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ABSTRACT

This paper targets one of the most common simulations on petas-
cale and, very likely, on exascale machines: molecular dynamics
(MD) simulations studying the (classical) time evolution of a molec-
ular system at atomic resolution. Specifically, this work addresses
the data challenges of MD simulations at exascale through (1) the
creation of a data analysis method based on a suite of advanced col-
lective variables (CVs) selected for annotation of structural molecu-
lar properties and capturing rare conformational events at runtime,
(2) the definition of an in situ framework to automatically identify
the frames where the rare events occur during an MD simulation
and (3) the integration of both method and framework into two MD
workflows for the study of early termination or termination and
restart of a benchmark molecular system for protein folding —the
Fs peptide system (Ace-A_5(AAARA)_3A-NME)— using Summit.
The approach achieves faster exploration of the conformational
space compared to extensive ensemble simulations. Specifically, our
in situ framework with early termination alone achieves 99.6% cov-
erage of the reference conformational space for the Fs peptide with
just 60% of the MD steps otherwise used for a traditional execution
of the MD simulation. Annotation-based restart allows us to cover
94.6% of the conformational space, just running 50% of the overall
MD steps.
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1 INTRODUCTION

MD simulations are widely utilized in chemistry, material sciences,
molecular and structural biology, and in drug design. The sys-
tem sizes and time scales accessible to MD simulations have been
steadily increasing [27], making MD simulations the most common
runs on petascale machines. For example, a survey of resources
used on XSEDE machines over the past six months [2] shows that
biomolecular codes (predominantly MD codes such as Amber [10],
CHARMM [8], and NAMD [36]) use 25.7% of the ACCESS (for-
merly XSEDE) resources (i.e., the total amount of XD service units
(SUs) used by jobs in the fields of science indicated). At the same
time, the work of Luu and co-authors [33] has shown that HPC
computing resources can already be up to 75% idle performing
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I/O operations, due to poor data handling while running scientific
simulations. The transition from petascale to exascale computing
brings unprecedented computing capability to MD simulations,
enabling high-frequency sampling of fast events. Next-generation
high-performance computing (HPC) systems (e.g., ACCESS high-
end clusters such as Stampede2 and national laboratory supercom-
puters such as Aurora and Frontier) will have dramatically larger
compute performance than current systems such as the Oak Ridge
National Laboratory supercomputer Summit. The increase in com-
puting capability (e.g., Frontier compute performance is 8x that
of Summit [49]) translates directly to an ability to execute longer
simulations. For MD simulations, this means generating more data
in terms of the number and length of MD trajectories. However, the
I/0 bandwidth and parallel file system capacity of next-generation
HPC systems will not grow at the same pace. The steady increase
(in petaflops) and the stagnant I/O bandwidth (in TB/s) in next-
generation machines such as Frontier and Aurora, compared with
current and past HPC systems such as Summit, is well known. For
example, Frontier’s parallel file system has only 2x the performance
and capacity of Summit’s I/O subsystem, which currently has 2.5
TB/s peak I/O bandwidth. While many architectural implemen-
tations and scheduling aspects of next-generation HPC systems
remain a topic of discussion, such as the role of burst buffers (BBs)
and the feasibility of smart I/O staging, the research community
must revisit the way MD simulations are executed. Hardware and
scheduling strategies such as BBs and staging are not the magic
bullet: I/O contention will still be a problem if the burst buffer capa-
bility is exceeded [24, 32, 43]. Moreover, BBs can improve offloading
bandwidth but do not help upload data from storage. The overall
coordination of data generation and analysis will not be able to rely
on manual, centralized approaches as it does now [4]. While MD
/O is often manageable at runtime with high stride sampling rates,
many applications may benefit from high-frequency sampling (e.g.
to study the mechanism of fast and rare conformational changes).
In addition, I/O is already an issue for a posteriori analysis. Thus,
new frameworks are needed for MD simulations in which HPC
meets data analytics.

Our work transforms the centralized nature of the MD analysis
into a distributed approach that is predominantly performed in situ.
It supports a broad range of MD codes and can enable on-the-fly
tuning of MD workflows (i.e., early termination and restart). Con-
trary to traditional MD data analytics that uses centralized data
analysis (i.e., first generates and saves all the trajectory data to
storage and then relies on the post-simulation analysis), we use
collective variables (CVs) to analyze data as they are generated and
annotate MD outputs to manage increasingly complex MD work-
flows. Note that we focus on the analysis of MD-generated data
(e.g., capturing significant rare events and monitoring convergence
of observables based on inherently noisy and high-dimensional
MD outputs) rather than on the generation process (e.g., model-
ing of the atom interactions and parallelization of the single MD
jobs), since other efforts tackle the computing challenges of MD
simulation code at exascale. By leveraging the standard formats of
MD-generated outputs, users can plug in their own in situ analyses
and apply them to the most used MD codes through our frame-
work. The workflows built with our framework do not require the
recompilation of any MD code or redesigning of any MD script.
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Instead, they capture outputs in memory at runtime as they are
generated. Here, we demonstrate the capabilities of our framework
in a case of enhanced adaptive sampling for the exploration of the
conformational space of the Fs (folded short) peptide, which is often
used to benchmark protein folding experiments and simulations.
We study the dynamics and MD step throughput of an ensemble of
trajectories analyzed with CVs that can be computed in situ using
our framework running on Summit. Using annotation-based early
termination, we obtain 99.6% coverage of the reference conforma-
tional space with just 60.3% of the MD steps otherwise used for a
traditional execution of the MD simulation (i.e., without any early
termination). Annotation-based restart allows us to cover 94.6% of
the conformational space, just running 50% of the overall MD steps.
The contributions of this paper are threefold:

e We formulate and implement two in situ methods to trace
conformational changes in MD simulations at runtime by
locally reducing knowledge on high-dimensional molecular
organization into a set of relevant CVs.

e We design a modular MD framework to accurately and effi-
ciently collect CVs capable of exposing rare events at runtime
while minimizing data movement and communication.

e We implement in situ workflows that integrate simulation
and analytics to study the benefits of annotation-based early
termination or termination and restart for the Fs peptide
system (Ace-A_5(AAARA)_3A-NME).

2 COLLECTIVE VARIABLES FOR
TRAJECTORY ANNOTATIONS

MD simulations complement wet lab experiments by providing
molecular and atomistic resolution information that is either not di-
rectly accessible by experiment or challenging to obtain. Specifically,
classical MD simulations computationally replicate the behavior of
a physical molecular system by iterating a two-step algorithm. First,
the interactions between atoms are calculated using a force field
model consisting of a mathematical function of atomic positions
and a set of pre-calibrated parameters yielding sets of calculated
forces between the moving atomistic components of the molecule.
Second, based on the calculated forces, the positions of the atoms
are advanced by solving Newton’s equations on a small time step.
Calculating long-range forces in systems of several hundreds of
thousands of atoms is by far the most compute-intensive part of the
calculation. An MD job reproduces the time-dependent evolution
of the structure of any molecular system by computing and writing
to store the system’s atomic coordinates as they are changed by the
Newton equations using the computed forces. Referred to as the
molecular frame, the molecule’s 3D conformation (i.e., structure)
determines other relevant properties calculated at regular intervals
as the MD evolves in time.The sequence of molecular conforma-
tions defined by each component atom’s complete set of 3D spatial
coordinates is known as the trajectory. A trajectory is written to
disk at fixed intervals.

The information sought from the trajectories can relate to con-
formational changes in the molecule’s structure, which represent
energetically favorable repositionings of collections of atoms from
one metastable region in the conformational space of a molecule to
another. Because such changes require concerted motion of many
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atoms over energy barriers, they are rare events in the MD simula-
tion trajectory. Such a rare event can represent a phase transition,
the folding of a protein, or protein conformational changes related
to the protein’s function. In biology, such functions include so-
lute transport across membranes, ligand-triggered signaling, or
enzymatic catalysis. When the function-related conformational
rearrangements are expected or known, their occurrence in the
trajectory can be detected by monitoring a small set of collective
variables (CVs) that capture the relevant molecular motions [21].
In practice, a collection of CVs is monitored to calculate ensemble
averages over molecular configurations. The traditional approach
to MD uses CVs to monitor the evolution of the molecular system
a posteriori. The approach presented here allows for active mon-
itoring of CVs to capture the evolution of the molecular systems
at runtime and managing ensembles of trajectories to improve the
sampling of the conformational space.

A large-scale MD simulation is an ensemble of MD jobs (as many
as hundreds of thousands that run on different compute nodes and
produce independent trajectories). Each job simulates the same
molecular system starting from different initial conditions (e.g., po-
sitions, velocities) or under different conditions (e.g., temperature,
protein mutants, in complex with various ligands such as drugs).
The ensemble-based nature of MD simulations promises compu-
tational scalability at exascale for relevant MD applications such
as protein structure prediction, protein folding, protein-protein
interactions, and protein-ligand interactions. In this work, we fo-
cus on the data locally outputted on each node to monitor and
control the MD at runtime globally. To this end, we leverage two
essential quantities that we compute in situ as an MD simulation
evolves: the largest eigenvalue of alpha-Carbon (C,) distance ma-
trices (LEV) capturing molecular states and the effective sample
size (ESS) identifying fast transitions of molecular states.

LEVs are based on the eigendecomposition of distance matri-
ces and quantify one or more relevant structures in the molecular
system where rare events may occur. Given a frame, we first sim-
plify a targeted secondary structure composed of m amino acids
by extracting the positions of its m C, backbone atoms (x;, y;, z;).
To capture the dynamic relationship within the m amino acids, we
build the square Euclidean distance matrix D from the positions of
the corresponding C, atoms for each frame. D is a normal matrix
(i.e., the matrix is symmetric, the diagonal of D is identically zero,
and the off-diagonal elements of D are strictly positive) and have
stable eigenvalues. Calculating the proxy distance between two
frames is as simple as computing the distance between correspond-
ing eigenvalues [46]. Furthermore, D is constructed from points
in 3 dimensions and thus has at most five nonzero eigenvalues.
Johnston et al. [26] demonstrated how the five nonzero eigenvalues
of D have the property that three are very small (close to zero) and
two are high in value and opposite. Thus, we can capture most
of the total domain change in eigenvalues in molecular simula-
tions by observing the difference in the largest positive eigenvalue
(LEV). Johnston et al. also demonstrated that the distribution of the
largest eigenvalue for a given segment is a function of the number
of amino acids in the structure and the LEVs of folded secondary
structures [26]. We leverage these ranges to assess the status of
secondary structures in a trajectory. LEV is computed indepen-
dently on single frames, which makes it a good candidate for in situ
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annotation. We use LEV to monitor the folding state of secondary
structures (e.g., helix or strand), so a time series of LEVs can be
used to flag folded or misfolded states for trajectory termination.
ESS captures structural changes over a window of n observations
in the trajectory, with n much smaller than the total number of MD
steps in a trajectory. If observations are uncorrelated within the
window, no significant changes in the sequence of frames occur;
otherwise, a rare event may have occurred if autocorrelation is

detected. Assume we have an uncorrelated time series {x;}, i
o

o
where o is the variance of the {x;}. On the other hand, if there is
a correlation between consecutive points, the time series can be
considered a stationary process with autocorrelation coefficients
{pr}, where k is the lag time between two observations. In this
case, o2 () is larger than without autocorrelation because the time
series contains less independent information to estimate x. The

2
1,..,n. Then the expected variance of the mean is 0?(x) =

variance can be expressed as 02(%) = ,f—z, where neg is called
the effective sample size (ESS), which intuitively represents the
equivalent number of independent points in the sample, with 1 <
nefr < n. A strongly autocorrelated time series will have a low value
of neg. To estimate the value of neg from the data, we first use the
standard (unbiased) estimator ry for the correlation coefficients py
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given by B ) (k=) "
k= _
Z?:] (xi - x)2
Then the ESS can be expressed as n
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Because the estimation of ry at large lag times is marred with sig-
nificant uncertainties, it was shown that the summation could be
truncated after term kpax, with kpax = min {k \ e >0, reyp < 0},
i.e., the last value before the autocorrelation function changes sign
for the first time [13, 50, 12]. Thus, neg captures in a single num-
ber the amount of correlation in the time series and quantifies the
amount of independent information contained in it, hence the name
ESS. By calculating neg on an entire trajectory, Chodera et al. [12]
devised a way to measure how much of the initial equilibration time
could be discarded. Here, instead of considering the full-time series,
we propose to calculate neg () in a sliding window of n frames and
duration 7. We can then expect the following behaviors: i) if the
system is transitioning between different macrostates on a time
scale comparable to 7, we will observe strong autocorrelation and
low neg (t); ii) if the system fluctuates around a single macrostate
during 7, we will see rapid local fluctuations with little autocorre-
lation and high neg(t). Hence monitoring strong peaks in neg (t)
can serve as a detector of immobile trajectory behavior. In our case,
we use ESS to analyze the sequence of a trajectory’s LEVs to get a
notion of the mobility trend of the protein.

3 DESIGN OF OUR IN SITUFRAMEWORK

Contrary to traditional MD data analytics that uses centralized
data analysis (i.e., first generates and saves all the trajectory data
to storage and then conducts post-simulation analysis), we pro-
pose an approach that bypasses storage and enables on-the-fly
tuning of MD workflows (i.e., early termination and restart of MD
jobs). We introduce the concept of in situ conjunction, which is the
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tional components that enable the in situ conjunction.
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Figure 2: View of our in situ framework’s backbone and its
relationship with the end user and other elements in Fig. 1.

association of functional components, user-defined plugins, and
third-party components that work together to analyze data as they
are generated and annotate MD frames in situ. Figure 1 shows the
architecture that supports this functionality in our in situ frame-
work. The functional components of the in situ conjunction are the
entities involved in the control of MD simulation workflows. They
can be adapted based on the type of scientific discovery targeted
by an MD simulation (e.g., protein structure prediction, protein
folding, and protein-protein or protein-ligand interactions). Our
framework has four functional components:

The simulation executor connects two key third-party compo-
nents: the MD simulation and the frame extractor. Our in situ frame-
work is agnostic to the MD code and does not require the recom-
pilation of the used MD code or redesigning its script. Instead, it
captures MD frames in memory at runtime as they are generated
through Plumed v2.6.0. This plugin can extract frames from running
simulations and is available for all the major MD codes [9]. The
frames contain raw atom coordinates collected in a standard format
of MD-generated outputs. We leverage the format to conduct in situ
data analytics agnostic to the MD simulation code. The simulator
executor wraps the simulation and frame extraction functionality
and transfers the extracted frames to the in-memory data staging
area, represented by Dataspaces v1.8.1 [17]. The annotators are
the components that compute the CVs from the frames produced
by the simulation executor. We define annotations as a list of CV
values per frame constituting the metadata for a time step. The
frequency of pulling the data and the number and nature of CVs to
be computed are set by the user. A single annotator can be shared
for all the CVs, or individual annotators can be created for each
CV separately. CV calculation methods are pluggable components
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in the form of Python scripts provided by the end user. The anno-
tations associated with a frame are transferred to the in-memory
staging area for further analysis. Persistence and management of
the annotation buffers are delegated to Dataspaces. The trajectory
analyzer is the component that resorts to user-defined termination
and restarts criteria to make decisions about the ongoing simula-
tion based exclusively on the analysis of the CV time series. To
this end, the trajectory analyzer obtains the annotations from the
in-memory staging area for one or multiple time steps. The number
of steps taken into consideration for the decision is referred to as
the window for the trajectory analysis. This window is configured
in the pluggable termination or restarts analysis code provided
by the end user as a Python script. Finally, the trajectory handler
monitors the trajectory analyzer to execute termination and restart
decisions on the simulation executor. Currently, the trajectory han-
dler can restart a trajectory from its initial state. We are working
on extending this functionality to support workflows in which the
restart point is decided dynamically.

The design of these functional components and interconnections
is built around our in situ framework’s backbone components which
fulfill deployment, data transfer, and callback functions. Figure 2
shows this internal architecture and how the functional compo-
nents are associated with each backbone component. There are
three backbone components: The deployment controller is the cen-
tral orchestrator of the in situ conjunction. It spawns and sets up
the communication channels between all the components of the
in situ framework, including the functional components and any
additional third-party elements. The deployment controller is the
single entry point for the batch job representing the in situ con-
junction. Users interact with the workflow through the deployment
controller by indicating in a Bash script how the simulation is going
to run and where these user-defined plugins are located. One or
more in situ intermediators connect the in-memory staging area
with the functional components that produce and consume data
(frames). There are two types of in situ intermediators: ingestors
and retrievers. Ingestors transfer data into the in-memory staging
area and are used in the simulation executor and the annotators to
store frames and CV values, respectively. Retrievers transfer data
from the in-memory staging area and are used in the annotators
and trajectory analyzer to obtain frames and CV values, respec-
tively. Note that ingestors and retrievers can be combined to build
bidirectional components like the annotators. Our in situ frame-
work can be integrated into any workflow management system.
Thus, scheduling and resource allocation from the perspective of
the computing system are out of the scope of the framework’s con-
figuration. We do not enforce the co-location of any components in
the same node, since co-locating coupled in situ components in the
same node does not always result in the best performance [15]. We
do allow the user to define a minimum number of cores or GPUs to
dedicate to the simulation, the analysis and the data staging server.

Our in situ architecture allows scientists to target diverse prob-
lems by composing workflows with user-defined CV methods and
tailored trajectory analysis techniques. In the following section, we
present two MD workflows that leverage the runtime monitoring
of the LEV CV and the associated ESS through our in situ workflow
for effective trajectory analyses of a folding Fs peptide.
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Figure 3: Example of unfolded conformation of the Fs pep-
tide (a) and its folded reference helical conformation (b).

4 GAINSIN IN SITU MD WORKFLOWS

We assess the capabilities of our in situ framework with the Fs
peptide (Ace-A_5(AAARA)_3A-NME) model system for protein
folding to quantify gains with trajectories’ early termination (MD
workflow I) and termination and restart (MD workflow II).

4.1 Experimental Setup

We analyze the folding of the Fs peptide system into an a-helix.
The folding process takes approximately 200ns. Figure 3 shows an
example of the protein’s unfolded state and its fully folded helical
conformation. Studying the dynamics and folding mechanism of
systems such as the Fs peptide is key to characterizing the dynamics
of larger molecular systems in their early folding events [22].

We generated 40 all-atom molecular dynamics trajectories using
GROMACS 2021.4 [1, 31] on the Oak Ridge National Laboratory’s
Summit supercomputer [45]. Due to the small number of atoms
in the Fs peptide, each simulation ran on a single node with one
GPU and eight CPU cores allocated. These trajectories are avail-
able in Dataverse. The simulations were set up using the Amber03
force field [19] and taking as initial conformation one of 10 random
unfolded conformations constructed with the Modeller software
[42]. Figure 3a shows a sample from these unfolded conformations.
After a standard equilibration phase, we ran production trajectories
(i-e., 400ns at 300K and constant pressure with a 0.002ps time step
and constraints on bonds involving hydrogen atoms). Since we
target scenarios with high-frequency sampling, we recorded the
frames at every time step to conduct the comprehensive post hoc
analysis presented here. In our in situ setup, we are using stride
10 to calculate CVs, which still allows us to study the MD with
very high frequency. We measured 261.10 + 4.88ns/day simulation
performance without Plumed, 250.13 + 6.25ns/day with Plumed
extracting frames with stride 1, and 248.61 + 3.61ns/day with stride
ten. We monitored the conformation of the Fs peptide by recording
all backbone dihedral angles, the LEV CV, and the associated ESS
in windows of 500 frames. The computation of CVs is an asynchro-
nous process in in situ analyses with no perturbation of the MD
simulations [48]. Our in situ framework calculated the selected CVs
with stride 10 and resulted in 20K CV values per trajectory. These
annotations are available in Dataverse as part of the data artifact
associated with this paper.

We organized the trajectories in four independent simulation
subsets FS!, FS2, FS3, and FS%, each containing 10 trajectories
starting from the conformations mentioned above. Subsets FS3
and FS* were checkpointed at the GROMACS’ default setting of
15-minute intervals to enable trajectory restarts for the second
MD workflow (Sec. 4.3). We denote the trajectories in the entire Fs
dataset as FS = U;e[1,4] FS'
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(a) tICA projections. (b) MSM representation.

Figure 4: Time-structure independent component analysis
(tICA) projection showing the number of samples in each
region of the free energy map (a) and the Markov State
Model (MSM) representing the dynamics of the Fs peptide
system in the entire FS trajectory set (b). MSM microstates
are represented on the free energy surface. Colors indicate
microstates groupings (i.e., macrostates); circles are propor-
tional to the number of samples in the macrostate.

The free energy landscape of a biomolecular system such as the
Fs peptide is characterized by metastable states separated by free
energy barriers [7]. To describe this conformational space, we first
create its 2D representation by applying a time-lagged Independent
Component Analysis (tICA) decomposition technique [34] to the
FS set of MD trajectories. Next, on the 2D tICA space, we build a
Markov State Model (MSM) to describe the dynamics and kinetics
of the Fs peptide folding in Fig. 4. Evaluation of the tICA projection
in Fig. 4a involved (1) extracting backbone dihedral angles from
the Cartesian coordinates of the system; (2) performing tICA on
this dataset with a time lag of 5,000, and (3) projecting all the
MD trajectories of the FS set onto the first two tICA components
which reflect the two slowest degrees of freedom. In the resulting
tICA space, tIC 1 axis captures the Fs peptide’s folding stage, with
lower values corresponding to more folded conformations. The
most populated state on the tICA map is a completely folded alpha
helix (tIC1 =~ 1), surrounded by two partially folded intermediate
states (0 < tIC1 < 1). As expected, due to its high conformational
flexibility, the unfolded state (#IC1 < 0) covers the largest space
area on the tICA map. The 2D projection of the FS trajectory set
onto the tICA space is further discretized into 100 microstates with
the K-Means algorithm to build an MSM of the Fs peptide folding.
An MSM is built by estimating a transition probability matrix (TPM),
the elements of which represent all the pairwise probabilities of
transitions between the 100 microstates. To identify metastable
states of the process (i.e., the unfolded and folded states along
with the intermediate conformations of the FS peptide folding),
we applied Perron Cluster Cluster Analysis (PCCA++) [14] to the
evaluated TPM. PCCA++ assembles the microstates into kinetic
macrostates based on the estimated transition rates connecting
them. Fig. 4b shows a kinetic map of the conformational space
with four metastable states explored by the FS trajectory set. The
metastable states exhibiting slow inter-transition rates are therefore
separated by high free energy barriers. We follow this protocol in
the following sections to build analogous tICA projections and
MSMs for different ensemble operations (i.e., early termination
and restart) and analyze how they affect the exploration of the
conformational space.
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Figure 5: tICA projection and MSM representing the dynam-
ics of the Fs peptide system trajectory subsets without check-
points (FS' U FS?) (a and b) and with checkpoints (FS3 U F5*)
(c and d). The grey area in the tICA projections represents
the projection of the entire FS dataset.

For our MD workflows, we divide the entire trajectory set into
two subsets: a first containing the trajectories that do not have
intermediate checkpoints (FS! U FS?), and a second containing the
trajectories with intermediate checkpoints saved (FS3 U FS*%). In
Fig. 5 we projected these subsets onto the tICA map generated
in Fig. 4. We see that by choosing subsets of trajectories, we ob-
tain slight differences in the coverage of the conformational space
(96.50% vs. 98.68%) and the microstate mapping (Figs. 5b and 5d).
Although these small variations can lead to a microstate clustered
with different macrostates (compare yellow and purple dots), we
observe a similar microstate distribution in both subsets.

4.2 MD Workflow I: Trajectory Termination

Our first MD workflow explores the application of our framework
to conduct in situ analysis of the LEV CV. We use the LEV time
series the annotator generates to determine if the trajectory has
reached the folded state. When the folded conformation is detected
in the trajectory analyzer (i.e., the LEV is within a range associated
with the folded state for this 21-residue molecule [26]), we set
up an early termination criterion so that the trajectory handler
terminates the execution of the specific MD job generating that
trajectory, saving computational resources. We analyze the effect
of the early termination on exploring the conformational space.

4.2.1 Validation of LEV CVs. We use the LEV CV to determine
the folded state of the Fs peptide [26]. Because this protein has 21
residues (21 C, atoms), the expected LEV range for the folded state
is [4000, 4400] according to [26]. For the sake of reproducible and
trustworthy results, we validate that this CV accurately captures
the folded state in the Fs system by studying the RMSD of the
trajectories vs. the reference helical conformation in Fig. 3b, since
very low RMSD values under 0.5A correlate exclusively with the
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Figure 6: Time series of LEV CV (top) and RMSD of trajectory
starting from unfolded conformation vs. helical conforma-
tion depicted in Fig. 3b (bottom).
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Figure 7: Fs peptide state in frames 5957 (a), 10021 (b), and
17571 (c) of trajectory FS%. These frames have RMSD RMSD <
0.5A and 4,000 < LEV < 4,400, which indicates the folded

state as visualized in Fig. 6.

folded state of the peptide [7]. Figure 6 compares the LEV values per
frame (top) and the RMSD (bottom) of a folding trajectory vs. the
reference helical conformation. A sample of three frames meeting
the RMSD < 0.5A criterion in our MD simulation is shown in Fig, 7.
Overall, we empirically observe across all our MD simulations in
the entire FS dataset that LEV can capture the folded state of the Fs
peptide when it is in the expected range of [4000, 4400]. Thus, we
use the LEV CV to detect trajectories that reach the folded state. By
terminating these folded trajectories, we promote the exploration
of the entire conformational space. We analyze the gain of this early
termination in the following section.

4.2.2  Gain with In Situ LEV Analysis. Figure 8 shows the frame
in which termination is detected in situ vs. the first occurrence of
the folding event for the entire FS dataset. We observe how ten
trajectories never reach the folded state. This is detected by the
in situ analysis, allowing them to run for the entire 200M steps.
We also note how FS3 and FS* include trajectories that are more
likely to fold, and when they do, they fold faster. Since there are
no differences between the setup of the simulations beyond the
addition of checkpoint in FS® and FS*, this may be due to the chaotic
nature of MD simulations, which make simulations starting from
the same conformation and velocities traverse the conformational
space differently [47]. For the trajectories that reach the folded state,
the in situ analysis allows terminating the trajectory before the fixed,
user-defined number of steps is reached. As a result, 70% of the 40
trajectories can be terminated early saving between 90% and 5%
of the simulation’s steps for each trajectory. As a result, 39.72% of
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Figure 8: Summary of Fs peptide folded state detection using LEV. The
bars indicate the frame in which LEV detects the folded state, while the
dots indicate the first actual occurrence of a folding event according to

RMSD < 0.5A criterion.

Table 1: Gain using LEV-based in situ termination for the four
trajectory subsets.

Trajectory Trajectories Steps Simulated Trajectory
set stopped saved time saved equivalent
FS! 70% 33.63% 1,345.42ns 3.36
FS? 70% 32.37% 1,294.98ns 3.24
FS3 80% 44.66% 1,786.30ns 4.47
Fs* 80% 48.24% 1929.60ns 4.82

the total MD steps are saved by in situ early termination with LEV
in the entire ensemble, representing 6,356 ns simulated time and
equivalent to almost 16 400-ns simulations with the configuration
of this ensemble. Figure 9 shows the distribution of the percentage
of MD steps saved in each trajectory for the entire dataset. Detailed
gain for each independent simulation set is presented in Tab. 1.

Figure 10 shows the MSM and tICA projections of the entire FS
trajectory set when simulations are terminated following the LEV
in situ termination criterion. We obtain a 99.6% coverage of the tICA
space just running 60.3% of the total MD steps for this ensemble, and
all four expected macrostates are sampled. Compared with Fig. 4b,
which shows the entire MSM for the combined dataset without early
termination, we note that there is a more uniform sampling of the
macrostates when we build the MSM with the shorter trajectories.
Specifically, the sampling of the rightmost macrostate (in yellow)
decreases in favor of the other macrostates. This is expected since
we are actively reducing the exploration around the folded state
by terminating the trajectories that reach this point, to favor the
sampling of other states.

We conclude that the most determinant factor for the exploration
of the conformational space is the number of trajectories simulated
rather than their length because each new trajectory adds to the
diversity of the ensemble. Since we can terminate simulations that
converge to a specific state such as the folded conformation, we can
save computational resources that we can dedicate to run additional
simulations widening the diversity of the space explored. This
observation is consistent with consensus in the literature [23].

-V

# First observed folding

End of simulation

20.0%

10.0%

Percentage of trajectories

0.0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of MD steps saved

Figure 9: Distribution of trajectories saving MD
steps by early termination as suggested by the in
situ calculated LEV.

tc1

(a) tICA projection,
terminated.

(b) MSM, terminated.

Figure 10: tICA projection (a) and MSM (b) for the complete
FS trajectory set resulting from terminating the simulations
at the LEV criterion. For comparison, refer to Figs. 4a and 4b,
respectively.

4.3 MD Workflow II: Trajectory Restart

The results in the previous section indicate that terminating trajec-
tories with stable conformations and using the saved resources for
new trajectories can improve the sampling of the conformational
space. We empirically validate this hypothesis for our Fs system by
studying how our framework can assist trajectory termination and
restart, and in doing so, can incrementally integrate annotation-
based decision-making in the execution of the ensemble. To this
end, we add an additional annotator in our framework to capture
the ESS of the LEV time series. We analyze the variation in ESS to
decide if the trajectory has been in an immobile state for a certain
period of time. If this occurs, the trajectory handler is instructed to
terminate the trajectory and restart a new trajectory from either
its initial conformation or a checkpointed conformation closer to
the time step of the terminated trajectory.

4.3.1 Validation of the ESS criterion. We compute the ESS in a
window containing the last 500 values of the LEV CV to capture the
dynamicity of the spatial changes in the protein. We empirically val-
idate this ESS capability from observations of our MD simulations.
Figure 11 shows an example of ESS use. In the top figure, Trajectory
FSZ is consistently fluctuating around the 2,000-LEV value for ap-
proximately 50ns (between Frames 0 and 15,000). Between Frames
15,000 and 17,500, we can detect the sudden uncorrelated oscilla-
tions around a stable conformation by noting the acute increase
in the ESS (bottom figure). By making the decision to terminate
this trajectory at this point, we can dedicate resources to simulate a
different trajectory. Concerning trajectory FSZ in Figure 11, we can
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Figure 11: Time series of LEV CV (top) and ESS CV (bottom).
The red bars indicate the frame window in which termina-
tion conditions were met through ESS analysis.
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Figure 12: tICA projections of the entire FSZ trajectory (a)
and trajectory FSZ stopped according to ESS criterion and
restarted with FSi from the initial conformation.

terminate it and restart trajectory F. 5:11 from its initial confirmation.
Figure 12 shows the tICA projection of FSi vs. the tICA projection
of F. SZ terminated at 323.14ns of simulated time and restarted from
the origin as F Sfi (we terminate F. Si when a total of 400ns have been
simulated for a fair comparison). If we let F Sz run to completion, we
get a 35.02% coverage of the tICA space, while we increase this to
40.75% by applying the restart process. Note that by performing the
restart the trajectory moves away from the rightmost area of the
tICA map, which is heavily sampled in the overall ensemble. This is
a desirable behavior that increases the diversity of the sampling and
shows that ESS analysis is suitable to define a termination criterion
to improve the exploration of the conformational space.

4.3.2  Gain with In Situ ESS Analysis. In this workflow, we are only
using subsets FS3 and FS* to test the gain associated to an in situ
analysis using ESS because we want to be able to compare different
restart mechanisms, one of them including a checkpoint component
that is only present in these two subsets. We use termination and
restart over the subsets FS® and FS*: we terminate a trajectory
from FS3 based on its ESS CV and restart another trajectory from
FS* on the same node, starting from either its initial conformation
or the checkpointed conformation closer to the FS? termination
time step. For instance, if Trajectory FSf is terminated at time step
tess based on its ESS, then Trajectory FS;1 can be restarted from its
original starting conformation at time step ty or at the checkpointed
configuration at f¢, with . equal or below f.s. Table 2 summarizes
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the full set of experiments and the criteria we use for trajectory
termination and restart. Experiment B serves as the comparison
baseline since it represents the complete executions of subsets FS3
and FS*, thus representing the maximum number of steps that
can be executed. Experiment NN determines the potential gain of
terminating the first trajectory from FS? at a random point in time,
trand» and restarting the second trajectory from FS* from its origin
conformation at #y. In contrast, experiment AN builds on the ESS
of LEV in situ annotations as the termination criterion: it considers
the trajectory’s mobility to decide to terminate the first trajectory
from FS? at tggs and restart the second trajectory from FS* at tq.
Finally, experiment AA leverages the ESS criterion to decide both
termination and restart so that the second trajectory starts from
the last simulation checkpoint performed before tggg, at step time
t.. We compare the MD steps executed in each experiment, tICA
coverage, and MSM clustering against the baseline experiment B to
understand the gain of in situ annotations for trajectory analysis.
We refer back to the entire FS ensemble tICA map and MSM to
validate the appropriate exploration of the conformational space.

Due to space constraints, we present results for a limited number
of tests. We ran five trials of experiment NN to avoid bias in the
random selection of the trajectory termination frame. We also ran
each trial twice to account for the influence of starting from a tra-
jectory in FS3 or FS* while preserving the same random sequence
of termination frames (i.e., trajectories F. 51.3 and F. S? end at the same
trand)- To facilitate comparisons, the number of MD steps executed
per termination-restart pair is fixed to the entire length of a single
trajectory (i.e., 200M MD steps). Restarting a FSl.3 trajectory with a
F S;.l trajectory yields 95.09% + 1.51% tICA coverage while restarting
a FS;L trajectory with a FS? trajectory yields 95.68% + 0.98% tICA
coverage (both compared against the entire tICA space). These ob-
servations hold for the omitted figures. We do highlight a sample of
three trials in Fig. 13 to show how the random termination affects
the MSM clustering, which does not always accurately capture the
macrostate distribution observed in Fig. 5d (note that this figure
shows the baseline MSM for the FS3 U FS* subset).

Figure 14 shows the MSM clustering for the four experiments.
When comparing random (NN) vs. annotation-based (AN) termi-
nation with ESS with restart from the origin conformations, we
note that the tICA coverage is very similar (94.80% and 94.55%,
respectively). This indicates that random termination can effec-
tively reduce the number of executed MD steps, but we must accept
the variability we observe in Fig. 13, so this is only useful with
multiple restarts. We also observe that the MSM clustering in the
AN experiment includes an undersampled macrostate (in green in
Fig. 14c. This occurs because the states not visited in this ensemble
are consistently located in the same region of the tICA landscape.
By restarting the trajectory in a region near the termination state
indicated by ESS, we obtain a macrostate distribution (Fig. 14d)
much closer to the overall MSM for the entire FS dataset (Fig. 4b).
Work in progress investigates the transition probability matrix be-
tween the different microstates and macrostate clusterings in the
MSMs in Fig. 14 to give further analytical support for these empiri-
cal observations and understand the cumulative effect of multiple
annotation-based restarts in realistic scenarios.
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Table 2: Summary of experiments covering trajectory restart.
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Figure 13: Impact of random termination in three random-
ized trials of FS? - FS? restart.

5 ASPECTS OF NOVELTY

In this paper we introduce a novel framework for large scale ensem-
ble molecular dynamics simulations relying on in situ simulation
analysis and workflow management at runtime. A central feature
of our workflow is its modular implementation designed to allow
seamless addition of trajectory analyzers (CVs), annotators, or tra-
jectory handlers. While this already demonstrated efficiency bene-
fits, these might be improved further by integrating state-of-the-art
resampling methods like FAST [51] or WESTPA [52].

A few methods commonly used in the field attempt to provide a
plug-and-go mechanism for identifying the CVs that best describe
MD simulations. These are not single observation methods but
are derived from the full simulation post hoc [3, 35, 41, 11]. Fur-
thermore, conformational analysis based on principal component
analysis (PCA) fails to scale for the same reason, as does an analysis
using RMSD, since the all-to-all atomic comparison leads to a criti-
cal bottleneck. Using traditional relational databases rather than
CVs for trajectory analysis requires a posteriori trajectory upload
and data analysis using database functions (e.g., PostgreSQL [28,
20]). Many clustering methods have been applied to molecular
structures and MD trajectories to find similarities across datasets.
For example, Shao et al. outline how there is not a one-size-fits-all
clustering method [44]. Li and Dong describe the effect of clustering
algorithms such as Bayesian, k-means, and kinetic clustering on es-
tablishing Markov state models for MD simulations [30]. Rodriguez
presents a method for fast searches and identification of density
peaks in trajectories [40]; the method requires the scientist to pick
the number of peaks thought to be correct visually. Such clustering
strategies are used with a post-simulation perspective but must be
more scalable on large-scale machines.

Software tools are available for comparing metrics representing
molecular structures distributedly, including the number and posi-
tion of ion molecules that permeate a channel. One such method is
dynamic tensor analysis [39]. Efforts were undertaken to make the
computation as light as possible, but the method still requires that
a sequence of distance matrices from the amino acids of the entire
protein be stored in memory, resulting in a larger memory footprint
than our technique. Centralized algorithms [6, 37] make metrics
analyses inefficient when dealing with large proteins and long tra-
jectories. Hybrid approaches have been introduced to handle big
data analysis problems in the HPC context [5, 29, 16, 15]. These ap-
proaches combine in situ and in transit processing for extreme-scale
scientific analysis such as topological analysis, descriptive statistics,
and visualization. We note similar efforts to manage an ensemble of
trajectories on large distributed infrastructures. Such a framework
has been developed for NAMD using the parallel programming
system Charm++ [25]. A similar platform has been proposed for
GROMACS, based on the distributed high-performance computing
platform Copernicus [38]. The high-throughput MD [18] frame-
work developed around the program ACEMD is a Python interface
that supervises MD data generation and a posteriori analysis. None
of these frameworks is tightly integrated with in situ trajectory
analysis and annotation as our framework. We also note that the
works cited are specific to a single MD code. In contrast, our ap-
proach targets a universal interface completely independent of the
underlying MD engine, provided they have Plumed support. In
our approach, users do not have conduct format conversions: they
receive atom coordinates regardless of the MD engine used. Our
approach allows scientists to abstract and reuse their methods as
workflow building blocks.

6 CONCLUSIONS

This paper presents an in situ framework for annotating structural
molecular properties with collective variables (CVs) and managing
ensemble workflows at runtime. Our framework is integrated into
two MD workflows to study early termination and restart a bench-
mark molecular system for protein folding — the Fs peptide system
(Ace-A_5(AAARA)_3A-NME)— using Summit. The systematic ap-
proach we propose relies on a CV (LEV) that does not require a
priori knowledge of the conformational changes one seeks to simu-
late, together with a very general time series analysis method (ESS)
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Figure 14: Comparison of the resulting MSMs for the four experiments defined in Tab. 2 running with FSi3 — FS? restart.
Experiment NN is shown for trial 2, which is the closest to the average tICA coverage in all the NN trials. Percentages indicate
the MD steps executed compared to the baseline experiment B and the tICA coverage compared to the baseline tICA map

defined with the entire 40-trajectory FS dataset.

to detect immobility in trajectories. Evaluation results support our
hypothesis that CVs can drive the exploration of the conforma-
tional space at runtime while using the available resources more
efficiently. These results might be improved further by integrating
state-of-the-art resampling methods. Work in progress extends this
analysis to larger systems with multiple secondary structures and
workflows with checkpoint-restart phases guided by CV heuristics.
Our software (i.e., in situ framework, user-defined scripts, deploy-
ment configuration, and analysis notebooks) is open-source and
available in GitHub (https://github.com/Analytics4MD/A4MD).
Data artifacts (i.e., MD trajectories and annotations) are available
in Harvard Dataverse (https://doi.org/10.7910/DVN/CLPOLY).
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