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Abstract—As computational science applications benefit from
larger-scale, more heterogeneous high performance computing
(HPC) systems, the process of studying their performance be-
comes increasingly complex. The performance data analysis
library Hatchet provides some insights into this complexity, but is
currently limited in its analysis capabilities. Missing capabilities
include the handling of relational caller-callee data captured by
HPC profilers. To address this shortcoming, we augment Hatchet
with a Call Path Query Language that leverages relational data
in the performance analysis of scientific applications. Specifically,
our Query Language enables data reduction using call path
pattern matching. We demonstrate the effectiveness of our Query
Language in identifying performance bottlenecks and enhancing
Hatchet’s analysis capabilities through three case studies. In
the first case study, we compare the performance of sequential
and multi-threaded versions of the graph alignment application
Fido. In doing so, we identify the existence of large memory
inefficiencies in both versions. In the second case study, we
examine the performance of MPI calls in the linear algebra mini-
application AMG2013 when using MVAPICH and Spectrum-
MPIL. In doing so, we identify hidden performance losses in
specific MPI functions. In the third case study, we illustrate the
use of our Query Language in Hatchet’s interactive visualization.
In doing so, we show that our Query Language enables a simple
and intuitive way to massively reduce profiling data.

I. PROBLEM AND MOTIVATION

Computational science applications studying a variety of
phenomena in nature have gradually become more complex,
both in terms of problem size and algorithms. To deal with
this complexity, scientists run their applications on large-
scale, high performance computing (HPC) systems. The per-
formance of application executions on supercomputers (e.g.,
the time to completion or runtime, the amount of resources
and power used) has gained relevance as scientists pursue
short turnaround scientific discovery. To assist with the need
for high performance, measurement tools, also called profilers,
are used to provide insights on sources of performance bottle-
necks in applications. Numerous profilers specialized for HPC
applications exist [1]-[5]. As HPC systems increase in size
and heterogeneity of their resources, the study of performance
bottlenecks through application profiling has also become in-
creasingly complex, as illustrated in Figure 1. The figure shows
an example of the complexity of performance visualization
using a well-known tool named HPCToolkit for the profiling of
the Fido application [6], [7] for aligning graph structures (i.e.,

DNA, protein, and codon) on Lawrence Livermore National
Laboratory’s (LLNL) Lassen supercomputer. This complexity
leads to difficulties in extracting useful information on how
to improve application performance and accelerate scientific
discovery.

One key challenge when selecting a suitable profiler is
that most profilers use specialized solutions to assist in per-
formance analysis and tuning of scientific applications. To
manage the increased complexity of scientific applications and
HPC systems, HPC profilers utilize solutions which introduce
difficulties in analyzing performance data. For example, most
profilers use their own unique file format for storing profiling
data. As a result, users are required to deploy the analysis
tools provided by the profiling software. These tools are
typically GUI-based, and they do not allow the user to analyze
performance data programmatically. This ultimately limits the
kinds of analysis users can perform on their data. Another
example is how HPC profilers attribute execution time to
source code. Simple profilers correlate the execution time to
functions or statements in the source code. More advanced
profilers may distinguish between invocations of a function
in different call paths (i.e., the series of function calls that
led to the current function) and correlate execution time to
each unique invocation. As a result, profiling data generated by
different profilers often represents the code in different ways,
making performance data analysis tedious.

Hatchet [8], [9] is an open-source Python library for the
performance analysis of profiling data that overcomes the
above-mentioned limitations by allowing users to read the
hierarchical data generated by different HPC profilers (e.g.,
HPCToolkit [5], Caliper [2], and TAU [4]) into a new data
model that builds upon the combination of the pandas Python
library [10], [11] and graph-based hierarchical data repre-
sentations. However, Hatchet has a major shortcoming when
considering extremely large and complex profiling data such
as the one illustrated in Figure 1. It does not provide easy-to-
use, programmatic ways to leverage the hierarchical nature of
profiling data. When dealing with such data, users often need
only a subset of the available data to identify and examine
performance phenomena such as bottlenecks. As a result, users
need a way to reduce their profiling data to a meaningful
subset. Hatchet provides predicate-based filters to perform data
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Fig. 1: Example of the complexity of HPCToolkit’s performance visualization for the profiling of the Fido application [6], [7]
on Lawrence Livermore National Laboratory’s (LLNL) Lassen supercomputer.

reduction. These filters can capture individual nodes satisfying
a single predicate, but they cannot perform more complex
operations such as capturing sequences of nodes that satisty
a set of predicates. Only more sophisticated filtering allows
users to capture both a sequence of nodes and the information
about their call paths.

In this work, we augment Hatchet with a Call Path Query
Language that enhances analysis capabilities by leveraging
the hierarchical data collected by HPC profilers. To achieve
this, we first design a Query Language, using the Cypher [12]
query language for graph databases as inspiration. Our Query
Language extracts call paths from the application’s profiling
data using queries. A query is a description of the properties
of one or more paths. To facilitate the use of our Call Path
Query Language from object-oriented Python and string-based
JavaScript, we define two dialects for the definition of more
expressive queries, the Object-based Dialect and the String-
based Dialect. We integrate the Query Language and its
dialects into Hatchet to enhance Hatchet’s analysis capabilities.

We present three case studies to illustrate the effectiveness
of our Query Language in identifying performance bottlenecks
and enhancing Hatchet’s analysis capabilities. In our first case
study, we examine profiling data of the Fido application. In
this case, our query language allows us to identify memory
inefficiencies across both Fido’s sequential and multi-threaded
versions. In our second case study, we examine the AMG2013
mini-application, which is derived from a linear system solver
that is commonly used in computational science applications.
Our query language allows us to identify hidden performance
losses in specific MPI functions of AMG2013 that otherwise
were hidden to the developers. Finally, in our third case
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study, we illustrate how our Query Language enables Hatchet’s
Jupyter notebook-based interactive visualization. In this case,
our Query Language allows the visualization to provide users
with a simple and intuitive way to massively reduce their
profiling data interactively.

The contributions of this work are as follows:

o We design and implement a new Call Path Query Lan-
guage in Hatchet.

o« We define Object-based and String-based Dialects for
our Query Language to simplify its use under certain
circumstances (e.g., when building queries in JavaScript).

o We classify the capabilities of our Query Language and
its dialects to show their differences and how to choose
among them based on the user’s requirements.

o We demonstrate the benefits of our Query Language
through three case studies.

The paper is organized as follows: Section II presents
Hatchet and HPCToolkit, the two tools this work builds on.
Section III describes the design of our Call Path Query Lan-
guage. Section IV defines the dialects of the Query Language
and their purpose. Section V provides the capability classi-
fications of the Query Language and its dialects. Section VI
demonstrates the capabilities of the Query Language and its
dialects through the three case studies. Section VII discusses
related work and Section VIII concludes the paper.

II. HPCTOOLKIT AND THE HATCHET LIBRARY

We briefly describe key tools on which we build the work
presented in this paper. We use HPCToolkit to collect profiling
data and we use the Hatchet library to analyze the data. Note
that prior to our work, Hatchet did not integrate capabilities to
effectively deal with the hierarchical nature of profiling data.
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A. HPCToolkit

HPCToolkit [5] is the profiling tool we use throughout
this work to profile applications. HPCToolkit is a suite of
profiling, analysis, and visualization tools designed primarily
for HPC applications. It uses sampling at both the thread and
process level to measure performance metrics of applications
with hybrid CPU parallelism. We selected this tool because it
does not require any code annotations and thus can be easily
used across runs of different applications. After collecting
performance metrics, HPCToolkit associates them with the full
call path in which they occur and stores the final profile in a
calling context tree.

B. The Hatchet Library

Users can feed profiling data from various tools, including
HPCToolkit, into the Hatchet library. Hatchet’s primary data
structure is the GraphFrame, which is comprised of two parts:
a custom Graph and a pandas pataFrame. The Grapnh data
structure stores the caller-callee relationships that define call
paths. The patarrame stores the performance metrics asso-
ciated with each node in the Graph. To combine both the
Graph and pandas pDataFrame into a single canonical data
model, Hatchet provides a structured index that allows nodes
in the Graph to be used as an index in the pandas pataFrame.
Besides providing a single canonical data model for profiling
data, Hatchet also provides readers to ingest data gathered
from several popular profiling tools, such as HPCToolkit [5],
Caliper [2], GNU gprof [1], and many others. Once the data
has been read into a Hatchet GraphFrame, users can deploy
provided operations such as filtering and comparisons across
GraphFrames, or they can extract the pandas pataFrame and
utilize other pandas-compatible Python data analysis tools.

III. CALL PATH QUERY LANGUAGE

The foundational contribution of our work is the design and
implementation of a Query Language. We design the Query
Language to enable a Hatchet user to extract a set of paths
from a call graph (e.g., function calls). We define a query as
a sequence of query nodes. A query node is comprised of a
quantifier and a predicate. A quantifier defines how many real
nodes in a call path to match to a query node. A predicate
defines what conditions must be satisfied for a real node to
match a query node.

By applying a query to profiling data, our Query Lan-
guage finds all paths in a call graph that match properties
described by the query. We frame this problem as a version
of the subgraph isomorphism problem. To this end, we use
a modified version of the Ullmann’s algorithm [13], one
of the most important algorithms for solving the subgraph
isomorphism problem. If used in its original version, the Ull-
mann’s algorithm has two shortcomings. First, the Ullmann’s
algorithm is not designed to handle graphs in which nodes
have attributes or metrics. Second, Ullmann’s algorithm cannot
process quantifiers. Thus, we modify the algorithm in two
ways. First, we replace degree-based node comparison with the
use of predicates to account for the fact that nodes in profiling
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Algorithm 1 Apply Query to a given Call Graph

Input:
graph frame: the call graph data to query
query: the query being applied
Output: all paths in graphframe that match query

function APPLYQUERY(graph frame, query)
matches < [ |
for each node node in graphframe do
if node satisfies the predicate of query[0] then
new_paths < MatchPaths(node, query)
if matches # & then
add paths in new_paths to matches
end if
end if
end for
return unique paths in matches
end function

data have metrics. Second, we add support for quantifiers.
Algorithms 1 and 2 show our modified Ullmann’s algorithm.
Matchpaths finds all paths that match the query and start with
a given node. ApplyQuery UseS MatchPaths to capture a set
of all paths in the profiling data that match the query. After
applying our modified Ullmann’s algorithm, we output a new
Hatchet GraphFrame containing only the nodes in the captured
paths and any edges that connect these nodes.

A. Constructing Call Path Queries using the Query Language

The queryMatcher class in Hatchet defines how to construct
a call path query. Using this class, we build queries using the
match and rel methods. The match method sets the first node
of the query. The re1 method is called iteratively, each time
adding a new node to the end of the query. Both methods take
a quantifier and a predicate as input.

A quantifier can have one of four possible values:
».»: match one node
: match zero or more nodes
: match one or more nodes
e An integer: match exactly that number of nodes

The ".r quantifier matches one node, and the "+" quantifier
matches zero or more nodes. The "+" and integer quantifiers
are both implemented in terms of the "." and "+" quantifiers.
Specifically, the "+" quantifier is implemented as two nodes:
one with a " . " quantifier followed by one with a "« " quantifier.
The integer quantifier is implemented as a sequence of nodes
with "." quantifiers. If a quantifier is not provided for a given
query node, the default " . quantifier is used.

A predicate is represented as a Python caliabie that takes
the data for a node in a Hatchet GraphFrame as input and
returns a Boolean. The returned Boolean is used to determine
whether a GraphFrame node satisfies the predicate. If a
predicate is not provided for a given query node, the default
predicate is a function that always returns True.

°
o "i"

o "4M
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Algorithm 2 Match Paths for a given Starting Node

Input:
node: a node that matches the first query node
query: the query being applied

Output: all matches to the query starting with node

function MATCHPATHS(node, query)
query idx < 0
matches < [[node]]
while query idx < number of query nodes do
q <+ quantifier of query[query_idx]
p < predicate of query[query_idx]
new_matches < [ |
for each partial match, m in matches do
prev__node < last node of m
if ¢ indicates "match 1 node” then
if prev_node satisfies p then
add m to new_matches
end if
else
sub_matches < all sequences of nodes that
start with prev_node in which
every node satisfies p
if sub _matches is not empty then
remove prev_node from start of each
sequence in sub_matches
prepend m to each sequence in
sub_matches
add each sequence in sub_matches to
new__matches
end if
end if
end for
matches < all unique sequences in new__matches
if matches is empty then
return &
end if
query idx < query idr + 1
end while
return matches
end function

To illustrate the composition of queries, we consider the
Hatchet query in Figure 2a as an example. This query uses
two query nodes to find all subgraphs in the call graph rooted
at MPI (or PMPI]) function calls that have more than five
L2 cache misses (as measured by PAPI [14]). Specifically,
the first query node has the quantifier "." and one predicate
that checks two conditions. The predicate first checks if the
“name” metric matches the regular expression
"pempI_.+". Then, the predicate checks if the
"PAPI L2 TCM” metric is greater than five. Both parts of
the predicate are combined using conjunction. The second
query node has the quantifier "«". Since no predicate is
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provided for the second query node, the default predicate is
used. As a result, the second query node finds all nodes in
the call graph between MPI functions and the leaf nodes (i.e.,
functions that invoke no other functions).

IV. QUERY LANGUAGE DIALECTS

To simplify the use of our Query Language under diverse
circumstances (e.g., creating queries in JavaScript that will
be moved into Python code), we define an Object-based
Dialect and a String-based Dialect. These two dialects enable
alternative representations of predicates; these predicates are
translated into predicates in our Query Language.

e € (Python-Style) Regular Expression
1 € I, where I is the set of integers
r € R, where R is the set of real numbers

<n0de tuple)]

de)

de), (node_tuple)

(query)
(node_tuple)
no

=1
= (no
(no
(node) := ({quantifier), (condition))
| (quantifier)
| (condition)
(quantifier) = "M |
(condition) = (cond_expr)
(cond_expr) = (sing_cond)

| (sing_cond), (cond_expr)

= met: (cond_val_str)

| met: (cond_val_num)
n=r|<r|<=r|==cr|>r|>=r

(sing_cond)

(cond_val_num)

(cond_val_stry :=e

Grammar 1: Syntax of the Object-based Dialect.

A. Object-based Dialect

The Object-based Dialect is a formal language that is built
around Python’s built-in objects. In the Object-based Dialect,
quantifiers are represented in the same way as in the Query
Language (see Section III-A). The rest of the query syntax for
the Object-based Dialect is unique in terms of its predicate
representation and composition. Specifically, in the Object-
based Dialect, queries are composed using Python’s 1ist,
tuple, and dict built-in data structures. A predicate is a key-
value pair where the key is a metric name and the value is
a Boolean expression generated by using Grammar 1. For a
given query node, one or more predicates are combined into
a single Python dictionary. Multiple predicates are combined
using only conjunctions (i.e., AND).

To illustrate the Object-based Dialect, consider the query in
Figure 2b. This query identifies the same set of call paths as
the query in Figures 2a. It consists of two query nodes. The
first node has the quantifier "." and two predicates. The first
predicate is the key-value pair "name": "p?mpI_.+", and the
second predicate is "paPI_L12_TCM": "> 5". As explained in
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query = (
QueryMatcher ()
.match (
query = [
lambda row: re.match( (
"P2MPI_. %", 0,a@,
row["name" {
) "name" :
is not None
and row["PAPI_L2_TCM"] > 5 }
) ),
crel ("x") wen
) ]

"P?MPI_.x",

"PAPI_L2_TCM":

", gn

query = """

MATCH (".", p)—>("*"

WHERE p."name"=~"P?MPI_.x" AND
p."PAPI_L2_TCM" > 5

nnn

(a) Query Language

(b) Object-based Dialect

(c) String-based Dialect

Fig. 2: Examples of a query identifying the same set of call paths but using different languages (i.e., Query Language, the

Object-based Dialect, and the String-based Dialect).

Section IV-B, the second query node has the quantifier "«
and the default “always-true” predicate.

B. String-based Dialect

The String-based Dialect is a formal language that can be
used to create queries using a syntax derived from Cypher [12].
In the String-based Dialect, a query quantifier has the same
representation as in the Query Language and the Object-
based Dialect. On the other hand, predicates are represented
as Boolean expressions that are created using Grammar 2. To
extract one or more paths from profiling data, users can deploy
one or more quantifiers and predicates.

Queries generated using the String-based Dialect contain
two main syntactic pieces: a MATCH statement and a WHERE
statement. The maTcH statement starts with the vaTcu keyword
and defines the quantifiers and variable names used to refer
to query nodes in the predicates. The wHERE statement starts
with the waERE keyword and defines one or more predicates.
Multiple predicates can be combined using three Boolean
operators: conjunction (i.e., AND), disjunction (i.e., OR),
and complement (i.e., NOT). Each individual predicate takes
the form of <variable name>."<metric name>"<comparison

operation>. Grammar 2 shows the full String-based Dialect
syntax.

To illustrate the String-based Dialect, consider the query in
Figure 2c. This query identifies the same set of call paths as
the queries in Figures 2a and 2b. Once again, it consists of
two query nodes. The first node has the quantifier ". " and two
predicates. The first predicate is the expression
p."name"=~ "P?MPI_.x", and the second predicate is
p."PAPI_12_TCM"> 5. As explained in Section III-A, the sec-
ond query node has the quantifier "« and the default "always-
true” predicate.

V. CAPABILITY CLASSIFICATIONS

Through quantifiers and predicates, we capture all the paths
that match the properties expressed in the query. To facilitate
the use of our Query Language and its dialects as well as
to illustrate the differences across the three query represen-
tations, we classify queries in terms of their properties and
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a € A, where A is the set of variable names
i € I, where [ is the set of integers
m € M, where M is the set of metric names

s € S, where S

is the set of string literals

e € (Python-style) Regular Expression

r € R, where R

(query)
(path_expr)
(path)

(node _expr)

condition)
binary_cond) :

(unary_cond)
(sing_cond)

(str_cond)

(num__cond)

(exists_cond)

= (path_expr)

= am

is the set of real numbers

(path_expr)
(cond_expr)

= MATCH (path)

= (node_expr) | {(node_expr) -> (path)
= ((node))

:= (quantifier), a | {quantifier) | a

= LM e et |

::'= WHERE (condition)

(unary_cond) | (binary_cond)
(cond) BND (cond) | {(cond) OR
(cond)

(sing_cond) | NOT (sing_cond)
(str_cond) |  (num_cond) |
(exists_cond)

= am-=s

| am STARTS WITH s
| am ENDS WITH s

| a.m CONTAINS s

| am=~ce

= am-=r

am<r|am<=r
am>r1|am>=r

am IS NAN

am is NOT NAN

am IS INF

am IS NON INF

IS NONE | am IS NOT NONE

Grammar 2:

Syntax of the String-based Dialect.
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logical operators. Specifically, we classify properties into five
categories, one for quantifiers and four for predicates. They
are as follows:

o Quantifier Capabilities: match one, zero or more, one or
more, or an exact number of nodes;

o String Equivalence and Regex Matching Predicates:
match if the value of the specified string metric is
equal to a provided string or matches a provided regular
expression;

o String Containment Predicates: match if the value of the
specified string metric starts with, ends with, or contains
a provided string;

o Basic Numeric Comparison Predicates: match if the value
of the specified numeric metric satisfies the numeric
comparison (e.g., equal to, greater than, greater than or
equal to); and

o Special Value Identification Predicates: match if the value
of the specified metric is equivalent to the provided
“special value” (i.e., NaN, infinity, or None).

We can match multiple properties by combining multiple pred-
icates with logical operators. We classify the logical operators
using three categories. They are as follows:

e Predicate Combination through Conjunction: combine
predicates using conjunction (i.e., logical AND);

e Predicate Combination through Disjunction and Comple-
ment: combine predicates using disjunction (i.e., logical
OR) or find the complement (i.e., logical NOT) to a single
predicate; and

e Predicate Combination through Other Operations: com-
bine predicates through other means, such as exclusive
disjunction (i.e., logical XOR).

Table I presents the five property categories and the three cat-
egories of logical operators in relation to the Query Language
and its dialects. Note that not all categories are supported
across all three ways of creating queries. For the Property
Category, when using the Object-based Dialect, we do not
support the generation of queries with string containment
predicates and special value identification predicates. Adding
them would introduce syntactic complexity to queries not
justified by the intended simplifications of the Object-based
Dialect. For the Logical Operation Category, Object-based
Dialect predicates are represented through Python dictionaries,
and thus only one operation can be supported (i.e., con-
junction). Furthermore, predicate combinations through other
operations besides conjunction, disjunction, and complement
are currently not supported in the dialects. We provide users
with a suite of Jupyter notebooks containing use cases for all
these categories in [15].

VI. DEMONSTRATING THE NEW HATCHET CAPABILITIES

To demonstrate the new capabilities of Hatchet with our
Query Language and its dialects, we present three case studies.
In the first case study, we use the Query Language to compare
sequential and multi-threaded versions of a graph alignment
application called Fido [6], [7]. In the second case study,
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Property Category QL | Object | String
Quantifier Capabilities v v v
String Equivalence
and Regex Matching Predicates v v v
String Containment Predicates v v
Basic Numeric Comparison Predicates v v v
Special Value Identification Predicates v v
Logical Operator Category QL | Object | String
Predicate Combination
through Conjunction v v v
Predicate Combination through v v
Disjunction and Complement
Predicate Combination v
through Other Operations

TABLE I: Support for each property and logical operator
category in Query Language (QL), Object-based Dialect, and
String-based Dialect.

we use the Object-based Dialect to examine the performance
of two MPI libraries in the AMG2013 [16] mini-application
and locate a potential root cause of performance differences
between the libraries. In the third case study, we examine the
use of the String-based Dialect to reduce profiling data through
Hatchet’s call path visualization tool [17].

A. Case Study 1: Sequential vs. Multi-threaded Fido

In this case study, we evaluate the effectiveness of Hatchet
once augmented with our Query Language to compare and
contrast the performance of the sequential and parallel imple-
mentations of the graph alignment application Fido [6], [7].
Fido builds on the GRAAL algorithm [18]. Tools such as Fido
can be used for the alignment of DNA, protein, and codon
in bioinformatics and medicine. We consider two different
versions of Fido: the original, sequential version and a multi-
threaded version implemented using the portability library
RAIJA [19]. We run both versions of the code on a single node
of LLNL’s Lassen supercomputer, where each node contains
two IBM Power9 CPUs and four NVIDIA Volta V100 (though
only the CPUs were used in this work). For the multi-threaded
version of Fido, we use 40 OpenMP threads. We profile both
versions of Fido using HPCToolkit [5].

After profiling the two versions of the application, we first
use pandas [10], [11], matplotlib [20], and the original Hatchet
(without our Query Language) to measure the percentage of
total execution time spent in each function call. The results
of this analysis are shown in Figure 3. All functions that take
less than one second are summed into a single value called
”Remaining Time”. We observe that malloc is the largest
contributor to the execution time of both the sequential and
multi-threaded versions of Fido. This suggests that there is
some type of memory inefficiency in Fido that needs to be
addressed.

Because the malloc function takes such a large percent-
age of the execution time in both versions, other potential
bottlenecks directly linked to the source code of Fido are
not explicitly revealed when using the original Hatchet. The
Query Language can play an important role in revealing such
bottlenecks. To this end, we use the Query Language to remove
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Fig. 3: Fido’s percent of overall runtime spent executing functions
that take longer than one second. All functions that take less than one
second are merged into "Remaining Time”. For readability purposes,
Figure 3b zooms in on the upper range of Figure 3a (note: y-axis
range is now 80-100%).

all instances of malloc from the profiling data. Furthermore,
we add other predicates to our query to remove standard
language and compiler functions such as those with names
starting with C++’s std:: namespace or those with names
containing libc and gcc. The resulting paths highlight the
impact of functions related directly to Fido’s source code and
algorithm.

We repeat the analysis on the filtered profiling data without
malloc as well as the removed standard language and compiler
functions. Figure 4 shows the results for the filtered profiling
data. Again, all functions that take less than one second are
summed into ”"Remaining Time”. The two items identified by
GDV _ Functions.hpp represent loops in the Gbv_functions: :
inducedSubgraph function from Figure 3. We observe that the
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Fig. 4: Fido’s percent of overall runtime spent in functions that
take longer than one second after using the Query Language to
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”Remaining Time”. For readability purposes, Figure 4b zooms in
on the lower range of Figure 4a (note: y-axis range is now O-

5%). GDV_Functions.hpp represents loops in the GDV_functions
: :inducedSubgraph function from Figure 3.

ADJ_Bundle::ADJ_Bundle function takes a longer percentage
of total runtime in the OpenMP version of Fido than in the
sequential version. Although the difference in overall runtime
(as indicated by the numbers above the bars in Figure 4a)
causes the OpenMP version of ADJ_Bundle::ADJ_Bundle tO
be slightly faster than the sequential version, the difference
in percentage suggests that this function could be a target for
further performance improvements. Furthermore, we observe
that most Fido functions take less than one second and thus are
summed into the "Remaining Time” value. This suggests that
there are no other key functions that impact performance in
isolation and can be individually optimized. On the other hand,
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Fig. 5: AMG2013’s percent of (a) total MPI time spent in MPI functions, (b) total MPI time spent in the children calls of MPI functions,
and (c) total MPT_Allgather time spent in children calls. We denote the MVAPICH and Spectrum-MPI libraries by M and S. Results in
Figures 5b and 5c are generated from profiling data using the Object-based Dialect to obtain the child calls of all the MPI functions.

all the functions identified by our Query Language should be
considered in concert for any further optimization.

B. Case Study 2: MVAPICH vs. Spectrum-MPI in AMG2013

In this case study, we evaluate the effectiveness of Hatchet
when using the Object-based Dialect to identify sources
of performance losses associated with MPI calls in the
AMG2013 [16] mini-application. We use two different MPI
libraries (i.e., MVAPICH and Spectrum-MPI) with 64, 128,
256, and 512 ranks on LLNL’s Lassen supercomputer. We
profile all the runs using HPCToolkit [5].

First, we use pandas [10], [11], matplotlib [20], and the
original Hatchet (without our Query Language) to determine
the amount of time spent in functions defined by the MPI
standard. Figure 5a shows the results of this initial analysis. In
the figure, we use M and S for the MVAPICH and Spectrum-
MPI libraries, respectively. A first insight from the figure
is that MVAPICH outperforms Spectrum-MPI. To identify
possible causes of the performance differences, we use the
augmented Hatchet and its Object-based Dialect to generate
filtered profiling data containing the children calls of all the
MPI functions. We use the Object-based Dialect rather than
the Query Language or the String-based Dialect because of
its simplicity in providing us with the call paths containing all
the children calls. Figure 5b shows the total MPI time spent
in each children call. We observe that Spectrum-MPI spends
a large amount of time in 1ibmlx5.so (i.e., the Mellanox
InfiniBand user-space driver). Note that MVAPICH is also
using the same function. Thus, the worse performance of
Spectrum-MPI may be linked to differences in its use of the
driver.
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Figure 5a also shows that only four MPI calls have time
greater than 5% of the total MPI runtime with MPT_aAllgather
taking more than 75% of the total MPI time across the execu-
tions. This suggests that another possible reason for the perfor-
mance differences is in the MPI_allgather function. Thus, we
re-examine the profiling data for the two AMG2013 versions
using the Object-based Dialect to extract call paths containing
only functions called by MpT_al1lgather. Figure S5c shows the
total time spent in each of MPT_allgather’s children calls. We
observe that the time spent in the pthread_spin_lock function
is consistently larger in Spectrum-MPI than in MVAPICH.
Thus, the worse performance of Spectrum-MPI may be linked
to differences in its use of pthread_spin_lock.

The conclusions shown in Figures 5b and 5c are made
possible only with the support of the Object-based Dialect.

C. Case Study 3: Interactive Visualization of Call Paths

In this case study, we demonstrate Hatchet’s interactive call
path visualization [17] and its use of the String-based Dialect.
The interactive call path visualization presented in Figure 6
addresses the users’ need for more robust visualization options
when dealing with Hatchet GraphFrames. To augment users’
data analysis workflows, this visualization is designed for use
inside of Jupyter notebooks. Hatchet uses a library called
Roundtrip [21] to manage the passing of code and data
between the runtime context of the Jupyter notebook and the
JavaScript which powers the visualization. Note that Hatchet
assumes that the visualized call paths take the form of a tree-
based data structure. This tree-based representation of call
paths is referred to as a calling context tree.
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Fig. 6: An example of Hatchet’s calling context tree visualization. The String-based Dialect enables users to collapse tree-based
representation of call paths in this visualization and return a description of the representation in the form of an automatically

generated query.

Most relevant to the work in this paper, Hatchet’s call path
visualization supports the exporting of changes made to a tree
through point and click interactions. A user can collapse the
tree-based representation of call paths in the visualization and
return a description of the modified representation in the form
of an automatically generated query written in the String-based
Dialect. This query can, in turn, be used to synchronize the
visualization with the original profiling data.

We use the String-based Dialect rather than the Query
Language because of the Roundtrip interface which manages
the transfer of data. Since the query is constructed on the
JavaScript side of the visualization, it must be transferred back
to the Jupyter side as a string. While it is possible to pass a
string-encoded Python program back to the Jupyter notebook,
doing so introduces security risks and undesirable room for
error. Furthermore, we use the String-based Dialect rather than
the Object-based Dialect because the latter does not support
the creation of complex predicates using Boolean logic beyond
conjunction. In other words, the Object-based Dialect supports
the Predicate Combination through Conjunction capability
category, but not the other logical operator categories. As a
result, divergent tree-based representations of call paths cannot
be described by the Object-based Dialect even though it is very
common to produce such representations with point and click
manipulation.

Using the String-based Dialect allows us to generate queries
to pass back to Jupyter as a simple string and generate complex
queries with predicates combining options beyond conjunction
on the JavaScript side of the calling context tree visualization.
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Furthermore, the String-based Dialect enables us to easily store
a query into a single variable that users can pass directly
into a filter function. This simplifies and abstracts the process
of applying changes made in the visualization to a Hatchet
GraphFrame. Finally, by representing queries as strings, the
String-based Dialect allows queries produced by the calling
context tree visualization to be easily saved to file. This allows
changes made with the visualization to be easily shared for the
purposes of reproducibility and replicability [22].

To evaluate the call path visualization supported by the
String-based Dialect, we use HPCToolkit-generated profiling
data collected from two KRIPKE [23] executions. KRIPKE is
a mini-application developed at LLNL to serve as a proxy for
a fully functional discrete-ordinates transport code. KRIPKE
is designed to support different in-memory data layouts, and
allows work to be grouped into sets in order to expose
more on-node parallelism. The profiling data is from runs
on 64 and 128 cores, resulting in trees of 1500 and 2700
nodes, respectively. The visualization allows us to significantly
reduce the tree-based representation of call paths down from
1500 mostly irrelevant nodes to just over 100 nodes. This
massive data reduction results in significantly faster runtimes
in subsequent executions of the visualization on the reduced
dataset. Furthermore, the data reduction results in more com-
prehensible visualizations as identified “noisy” call paths can
be eliminated altogether.
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VII. RELATED WORK

In our work, we borrow key ideas of graph query languages
used in graph databases and adapt it to analyze profiling data.
The novelty of our work is in the use of the concepts for a
new domain such as the effective and scalable analysis of large
profiling datasets in scientific applications. Other examples of
successful use of graph processing can be found in numerous
areas of computer science (e.g., machine learning, computa-
tional sciences, medicine, and social media) [24] but not in
HPC performance analysis. For example, graph databases have
been developed to enable storing, manipulating, and analyzing
large, dynamic graph datasets [24]. Graph databases are a
type of NoSQL database that use some representation of a
graph (e.g., adjacency matrix, adjacency list) to store data
rather than a fixed, table-based schema [24]. Some examples
of graph databases are Neo4j [25] and Amazon Neptune [26].
Additionally, these systems also provide some form of lan-
guage (sometimes called a graph query language) to enable
creation, modification, access, and traversal of the dataset [27].
These languages are usually based on some form of pattern
matching, often involving finding all matches to some abstract
path or subgraph within the dataset [27]. Examples for graph
query languages are Cypher [12], Gremlin [28], and the in-
development ISO standard GQL [29].

VIII. CONCLUSIONS

In this work, we present a novel Call Path Query Language
and its two dialects for the in-depth analysis of profiling data
from scientific applications. We augmented Hatchet with our
Query Language and its dialects to provide new analysis capa-
bilities. The augmented Hatchet enables users to discover in-
sights into applications that would not otherwise be observable
with the original Hatchet library or traditional performance
analysis tools. In the case studies covered in this paper, our
Query Language and its dialects identify specific functions
that can be further optimized, attribute poor performance to
specific functions, and reduce the size of call paths from 1500
mostly irrelevant nodes to just 100 relevant ones. Additionally,
the String-based Dialect of our Query Language enables easy
and safe interaction between Hatchet and other tools (e.g.,
JavaScript-based visualizations).

In future work, we plan to use our Query Language and
its dialects to examine performance of additional HPC appli-
cations and their underlying software stacks, including in-situ
scientific workflows for studying protein structure changes as-
sociated with phenomena such as protein-protein and protein-
ligand interaction as well as membrane material properties.
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AVAILABLE JUPYTER NOTEBOOKS

A suite of Jupyter notebooks containing use cases of queries
using our Query Language and the two dialects can be found at:
https://github.com/LLNL/hatchet-tutorial.
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