
Online Boosted Gaussian Learners for in-situ
Detection and Characterization of Protein Folding

States in Molecular Dynamics Simulations

Harshita Sahni∗, Hector Carrillo-Cabada†, Ekaterina Kots‡, Silvina Caino-Lores§, Jack Marquez§, Ewa Deelman¶,
Michel Cuendet∥, Harel Weinstein‡, Michela Taufer§, Trilce Estrada∗

Affiliation: ∗Universty of New Mexico, †Intuit, ‡Weill Cornell Medical Center, §University of Tennessee,
¶University of Southern California, ∥Swiss Institute of Bioinformatics

Abstract—Molecular Dynamics (MD) simulations are a crucial
tool for understanding how proteins fold. In its easiest form, MD
simulations can be scaled through data parallelism, this means
that multiple folding trajectories can be spawned and executed
in parallel, facilitating a more efficient exploration of the protein
folding space. However, due to data dependencies, the analysis of
MD simulations remains largely as a centralized process. In this
work, we propose a data parallel, lightweight technique to learn
the characteristics of protein folding states in MD simulations.
Contrary to other methods, ours can differentiate relevant states
in a single protein folding trajectory without requiring centralized
global knowledge of the protein dynamics. As its processing and
memory overheads are negligible (in the order of milliseconds per
window of frames, and kilo bytes respectively) this technique can
be coupled with the simulation for in-situ analysis.

I. INTRODUCTION

Proteins are complex molecules composed of amino acid
residues [1] that perform critical functions in cells, like
providing structure, catalyzing metabolic reactions, and
transporting molecules. Advances in X-ray crystallography
and even in Machine Learning [2] have allowed us to extract
proteins’ tertiary structure, which provides insight on how
proteins perform their function. However, this structure is not
static, it folds and unfolds to perform the protein’s functions.
Changes in factors like pH, temperature, and composition of a
solution can make a protein go through a number of molecular
events that may induce conformational changes. Structural
rearrangements, binding events, and protein associations [3]
are examples of such changes. Understanding why and how
conformation changes occur is crucial, because they provide
information about the biological, self-assembly functions, and
molecular mechanisms of the protein [4].

Molecular Dynamics (MD), which is based on statistical
physics, is used to simulate the folding process of proteins
over a period of time [5]. Each time step, which is termed
as a frame, defines the conformational state of the protein
at a specific point in time. The chain or collection of frames
forms a trajectory. MD simulations have been successfully
scaled up in HPC environments, as they are task and data-

parallel. That means, they can be decomposed into multiple
independent trajectories with their own data, and processed
in parallel. Proteins and other biomolecules have incredibly
intricate atomistic dynamics that span time periods from
subpicosecond to hours [6], [7]. Depending on its sampling
rate and length, each simulation can produce gigabytes of
data [8]. Analysis of MD simulations includes finding specific
molecular events and the conformation changes that a protein
undergoes. Traditional analyses rely on building a global view
of all the conformations in all of the trajectories for a specific
molecular system [9]–[11]. This form of analysis represents
a scalability bottleneck since individual simulations tend to
explore only a relatively small number of the possible folding
conformations of a protein [12]. Thus, multiple trajectories are
needed before even being able to start analyzing a system.

Coupling simulations with data analytics on the same node
(i.e., in-situ analysis) has shown to be effective in multiple
domains [13]–[17]. However, the requirements to make this
approach work are not trivial: to begin with, sharing resources
between simulation and analysis necessarily constrains the
amount of computation, memory, and I/O that are available
for the analysis. Large overheads would negatively impact
the simulation’s performance, defeating the whole purpose
of in-situ analysis. Second, communication among analysis
processes is prohibitive. Since the expectation is to be able
to scale the analysis at the same rate as the simulations, the
analysis must also be perfectly parallel. This point constrains
the analysis to derive global insights from local information
only.

Contributions. In this paper we present our method for
in-situ analysis of MD simulations through Boosted Gaussian
Learners. We designed this method with the in-situ constraints
in mind: it works as a stream, its memory and CPU overheads
are negligible, it does not require communication with other
analysis processes, and it is able to detect and model protein
folding states with only local information.

The paper is organized as follows: in section 2 we discuss
the state of the practice with respect to MD analysis; in section
3 we describe our approach to learn the characteristics of

20
23

 IE
EE

 1
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 e
-S

ci
en

ce
 (e

-S
ci

en
ce

) |
 9

79
-8

-3
50

3-
22

23
-1

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

E-
SC

IE
N

CE
58

27
3.

20
23

.1
02

54
89

5

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 30,2023 at 16:23:19 UTC from IEEE Xplore. Restrictions apply.

protein folding states in MD simulations; in section 4 we
evaluate our results in terms of accuracy and performance;
section 5 summarizes our work and future research.

II. STATE OF THE PRACTICE

In recent years, machine learning has been increasingly
applied to the analysis of protein simulations, and in this
section, we provide a review of the most common approaches
to studying molecular events and detecting relevant folding
states in protein simulations.

Dimensionality reduction techniques. There are methods
that use dimensionality reduction and rely on finding special-
ized features in order to capture the slow movements of the
protein and study molecular events [18]. For example, work
has been done [19]–[22] to represent protein trajectories using
diffusion maps, which makes it simpler to analyze and define
numerous states in the protein. These maps can also be used to
identify significant patterns that capture the intrinsic structure
of the system. Furthermore, methods like t-SNE [23], Sketch
Maps [24], [25], UMAP [26] and Isomaps [27] have been used
to project the data onto a lower dimensional representation
for understanding the behavior of the system and identify-
ing molecular changes. Time-lagged independent component
analysis (tICA) [28] is the gold standard dimensionality reduc-
tion technique used in representing otherwise highly complex
multidimensional conformational spaces of protein dynamics.
tICA is used for encapsulating the slowest-moving components
and ignoring the fast or irrelevant features [9]–[11]. Principal
Component Analysis (PCA) is also used to detect important
motions in the protein system [29], [30]. However, tICA is
more suitable for the task, since PCA selects the features with
high variance and tICA identifies the slow reaction coordinates
or finds a maximally slow subspace at a given lag time,
which is useful when the goal is to detect molecular events
from MD data. Plenty of work [31]–[34] has used tICA
to detect and track how the protein moves through several
conformational states. However, tICA can be misleading in the
detection of relevant molecular changes where faster degrees
of freedom are useful in representing the changes. Another
disadvantage is that the selection of lag time is important to
properly discretize the space [18]. The main drawback of using
dimensionality reduction techniques is that to find accurate
analyses of conformational states, it is crucial to mix various
evaluation criteria rather than relying solely on one of them.
Also, it is hard to select the correct latent space representation
that separates the states of the protein [35], [36] and significant
manual exploration is needed to achieve satisfactory results.

Clustering. Another alternative to identify metastable states
of the protein system is through clustering. Work by Keller et
al. [37] puts together different kinetic and geometric clustering
techniques to study the various states in a protein trajectory.
Sittel et al. [38] developed a density-based clustering tech-
nique to study the conformational states with a complexity of
NlogN (where N is the number of input points/frames). Of
particular importance in this domain is Markov State Model

(MSM) [10], [11], [39], which is used to examine conforma-
tional dynamics of a system for predicting different behaviors
in protein trajectories [40]. Several other works in the literature
also used tICA and MSM for state analysis of protein fold-
ing [41]–[43]. In MSM, the molecule’s conformation defines
the states, and the probability that the molecule will change
from one conformation to another defines transitions between
the states. It is one of the most widespread strategies used
to cluster the distinct states for short trajectories [44], [45].
The main drawback of these clustering techniques is that one
needs to maintain caution when selecting the hyperparameters.
For example, predetermining the number of clusters, choosing
collective variables, and selecting the right algorithm for a
specific molecule. Substantial manual intervention is necessary
for these algorithms to converge to accurate folding states.

Other Machine Learning approaches targeted classifying
protein trajectories into specific folding states. Zhou, Dong,
and Tao [46] employed Decision Trees (DT) and Artificial
Neural Networks (ANN) for classifying ligand unbound and
bound states from MD trajectories of the PDZ2 protein. Hay-
atshahi et al. [47] worked with Deep Neural Networks (DNN)
and DT for classifying different states of the PDZ3 protein.
Approaches such as Time lagged Autoencoder (TAE), Encoder
Map, and Variational Dynamic Encoder (VDE) are used for
finding collective variables or features to represent the high
dimensional data [48]. They exploit the reconstruction losses
in order to find useful embeddings to study the molecular
events. In addition, Oliver et al. [49] used various traditional
ML approaches, namely principal component analysis (PCA),
random forest (RF), autoencoders, restricted Boltzmann ma-
chines, and multilayer perceptron, to analyze various con-
formational states within the soluble-protein calmodulin. All
these techniques are centralized and contrary to our method,
they require all trajectories to be computed before they can be
used for analysis.

In situ analysis of MD simulations. There are some frame-
works that offer ways by which analysis of MD simulations
can be performed in situ. However, these techniques require
major efforts to screen the conformational states through
the protein structures which are generated at run-time. Also,
the state analysis is still relegated to sequential processing,
when the simulation is completed. For example, VMD [50]
can be used for in-situ analysis [51], but it only provides
visualization insights rather than automated analysis. A more
general approach, proposed by Tu et al. [52] developed a map-
reduce-based framework called the HiMach, which develops
a platform to analyze MD simulations in situ. In this work,
they performed All-to-All RMSD (i.e., computing the average
distance between atoms of superimposed proteins compared to
a reference structure) within a sliding window. This approach
has two drawbacks. (1) All-to-All RMSD is computationally
expensive and (2) evaluating All-to-All RMSD between a
sliding window might not provide an accurate analysis for
the complete set of structures within the trajectory. Dordaneh
et al. [53] monitor secondary structures at runtime to analyze
MD data.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 30,2023 at 16:23:19 UTC from IEEE Xplore. Restrictions apply.

III. METHOD

When a protein transitions into different conformational
states, the process is not as clean and definitive as we would
like. On the contrary, the protein may partially move from one
conformation to another, and then return to the previous fold,
or transition completely into a different conformational state.
Given a long enough simulation, the protein can move around
the free energy landscape and transition into multiple states
back and forth. In order to successfully determine the different
conformational states adopted by the protein through the
simulation, the detection mechanism needs to be able to adapt
on the fly. That is, it needs to be able to accurately identify
changes in the distribution as new data is collected. On top of
that, to be able to analyze MD simulations in-situ, we require
an analysis solution with minimum compute and memory
overhead, and no other communication than collecting the
input data. Our MD in-situ analysis, based on online boosted
Gaussian learners, meets all of those requirements.

In this section, we describe the two main components of
our method: Section III-A explains the steps we take to
project the original data into a much lower dimension. Then,
Section III-B presents our online analysis pipeline for which
we incrementally generate a graph that characterizes different
conformational states that are observed as the simulation
progresses.

A. Extraction of Spatio-Temporal Features from Local Protein
Dynamics

The main idea of our method is to model the behavior
of the protein dynamics when we assume the protein fold is
in a specific state. That is, to determine what is the normal
range of movement of this conformation. To do so, we do
the following: 1) process every frame to extract its collective
variables, 2) collect a window of frames to capture the spatio-
temporal correlation of residues of interest, and 3) perform
Non-negative Matrix factorization over the window of frames.

Input. Our analysis process receives from the simulation
one topology file and trajectory information. The topology is in
the Protein Data Bank (PDB) format, which contains a variety
of annotations, including atomic connectivity and 3D atomic
coordinates. This file is used only once at the beginning of
the analysis to determine the atoms to be used during the rest
of the simulation. The trajectory data can be in either XTC,
which is the Gromacs compressed trajectory format, or DCD,
which is a cross-platform binary trajectory format used by
CHARMM, NAMD, LAMMPS, and OpenMM. The trajectory
data contains updated atomic 3D positions used to calculate the
specific protein conformation at a given frame. To ingest the
input data, we use mdtraj, an open library for the manipulation
of configurational data from MD simulations [54].

Extraction of collective variables. Collective variables
(CVs), also referred to as reaction coordinates are features
used to describe each frame of the MD simulation. Instances
of CVs are inter-atomic distances, dihedral angles, the radius
of gyration of atoms in the system, among others. CVs and
the specific residues of interest are determined by scientists

with the intention of capturing a specific molecular process;
for example, the opening or closing of a pocket, the transport
of atoms across a membrane, or the folding of a particular
structure. In this work, we use all-pairs of inter-atomic dis-
tances, a.k.a an Euclidean distance matrix [55], in Angstroms,
among all pairs of alpha-Carbon atoms of the residues of
interest. Even though other distance metrics are available, the
Euclidean distances are robust to rotational changes in the
protein and hence serve as the best collective variable for
detecting molecular events. Figure 1 shows three frames of the
BBL simulation: the protein conformations and their respective
distance matrices for residues of interest. Each row and column
correspond to a particular alpha-Carbon, and the intensity of
the cell is the distance between each pair of atoms.

Fig. 1: Input: atomic distance between residues of interest

Frame collection. In order to capture temporal information
from the protein dynamics, we collect a consecutive set of
frames, that we call a window. Empirically, we determined
that 50 frames per window gave us the best trade-off between
efficiency and preservation of information. A window of 50
frames is also a small enough number given that our typical
simulations range from 6,000 to 60,000 frames. More than
50 frames can be used if simulations are performed at a very
fine-grained temporal resolution. However, less than 50 would
result in suboptimal performance for our learning algorithm,
as discussed in Section III-B. Finally, to process a window
of frames, we flatten the distance matrix into a vector and
concatenate the frames to produce a matrix X of the size
number of residues squared times 50.

Non-negative Matrix Factorization (NMF) [56] is a matrix
decomposition technique that factorizes an input matrix X into
two smaller matrices: a feature matrix W , and a coefficient
matrix H . W and H exhibit clustering properties and can be
used to identify underlying patterns or structures in the data.
The key constraint in NMF is that all values must be larger
than or equal to zero. This constraint is easily satisfied in our
setup, since atoms can only have positive Euclidean distances.
Formally, NMF uses the Non-negative Double Singular Value
Decomposition [57] to minimize the Frobenius norm between
X and WH:

dFro(X,WH) =
1

2
||X −WH||2Fro (1)

Our input, the matrix X , contains m rows and n columns,
where m is the square of the number of residues of interest

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 30,2023 at 16:23:19 UTC from IEEE Xplore. Restrictions apply.

(i.e., spatial information), and n is the number of frames
(i.e., temporal information). Given a hyperparameter k <
min(m,n), W is a matrix of size (m × k), that can be
thought of as k protein conformation archetypes comprising
relevance of distances among residues when the protein is in
this particular state. The higher the value of a distance pair,
the more important the relationship between these residues
is to characterize the particular protein conformation. H is
a (k × n) coefficient matrix that defines the importance of
the k components to each frame. The k components of W
and H are obtained in an additive way. Components are
superimposed and never subtracted, resulting in a series of
sparse interpretable models.

To select the latent size k for the NMF decomposition,
we test values ranging from the square root of the minimum
dimension in X and the number of frames in X (i.e., 50). We
stop the search as soon as the maximum squared residual is
less than 0.002. That is, when the maximum reconstruction
error between (X −WH) is less than 0.05 Angstroms.

B. Online Boosted Gaussian Learners

For the in-situ scenario where we are positioning this work
on, there are hard constraints in terms of resource utilization,
as well as in the type and amount of information that is avail-
able during the analysis, especially when we are investigating
a new protein or protein mutant. We are required to detect
relevant conformation changes at run time, and produce global
insights with only local information. That is, we need to be
able to identify relevant folding states in a multidimensional
space so that the analysis is able to discover only frame by
frame.

To account for these important characteristics of our prob-
lem we took loose inspiration from Online Boosting algo-
rithms [58]. In regular Boosting [59], multiple base models,
also known as weak learners, are built in an incremental way,
where a new model is trained from instances weighted by
the errors of the last model. Instances that were misclassified
by the last model account for half the weight of the training
instances for the new model. Through this process, new models
become more specialized than their predecessors. Then, a
voting mechanism is used to determine the final prediction.
A disadvantage of Boosting for our scenario, is that all data
needs to be available at once (e.g., all simulations from all
trajectories in a system). On the other hand, Online algorithms
process every data instance (e.g a single simulation frame)
as it is seen by the algorithm for the first and only time. In
Online Boosting, as new instances arrive, they are classified
in order by the trained models, when one of them produces a
misclassification, the instance receives a higher weight to be
used to update the next model.

Differently from other Boosting algorithms where the base
models are usually decision trees or decision stumps, we
choose to use Gaussian models as the base of our weak
learners. This decision was made because we observed that
when a window of frames contains mostly similar folding
conformations, and we use NMF to project and reconstruct the

window of frames, its residuals are Normally distributed. We
also observed that when the protein is transitioning between
different folding states, these residuals are either heavily
skewed or show a marked distribution change. With these
two observations, we hypothesize that we could fit a Gaussian
distribution to the residuals, and use it to identify when the
protein was changing conformations. We define our Gaussian
Learners as parameterized decision functions that determine
whether a sample of reconstruction errors e = e1, e2, ...en
can be explained by its mean, variance, and maximum recon-
struction error:

GL = f(e,N(µ, σ2),Mk, k, αµ, αs) :

True if


µ+ z σ√

k
≤ e ≤ µ+ z σ√

k

αs ≥ Mk/(k−1)∑
(ei−e)2/(n−1)

max(x) < 1Å

(2)

where z = zscore(1−αµ/2). Since our method is designed
to work online and does not store data from other windows,
we use Welford’s online algorithm for the calculation of the
variance in a single pass [60] to calculate parameters µ, σ2

and Mk (see equation 3), where µ is the accumulated mean
of k instances, σ2 is the biased variance estimator, s2 is
the unbiased variance estimator, and Mk is the accumulated
squared sum of mean differences. In this way, for every
Gaussian Learner, we only need to store four accumulation
variables and its parameters, making it extremely cheap to
create an ensemble of learners.

δ1 = ek − µk−1

µk = µk−1 + δ1/k
δ2 = ek − µk

Mk = Mk−1 + δ1δ2
σ2
k = Mk/k

s2k = Mk/(k − 1)

(3)

The main idea of our Online Boosted Gaussian Learners
(OBGL) algorithm is this: we separate the learning stages
into States, and contrary to other Boosting methods, we have
the ability to generate additional features to be used by new
models. We define a State as a collection of weak Gaussian
learners (GL) and projection parameters obtained from NMF
(W,H). Then, we incrementally build States based on the
Normal distribution of our training window: as new data
arrives, if it can be explained by any of the trained States,
the window is assigned to that State. If it does not, then the
data window is marked as an uncertainty region and is used to
update the last State. If the number of consecutive uncertainty
windows is larger than a threshold, then a new State is created.
We keep a transition matrix to aid in the selection of the
most likely State when more than one State can explain the
window. We can also perform a probabilistic State assignment
and produce a hierarchy of states. The process continues for
as long as new data is collected. Figure 2 depicts the State
creation in two phases: for State 0 and for an arbitrary State
t. In the next paragraphs, we explain in more detail how this
sequence works.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 30,2023 at 16:23:19 UTC from IEEE Xplore. Restrictions apply.

(a) Building the initial state (S0)

(b) Generalizing to t states through boosted Gaussian learners

Fig. 2: Method overview for one state (a) and for multiple
states (b)

Our input is a window of frames, for each frame we extract
its Euclidean distance matrix and flatten it into a vector that
becomes a row in the window matrix X0, as described in
Section III-A. We initialize a graph of states G and use the first
window of frames to build State (S0), as depicted in Figure 2a.
The process is as follows:
• We perform a NMF decomposition of X0 into parameters
W0 and H0 and produce a reconstructed X ′

0 = W0 ·H0. We
calculate a reconstruction loss vector E0 = (X0 −X ′

0)
2

• We use the vector of residuals E0 to build our first Gaussian
Learner GL0,0 where we model the probability of a frame,
as expressed by its residual ek, to belong to State S0 as
P (ek|S0) = N(µ0,0, σ

2
0,0).

• State S0 is characterized by its Gaussian Learner GL0,0 =
N(µ0,0, σ

2
0,0)

Once State S0 is built, it is used to determine if subsequent
windows of frames can be explained by its single Gaussian
Learner. If a window cannot be explained, then it is marked
as an uncertainty region. After the number of consecutive
uncertainty windows surpasses a threshold τ then a new state
is created. Generalizing to t states, the incremental creation of
a state St for an arbitrary window X , as depicted in Figure 2b,
is as follows:
• We perform a new NMF decomposition of X into parame-

ters Wt, Ht.
• We use the stored W0, H0, ...Wt−1, Ht−1 and the newly

generated Wt, Ht to produce a series of reconstructed X ′
0 =

W0 ·H0 to X ′
t = Wt ·Ht and their respective reconstruction

loss vectors E0 = (X − X ′
0)

2, E1 = (X − X ′
1)

2..., Et =

(X−X ′
t)

2. Note that W0, H0, ...Wt−1, Ht−1 are shared with
the t− 1 previous states.

• For each vector E0 to Et we build their respective Gaussian
Learner for state t St = {GL0,t, GL1,t, ...GLt,t}.

• Finally, we add St to our states graph G = {S0, S1, ...St}
and add a row and a column to the transition matrix.

Once multiple states have been created, subsequent windows
are evaluated in the order given by the probability of each
state r times the probability of transitioning from the last
explained state q. That is, from Sq → Sr, as: P (Sr)P (r|q).
We can make state assignments in two different ways: 1)
hard assignment, where a window is assigned to the first
state that is able to explain it, or 2) soft assignment, where
a window can be assigned to the top few states that are able
to explain the window, where ”few” can range from 2 to 4
for practical purposes. If a window cannot be explained by
any of the existing states, then it is marked as an uncertainty
region and used to update only the last state. We do this, to
ensure the stationarity of states that have been successful at
explaining other protein conformation changes. After a certain
consecutive number of uncertainty regions are detected, a new
state is created (we call this a break-point). In order to keep
our memory overhead low, we allow for state removal. When
we are at a break-point, we assess whether the last state was
used to explain any previous window. If the state was not used,
then it is removed from our graph, and all of its parameters are
erased. In this case, we assume that it was noise that caused
the creation of the unused state.

Fig. 3: State assignment per simulation frame

Figure 3 shows a trace, after the simulation is completed,
of the temporal events detected in-situ by the analysis. In
red, we show the point in time where the different states
were created. The bar at the bottom of the image, shows to
which state each frame was assigned to. For example, blue
corresponds to frames assigned to S0. In the vertical axis, we
show the residuals per frame. For example, E1 corresponds to
the residuals generated by projecting a window X into W1 and
H1 and computing its reconstruction loss as E1 = (X−X ′

1)
2.

In this figure, it is evident the change in variance in E0 when
the new state S1 was generated. We can also see when the
protein transitioned from S0 → S1 → S0 → S1 → S0. Given
the frequency at which the protein remained in one state versus
the others, we define S0 as an actual state, S1 as a transition
state, and S3 as noise.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 30,2023 at 16:23:19 UTC from IEEE Xplore. Restrictions apply.

IV. EVALUATION

To test the accuracy, scalability and robustness of our
method we evaluated its performance on three major protein
systems: B cell translocation gene (BTG1) and its mutants,
Bovine beta-lactoglobulin (BBL), and Opsin comprising a total
of 122 trajectories. We quantitatively validated our in-situ
results with a tICA clustering produced offline [9], [41], and
we measured performance in terms of compute overhead and
memory usage.

A. Protein Systems

Protein Trajs. Res. Res. CV Frames
Globulin BBL 6 162 12 33300
Opsin 43 326 21 316953

B cell translocation gene (BTG1) Mutants
Wild-Type 23 129 8 100600
E50K 12 129 8 82000
R68L 6 129 8 84300
A8RT 1 129 8 60000
Q36H-E50K 15 129 8 100000
Q36H D107N 11 129 8 179000
A84E 1 129 8 60500
F40E 1 129 8 60500
Q36L 1 129 8 35000
Q45P 1 129 8 60200
Q36N 1 129 8 35000

TABLE I: Protein systems used for validations. Trajs: number
of trajectories per system, Res: total number of residues, Res
CV: residues of interests, Frames: Total number of frames in
the system

To validate the generality of our method across a variety
of folding landscapes, we tested our method on three major
protein systems:

Globulin BBL. Members of the Globulin family of proteins
are expressed in humans and all other mammals and share
an overall spherical shape. The beta-globulins are essential in
blood function physiology. We performed MD Simulations of
BBL with the OpenMM 7.3 software using the CHARMM36
all-atom force field at 310K and a pH of 8, sampling the tra-
jectories at a rate of 10 picoseconds per frame. We investigated
the transition between open and closed conformations of the
loop spanned by residues 83-91 to ascertain the role of Glu89
in the conformational transition. The transition is considered
complete or a new molecular event is examined when both
the side-chain orientation of residues (89 & 90) and their
backbone positions are changing [61], [62]. We investigated
six trajectories for this system with a total length varying from
2000 to 10000 frames. This system has a total of 1286 atoms
and 162 residues.

Opsin belongs to the superfamily of G protein-coupled
receptors (GPCR). It binds to light-reactive agents like Retinal
to support many physiological processes in living organisms
(e.g., light detection in circadian cycles, and phototaxis). The
MD Simulation of the Opsin protein system was performed
with OpenMM 7.4 at 310K using the CHARMM36m force-
field. Each trajectory was sampled at a rate of 80ps per

frame [63]. The trajectories encode well-known conforma-
tional changes observed in the cytoplasmic ends of the 5th and
6th transmembrane helices [63]. We investigated two variants
of Opsin. This system is composed of 326 residues and 5258
atoms (just protein). For the first system, we collected 42
trajectories, each containing 7499 frames. While the second
Opsin variant has one trajectory with 1995 frames.

B cell translocation gene (BTG1) system is associated
with the group of antiproliferative proteins. The main function
of this family is to perform cell cycle regulation and other
vital cellular processes. For BTG1 and its mutants, the MD
simulations were performed with OpenMM 7.4 using the
CHARMM36 force field parameters with 310 K temperature,
sampled with a rate of 10 picoseconds per frame. For this
system and its mutants, we investigated the protein region
formed by helices alpha-2 and alpha-4 [43]. We investigated
82 trajectories obtained for 11 different mutants of BTG1. The
length of the trajectories ranges from 1000 to 63910 frames.
The system consists of 129 residues and the number of atoms
in the simulated systems range from 2061 to 2077.

Table 1 provides additional details on the specific proteins
and mutants, as well as the specific number of trajectories,
number of frames, and number of residues of interest used in
the simulations.

B. Accuracy Evaluation

To quantify the accuracy of our method, we validate our
results through comparison with an independently generated
tICA map described in Section 2, above. The dimensional-
ity reduction method tICA [9] has widespread application
in representing otherwise highly complex multidimensional
conformational spaces of protein dynamics. To obtain the in-
formation needed for quantifying the accuracy of our method,
the MD simulation trajectories, including all the spawned
trajectories, are projected onto the 2D tICA space (shown in
Figures 4 - 5). The tICA space is computed only after the
simulation for a specific protein system has been completed
(i.e., this information is not available while performing in-
situ analysis). Projection of the MD simulation data, given
enough sampling, on the tIC1 & tIC2 space creates a 2D
representation of the free energy surface of the conformational
transition in the protein of interest. As such, it provides us
with important thermodynamic information. For example, the
location and number of the free energy minimums: indicating
stable conformations, and maximums: indicating energy bar-
riers that the system needs to overcome to proceed with the
conformational transition. Briefly outlined, the offline protocol
for clustering protein conformation states is as follows: 1)
collect all trajectories for a particular protein system, 2) build a
matrix of atomic distances between the residues of interest for
all of the trajectories of a particular system, 3) Perform the
tICA decomposition and select the first two components, 4)
Use the projected data into a 2D space and perform k-means
clustering on the 2D-TICA coordinates, 5) Refine the final
clustering assignment using an agglomerative clustering based
on the transition matrix of the system. With this information,

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 30,2023 at 16:23:19 UTC from IEEE Xplore. Restrictions apply.

we were able to quantify the accuracy of our method. To
determine if the states found by our method were coherent
with the tICA space, we projected each trajectory onto its
tICA space. In the next figures, we show examples of our in-
situ state identification with respect to the tICA clustering for
trajectories of varying degrees of complexity.

Figures 4 and 5 show two representative trajectories. Part
(a) shows the State trace produced at run time. This trace
shows the time when new states were created (vertical dotted
lines), uncertainty regions (vertical gray bars), states to which
a frame was assigned (bottom colored bar), residuals for each
state (vertical axis, denoted by E0 to E7), and the distinction
between regular states and transition (T-State) and noise (N-
state). Part (b) shows the state assignment produced by our
in-situ method after being projected into the tICA space for
the system. It is important to recall that this 2D space is not
available a priori to our analysis method. Part (c) shows the
clustering of the tICA space produced after all trajectories
were collected. We look for clusters that are in the right
position and have a consistent shape with respect to tICA.

(a) Trace of in-situ state identification

(b) In-situ clustering (c) Offline tICA clustering

Fig. 4: A83T - validation of our in-situ state assignment vs.
its offline tICA clustering.

Figure 4 represents the results for a BTG1 mutant. This is
a long trajectory, comprising 60,000 frames sampled at 10 ps
per frame, for a total of 600 nanoseconds. This simulation
exhibits three well-formed clusters in the tICA space. Our
method was able to correctly identify State 0 and State 2 as
very distinctive components and identified the transition State
1 as something in between 0 and 2. A few conformations
with a high probability of transitioning between states were
classified as noise. This information is also very relevant
since conformations in this category can be used to spawn
new simulations and produce potentially richer explorations.

The trace also shows the very well-defined transition between
S0 → TS1 → S0 → S2 → S0 → S2 → S0 → S2 → S0.
This transition pattern shows how our approach preserves the
stationarity of learned states, as older states are able to explain
frames further away in the trajectory.

(a) Trace of in-situ state identification

(b) In-situ clustering (c) Offline tICA clustering

Fig. 5: A84E - validation of our in-situ state assignment vs.
its offline tICA clustering.

Figure 5 analyzes our single more complex trajectory. This
is another BTG1 mutant consisting again of 60,000 frames
and 600 nanoseconds. The energy landscape shows irregular
areas of high density. The tICA clustering resulted in three
major clusters. Our method was able to accurately identify
them as State 1, State 3, and State 7. Their location and
boundaries match very well with the validation. Our method,
however, produced additional transition and noise states. Of
particular interest is transition State 2, which shows sections
of the trajectory with a higher probability to transition between
states 1 and 7. Proving us with insight into which specific
conformations are more useful to more efficiently explore the
energy landscape.

Table 2 presents a summary of our evaluation. Based on the
tICA clustering, as described above, we compared our results
and computed the total number of True Positives (TP), defined
as those where: a state was found and the size and shape of
the cluster were consistent with tICA; False Positives (FP):
where a state was overlapping another state, or its size and
shape were not consistent with tICA; False Negatives (FN):

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 30,2023 at 16:23:19 UTC from IEEE Xplore. Restrictions apply.

where a state was not detected, usually shown as two states
merged into one. Note that we cannot compute True Negatives,
as some trajectories may comprise only incomplete fragments
of the energy landscape. Thus, a trajectory may never visit
one or more states (i.e., the protein never adopted a particular
conformation within a specific trajectory) at all.

Protein TP FP FN
BBL 10 1 2
Opsin 81 24 1

B cell translocation gene (BTG1) Mutants
Wild-Type 26 1 2
E50K 15 0 4
R68L 7 0 1
A8RT 3 0 0
Q36H-E50K 28 1 0
Q36H D107N 12 0 0
A84E 3 0 0
F40C 2 0 0
Q36L 2 1 0
Q45P 3 1 0
Q36N 1 0 0
Total 193 29 10

TABLE II: Protein systems used for validation. TP: True
Positives, FP: False Positives, FN: False Negatives

In total, we were able to identify 193 clusters out of 203
and produced 29 false positive detections, 24 of which were
concentrated in the Opsin system. We argue that this result
is due to the very irregular landscape produced by Opsin and
possibly because our hyperparameters were too sensitive for
this system. Still, we were able to correctly identify 81 of its
states and missed only one. Tuning hyperparameters αmu and
αs can make our method more or less sensitive and produce
improved results in terms of false positives and false negatives.
In fact, by doing that, we were able to reduce the false positives
in E50K and Wild Type to zero. However, we strive to keep all
of the hyperparameters fixed across systems and trajectories.
This is because for a new system, if we expect to be able
to analyze it in-situ from scratch, then we will not have the
luxury of hyperparameter tuning. Therefore, all results in Table
2 were performed with the exact same analysis setup.

C. Performance Analysis
In order to run our analysis alongside the simulations,

we integrated our method in the in-situ framework in [64].
However, it would be computationally prohibitive to prototype,
refine, and finally execute our analysis for the number of long
trajectories we had collected. Hence, we ran the analysis as
an emulated in-situ environment, where trajectory frames were
loaded as if they would come from the simulation code, but
without re-running all the simulations over and over again. To
measure performance, we used an Intel Xeon 2 Core processor
at 2.2GHz and 12GB RAM. We measured performance in
terms of RAM and elapsed CPU time. Note that this is a
realistic evaluation, as our analysis is designed to run on
a single node alongside embarrassingly parallel simulations.
This is possible because we completely eliminate the need
for communication among analysis processes, and only local
information is used to determine the folding states.

0 200 400 600 800 1000 1200
Window of Frames (50)

10

100

1000

10000

Ti
m

e
(m

s)

0

100

200

300

400

500

M
em

or
y

(K
b)

Memory: data Memory: model Analysis Processing input

(a) Protein System BTG1 mutant: A83T

0 200 400 600 800 1000 1200
Window of Frames (50)

10

100

1000

10000

Ti
m

e
(m

s)

0

100

200

300

400

500

M
em

or
y

(K
b)

Memory: data Memory: model Analysis Processing input

(b) Protein system BTG1 mutant: A84E

Fig. 6: Trace of representative protein folding trajectories
showing various performance scenarios per window of frames

Figure 6 shows performance traces for the two representa-
tive trajectories shown in the analysis: A83T and A84E. The
trace distinguishes between memory used for data as a blue
area, memory used for our method as an orange area, CPU
time for ingesting input data as a green line, and CPU time
for analysis as a burgundy line. Since a processing step is
done every 50 frames, the figures show performance data per
window of frames and not per single frame. The first thing
worth noticing is that the memory required for data is kept
constant at all times, that is we collect 50 frames, analyze
them, and discard them before collecting the next 50. Keeping
a bound on the amount of data memory needed was one of
our main requirements for making this analysis in-situ. In this
way, we guarantee that no matter how long the simulation is,
the memory use will remain bounded. The bulk of memory
required for our models grows linearly with the number of
states that are identified (except for the transition matrix, which
is quadratic with respect to the number of states). This memory
is not bounded in the same way as the data memory, however,
in the worst case the maximum total amount of memory
required by our most expensive trajectory did not exceed 600
KB, which is well within the margin of resources that can
be spared for analysis in most modern computer systems.
Figure 7b shows the breakdown of maximum memory used
for data and maximum memory used for models, per protein
system. In terms of CPU time, Figure 7 shows the compute
spikes every time a new State is identified. The complexity
of the analysis for each window is worst-case quadratic on
the number of states. For a states graph, G is O(|G|2); this is
because every State has an incremental number of Gaussian
learners for a total of (|G|(|G| + 1))/2 possible evaluations.
However, every learner is evaluated at a constant time. Again,
the number of states is always going to be relatively small,
ranging from one to a couple of dozen. The figure also shows
that data ingest is computationally more expensive than the
analysis. However, total computation time is, in most cases,
within 1 second per window of frames, that is 50 simulation
steps can be analyzed within 1 second. In the worst case,
for our largest system, the execution time per frame was

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 30,2023 at 16:23:19 UTC from IEEE Xplore. Restrictions apply.

(a) CPU time per window (b) Maximum memory used

Fig. 7: CPU and RAM overhead for in-situ analysis

around 10 seconds, which is still a very low overhead for
MD simulations. Figure 7a shows a boxplot of execution time
split between analysis and input processing. The figure shows
the variance per protein system. The figure shows how in most
cases (except Opsin) input processing is more expensive than
analysis.

V. CONCLUSION AND FUTURE WORK

Our method of online boosted Gaussian learners offers a
way to monitor molecular events in MD protein simulations
at run time. We are able to successfully identify different
folding states of the protein through its trajectory without the
need for prior knowledge or extensive hyperparameter tuning.
Our method is robust to simulations of varying complexity,
including variations in sampling rate, number of residues,
and simulation length. Finally, but most importantly, we are
able to eliminate any and all communication between analysis
processes, keeping very low compute and memory overheads,
making this approach suitable for in-situ analysis. Since we
can use only local information, our analysis can run seamlessly
alongside embarrassingly parallel simulations. Future work
includes autonomously selecting hyperparameters based on the
degrees of freedom of the specific system being analyzed, as
well as integrating this analysis in other MD in-situ frame-
works.

VI. ACKNOWLEDGEMENT

This research was supported by the National Science
Foundation (NSF) under grant numbers 1757207, 1741057,
1841758, 2138811 and 2223704; the Oak Ridge Leadership
Computing Facility under allocation CSC427; the Extreme
Science and Engineering Discovery Environment (XSEDE)
under allocation TG-CIS200053; and IBM through a Shared
University Research Award

REFERENCES

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter,
“The shape and structure of proteins,” in Molecular Biology of the Cell.
4th edition. Garland Science, 2002.

[2] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko et al., “Highly
accurate protein structure prediction with alphafold,” Nature, vol. 596,
no. 7873, pp. 583–589, 2021.

[3] D. Tobi and I. Bahar, “Structural changes involved in protein binding
correlate with intrinsic motions of proteins in the unbound state,”
Proceedings of the National Academy of Sciences, vol. 102, no. 52,
pp. 18 908–18 913, 2005.

[4] A. Koide, S. Abbatiello, L. Rothgery, and S. Koide, “Probing protein
conformational changes in living cells by using designer binding pro-
teins: application to the estrogen receptor,” Proceedings of the National
Academy of Sciences, vol. 99, no. 3, pp. 1253–1258, 2002.

[5] M. Karplus and J. A. McCammon, “Molecular dynamics simulations
of biomolecules,” Nature structural biology, vol. 9, no. 9, pp. 646–652,
2002.

[6] K. Henzler-Wildman and D. Kern, “Dynamic personalities of proteins,”
Nature, vol. 450, no. 7172, pp. 964–972, 2007.

[7] J. R. Lewandowski, M. E. Halse, M. Blackledge, and L. Emsley, “Direct
observation of hierarchical protein dynamics,” Science, vol. 348, no.
6234, pp. 578–581, 2015.

[8] Y. Wang, J. M. L. Ribeiro, and P. Tiwary, “Machine learning approaches
for analyzing and enhancing molecular dynamics simulations,” Current
opinion in structural biology, vol. 61, pp. 139–145, 2020.

[9] Y. Naritomi and S. Fuchigami, “Slow dynamics in protein fluctuations
revealed by time-structure based independent component analysis: the
case of domain motions,” The Journal of chemical physics, vol. 134,
no. 6, p. 02B617, 2011.

[10] C. R. Schwantes and V. S. Pande, “Improvements in markov state model
construction reveal many non-native interactions in the folding of ntl9,”
Journal of chemical theory and computation, vol. 9, no. 4, pp. 2000–
2009, 2013.

[11] G. Pérez-Hernández, F. Paul, T. Giorgino, G. De Fabritiis, and F. Noé,
“Identification of slow molecular order parameters for markov model
construction,” The Journal of chemical physics, vol. 139, no. 1, p.
07B604 1, 2013.

[12] V. Botu and R. Ramprasad, “Adaptive machine learning framework
to accelerate ab initio molecular dynamics,” International Journal of
Quantum Chemistry, vol. 115, no. 16, pp. 1074–1083, 2015.

[13] W. Ma, S. Xu, H. Liu, and Y. Bai, “Mass spectrometry methods for in
situ analysis of clinical biomolecules,” Small Methods, vol. 4, no. 4, p.
1900407, 2020.

[14] L. Wang, N. Limodin, A. El Bartali, J.-F. Witz, R. Seghir, J.-Y. Buffiere,
and E. Charkaluk, “Influence of pores on crack initiation in monotonic
tensile and cyclic loadings in lost foam casting a319 alloy by using 3d
in-situ analysis,” Materials Science and Engineering: A, vol. 673, pp.
362–372, 2016.

[15] T. Hirono, M. Takahashi, and S. Nakashima, “In situ visualization
of fluid flow image within deformed rock by x-ray ct,” Engineering
Geology, vol. 70, no. 1-2, pp. 37–46, 2003.

[16] Y. Guo, W. D. Compton, and S. Chandrasekar, “In situ analysis of
flow dynamics and deformation fields in cutting and sliding of met-
als,” Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 471, no. 2178, p. 20150194, 2015.

[17] S. Hans, C. Boutin, E. Ibraim, and P. Roussillon, “In situ experiments
and seismic analysis of existing buildings. part i: Experimental investiga-
tions,” Earthquake Engineering & Structural Dynamics, vol. 34, no. 12,
pp. 1513–1529, 2005.

[18] F. Sittel and G. Stock, “Perspective: Identification of collective variables
and metastable states of protein dynamics,” The Journal of chemical
physics, vol. 149, no. 15, p. 150901, 2018.

[19] B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis, “Diffusion
maps, spectral clustering and reaction coordinates of dynamical sys-
tems,” Applied and Computational Harmonic Analysis, vol. 21, no. 1,
pp. 113–127, 2006.

[20] A. L. Ferguson, A. Z. Panagiotopoulos, I. G. Kevrekidis, and P. G.
Debenedetti, “Nonlinear dimensionality reduction in molecular simula-
tion: The diffusion map approach,” Chemical Physics Letters, vol. 509,
no. 1-3, pp. 1–11, 2011.

[21] S. B. Kim, C. J. Dsilva, I. G. Kevrekidis, and P. G. Debenedetti,
“Systematic characterization of protein folding pathways using diffusion
maps: Application to trp-cage miniprotein,” The Journal of chemical
physics, vol. 142, no. 8, p. 02B613 1, 2015.

[22] L. Haghverdi, F. Buettner, and F. J. Theis, “Diffusion maps for high-
dimensional single-cell analysis of differentiation data,” Bioinformatics,
vol. 31, no. 18, pp. 2989–2998, 2015.

[23] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 30,2023 at 16:23:19 UTC from IEEE Xplore. Restrictions apply.

[24] G. A. Tribello, M. Ceriotti, and M. Parrinello, “Using sketch-map coordi-
nates to analyze and bias molecular dynamics simulations,” Proceedings
of the National Academy of Sciences, vol. 109, no. 14, pp. 5196–5201,
2012.

[25] M. Ceriotti, G. A. Tribello, and M. Parrinello, “Demonstrating the
transferability and the descriptive power of sketch-map,” Journal of
chemical theory and computation, vol. 9, no. 3, pp. 1521–1532, 2013.

[26] F. Trozzi, X. Wang, and P. Tao, “Umap as a dimensionality reduction
tool for molecular dynamics simulations of biomacromolecules: a com-
parison study,” The Journal of Physical Chemistry B, vol. 125, no. 19,
pp. 5022–5034, 2021.

[27] V. Spiwok and B. Králová, “Metadynamics in the conformational space
nonlinearly dimensionally reduced by isomap,” The Journal of chemical
physics, vol. 135, no. 22, p. 224504, 2011.

[28] B. E. Husic and V. S. Pande, “Markov state models: From an art to a
science,” Journal of the American Chemical Society, vol. 140, no. 7, pp.
2386–2396, 2018.

[29] S. A. M. Stein, A. E. Loccisano, S. M. Firestine, and J. D. Evanseck,
“Principal components analysis: a review of its application on molecular
dynamics data,” Annual Reports in Computational Chemistry, vol. 2, pp.
233–261, 2006.

[30] M. Ernst, F. Sittel, and G. Stock, “Contact-and distance-based principal
component analysis of protein dynamics,” The Journal of chemical
physics, vol. 143, no. 24, p. 12B640 1, 2015.

[31] S. Schultze and H. Grubmuller, “Time-lagged independent component
analysis of random walks and protein dynamics,” Journal of Chemical
Theory and Computation, vol. 17, no. 9, pp. 5766–5776, 2021.

[32] G. Pérez-Hernández and F. Noé, “Hierarchical time-lagged independent
component analysis: computing slow modes and reaction coordinates for
large molecular systems,” Journal of chemical theory and computation,
vol. 12, no. 12, pp. 6118–6129, 2016.

[33] Y. Naritomi and S. Fuchigami, “Slow dynamics in protein fluctuations
revealed by time-structure based independent component analysis: the
case of domain motions,” The Journal of chemical physics, vol. 134,
no. 6, p. 02B617, 2011.

[34] V. Spiwok and P. Křı́ž, “Time-lagged t-distributed stochastic neighbor
embedding (t-sne) of molecular simulation trajectories,” Frontiers in
Molecular Biosciences, vol. 7, p. 132, 2020.

[35] G. A. Tribello and P. Gasparotto, “Using dimensionality reduction to
analyze protein trajectories,” Frontiers in molecular biosciences, vol. 6,
p. 46, 2019.

[36] M. Duan, J. Fan, M. Li, L. Han, and S. Huo, “Evaluation of
dimensionality-reduction methods from peptide folding–unfolding sim-
ulations,” Journal of chemical theory and computation, vol. 9, no. 5, pp.
2490–2497, 2013.

[37] B. Keller, X. Daura, and W. F. Van Gunsteren, “Comparing geometric
and kinetic cluster algorithms for molecular simulation data,” The
Journal of chemical physics, vol. 132, no. 7, p. 02B610, 2010.

[38] F. Sittel and G. Stock, “Robust density-based clustering to identify
metastable conformational states of proteins,” Journal of Chemical
Theory and Computation, vol. 12, no. 5, pp. 2426–2435, 2016, pMID:
27058020. [Online]. Available: https://doi.org/10.1021/acs.jctc.5b01233

[39] J. D. Chodera, N. Singhal, V. S. Pande, K. A. Dill, and W. C. Swope,
“Automatic discovery of metastable states for the construction of markov
models of macromolecular conformational dynamics,” The Journal of
chemical physics, vol. 126, no. 15, p. 04B616, 2007.

[40] G. R. Bowman, V. S. Pande, and F. Noé, An introduction to Markov state
models and their application to long timescale molecular simulation.
Springer Science & Business Media, 2013, vol. 797.

[41] P. Novelli, L. Bonati, M. Pontil, and M. Parrinello, “Characterizing
metastable states with the help of machine learning,” Journal of Chem-
ical Theory and Computation, vol. 18, no. 9, pp. 5195–5202, 2022.

[42] S. Koulgi, A. Achalere, U. Sonavane, and R. Joshi, “Markov state
modeling analysis captures changes in the temperature-sensitive n-
terminal and β-turn regions of the p53 dna-binding domain,” Journal of
Chemical Information and Modeling, vol. 62, no. 24, pp. 6449–6461,
2022.

[43] E. Kots, C. Mlynarczyk, A. Melnick, and G. Khelashvili, “Conforma-
tional transitions in btg1 antiproliferative protein and their modulation
by disease mutants,” Biophysical Journal, vol. 121, no. 19, pp. 3753–
3764, 2022.

[44] W. Wang, S. Cao, L. Zhu, and X. Huang, “Constructing markov
state models to elucidate the functional conformational changes of

complex biomolecules,” Wiley Interdisciplinary Reviews: Computational
Molecular Science, vol. 8, no. 1, p. e1343, 2018.

[45] J. D. Chodera and F. Noé, “Markov state models of biomolecular con-
formational dynamics,” Current opinion in structural biology, vol. 25,
pp. 135–144, 2014.

[46] H. Zhou, Z. Dong, and P. Tao, “Recognition of protein allosteric states
and residues: Machine learning approaches,” Journal of computational
chemistry, vol. 39, no. 20, pp. 1481–1490, 2018.

[47] H. S. Hayatshahi, E. Ahuactzin, P. Tao, S. Wang, and J. Liu, “Probing
protein allostery as a residue-specific concept via residue response
maps,” Journal of Chemical Information and Modeling, vol. 59, no. 11,
pp. 4691–4705, 2019.

[48] C. Wehmeyer and F. Noé, “Time-lagged autoencoders: Deep learning
of slow collective variables for molecular kinetics,” The Journal of
chemical physics, vol. 148, no. 24, p. 241703, 2018.

[49] O. Fleetwood, M. A. Kasimova, A. M. Westerlund, and L. Delemotte,
“Molecular insights from conformational ensembles via machine learn-
ing,” Biophysical Journal, vol. 118, no. 3, pp. 765–780, 2020.

[50] W. Humphrey, A. Dalke, and K. Schulten, “Vmd: visual molecular
dynamics,” Journal of molecular graphics, vol. 14, no. 1, pp. 33–38,
1996.

[51] J. E. Stone, P. Messmer, R. Sisneros, and K. Schulten, “High per-
formance molecular visualization: In-situ and parallel rendering with
egl,” in 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 2016, pp. 1014–1023.

[52] T. Tu, C. A. Rendleman, D. W. Borhani, R. O. Dror, J. Gullingsrud,
M. O. Jensen, J. L. Klepeis, P. Maragakis, P. Miller, K. A. Stafford
et al., “A scalable parallel framework for analyzing terascale molecular
dynamics simulation trajectories,” in SC’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing. IEEE, 2008, pp. 1–12.

[53] D. Etezadi, J. B. Warner IV, H. A. Lashuel, and H. Altug, “Real-time in
situ secondary structure analysis of protein monolayer with mid-infrared
plasmonic nanoantennas,” ACS sensors, vol. 3, no. 6, pp. 1109–1117,
2018.

[54] R. T. McGibbon, K. A. Beauchamp, M. P. Harrigan, C. Klein, J. M.
Swails, C. X. Hernández, C. R. Schwantes, L.-P. Wang, T. J. Lane,
and V. S. Pande, “Mdtraj: a modern open library for the analysis of
molecular dynamics trajectories,” Biophysical journal, vol. 109, no. 8,
pp. 1528–1532, 2015.

[55] B. Pullman, E. D. Bergmann et al., Conformation of biological
molecules and polymers; proceedings of an international symposium
held in Jerusalem, 3-9 April 1972. Edited by Ernst D. Bergmann and
Bernard Pullman, 1973.

[56] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791,
1999.

[57] C. Boutsidis and E. Gallopoulos, “Svd based initialization: A head start
for nonnegative matrix factorization,” Pattern recognition, vol. 41, no. 4,
pp. 1350–1362, 2008.

[58] A. Beygelzimer, S. Kale, and H. Luo, “Optimal and adaptive algorithms
for online boosting,” in International Conference on Machine Learning.
PMLR, 2015, pp. 2323–2331.

[59] R. E. Schapire, “Explaining adaboost,” Empirical Inference: Festschrift
in Honor of Vladimir N. Vapnik, pp. 37–52, 2013.

[60] A. A. Efanov, S. A. Ivliev, and A. G. Shagraev, “Welford’s algorithm
for weighted statistics,” in 2021 3rd International Youth Conference on
Radio Electronics, Electrical and Power Engineering (REEPE). IEEE,
2021, pp. 1–5.

[61] E. Kots, D. M. Shore, and H. Weinstein, “An equilibrium constant ph
molecular dynamics method for accurate prediction of ph-dependence in
protein systems: Theory and application,” bioRxiv, pp. 2020–11, 2020.

[62] ——, “Simulation of ph-dependent conformational transitions in mem-
brane proteins: The clc-ec1 cl-/h+ antiporter,” Molecules, vol. 26, no. 22,
p. 6956, 2021.

[63] G. Morra, A. M. Razavi, A. K. Menon, and G. Khelashvili, “Cholesterol
occupies the lipid translocation pathway to block phospholipid scram-
bling by a g protein-coupled receptor,” Structure, vol. 30, no. 8, pp.
1208–1217, 2022.

[64] M. Taufer, S. Thomas, M. Wyatt, T. M. Anh Do, L. Pottier, R. F. da Silva,
H. Weinstein, M. A. Cuendet, T. Estrada, and E. Deelman, “Characteriz-
ing in situ and in transit analytics of molecular dynamics simulations for
next-generation supercomputers,” in 2019 15th International Conference
on eScience (eScience), 2019, pp. 188–198.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on October 30,2023 at 16:23:19 UTC from IEEE Xplore. Restrictions apply.

