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Abstract—Climate change resulting from releasing greenhouse
gases into the atmosphere continues to affect the Earth’s
ecosystem. This pressing issue is driving the development of
novel technologies to sense and measure harmful gas emissions.
In parallel, the evolution of wireless communication networks
requires the wider deployment of mobile telecommunication
infrastructure. The terahertz (THz) spectrum is currently under-
utilized but is expected to feature in 6G. The use of this spectrum
is explored simultaneously for ultra-broadband communication
and atmospheric sensing. For atmospheric sensing, the absorption
of THz signals by gas molecules is used to estimate atmospheric
gas composition. Molecular absorption loss profiles for each gas
isotopologue are taken from the HITRAN database and compared
with data from transceivers in sensing mode. Preliminary results
are presented, showing the effects of signal path loss and power
spectral density. A 6G network architecture is proposed to indi-
cate how 6G infrastructure can perform climate change sensing,
in addition to its primary purpose of wireless communication.

Index Terms—Terahertz communication, 6G, climate change,
atmospheric sensing.

INTRODUCTION

CLIMATE change is one of the most pressing chal-
lenges for the sustainability of the planet in the twenty-

first century. Challenges include global temperature rise with
warmer oceans and shrinking ice sheets, contributing to rising
sea levels and ocean acidification. The impact of all these
changes on the planet is being witnessed today through more
frequent extreme weather events. Researchers believe that
global climate trends will worsen significantly in the coming
decades, given increasing greenhouse gas concentrations from
human activities such as expanding industries, transport and
agricultural activities. All these activities emit greenhouse-
effect gases such as carbon dioxide (CO2), methane (CH4),
and nitrous oxide (N2O), among others. Such gases allow
sunlight to pass through the Earth’s atmosphere but trap the
resulting heat near the surface, thereby contributing to global
warming. Sensing greenhouse gases and other harmful gases
(e.g., ground-level ozone) will allow humanity to plan for
the future by developing strategies to reduce harmful gas
emissions. Rather than using conventional sensor networks to
detect these gases, novel sensing techniques can be created
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without requiring a) massive deployment effort and costs, b)
ongoing maintenance, and c) massive material resources (in
the form of specialized sensing infrastructure).

While the telecommunications industry is rolling out 5G
globally, the research community is busy researching new
disruptive technologies. 6G is expected to progress into the
upper millimeter-wave (100-300 GHz) and the terahertz (0.3-
10 THz) spectrum. The larger bandwidth available at THz
frequencies (up to hundreds of contiguous GHz) has the
potential to provide high data rates, approaching a terabit-per-
second (Tbps) or more. The shorter wavelength of the THz
spectrum (less than a millimeter) enables both the creation of
miniature antennas for nanoscale machine communication in
nanonetworks, as well as, through the integration of many such
antennas into high-density antenna arrays, the design of highly
directional THz links with a low probability of detection and
interception [1]. Beyond communications, the combination of
very short wavelengths with the higher photon energies of THz
radiation (though still lower than that of optical signals) im-
proves the resolution and accuracy of traditional radar systems
and enables new sensing techniques, including spectroscopy-
based classification of media [2]. Indeed, several frequencies in
the THz band are known to be strongly impacted by molecular
absorption, and thus, traditionally, communication systems
have avoided those frequencies. However, by changing our
perspective, molecular absorption at THz frequencies might
also enable atmospheric sensing technologies [1]. For example,
multiple satellites orbit the Earth, having THz sensors for
atmospheric studies. In addition, industrial technologies utilize
the absorption profiles of the THz spectrum to sense specific
atmospheric gases, and these technologies have applications
in the area of Environmental Monitoring, Breath analysis, and
Natural gas sensing [3].

In our vision, 6G infrastructure might offer the oppor-
tunity to integrate communications and sensing in a new
way. At lower frequencies (using dedicated individual point-
wise sensors), joint communications and sensing usually
means communications and radar for sensing and localization.
However, innovative 6G infrastructure could simultaneously
satisfy the connectivity needs of a hyper-connected society
while collecting an unprecedented amount of data to monitor
gases associated with climate change. Frequency switching
using an antenna array comprising nano-antennas working
at different frequency bands [4] for sensing is needed to
implement this concept. This is because transceivers used for
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Fig. 1: 6G Network architecture for communication and sensing.

communication avoid THz frequency ranges where high levels
of molecular absorption disrupt communications, but such
frequencies are needed for sensing. Therefore, our objective
is to utilize selected frequency ranges that are unsuitable for
communication but are chosen to measure certain atmospheric
gases. Moreover, current atmospheric sensing systems rely
on frequency chirps or chirp spread spectrum. However, for
sub-terahertz and terahertz systems, single-carrier modulations
are preferred due to the multi-carrier systems’ high peak-
to-average power ratio penalty. Advanced solutions [5] use
the chirp’s simultaneous amplitude and phase modulation,
with proper amplitude compensation during radar response
measurement. In Fig. 1, we illustrate our architecture for joint
communications and sensing of atmospheric gases using 6G
infrastructure.

Artificial Intelligence (AI)-integrated communication tech-
nologies of enhanced Mobile Broadband (eMBB), massive
Machine Type Communication (mMTC), and Extremely Low
Power Communication (ELPC) will utilize novel infrastruc-
tures, such as ultra-massive MIMO transceivers, intelligent
reflecting surfaces (IRS) based on novel plasmonic reflect-
arrays or metasurfaces, and even non-invasive pervasive de-
ployments of nanonetworks. The increased use of antenna
arrays in ultra-massive multiple-input multiple-output (UM-
MIMO), coupled with passive IRS, will result in a spatial
blanket of THz signals covering regions with challenging com-
munication needs, requiring extensive infrastructures. Also,
the nanonetwork devices have miniature form-factors built of
metamaterials to support communication at THz frequencies.

Highly-anticipated applications include automated driving,
holography, tactile and haptic internet and new forms of
connectivity (e.g., unmanned aerial vehicles (UAVs) operating

as wireless repeaters in remote areas. Such infrastructure will
also enable distributed atmospheric sensing for climate change
monitoring, pollution, and air quality control. The collected
data will be analyzed in real-time in edge servers or data
centers by means of an Intelligent Sensing Layer. The goal
is to measure the targeted gas concentration in a particular
location under various environmental conditions. Machine
learning (ML) will play a key role in analyzing the massive
amount of collected data.

In this paper, we explore this vision for the first time,
and discuss how THz signal analysis can be used to deter-
mine changes in gas concentration that impacts the climate.
This will open new opportunities to collect gas concentration
data using readily available telecommunication infrastructure,
without requiring the extra cost of dedicated sensors, main-
tenance (e.g., replacing batteries), and materials incurred by
networks of dedicated atmospheric gas sensors. This paper is
organized as follows. The next section overviews the current
sub-terahertz and terahertz technologies used for gas sensing.
Then, we present our proposed 6G infrastructures for sensing
gases in various environments. Then we present preliminary
results, using ML to extract sensing information from mea-
sured path loss and received signal power spectral density.
Finally, we identify the challenges that need to be addressed
to enable this transformative paradigm and conclude the paper.

SUB-TERAHERTZ AND TERAHERTZ GAS SENSING
TECHNOLOGIES

Many gases emitted from agricultural, manufacturing, and
industrial processes, as well as urban environments more gen-
erally, are harmful pollutants and contribute to the greenhouse
effect. Interestingly, in most of these cases, the gases can be
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detected using THz spectroscopy. THz spectroscopy is a pow-
erful analytical technique based on electromagnetic radiation’s
absorption, reflection, or transmission in the THz frequency
range. One of the main advantages of THz spectroscopy is
that it can reveal the collective behavior of large molecules
in a sample, providing information about the vibrational and
rotational modes of molecular systems. Moreover, its accuracy
and efficiency are significant trade-offs under a controlled
indoor environment. However, large-scale outdoor deployment
of THz spectroscopy sensors is challenging. Photonics-based
THz sources are expected to suit sensing applications, where
broadband signals and frequency sweeps are essential. How-
ever, electronics-based THz sources are more widely utilized
due to the drawbacks of photonics-based THz sources, such as
coherence affecting the ability to extract accurate information
from the received signal, power limitations affecting long-
range THz communication, the complexity of integration into
practical communication systems and the potential of increas-
ing the overall system cost. At sub-THz frequencies and lower,
signal strengths are sufficient to enable both communications
and sensing over tens or hundreds of meters (this communi-
cation range has been experimentally proven [6]). However,
higher frequencies with short-range communications will be
used to sense gases such as ammonia (NH3) and methane
(CH4) (see Table I), relying on a nano-network of THz devices
that will be integrated into the wireless infrastructure. We
summarize THz sensing technologies that can be used to sense
toxic, pollutant, and greenhouse gases.

Sensing for Agricultural Environments

• Ammonia (NH3) is a gas found extensively in farming
environments, released by the breakdown of artificial
fertilizers and animal manure. Excessive exposure to
NH3 can negatively impact health and environmental
biodiversity. In [7], THz frequencies have been used for
NH3 gas and water vapor (H2O) sensing using THz Time-
Domain Spectroscopy (TDS) transmission measurement
geometry.

• Plants and vegetables emit Volatile Organic Compounds
(VOCs) gases such as acetonitrile (C2H3N), ethanol
(C2H5OH), and methanol (CH3OH) from leaves. These
gases can adversely affect the human body. For example,
acetonitrile can transform into cyanide within the body.
THz wave spectrometry has been utilized for VOC gas
sensing [3].

Sensing for Industrial and Urban Environments

Sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon
monoxide (CO) are some of the most prevalent pollutant
gases found in the atmosphere. These gases mostly enter the
atmosphere when fossil fuels are burnt.

• SO2 contributes to pollution through acid rain. Inhalation
of SO2 can irritate the respiratory tract, leading to an
increased risk of infections, coughing and excessive mu-
cus secretion. The gas can be detected utilizing electronic
submillimeter/terahertz (SMM/THz) gas sensors [3].

• Similarly, NO2 also leads to acid rain through the produc-
tion of nitric acid. Prolonged exposure to high levels of
NO2 can result in chronic lung disease. In addition, high
levels of NO2 can damage foliage, decreasing growth or
reducing crop yields. Continuous-wave electronic THz
spectrometers can sense NO2 in the frequency range of
220-330 GHz [8].

• CO is also harmful since it readily displaces oxygen in
the bloodstream and can lead to asphyxiation, and the
gas can be detected using THz Gas-phase spectroscopy
(THz-GPS) in the frequency range of 0.3-1.1 THz [9].

• Plants can naturally produce hydrogen cyanide (HCN),
and industries such as mining release it as a waste product
with wastewater. HCN found in wastewater can also be
found in gas form, which can be detected using photonic
crystal cavity detection techniques at frequencies of 1.1–
1.3 THz [10].

• CO2 emitted by industrial processes and burning fossil
fuels is the dominant but not the only greenhouse gas
responsible for global climate change. Other gases that
create greenhouse effects include CH4, N2O, ozone (O3),
and Fluorinated gases such as tetrafluoromethane (CF4).
In [11], THz spectroscopy is used to detect these gases
in an atmospheric simulation chamber using frequency
ranges 2-2.7 THz and 0.575–0.625 THz for CH4, CF4,
N2O and O3, respectively.

6G FOR CLIMATE CHANGE ACTION

Building on the indicated possibility of utilizing THz signals
to sense critical gases impacting climate change, in this
section, we present innovative 6G THz network infrastructures
that can bring the vision of joint communications and gas
sensing to reality.

Terahertz and Sub-Terahertz Absorption Properties

In addition to the high spreading losses resulting from
the very small wavelength of THz signals, which requires
the utilization of high gain directional antennas with narrow
beams, THz signals are also affected by molecular absorption
and, to a lower extent, scattering by dust particles, fog,
snowflakes, or rain droplets. The main absorber of THz
radiation is water vapor, H2O, which has resonances across
many THz frequencies leading to extremely high absorption
[2]. However, as highlighted in the previous section, THz
radiation is absorbed by many gases, including SO2, O2, NH3,
and CH4, and each gas has a unique absorption profile, which
opens new opportunities for using THz signals for sensing.

Our sensing concept is based on the molecular absorption
profiles, by frequency, that are unique to each gas. Figure 2 il-
lustrates simulated molecular absorption losses of THz signals
using data from the high-resolution transmission (HITRAN)
molecular spectroscopic database [12] under standard temper-
ature (296 K), and pressure (1 atm) at 5 cm distance for O3,
SO2, and NO2 when they are mixed with other gases based
on their atmospheric concentrations [13]. In our measurement
model, each standardized absorption profile uniquely identifies
a gas, and absorption levels increase with the concentration of
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Proposed technique using path loss Techniques developed using spectroscopy
Gas Atmospheric

concentration
(ppm)

Considered fre-
quency range

Gaussian
noise level

Possibility
of detection

Frequency range Detection techniques Reference

H2O 10000 6–8 THz 1 % Yes 0.1–2.25 THz THz-TDS [7]
O2 209460 0.5–2.5 THz 0.01 % Yes

SO2 1 0.5–2.5 THz 0.01 % Yes 0.21-0.27 THz Electronic SMM/THz
gas sensor

[3]

NH3 0.01 3–5.5 THz 0.01 % Yes 0.1–2.25 THz THz-TDS [7]
O3 0.07 1-3 THz 0.001 % Yes 0.575–0.625 THz THz-TDS [11]

NO2 0.02 1–3 THz 0.001 % Yes 0.22-0.33 THz Continuous-wave elec-
tronic THz spectrome-
ter

[8]

HCN 0.01 1–3 THz 0.001 % Yes 1.1–1.3 THz Photonic crystal cavity [10]
CO 0.01 0.5–3 THz 0.0001 % Yes 0.3-1.1 THz THz-GPS [9]
CH4 1.8 3-4.5 THz 0.00001 % Yes 2–2.7 THz THz-TDS [11]
N2 780840 3–5 THz Reduced

until
0.000001 %

No

CO2 410 8–10 THz Reduced
until
0.000001 %

No

N2O 0.5 0.1–1.5 THz Reduced
until
0.000001 %

No 0.575–0.625 THz THz-TDS [11]

CH3OH 0.01 0.1–1 THz Reduced
until
0.000001 %

No 0.22–0.33 THz THz wave electronics [3]

TABLE I: Impact on Gaussian noise level on path loss data analysis for gas concentration measurements.

Fig. 2: Simulated molecular absorption losses of THz signals
for ozone, sulfur dioxide, and nitrogen dioxide using HITRAN
data.

that gas. For instance, Fig. 2 shows that SO2 has the highest
absorption, and so requires lower measurement sensitivity than
NO2 or O3 over that range of frequencies.

The measurement sensitivity of the proposed system is
inversely related to its Gaussian noise (See Table I for
how this inherent Gaussian noise affects gas measurement
capability). The Gaussian noise is a function of transmitted
power, frequency, and the capabilities of both the transmitter
and receiver. A smaller Gaussian noise level indicates greater
measurement capability. For example, referring to Table I, if
the Gaussian noise level is 0.01%, gases of interest such as
NH3 and SO2 can be detected reliably, but not other gases
like O3, which would require greater measurement system
capability (equivalently, smaller relative Gaussian noise).

Agricultural Environments

Future farming environments are expected to have multiple
sensing devices under the guise of Internet of Everything,
communicating to 6G through mMTC as well as ELPC for
Internet of Bio-Nano Things and Internet of Nano Things.
The connectivity of these devices can be established through
ultra-cells [14], which have been proposed for transmitting
short-range THz signals. While connectivity from ultra-cell
to macrocell will be a problem in rural areas such as farms,
the ultra-cells can provide connectivity to local devices and
perform edge-based computing, and can send data to the
macrocell (e.g., via UAVs). To redirect beams within farm-
ing sheds, where equipment and facilities cause obstruction,
passive IRS can be used. Suitable ultra-cells might be placed
within milking sheds for confined areas to sense CH4 emission
as cows are being fed, as well as sensing NH3 and SO2 from
the slurry. Ruminants such as cattle contribute to greenhouse
gases, particularly CH4, when digesting their food. A single
cow typically emits approximately 200 pounds of CH4 gas per
year. Farm livestock produces other greenhouse gases such as
CO2 and N2O. Passive IRSs with ultra-cell-based networking
can be utilized to transmit signals in 0.5-1.0 THz frequency
to detect a target gas over a distance of more than 1 m, and
nanonetwork devices on the active IRSs itself can be used to
sense local gases such as CH4 and SO2 over distances less than
1 m. Passive IRS-enabled communication to a mobile vehicle,
such as a tractor or drone, might also facilitate outdoor gas
sensing.

Industry and Urban Environments

Industrial and urban environments produce greenhouse
gases such as CO2 and N2O, mainly as a result of human
activities. CO2 is a major contributor to the global warming
crisis. Major industrial sectors producing CO2 include power
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generation (54 percent), cement production (15 percent), gas
processing (12 percent), iron refining (6 percent), petroleum
refining (5 percent), and chemical plants such as C2H5OH
and NH3 (3 percent) producers. Additionally, large amounts of
CO2 are emitted from residential areas in urban environments
when energy is consumed. Therefore, outdoor infrastructures
are the most appropriate for sensing these gases. Ultra-
massive MIMOs on macrocells, communicating to picocells
and femtocells at 0.1-5 THz, offer opportunities for sensing
in industrial and urban environments. Also, using UM-MIMO
base stations at 0.3 THz and 1 THz frequency, multi-Tbps
links are achievable for communication [15]. Moreover, the
deployment of femtocell and picocell base stations under
the footprint of macrocell base stations reduces the distance
between the sensing devices and helps to maintain a high
signal-to-interference and noise ratio (SINR) while sensing.
Furthermore, picocell base stations are mounted on high-rise
buildings or infrastructures in dense urban areas because of
their limited coverage [14]. Again, outdoor passive IRS can
also play a significant role in redirecting beams between the
cells, and Vehicle to Infrastructure (V2I) communication using
THz links can take advantage of frequencies that are unused
for communication to provide roadside sensing. This dual use
of the infrastructure facilitates gas sensing at ground level in
urban environments.

In both agricultural and industrial environments, we assume
a private network for communication and sensing. However,
in urban environments, the ultimate goal would be to integrate
our systems within the Open Radio Access Network (O-RAN)
architecture, which is part of our future work.

DETECTION TECHNIQUES

Similar to 5G, 6G will use machine learning (ML) to
analyze and process large data sets for its own network man-
agement, as well as supporting its use in applications. Here,
we propose how ML can be used to infer gas concentrations
from measurements of path loss and power spectral density
(PSD).

Path Loss Data Analysis

Path loss analysis measures the attenuation factor and uses
that information to measure gas concentration. We focus on the
molecular absorption loss per frequency rather than the total
path loss, which includes spreading loss. The spreading loss is
based purely on the distance and the transmitter and receiver
antenna properties at the target frequency and is not affected
by the channel medium. The detection accuracy is determined
by the ratio of Gaussian noise (N) to absorption loss in the
received signal. Table I summarises this for a variety of gases
at a ratio specified by the atmospheric concentration, where we
can see that each gas type will have a corresponding maximum
tolerable Gaussian noise limiting accurate detection. We also
compare the frequency range in our study with the frequency
range used in THz-spectroscopy based sensing techniques. Our
analysis uses data from the HITRAN molecular spectroscopic
database [12], and was established by controlling the noise
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Fig. 3: Measurement sensitivity curve for ozone and methane,
showing expected gas concentrations and the confidence inter-
vals (LCL: Lower Confidence Level, UCL: Upper Confidence
Level) of the predicted gas concentrations.

level (P ) and reducing it step-by-step when solving the
multiple linear regression problem based on equation (1).

TotalAbs =

n∑
i=1

CgiAbsgi + PN, (1)

where TotalAbs is the total molecular absorption loss and Ci

and Absgi are the measurable concentrations and absorption
loss profiles, respectively, of each gas gi. The linear least
squares technique we used includes the following constraints:
a) the concentrations of each gas should be less than one
million ppm, and b) the sum of the concentrations should equal
one million ppm. The results in the table are based on 1000
Monte Carlo simulations to estimate the effects of randomness.
Our simulations gradually decreased the Gaussian noise level
until 0.000001 percent, and many of the gases in the mixture
were detectable and measurable at this 0.00001 percent noise
threshold. The expected atmospheric gas concentrations (in
ppm) from Table I are used to generate molecular absorption
loss profiles for typical atmospheric gas mixtures. Gaussian
noise is added to the generated absorption losses in a con-
trolled way, as described above, and then we try to estimate
each gas in the presence of this noise. Some gases, like H2O,
can be measured even with 1 percent added noise, but there
is much less sensitivity for gases like N2O.

As an example, Fig. 3 shows how we used the multiple
linear regression model to predict the concentration of O3 and
CH4 at 5 cm distance for the frequency range of 1.0-3.0 THz
and 3.0-4.5 THz, respectively. Similarly, we accurately predict
the gas concentrations of other detectable gases in their con-
sidered frequency ranges mentioned in Table I. The frequency
range with the highest molecular absorption loss for the spe-
cific gas type is chosen (see the highlighted rectangular area in
Fig. 2 for O3). The measurement sensitivity curves for O3 and
CH4 were generated at the 0.001 percent and 0.00001 percent
Gaussian noise levels, respectively. The results in Fig. 3 show
that we can establish 95 percent confidence intervals (CI’s)
of the predicted gas concentrations that only deviate from the
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Fig. 4: Total power spectral density for ozone, nitrous oxide,
and methanol considering a mixture with and without water
vapor and varying distance between transmitter and receiver.

actual concentration by a small percentage (this is bounded by
the upper confidence levels (UCL) and lower confidence levels
(LCL)). The other gases, such as nitrogen (N2), CO2, N2O,
and CH3OH are not measurable using path loss data for any
of the considered THz frequencies because the measurement
sensitivity is too low.

Power Spectral Density Data Analysis

We use PSD measurement analysis to sense a targeted gas
in a mixture. Figure 4 presents the power spectral densities of
O3 in 0.59–0.69 THz and N2O and CH3OH in 0.8–0.9 THz
frequency bands by considering a scenario of sending 0.05
nanoseconds long pulsed chirp signals through a gas mixture
with and without H2O, while also varying the distance between
the transmitter and receiver. A pulsed chirp signal can sweep
through all the required frequencies. We analyzed the molecu-
lar absorption loss of the targeted gases when mixed with H2O,
O2, and N2 to select the narrow frequency ranges that will
result in low absorption loss by H2O and high absorption loss
for the target gas. Our results show a significant impact from
H2O on the PSD measurement corresponding to the molecular
absorption noise, as well as the attenuation effect of distance.
This impact on the overall PSD measurement is summed with
the PSD corresponding to the chirp signal in the frequency
domain. The shapes in Fig. 4 indicate that it is possible to
estimate gas concentrations by applying chirp spread spectrum
signals and using supervised-learning techniques.

Our PSD analysis also considers sensing a target gas when
its gas concentration varies in the atmosphere by 0.5, 0.75,
1.25, and 1.5 times from the expected level. This analysis
is needed because mammals need to breathe a mixture of
gases to survive, and it can be harmful or even toxic if certain
gas concentrations are higher/lower than normal. The typical
variation in atmospheric gas concentration is relatively small,
so differences in the PSD measurements are expected to be
minimal. However, we do not intend to detect the differences
directly using the proposed system but to process the current
PSD for the target gas at the altered level. Thereafter, the

proposed intelligent sensing layer will detect small variations
in gas concentrations relative to previously maintained training
data. Moreover, due to turbulence in the network (e.g., changes
in humidity, power supply instability), discrete fluctuations
of the signals may occur, potentially resulting in inaccurate
gas concentration measurements. To this end, by integrating
ML and AI in the intelligent sensing layer, the data-cleaning
process can be configured to handle anomalies that appear as
signal fluctuations, before the data is used to make predictions.

To explore this challenge, PSD differences relative to the
prevalent atmospheric concentration of the targeted gases were
measured for a fixed distance of 100 m between the transmitter
and receiver. Figure 5 presents the measurements of PSD
differences for O3, SO2, and CH4 gases when their expected
concentrations vary. The frequency ranges corresponding to
each gas was selected by studying the PSD measurements.
From Fig. 5, we see a significant difference in the PSD for all
concentrations at 0.8424, 1.2951, and 1.4930 THz frequency
for O3, SO2, and CH4 gases, respectively. Additionally, as
a special case, we notice PSD differences were maximized
at another frequency (1.3431 THz) for SO2 gas. Similarly,
we noticed high PSD differences in particular frequencies for
other gases considered in this study. This shows that we can
apply ML techniques to locate the changes in PSD size to
determine the different gas levels at specific frequencies when
analyzing the big data collected through the proposed network.
In future work, this analysis might be extended to predict a
certain gas concentration and localize it using ML Techniques.

CHALLENGES

In this section, we list some challenges associated with
the use of THz signals for sensing, and in particular, when
deployed onto proposed 6G infrastructure.

Ultra-dense Sensing Signals

Given the spatial dispersion of gases within the environ-
ment, an essential requirement is the creation of a THz signal
blanket that covers an area with sufficient spatial granular-
ity. To cover specific areas, we could increase infrastructure
density, such as passive IRSs and UM-MIMO base stations.
Although drones may be able to carry nanonetwork sensing
panels, they might not be able to cover an area for a period
long enough to sense the changes in the gas concentration.
Therefore, protocols that consider the tradeoffs between max-
imizing spatial coverage and minimizing energy consumption
will need to be developed to allow fine-grained spatial sensing.
In addition, interference between the beams might occur,
especially if the number of simultaneous beams is large.
However, this should not cause serious problems because THz
beams are deliberately thin due to the utilization of high-gain
antennas.

Sensing Frequency Switching

The need to switch between frequencies on a single device,
to facilitate communication as well as gas sensing, poses
technical challenges. One promising approach is to use a
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Fig. 5: Comparing PSD difference for ozone, sulfur dioxide, and methane relative to their standard atmospheric concentrations.

multi-band antenna array comprising several nano-antennas
working at different frequencies. The frequency of graphene-
based antenna strips can be tuned to make this technique
possible [4]. However, mutual coupling could pose difficulties
when integrating these multi-band antenna arrays because of
ultra-dense integration (c.f., ultra-massive MIMO [15]). More
research into metamaterials and their integration into such
antenna arrays is needed. Since the sensing unit needs to sweep
through multiple frequencies, a chirp spread spectrum needs
to be generated and analyzed. This provides an opportunity
to utilize the large bandwidth in the THz spectrum, normally
used for communications, for sensing a wide frequency range.

Reconfigurable Beam to Minimize Sensing Deafness

While (massive) antenna arrays in the THz spectrum can
be used to generate pencil-thin beams to overcome the path
loss and meet the link budget requirements, different frequency
beams and distributions might be needed to meet the sensing
requirements. These include a range of beam configurations,
from quasi-omnidirectional short-range beams to single and
multiple directional beams. Such flexibility results in hardware
challenges that will require on-the-fly reconfiguration of the
beam shapes.

Gathering Data for Analysis

We propose that path loss as a function of frequency can
be used for sensing, but estimating the location of the sensed
region remains a challenge. We propose the use of ML to tri-
angulate signals from multiple sources. This will lead to a vast
quantity of data for training as well as accurate detection. This
data analysis is needed because numerous factors can affect the
signals and they can be confounded with each other, making
accurate measurement difficult. The data analysis can also
assist in minimizing the energy consumption from each device.
This can be achieved by varying the sleep cycles of the sensing
duration in line with changes in the measured gas. Moreover,
signal processing of big data collected through the network
is computationally expensive and time-consuming. Thus, real-
time monitoring of targeted atmospheric gas concentrations
will raise significant challenges, such as a) predicting how
much data will be collected and needed and b) managing the
hardware and other technology requirements for processing
data. Furthermore, since the main objective of every network

architecture is to provide continuous and reliable connectivity,
we propose gathering data for gas sensing during time intervals
the channel is not needed for communication. Intermittent
sensing is sufficient because local gas concentrations change
slowly, and this will reduce the amount of data to analyze.
Finally, accurately measuring gas concentrations when H2O is
present is a challenge. H2O concentration in the atmosphere
varies unpredictably due to environmental conditions. Since
H2O molecular absorption loss is much higher than other
gases, it is challenging to sense other important gases when the
H2O percentage is high (e.g., exceeds 1 percent). Furthermore,
the atmospheric concentrations of some gases used in the
study are expected to be very small, so they are difficult to
detect, and changes in their concentrations might be even more
difficult to estimate.

CONCLUSION

Early visions for 6G systems agree that new infrastructure
will be needed in the next generation of wireless systems,
beyond what is currently being deployed for 5G. Such new
infrastructure includes IRS, EM-nanonetworks, and increased
frequency spectrum in the THz band. In this paper, we
have investigated how we can exploit the absorption of THz
signals by certain gases as a new sensing capability for 6G
communication networks. Through a preliminary analysis, we
show how path loss and power spectral density can be used
to sense various gas types. While many challenges await the
deployment of our proposed approach, we lay the groundwork
for research into how newly added functionalities in telecom-
munication infrastructure can measure data for climate change
sensing.
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Fig. 6: 6G Network architecture for communication and sensing.
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Fig. 7: Simulated molecular absorption losses of THz signals for ozone, sulfur dioxide, and nitrogen dioxide using HITRAN
data.
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Fig. 8: Measurement sensitivity curve for ozone and methane, showing expected gas concentrations and the confidence intervals
(LCL: Lower Confidence Level, UCL: Upper Confidence Level) of the predicted gas concentrations.
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Fig. 9: Total power spectral density for ozone, nitrous oxide, and methanol considering a mixture with and without water vapor
and varying distance between transmitter and receiver.
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