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Abstract—Most neural networks (NNs) generated by neural
architecture search (NAS) are discarded except for the final
output to limit the memory usage on high performance computing
(HPC) systems on which the search is performed. However,
discarded NNs are vital for understanding the NAS structure’s
evolution and reproducibility. We design a visual interactive tool
for NN archaeology that explores the evolution of NAS structures,
finds matching subsequences in the structures, and visualizes NN
similarities across NAS outputs, including discarded NNs. We
demonstrate the capabilities of our tool to discover and visualize
matching subsequences on a dataset of NNs generated by NSGA-
Net, a genetic NAS.

Index Terms—neural architecture search, high performance
computing, genetic algorithm, NSGA-Net

I. CHALLENGES WITH NEURAL NETWORK DESIGN

Neural network (NN) architecture design plays a significant
role in deep learning because it determines the deep learning
model’s performance. Neural architecture search (NAS) auto-
mates the NN design [1], but it generates hundreds of NNs
in the process. To limit memory usage on the HPC systems
used for the search, most created NNs, except the final output,
are usually discarded [1]. However, discarded NN are vital for
understanding how architecture evolves and its reproducibility.
We address this challenge by introducing a visual interactive
tool for neural network archaeology (VINARCH). Our tool
enables users to explore NN datasets for architecture sim-
ilarities, the first step towards understanding NN evolution
and reproducibility. Our contributions are two-fold. First, we
present VINARCH and its capabilities to analyze matching
subsequences within NN architectures, calculate the distance
between networks to quantify similarities, and summarize
a wide range of validation accuracy statistics. Second, we
use VINARCH with a dataset of evolving NNs generated
by NSGA-Net, a genetic NAS, demonstrating VINARCH’s
capabilities to discover and visualize matching subsequences
in the dataset.

II. DESIGNING OUR VISUAL ANALYTICS TOOL

We design VINARCH to integrate visualization and ana-
lytics features of NN architectures. VINARCH currently sup-
ports analyzing NNs created by NSGA-Net as nested binary
arrays, but work in progress extends our tool to other NAS
implementations. NSGA-Net is a well-known, open-source
NAS that uses a genetic algorithm for NN searches [2]. Its
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goal is to reduce the error rate and required computational
resources by optimizing prediction performance and computa-
tional complexity [2]. Figure 1 shows an example of NSGA-
Net networks. The figure depicts an NN architecture as a
graphic and binary array. The graphic and binary array are
color-coded to show three connectivity phases within the NN
structure. The three arrays (colored in red, blue, and orange)
each represent a connectivity phase with up to four basic
computational units [2]. Each phase shows the presence (1) or
absence (0) of a connection between the basic computational
units. VINARCH drops the brackets of the resultant NSGA-
Net NN structures such that a binary array represents each
NN and compares all NN structures pairwise. Going through
each NN, VINARCH stores the starting index when binary
arrays match. It stores the matching subsequence and sequence
length in a summary CSV file, including variables such as
the binary arrays of the matching subsequences, their length,
starting index, NN index, count, and mean validation accuracy.
Only subsequences longer than four are stored. VINARCH
assigns a unique ID number to the unique NN structures.
The analysis counts the number of unique NN structures with
subsequences and calculates the mean validation accuracy
across all networks with that subsequence. Using this data,
VINARCH generates a set of visualization plots, including
a scatter plot of subsequence statistics. To study similari-
ties between networks, VINARCH supports the creation of
heatmaps for the distances between the networks from selected
subsequences. It offers two choices for distance calculation for
distance metrics: Euclidean and city block distance calculation.
Distance depicts the similarities and differences between these
networks; a higher distance represents that the two networks
are less similar, and a lower distance represents that they are
more similar. VINARCH also generates an NN visualization
of the structures for selected unique NN indices from the
scatter plot in the ascending order of corresponding validation
accuracy to get a deeper view and see the actual NN structures
and their validation accuracy. Using our visualization, users
can compare or contrast the NN structures and identify the
matching subsequence structure starting from the scatter plot.

III. DEPLOYING OUR ToOL WITH A USE CASE

To demonstrate the capabilities of VINARCH’s visualiza-
tion and analytics, we use a dataset of 100 NNs generated
by NSGA-Net’s evolutionary algorithm [3] and trained for
13 to 25 epochs [4], [S]. We extract matching subsequences
with their corresponding validation accuracy among all created
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Fig. 1. Example of NSGA-Net’s NN structure with its connectivity phases and basic computational units, both in graphic and array representation.

NNss; the subsequence lengths range from 5 to 20 binary digits.
VINARCH assigns a unique ID number to the 97 unique NN
structures from 0 to 96. Figure 2 shows our dataset’s scatter
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Fig. 2. Scatter plot of matching network subsequences statistics for our
dataset.

plot of subsequence statistics using Bokeh library. The x-axis
represents the sequence length of common binaries found, and
the y-axis represents the mean validation accuracy. The size
of each point represents the count of unique NN structures.

In our demonstration, we select one point with 14 binary
digits using the interactive features of our tool. Table I
describes the statistics associated with the selected point (i.e.,
the matching subsequence, subsequence length, starting index,
network indices, count, and mean validation accuracy). Ac-
cording to this data, the unique NN structures of 11, 29, 30, 43,
and 49 contain the identical subsequence of length 14 starting
at the first index. Figure 3 shows the structures of the selected
NN indices for our use case in Table I. Yellow cells indicate
1, and purple cells indicate O of the binary array. VINARCH
allows us to identify a matching subsequence across the five
structures (outlined by dashed lines). Our tool also provides
us with the validation accuracy for each sequence.

IV. CONCLUSIONS AND FUTURE WORK

We present VINARCH to allow users to analyze NNs
generated by NAS across multiple generations through various
visualization tools. VINARCH can assist with studying the
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TABLE 1
SUMMARY OF SELECTED POINT IN FIG. 2.

(1,0,1,1,0,1,1,0, 1,0, 1, 0, 1, 0]
14

Matching subsequence

Sequence length

Starting index 0
11, 29, 30, 43, 49

Network indices

Count 5
89.66

Validation accuracy
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Fig. 3. Network structure of selected network indices in our dataset in
ascending validation accuracy. The dashed line represents the matching
subsequence.

evolution and reproducibility of NAS-produced NN architec-
tures. Future work includes expanding VINARCH to support
a larger number of NAS, integrating new visual analytics
capabilities, and studying reproducibility across larger NN
databases.
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