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Abstract—Millimeter-wave (mmWave) spectrum offers wide
bandwidth resources that are promising to realize high-
throughput wireless communications in agricultural fields. Due to
the relatively small wavelength at this frequency band, mmWave
signals tend to be scattered when the wireless link is established
above the crop canopy. However, little is known about the
scattering effect caused by crop canopy at mmWave. In this work,
the scattering loss in the mmWave spectrum is quantified for
different crop canopy states that are represented by the leaf area
index. In particular, an approach based on a Rayleigh roughness
criterion is utilized, coupled with canopy height statistics, to
calculate the scattering loss. The results of the model agree well
with empirical data collected from agricultural field experiments
conducted in Summer 2021. The results demonstrate that as the
leaf area index decreases with crop maturity, the scattering loss
also decreases. This is the first work that illustrates the feasibility
of using the mmWave communication links to perform sensing
on the leaf area index, which is a critical metric in estimating
crop conditions.

Index Terms—Scattering, wireless agricultural networks,
millimeter-wave communications, leaf area index, field experi-
ments.

I. INTRODUCTION

Wideband wireless communications are crucial in enabling

high-throughput networks globally [1]. In recent years, nu-

merous solutions and applications have been developed to

explore frequency spectra that offer wide bandwidth resources,

leading to high spectral efficiency. These include millimeter-

wave (mmWave) beamforming [2] and ultra-massive multiple-

input–multiple-output (MIMO) communications [3]. While

these solutions primarily target densely populated areas, such

as dense urban environments and indoor offices, there is a

need to explore emerging scenarios for rural broadband. Of-

ten overlooked, these scenarios include agricultural networks,

where the increasing demand for precision agriculture calls

not only for agricultural Internet of Things (Ag-IoT) [4], [5]

but also wideband high-throughput communications and the

novel sensing modalities that come within.

One critical application in precision agriculture is high-

throughput and high-resolution crop phenotyping. Crop phe-

notyping employs images to characterize the physiological

and metabolic mechanisms of plant development [6]. This

This work is partially supported by the National Science Foundation under
grants 2030272 and 2212050.

method relies on high-resolution images to capture important

structural and biological traits for health monitoring and yield

prediction, among other purposes [7]. The size of data captured

using different imaging technologies can range from a few

megabytes to several gigabytes, depending on factors such

as image resolution, plant size, and the complexity of the

phenotyping system [8]. However, current wireless technolo-

gies used in agricultural farms, such as long-range wireless

area networks (LoRaWAN), fail to satisfy the transmission

requirements for plant phenotyping data. To this end, in this

paper, we explore the enabling agricultural sensing and
communication capabilities of the mmWave spectrum to
help bridge the digital divide in high-throughput real-time

wireless links for agricultural operations.
Using mmWave signals in precision agriculture sensing

and communication faces several challenges. Due to their

relatively small wavelength, mmWave signals are prone to

scattering when encountering rough surfaces. Recently, the

diffuse scattering effects of mmWave signals have been ex-

tensively studied in various materials, such as glass, dressed

stone walls, soil, and tree foliage [9]–[13]. However, capturing

scattering caused by crop canopies has received little attention

so far. Our recent experimental results [14], [15] demonstrate

that the crop canopy forms a new “ground” that induces

multipath effects. Due to the randomness of leaf distribution,

the crop canopy can be considered a rough surface that may

cause diffuse scattering of mmWave signals. As shown in

Fig. 1, when electromagnetic waves encounter the corn canopy,

leaves absorb a part of the incident energy, while some of the

energy is scattered back into the air in different directions. The

theoretical underpinnings of the crop canopy scattering effect

on mmWave signals are not well understood, which may lead

to novel agricultural sensing and communication capabilities.
In this work, we model the crop canopy scattering effects

at 60 GHz. We analyze the scattering loss at different growth

stages of corn crops using the Rayleigh roughness criterion ap-

proach coupled with crop-related parameters. The models are

validated using publicly available datasets collected through

our field experiments [16]. The specific technical contributions

of this work are as follows:

• We characterize the scattering effect caused by the ran-

dom distribution of corn leaves using an approach based
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Fig. 1: Crop Canopy Scattering: Impinging electromagnetic waves are par-
tially scattered and partially absorbed by crop canopy.

on the Rayleigh roughness criterion and coupled with

canopy height statistics to calculate the scattering loss

at different growth stages.

• In the Rayleigh roughness criterion model, we introduce

the parameter of fractional vegetation cover to quantify

the surface roughness of crop canopies.

• We analyze the scattering loss based on empirical mea-

surements and compare it with simulation results to

investigate the correlation between leaf area index and

scattering effect at different crop conditions.

• Based on the calculated and measured scattering loss

under various crop conditions, we explore the feasibility

of using mmWave communication links for sensing the

leaf area index.

By addressing the scattering effects caused by crop

canopies, this research aims to advance the understanding of

mmWave communication challenges in precision agriculture

and pave the way for integrated mmWave sensing and com-

munication applications in this area.

The rest of this paper is organized as follows. The related

work is discussed in Section II. Background on the geomet-

ric model of crop canopy is presented in Section III. The

scattering model is discussed in Section IV. The sensing of

leaf area index based on communication links is described

in Section V. The related field measurements and data are

described in Section VI, based on which the model is validated

in Section VII. Finally, the paper is concluded in Section VIII.

II. RELATED WORK

At mmWave bands, several empirical models are built

based on measurements to characterize diffuse scattering as

a function of the angle of incidence and roughness of the

material. For example, in [9], the 60 GHz diffuse scattering

on different building materials is characterized with respect

to varying distances from the surface, angles of incidence

using a 2 GHz-bandwidth channel sounder. They observe high

depolarization of incident signals caused by diffuse scattering.

In [10], two scattering models are derived based on radar

cross-section and directive scattering theory. The forward and

backscattering losses are quantified through simulations and

experiments at different frequencies (from 1 GHz to 1 THz).

As a promising frequency spectrum to provide ultra-wideband

communication potential, measurements at 100–400 GHz are

conducted in [11] to study the correlation between scattering

patterns and material roughness. A numerical solution based

on the finite-difference time-domain method in [12] provides

an alternative to yield accurate diffuse scattering patterns of

different surface roughness profiles.

In the direction of remote sensing on agricultural fields, the

incidence angle will affect the estimation of crop parameters.

In [13], a polarimeter at 35 GHz acting in a bistatic mode

is used to characterize the scattering coefficient of two types

of tree foliage and sand surfaces. Their results show that the

Fresnel reflectivity of sand varies with the angle of incidence.

Another important observation drawn from the bistatic scat-

tering experiments of tree foliage is that a wideband system

(with a 2-GHz bandwidth) with frequency averaging reduces

the received signal’s variability caused by phase interference.

To the best of our knowledge, no existing work has been done

to study the scattering effects of crop canopies at the mmWave

spectrum. Bridging this research gap will provide helpful

insights when designing wideband wireless communication

solutions for precision agriculture.

III. BACKGROUND: GEOMETRIC MODEL OF CROP

CANOPY

A geometrical description of crop canopy is necessary to

study the scattering effects of crop canopy on electromagnetic

waves. For a single corn leaf, its shape is usually described

as linear or linear-lanceolate with a width (denoted as w)

and length (denoted as l) [17], which can be approximated

as a rectangle. In the field, the geometry of crop canopy

relies not only on the individual leaf shape but also on (1)

how the leaves are oriented in the angular domain and (2)

how they may be distributed and/or overlapped in the spatial

domain. Thus, models of leaf angle distribution and fractional

vegetation cover are needed, as described next.

A. Leaf Angle Distribution

Each leaf has a unique angle, the leaf inclination angle,

and its value can change with different plant species, geno-

types, growth stages, and wind [18]. The distribution of this

angle captures the probability of leaf inclination angles taking

specific or a set of values in the spatial domain. The leaf

angle distribution (LAD) is an important factor in estimating

the canopy’s spectral reflectance (or albedo) and transmission

properties that are critical for light interception and photosyn-

thesis [19]. In particular, the leaf inclination angle is defined as

the angle between the zenith direction and the normal direction

of the leaf, as illustrated in Fig. 2. In our study, the factor of

LAD can help us distinguish different types of crop canopies.

For example, for corn leaves, the spherical LAD is a widely

used model, where the distribution function can be expressed
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Fig. 2: Illustration of leaf inclination angle.

as f(θl) = sin(θl), where θl is the leaf inclination angle

in radian [20]. It is shown that the spherical distribution is

independent of viewing angles [21], which makes it suitable

for incidence with low grazing angles. The assumption of

spherical LAD is essential for understanding the gap fraction

in vegetation or fractional vegetation cover.

B. Fractional Vegetation Cover of Crop Canopy

When electromagnetic (EM) waves impinge on a medium or

a material, the material will absorb a portion of the energy. Due

to the principle of energy conservation, there is also partial

energy reflected or scattered from the canopy, as illustrated in

Fig. 1. Since canopies are not fully continuous objects (i.e.,

different from glass or metal, which is a continuous piece of

material) but with gaps between leaves, and the leaves have

different inclinations (Sec. III-A), the fractional vegetation

cover is often used to describe the percentage of space covered

by a canopy, which is expressed as [22]

g(θi) = 1− exp

(−0.5F
cos θi

)
, (1)

where F is the leaf area index (further discussed in Sec. III-C)

and θi is the angle of incidence, which is independent of

θl. Notably, this model only applies to spherically distributed

leaves as discussed in Sec. III-A.

C. Leaf Area Index

The leaf area index (LAI) is the single most important

parameter in characterizing the productivity of both natural and

agricultural ecosystems and is intensively studied in optical

remote sensing [23]. LAI is defined as the ratio between the

one-sided green leaf area and unit ground surface area [24].

The value of LAI ranges from 0 (i.e., bare ground) to 6–7 (i.e.,

peak growing season) for corn and soybean [15]. LAI reflects

the concentration of biomass, water, and other biochemical

substance (ions, electrolytes) on a unit ground area that makes

it analogous to the dielectric properties of a material.
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Fig. 3: Illustration of canopy scattering model. The Tx and Rx are separated
by a distance d with their height above the canopy by ΔH . In addition to
the LoS propagation, the scattered paths in grey are due to partial EM wave
impinging on (with an incident angle θi) the rough canopy surface (abstracted
in the dashed blue curve) with a height hcanopy. Including the canopy portion,
each plant has a total height of hcrop.

D. Stratified Layers of Crop Canopy

Tree canopies in a rain forest are defined with stratified

layers in the vertical direction (from bottom to top) as forest

floor, understory layer, canopy layer, and emergent layer [25].

To help describe and analyze the geometric model of crops in a

similar way, we define the portion of individual crops growing

above the average height of the canopy as the emergent layer,

as illustrated in Fig. 4.

IV. SCATTERING MODEL OF CROP CANOPY

In this section, we study the scattering effect of crop

canopies at the mmWave spectrum, which is the main con-

tribution of this paper. In particular, we analyze the scattering

loss under different crop conditions. The scattering loss is

computed as the difference between the received power of the

path scattered from the canopy along the direction of specular

reflection (i.e., toward the receiver) and that of a theoretical

specular reflection path if the medium is lossless. Although

both Tx and Rx are in boresight, due to the very narrow

beamwidth of the antenna array, the beams that are scattered

off the corn canopy can still be distinguished during beam

sweeping.

As shown in Fig. 3, crop canopies are composed of in-

dividual leaves with different inclination angles. In order to

draw a comparison with our field experiment data, we only

consider paths scattered in the general direction following the

specular reflection (θs = θi) that can be captured by the

receiver. The scattering loss is determined by the scattering

loss factor, which depends on the permittivity of the medium,

which, in our study, is the permittivity of the canopy. Since

canopies are composed of leaves, the permittivity of canopies

can be approximated as that of a single leaf. The complex-
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Fig. 4: Relationship between crop height, average crop height, and height of
the emergent layer of the canopy.

valued permittivity, ε, in the spectral range of 1–100 GHz

with salinity level around 1% can be expressed as [26]:

ε = 0.522(1− 1.32md)εSW + 0.51 + 3.84md, (2)

where md is the dry-matter fraction and is calculated as

md = 1−Mg = 1− θv × ρw, (3)

θv is the volumetric leaf-water content, ρw is the water’s den-

sity (near 1 g/cm3), and Mg is the gravimetric water content.

In (2), the permittivity of saline water is εSW = ε′SW + iε′′SW,

which is empirically derived from [27, §4.2]. The imaginary

part of the permittivity (i.e., 0.522(1−1.32md)ε
′′
SW) determines

the loss of electromagnetic energy due to absorption. Note that

this model only holds when 0.1 ≤ md ≤ 0.5. Therefore, when

the dry-matter fraction exceeds the threshold of 0.5, or the

volumetric leaf-water content, θv , drops below 0.5, the model

may lose its accuracy.

In [28], a resistive sheet model is used to describe a leaf as

a thin-layer dielectric material with its resistance calculated as

R =
iZ0

kτ(ε− 1)
, (4)

where Z0 = 377 Ω is the free space impedance, k = 2π/λ is

the wavenumber with wavelength λ, τ is the leaf’s thickness,

and ε is the permittivity in (2). The reflection coefficient, ΓE ,

of the electric field is expressed as [28]

ΓE =

(
1 +

2R

Z0
cos θi

)−1

. (5)

The angle of incidence on the canopy surface is θi and can be

expressed as

θi = arctan

(
d

2ΔH

)
, (6)

where d denotes the distance between the Tx and Rx, and ΔH
is the difference in height between the transceiver and canopy,

as shown in Fig. 3.

To study the diffuse scattering of microwave frequencies

up to the THz band, the Rayleigh roughness criterion model

is widely used, which is based on the height of the surface

and the correlation length [11]. Therefore, this approach can

be used under the condition that the dry-matter fraction, md,

exceeds the suitable range. The Rayleigh roughness criterion

is used to determine whether the surface is considered smooth

or rough which allows impinging EM waves to be reflected

in a specular direction or scattered in different directions [29].

More specifically, if the phase difference between two reflected

paths is less than π/2 radians, then the surface is considered

smooth; otherwise, the surface is deemed rough. This can

be translated to the random height of the emergent layer

hEL, which we define as the height of an arbitrary i-th crop

hcrop, i subtracting the average crop height h̄crop (each plant

has a unique height even at the same growth stage), as shown

in Fig. 4. If the height satisfies the condition of hEL >
λ/ (8 cos θi), the surface is considered rough [29]. At 60 GHz,

when the angle of incidence is large, for example, at 75◦,

the canopy is considered rough if its height exceeds 2.4 mm,

which is always satisfied among corn crop canopies [30].

For conventional types of surfaces, the roughness is deter-

mined by the RMS height [10]. However, for crop canopies,

due to their unique geometric features, we introduce the

fractional vegetation cover (discussed in Sec. III-B) to jointly

describe the roughness of the canopy. Therefore, the roughness

of the surface should consider the height variation with respect

to the average height of the emergent layer of the canopy. The

RMS height is commonly used to describe the variation in

surface roughness [31], which, when fitting into the condition

of emergent layer height, is expressed as

hrms =

√
h2

EL −
(
h̄EL

)2
, (7)

where hEL is the height of the emergent layer and h̄EL is its

average value. We assume a Gaussian distribution for hEL [32].

The variance of this Gaussian distribution, denoted by σG,

would be dependent on the fractional vegetation cover. The

average emergent layer height will depend on the LAD, which

is h̄EL = l̄
∫ π/2

0
θl sin θldθl = l̄ and is the average length

of a leaf. The probability density function of this Gaussian-

distributed emergent layer height can be further expressed as

p(hEL) =
g(θi)√
2πσG

exp

(−h2
ELg

2(θi)

2σ2
G

)
. (8)

In this way, the observation angle, variation of the canopy’s

emergent layer, and roughness of the surface are coupled. The

scattering loss factor is calculated as [10]:

ρs = exp

[
−8

(
πhrms cos θi

λ

)2
]
J0

(
8πhrms cos θi

λ

)
, (9)

where J0 is the zeroth order Bessel function of the first kind.

The scattering coefficient can be calculated as Γs = ρsΓE

where ΓE is the reflection coefficient in the specular reflection
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condition in (5) [11]. The power scattered off the canopy

toward the direction of Rx is then expressed as

Ps = ΓsPi = ρsΓEPi, (10)

where Pi is the incidence power. Therefore, we can estimate

the scattered power from known incidence power and canopy-

related parameters.

V. LEAF AREA INDEX SENSING

Wireless sensor networks have been widely explored and

deployed in agricultural fields as an integral part of Ag-IoT

for precision agriculture [4], [5]. These networks, along with

other sensing instruments, play an important role in measur-

ing various parameters related to plant and soil conditions,

yield prediction, and weather conditions. However, existing

solutions often consist of standalone systems designed solely

for a single sensing modality, increasing the cost of field

systems. To address cost constraints and improve efficiency,

there is a growing interest in integrated sensing and commu-

nication (ISAC) techniques, which enable sensing capabilities

using communication signals [33]. Exploring the potential

of mmWave communication links with directional beams for

field-pertinent sensing is a promising approach for advanced

and low-cost agricultural sensing.

One of the benefits of leveraging beam sweeping for agri-

cultural sensing is the ability to provide high spatial gran-

ularity while maintaining communication spectral efficiency.

The directional beam acts as a probe, capturing channel

characteristics and embedding them in the received signals.

The channel statistics can be inferred by analyzing these

signals, thereby gaining insights into the physical phenomena

that shape the channel (e.g., leaf structures). Since directional

communication systems require frequent beam steering for

beam-pair alignment and channel estimation, these signals can

be utilized for agricultural sensing with minimum spectral

overhead. In addition to these advantages, ISAC has the unique

capability to operate in darkness, eliminating the need for

ambient light required by most optical remote sensing or

camera-based techniques that utilize measured reflected or

backscattered signals and images for environment sensing.

For example, the field phenotyping facility at UNL currently

uses a camera-based technique (the Spidercam) to analyze

the photosynthesis process based on calculated reflectance

from image capture [23]. Since this field is also utilized as

our experiment site (discussed in Sec. VI), researchers are

expected to take advantage of wireless agricultural networks

at mmWave bands to perform sensing in the near future.

As discussed in Sections III-IV, the leaf water content and

the permittivity of crop canopies affect the leaf area index. The

same factors also change the scattering behavior of mmWave

signals, creating an inference path between mmWave signal

behaviors and crop leaf area index. More specifically, the frac-

tional vegetation cover, coupled with scattering loss, allows for

the deduction of the leaf area index from measured received

signal characteristics. This integration of communication links

TABLE I: Channel Sounder Parameters [34]

Parameter Value

Center frequency 60.48 GHz

Bandwidth 2.16 GHz

Antenna array size 36× 8

EIRP of Tx 36 dBm

3-dB beamwidth (azimuth) 2.8◦

3-dB beamwidth (elevation) 12◦

Beam sweeping step (Tx & Rx) 2.8◦

Sweeping range (azimuth) ±45◦

for sensing functionality paves the way for new possibilities

for accurately estimating key agricultural parameters.

Next, we discuss recent mmWave field experiments and

evaluate the scattering model as an initial step toward this goal.

We analyze mmWave signals and investigate the correlation

between leaf water content, scattering behavior, and the leaf

area index. This analysis will lead to advanced agricultural

sensing techniques for precision agriculture, facilitating im-

proved crop management and decision-making solutions.

VI. MMWAVE FIELD EXPERIMENTS

We rely on our prior field experiments with mmWave

waves in agricultural fields. A comprehensive discussion of the

experimental methodology and results of these experiments is

presented in [14], [15] along with open source data [16]. Since

we focus on the scattering effect caused by canopy surfaces

in this work, in the following, we mainly discuss the relevant

methodology and experiments.

We focus on scattering off corn canopy because our prior

results in [15] reveal that soybean canopy, due to its uniform

distribution, relatively low height, and the configuration of

our experiment equipment, does not result in considerable

scattering. In our field experiments, a pair of TerraGragh (TG)

60-GHz channel sounders [34] with IEEE 802.11ad waveform

was deployed in a research farm with outdoor agricultural

fields. The radio front-end of the TG sounder has a phased

antenna array consisting of 8× 36 elements that form a half-

power beamwidth of 2.8◦ and 12◦ in the azimuth and elevation

planes, respectively. The nominal effective isotropic radiated

power (EIRP) is around 36 dBm. A complete list of parameters

of the channel sounder is shown in Table I.

In the experiments, we utilize different operation modes,

including an extensive beam sweeping mode (in the azimuth

plane ranging from −45◦ to +45◦ with a step size of 1.4◦

and a live channel sounding mode that captures the channel

impulse response (CIR) in real-time. During beam sweeping,

a total of 4, 906 beam pairs from each of the 64 distinct

beams at both Tx and Rx are formed to find viable paths

to establish a link [34], [35]. Accordingly, a beam pair with

the maximum signal-to-noise ratio (SNR) is selected for live

channel-sounding measurements.

At the corn field, which is located at the Eastern Nebraska

Research, Extension and Education Center (ENREEC) Field
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TABLE II: Details of related experiments with crop & measurement heights, and measurement distances.

Date Crop height [ft] Measurement heights [ft] Link distances [m] Angle of incidence [◦]

July 16 6.8 10 19.2, 41.1, 61.8, 77 [84.2, 88.5]

Oct. 12 7.9 10 77 89.0

Nov. 16 1.6 (corn stubble) 10 19.2, 41.1, 61.8, 77 [75.1, 87.1]

Fig. 5: Satellite images of the experimental sites (Source: Google Maps) [15].

Phenotyping Facility near Mead, Nebraska [23], we separated

the transmitter (Tx) and receiver (Rx) at a maximum distance

of 77 m, as shown in Fig. 5. A detailed list of experiment

configurations can be found in Table II. In each of the distance

and height configurations, we collected the following data to

facilitate modeling the scattering effect of the corn canopy.

A. Data Collection

The TG sounder provides the received power, path loss,

effective isotropic radiated power (EIRP), root-mean-square

(RMS) delay spread, channel impulse response, and signal-

to-noise ratio. In addition to the channel sounder, a weather

station is available at the ENREEC facility, which measures

weather-related metrics, such as relative humidity and tem-

perature. The fact that the wavelength at 60 GHz (≈ 5 mm)

is comparable to the size of the tip of crop leaves leads to

a unique scattering environment. To this end, crop-relevant

metrics are needed to facilitate quantitative analysis of the

scattering effect.

B. Crop-related Metrics

The water content in crop leaves is highly correlated with

growth stages [36]. Measured data shows that the corn has

an average value of 72.3% volumetric water content, with

a standard deviation of 2.7% during the growing season1.

The estimated water content is significantly lower in October,

1https://cropwatch.unl.edu/water-management

TABLE III: Parameters in Simulations

Parameter Value

Temperature 20 ◦C

Leaf thickness 0.2 mm

Impedance of air 377 Ω

Volumetric water content in leaves 72.3%

Water salinity 1%

Corn leaf length 25 cm

0 1 2 3 4 5 6 7
LAI

0

0.2

0.4

0.6

0.8

1

g(
i)

i
 = 0 deg

i
 = 30 deg

i
 = 45 deg

i
 = 60 deg

i
 = 89 deg (experiment)

Fig. 6: Fractional vegetation cover as a function of LAI at different angles of
incidence.

which can range from 22% to 32%2. As crops lose water, their

leaves usually become stiffer. As we discuss in Section IV, this

corresponds to a drop in the dielectric constant of leaves.

VII. NUMERICAL RESULTS

We validate the model in Section IV based on simulations

on the power scattered off crop canopy at different growth

stages with a center frequency of 60.48 GHz. The numerical

results are compared with experimental data collected from

field measurements conducted from July to November 2021. A

list of parameters used in our simulations is shown in Table III.

As shown in Fig. 6, the fractional vegetation cover (g(θi))
varies with the angle of incidence and, intuitively, LAI. As

LAI decreases, except at shallow grazing angles, g also

decreases, exposing more soil as compared to leaves. Under

different angles of incidence, the value of g(θi) increases as

θi increases, mitigating the gaps between soil and leaves. The

2https://cropwatch.unl.edu/harvesting-drying-storing-late-maturing-high-
moisture-corn

85

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 20,2023 at 20:20:14 UTC from IEEE Xplore.  Restrictions apply. 



-90

-85

-80

-75

-70

-65

-60

-55
R

ec
ei

ve
d 

P
ow

er
 [d

B
m

]

-40 -20 0 20 40
Rx Beam Angle [degree]

(a) 19.2 m Tx–Rx separation distance on July 16.

-90

-85

-80

-75

-70

-65

-60

-55

R
ec

ei
ve

d 
P

ow
er

 [d
B

m
]

-40 -20 0 20 40
Rx Beam Angle [degree]

(b) 41.2 m Tx–Rx separation distance on July 16.
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(c) 61.8 m Tx–Rx separation distance on July 16.
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(d) 77 m Tx–Rx separation distance on July 16.

-90

-85

-80

-75

-70

-65

-60

-55

R
ec

ei
ve

d 
P

ow
er

 [d
B

m
]

-40 -20 0 20 40
Rx Beam Angle [degree]

(e) 77 m Tx–Rx separation distance on Oct. 12.
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(f) 77 m Tx–Rx separation distance on Nov. 16.

Fig. 7: Measured received signal patterns at different growth stages from July (peak growing season) to November (after harvest).

TABLE IV: Simulation Results Based on Field Experiment Configurations

θi LAI hrms [mm] Scattering Loss [dB]

84.2◦ 3.5 13.0 18.7

87.3◦ 3.5 13.0 12.1

88.2◦ 3.5 13.0 8.5

88.5◦ 3.5 13.0 6.6

89.0◦ 2 10.0 1.5

permittivity of a leaf, when it is fresh in July, and temperature

is T = 20 ◦C, is calculated as 5.2769+6.3925i, which matches

well with the model in [28]. As the crops mature and leaves

lose water, the permittivity drops significantly, especially the

imaginary part, which serves as the medium loss factor. A

smaller value implies that the medium absorbs less energy

and, according to the conservation of energy, more energy is

scattered back into the air.

The scattering loss factor computed from (9) is shown in

Table IV, where five different angles of incidence and two LAI

values based on field measurement data are considered. It is

shown that when the LAI is high and with an incidence angle

of 84.2◦, the scattering loss is calculated as 18.7 dB, which is

higher compared to that when the angle of incidence increases.

As LAI decreases with the maturity of crops, the scattering

loss also drops. This trend is also reflected in the received

power patterns in field experiment data, which are shown in

Figs. 7. In Figs. 7a to 7d, the impacts of Tx–Rx separation on

the received power distribution can be observed based on data

collected on the same day (July 16th). The received power
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Fig. 8: Comparison of simulation and field experiment results (Note: “n/a”
denotes that the value of LAI was not measured in October 2021.)

decreases as the distance increases. The paths on both sides

of the main beam range (the highest two or three adjacent

beams with 2.8◦–5.2◦ angular range) indicate scattered paths.

It is observed from the July 16 data that regardless of distance,

the scattering loss (i.e., the power difference between the most

aligned beam with the maximum received power and the scat-

tered path) is relatively consistent with a slightly decreasing

value of approximately 10 dB. Comparing the power patterns

in July and October with the same configuration in Figs. 7d

and 7e, a much stronger scattering path with less than 3 dB

difference between the main beam and the strongest scattering
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path is observed in October. In November, after the harvest

season, the received signal pattern shows a narrower angular

range of paths in the absence of crop canopy (Fig. 7f). The

results indicate that crop canopy provides diffuse scattering

with a large angular spread. This angular spread decreases as

transmission distance increases.

In Fig. 8, the scattering loss is shown as a function of the

angle of incidence using simulation and experimental data. It

can be observed that lower LAI (estimated as around 2 in

simulation for October) leads to approximately 5 dB lower

scattering loss compared to higher LAI (around 3.5 in mid-

July). This indicates that as crops mature and lose water (i.e.,

decreasing LAI), the permittivity of leaves also decreases.

Therefore, more energy will be radiated back into the air.

In addition, from the perspective of sensing using received

signals, one could retrieve the scattering loss to classify the

level of LAI based on the distinct differences.

VIII. CONCLUSION

In this work, we model mmWave signals’ scattering effect

due to crop canopies at the 60 GHz with agricultural metrics

associated with the leaf area index. A Rayleigh roughness

criterion-based approach is used to capture the scattering loss

at different crop conditions. Numerical results at different

angles of incidence and leaf area index values based on the

developed models show a good fit with the experimental data

collected from our field measurements. We demonstrate that

the scattering loss decreases as the water content in the canopy

decreases, which can serve as a metric for leaf area index

sensing.
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