretically, this standar-
dizes the instrument response over the course of the
observation and centers the background intensity to 0. It also
serves as a crude way of filtering out simple broadband
interference. Figure 6(C) shows the resulting spectrogram.

To get the intensity time series for a signal, we integrate the
normalized spectrogram along the frequency axis between the
computed frequency bounds, resulting in a 1D array of length
N,. To standardize the analysis, we additionally normalize this
time series to have a mean of 1, as shown in Figure 6(D). From
the normalized time series, we compute the ACF (Figure 6(E)).
With these two together, we can calculate all of the diagnostic
statistics to compare with theoretical scintillation properties.
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It is important to note that since we attempt to normalize the
noise background of the spectrogram to a mean of 0 via
subtraction, we may end up with negative values in our final

10
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extracted time series. Since we cannot remove the noise
fluctuation entirely, the time series intensities will always be
affected by noise in this way. Normalizing the time series to a
mean of 1 can have the additional effect of making the negative
“intensities” even more negative. Nevertheless, we choose to
compute diagnostic statistics using the normalized time series.

5.2. Observation Details

In this exploration of RFI properties, we are investigating the
distribution of diagnostic statistics in real, detected RFI signals
to evaluate whether these statistics can be used to identify the
presence of scintillation. We must therefore ensure that our
observations are unlikely to contain any scintillated signals.

For this reason, and for additional convenience, we choose to
observe toward the north celestial pole (NCP). We verified with
NE2001 that the expected scintillation timescales are long
compared to desired observation parameters. For instance, at
1 GHz (L band), a signal at 1 kpc with V7= 100 km s~ ! would
show a scintillation timescale of 702 s. The other bands we use
at the GBT (S, C, and X) correspond to even longer expected
timescales due to the frequency scaling.

The process for identifying scintillation can be performed
over many observational timescales. In our case, we focus our
analysis on data resolutions close to those used typically by
BL. BL normally runs analysis on 5 minute integrations at a
frequency resolution of 2.79 Hz and a time resolution of 18.2 s,
for 16 pixels or time samples per observation. We use the same
frequency resolution, but extend the data by taking 10 minute
integrations at a resolution of 4.65 s, so that we get 128 samples
per observation. Having more time samples leads to better
diagnostic statistics and better time resolution but requires
significantly more data storage.

For this work, we used the GBT to take 10 minute
observations of the NCP each at the L and C bands on 2022
May 16. To find narrowband signals, we use turboSETI with
a detection threshold of S/N =10 to search up to maximum
drift rates of+5Hzs™'. As an additional step, we exclude
detections of the so-called “DC bin” in each coarse node, a
vertical artifact of the FFT performed during fine
channelization.

5.3. Empirical Results

Using the procedure described in Section 5.1, we compute
diagnostic statistics for detected signals in GBT observations
taken at the L and C bands. For convenience, in this discussion,
we will refer to detected GBT signals as “RFIL.” While these
observations are very unlikely to contain scintillated signals,
we cannot necessarily rule out the presence of technosignatures
in our data. Nevertheless, we can comfortably say that the vast
majority of signals are human-created interference.

To best compare with our expectations for scintillated
narrowband signals, we create synthetic GBT observations
with scintillated signals produced using the methods in
Section 3.3 and run them through the same analysis pipeline.
For the synthetic signals, we construct separate data sets using
At, = 10, 30, and 100 s, as in Figure 3.

The synthesis process described in Section 3.3 does not take
noise into consideration. In this work, we treat narrowband
signals as additional power that is present on top of the noise
background. As such, we assume that the effects of ISM
scintillation are imprinted on the signal independently from the
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Figure 7. Histograms of diagnostic statistics for detected L-band signals with S/N > 25. For each statistic, the distribution from detected RFI is shown in black.
Plotted for comparison are distributions from synthetic scintillated signals at S/N = 25 with scintillation timescales of 10 s (blue), 30 s (orange), and 100 s (green).
Across all diagnostic statistics, it would be difficult to distinguish a true scintillated signal from RFI given the L-band RFI distributions.
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Figure 8. Histograms of diagnostic statistics for detected C-band signals with S/N > 25. For each statistic, the distribution from detected RFI is shown in black.
Plotted for comparison are distributions from synthetic scintillated signals at S/N = 25 with scintillation timescales of 10 s (blue), 30 s (orange), and 100 s (green). It
could be possible to distinguish a true scintillated signal from RFI given the C-band RFI distributions.

noise background. To construct a synthetic observation, we
compute a realization of a scintillated signal’s intensity over
time using ARTA and inject a signal with those intensities onto
a radio spectrogram with a realistic noise background, following
Equation (3). We use the Python package setigen' to
inject artificial signals and compare directly with real GBT
observations (Brzycki et al. 2022). For each scintillation
timescale, we generate N = 1000 signals with zero drift rate
and the same S/N that matches our turboSETI detection
threshold. We calculate diagnostic statistics for the artificial
signals in the same way that we do for detected RFL

The histogram comparisons for each diagnostic statistic at
the L and C bands are shown in Figures 7 and 8. The bold,
black histograms show the non-DC RFI samples in the
respective frequency band, whereas the thinner histograms
represent the synthetic signal data sets. The less the RFI
distributions intersect with the scintillated signal distributions,
the better our methodology can distinguish a true scintillated
signal.

At a glance, C-band RFI has better separation than L-band
RFI from the scintillated signal distributions, across all
diagnostic statistics. In particular, for the C band, the statistics
pertinent to the exponential distribution of scintillated inten-
sities (standard deviation, minimum, K-S statistic) have
relatively well-defined separations. These can be used to set
thresholds (or target ranges) for each statistic, which can be
combined to help filter detected signals for scintillation
candidates. While the fitted scintillation timescale distributions
intersect appreciably, in practice, thresholds can still be set
using synthetic signal distributions and used as filters.

Comparatively, a significant portion of the L-band RFI
occupies the same ranges of statistics as the synthetic signals.

10 https: //github.com/bbrzycki/setigen

This means that existing RFI would confound the detection of
real scintillated signals with these methods. From our
observations, we observe that lower frequencies (such as the
L and S bands) have a relatively higher density of RFI with
many morphologies, and this could be causing the distributions
of statistics looking broader and more irregular than those for
C-band RFI.

6. Discussion

6.1. Observational Recommendations for Scintillated
Technosignature Searches

The empirical RFI distributions suggest that at the GBT,
higher fre(%uencies will be better for creating statistics-based
thresholds.'' The RFI environment at the C and X bands is less
dense and less diverse than that at the L and S bands. However,
scintillation effects decrease inversely with increasing
frequency, lengthening the scintillation timescales (Equation
(10)). There is also a trade-off in choosing which frequencies to
search: higher frequencies have more favorable RFI properties
but require either longer observations or pointings with more
scattering.

For each observing band, the RFI environment sets
unavoidable statistics thresholds. At the L band, for instance,
it is possible that there is no sky direction and no target
scintillation timescale amenable for a scintillated technosigna-
ture search. While the properties of the local RFI environment
certainly vary as a function of time and location, our
observations suggest that lower frequencies may always be
difficult to wuse. Specifically, the empirical L-band RFI
distributions covered the ideal asymptotic value for each

" For other telescope sites, a similar RFI analysis would need to be conducted
in order to draw similar insights about RFI versus frequency.
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diagnostic statistic, implying that no variation of observational
parameters could unambiguously distinguish an appreciable
fraction of RFI from real scintillated signals.

On the other hand, for the C band and above, we must tend
toward longer observing lengths or point toward regions of
higher scattering, such as the Galactic center, in order to
capture enough scintles. As discussed by Gajjar et al. (2021),
there are a multitude of reasons that an ETI detection might be
most likely toward the Galactic center, making this an attractive
option for a scintillated technosignature search.

As the field of radio SETI grows and as new technosignature
candidates are found, more work is being done in signal
verification and follow-up analysis (Sheikh et al. 2021; Tao
et al. 2022). To this end, beyond dedicated searches for
scintillation, the methods introduced in this paper may also be
used as supplementary analysis for other radio SETT searches.
For example, given an interesting narrowband detection that
passes some SETI filters, one might ask additionally whether
the signal is ISM scintillated. Following the steps in this work
and using blscint, one could estimate likely scintillation
timescales along the observation’s line of sight at the detected
signal frequency. Then, one could generate synthetic ARTA
data sets to set diagnostic statistic thresholds and compare how
the statistics for the detected signal measure up. Assuming the
signal was still compelling after these steps, it would be
prudent to do a similar detected RFI analysis using the same
telescope, frequency band, observation length, and time
resolution to check for RFI with confounding modulation.
While emission from distant sources along the Galactic plane
has the best chance of exhibiting detectable scintillation within
individual observations, these methods constitute a concrete
framework for evaluating the likelihood of scintillation in
signals from any observational radio SETI campaign.

6.2. The Impact of Models on Designing Observational
Campaigns

The effectiveness of a designated search for scintillated
technosignatures will depend on how well we can estimate the
most likely values for At; as a function of sky direction and
frequency.

The fewer unknown degrees of freedom in our Monte Carlo
sampling procedure (Section 4), the better the timescale
estimates will be. For example, if we wanted to estimate what
timescales are possible for emission near a particular known
star, we would already begin with the location (/, ) and
distance d. The only major parameters left would be the target
frequency range (which we can control) and the effective
transverse velocity. By constraining sampling parameters, one
can get tighter bounds for scintillation timescales and tune
observation parameters accordingly.

Our Monte Carlo procedure for scattering strength estimates
relies on the NE2001 electron density model. While NE2001
remains a popular choice, the YMW16 model from Yao et al.
(2017) has emerged as another prominent Galactic electron
density model. There have been studies comparing both, such
as Deller et al. (2019) and Price et al. (2021), particularly with
regards to DM and distance estimation applied to new pulsar
data sets. While YMW16 benefits from more recent data, when
compared to independent pulsar measurements, both models
have their own systematic estimation biases that depend on the
location in the galaxy (Price et al. 2021).
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The key difference for this work is that NE2001 uses
scattering measurements in its fit and estimates scattering
properties throughout the galaxy (Cordes & Lazio 2002).
YMW16 specifically avoids using scattering measurements,
arguing that the majority of scattering arises from relatively
thin features along the line of sight and therefore cannot be
used to appropriately describe the large-scale distribution of
scattering (Yao et al. 2017). However, the YMW 16 model still
attempts to estimate pulse broadening timescales by using an
empirical DM relation simplistically, resulting in unreliable
scattering values, especially for fast radio bursts (Ocker et al.
2021).

While it may be difficult to develop a model that robustly
constrains the effects of scattering along any line of sight in the
galaxy, doing so to even an order of magnitude would be
crucial for designing scintillation search strategies for SETI, as
well as for evaluating whether existing narrowband detections
could benefit from scintillation analysis. As new pulsars are
discovered and new Galactic electron density models are
produced, we suggest that attention should still be given to
scattering measurements and predictions.

6.3. Building on the Analysis Pipeline

While it involves many steps, the method for search and
intensity extraction described in this paper is relatively
straightforward. We rely on standard deDoppler search
methods (e.g., turboSETI) to both find and characterize
signal paths in one shot. Since we are searching for a stochastic
effect, keeping the processing simple is not necessarily a
detriment. However, our pipeline will still flag bright broad-
band signals that are able to exceed our S/N threshold. The
philosophical question on whether a broadband impulse that
contains sharp spectral features could be considered narrow-
band notwithstanding, using additional pre-processing to detect
broadband signal features could better standardize the types of
signals passing through the intensity extraction pipeline.

Machine learning (ML) could be used to aid scintillated
searches, such as for creating initial classifications of signal
type and eventually even for doing final candidate analysis. In
particular, deep learning techniques, such as convolutional
neural networks (CNNs), have been used effectively in a
variety of tasks using radio spectrograms (Zhang et al. 2018;
Harp et al. 2019; Brzycki et al. 2020; Pinchuk & Margot 2022;
Ma et al. 2023). CNNs could be used to filter out spectrograms
with clear broadband emission and would be relatively
straightforward to integrate into the pipeline. There is certainly
an avenue for complementing domain-based statistical features
with computer vision methods, as is done in time-domain SETI
(Giles & Walkowicz 2019).

ML techniques could also be applied to the extracted time
series or even to the raw signal spectrogram to directly classify
likely scintillation candidates. From the standpoint of inter-
pretability, having a set of diagnostic statistics with direct links
to the expected theoretical behavior of scintillated narrowband
signals provides us with intuitive filter thresholds, whereas a
direct ML approach might not. However, used in tandem with
our methods for producing synthetic scintillated signals,
supervised ML algorithms such as random forest classifiers
could be used to rank each of our diagnostic statistics in their
importance toward correctly distinguishing scintillated signals
from RFI (Breiman 2001). This could be a valuable future
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direction for scintillation-based searches and may very well be
a function of each observatory’s unique RFI environment.

6.4. Implications and Future Directions

In this work, we only focus on searching for strong
scintillation on high duty-cycle narrowband signals. Since the
ionosphere and IPM will tend to vary intensity relatively
slightly in most cases, we identified strong scintillation from
the ISM as detectable from 100% intensity modulations.
Analysis of the RFI environment at the GBT suggests that
weakly scintillated extra-solar signals would be difficult to
distinguish from existing interference, while strongly scintil-
lated signals can be separated along multiple diagnostic
statistics.

A common procedure during signal verification of an
interesting candidate is to search for other signals close in
frequency that are similar in morphology (Sheikh et al. 2021).
Along these lines, the possibility of simultaneous ETI signals at
multiple frequencies is interesting from the perspective of a
scintillation analysis. For signals separated by less than the
scintillation bandwidth, we should see the same intensity
modulation over time. However, for signals separated by more
than the scintillation bandwidth, we would receive different
intensity time series that still have the same overall scintillation
timescale. With our tool to estimate scintillation timescales and
bandwidths, if we were to detect multiple spectrally nearby
scintillation candidates within the same observation, we would
have yet another way to contextualize the detected signals and
determine whether they might actually be technosignatures.

We limit our search methodology to high duty-cycle signals,
so that any fluctuations in intensity are purely due to
scintillation. If an ETI transmitter is attempting to send
information, the initial signal will already be modulated. This
could also confound the presence of scintillation. However, we
argue that along the lines of sight and distances for which we
would expect narrowband signals to be scintillated, the
identification of scintillation is itself a message. An ETI
civilization advanced enough to transmit a message through
interstellar space should understand the effects of plasma on
radio emission, since it would distort the initial transmission
and hinder communication. With this in mind, an ETI beacon
might instead transmit a pure, unmodulated signal, expecting
that other civilizations could detect the presence of scintillation
in an artificial, narrowband signal. Instead of explicitly
encoding a message in the narrowband signal, the mere
presence of scintillation would communicate the message: “we
are here.”

Radio scattering from ionized plasma presents in other ways,
such as broadband modulation and dispersion. While broad-
band SETI searches are relatively less common, as we explore
new regions of the potential SETI signal parameter space,
scintillation could be searched along the frequency axis
analogously to our search along the time axis. The scintillation
bandwidth, the spectral analog of the scintillation timescale,
does not vary as a function of transverse velocity, so parameter
estimation may be less uncertain (Cordes & Lazio 1991).
Broadband signal searches are also able to use coarser
frequency resolutions than narrowband searches, though they
would likely have to use much finer time resolutions.

We hope that this work will lead to more discussion and
theoretical work on other ways in which the actual radio
emission that we receive can be used to identify the extra-solar
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origin of technosignatures. Beyond scattering, there are still
properties of radio emission, such as polarization, that are only
beginning to be considered in-depth from an SETI perspective
(Tao et al. 2022). Whether it is because certain effects are
stochastic or because human radio emission exploits every
facet of radio light possible for communication, extracting
nontrivial information from a radio signal’s detailed morph-
ology has been and will remain difficult. We may need to push
the limits of detectability along hitherto unexplored axes to
discover the first technosignature.
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