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Abstract—As computational science applications benefit from
larger-scale, more heterogeneous high performance computing
(HPC) systems, the process of studying their performance be-
comes increasingly complex. The performance data analysis
library Hatchet provides some insights into this complexity, but is
currently limited in its analysis capabilities. Missing capabilities
include the handling of relational caller-callee data captured by
HPC profilers. To address this shortcoming, we augment Hatchet
with a Call Path Query Language that leverages relational data
in the performance analysis of scientific applications. Specifically,
our Query Language enables data reduction using call path
pattern matching. We demonstrate the effectiveness of our Query
Language in identifying performance bottlenecks and enhancing
Hatchet’s analysis capabilities through three case studies. In
the first case study, we compare the performance of sequential
and multi-threaded versions of the graph alignment application
Fido. In doing so, we identify the existence of large memory
inefficiencies in both versions. In the second case study, we
examine the performance of MPI calls in the linear algebra mini-
application AMG2013 when using MVAPICH and Spectrum-
MPI. In doing so, we identify hidden performance losses in
specific MPI functions. In the third case study, we illustrate the
use of our Query Language in Hatchet’s interactive visualization.
In doing so, we show that our Query Language enables a simple
and intuitive way to massively reduce profiling data.

I. PROBLEM AND MOTIVATION

Computational science applications studying a variety of

phenomena in nature have gradually become more complex,

both in terms of problem size and algorithms. To deal with

this complexity, scientists run their applications on large-

scale, high performance computing (HPC) systems. The per-

formance of application executions on supercomputers (e.g.,

the time to completion or runtime, the amount of resources

and power used) has gained relevance as scientists pursue

short turnaround scientific discovery. To assist with the need

for high performance, measurement tools, also called profilers,

are used to provide insights on sources of performance bottle-

necks in applications. Numerous profilers specialized for HPC

applications exist [1]–[5]. As HPC systems increase in size

and heterogeneity of their resources, the study of performance

bottlenecks through application profiling has also become in-

creasingly complex, as illustrated in Figure 1. The figure shows

an example of the complexity of performance visualization

using a well-known tool named HPCToolkit for the profiling of

the Fido application [6], [7] for aligning graph structures (i.e.,

DNA, protein, and codon) on Lawrence Livermore National

Laboratory’s (LLNL) Lassen supercomputer. This complexity

leads to difficulties in extracting useful information on how

to improve application performance and accelerate scientific

discovery.

One key challenge when selecting a suitable profiler is

that most profilers use specialized solutions to assist in per-

formance analysis and tuning of scientific applications. To

manage the increased complexity of scientific applications and

HPC systems, HPC profilers utilize solutions which introduce

difficulties in analyzing performance data. For example, most

profilers use their own unique file format for storing profiling

data. As a result, users are required to deploy the analysis

tools provided by the profiling software. These tools are

typically GUI-based, and they do not allow the user to analyze

performance data programmatically. This ultimately limits the

kinds of analysis users can perform on their data. Another

example is how HPC profilers attribute execution time to

source code. Simple profilers correlate the execution time to

functions or statements in the source code. More advanced

profilers may distinguish between invocations of a function

in different call paths (i.e., the series of function calls that

led to the current function) and correlate execution time to

each unique invocation. As a result, profiling data generated by

different profilers often represents the code in different ways,

making performance data analysis tedious.

Hatchet [8], [9] is an open-source Python library for the

performance analysis of profiling data that overcomes the

above-mentioned limitations by allowing users to read the

hierarchical data generated by different HPC profilers (e.g.,

HPCToolkit [5], Caliper [2], and TAU [4]) into a new data

model that builds upon the combination of the pandas Python

library [10], [11] and graph-based hierarchical data repre-

sentations. However, Hatchet has a major shortcoming when

considering extremely large and complex profiling data such

as the one illustrated in Figure 1. It does not provide easy-to-

use, programmatic ways to leverage the hierarchical nature of

profiling data. When dealing with such data, users often need

only a subset of the available data to identify and examine

performance phenomena such as bottlenecks. As a result, users

need a way to reduce their profiling data to a meaningful

subset. Hatchet provides predicate-based filters to perform data
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Fig. 1: Example of the complexity of HPCToolkit’s performance visualization for the profiling of the Fido application [6], [7]

on Lawrence Livermore National Laboratory’s (LLNL) Lassen supercomputer.

reduction. These filters can capture individual nodes satisfying

a single predicate, but they cannot perform more complex

operations such as capturing sequences of nodes that satisfy

a set of predicates. Only more sophisticated filtering allows

users to capture both a sequence of nodes and the information

about their call paths.

In this work, we augment Hatchet with a Call Path Query

Language that enhances analysis capabilities by leveraging

the hierarchical data collected by HPC profilers. To achieve

this, we first design a Query Language, using the Cypher [12]

query language for graph databases as inspiration. Our Query

Language extracts call paths from the application’s profiling

data using queries. A query is a description of the properties

of one or more paths. To facilitate the use of our Call Path

Query Language from object-oriented Python and string-based

JavaScript, we define two dialects for the definition of more

expressive queries, the Object-based Dialect and the String-

based Dialect. We integrate the Query Language and its

dialects into Hatchet to enhance Hatchet’s analysis capabilities.

We present three case studies to illustrate the effectiveness

of our Query Language in identifying performance bottlenecks

and enhancing Hatchet’s analysis capabilities. In our first case

study, we examine profiling data of the Fido application. In

this case, our query language allows us to identify memory

inefficiencies across both Fido’s sequential and multi-threaded

versions. In our second case study, we examine the AMG2013

mini-application, which is derived from a linear system solver

that is commonly used in computational science applications.

Our query language allows us to identify hidden performance

losses in specific MPI functions of AMG2013 that otherwise

were hidden to the developers. Finally, in our third case

study, we illustrate how our Query Language enables Hatchet’s

Jupyter notebook-based interactive visualization. In this case,

our Query Language allows the visualization to provide users

with a simple and intuitive way to massively reduce their

profiling data interactively.
The contributions of this work are as follows:

• We design and implement a new Call Path Query Lan-

guage in Hatchet.

• We define Object-based and String-based Dialects for

our Query Language to simplify its use under certain

circumstances (e.g., when building queries in JavaScript).

• We classify the capabilities of our Query Language and

its dialects to show their differences and how to choose

among them based on the user’s requirements.

• We demonstrate the benefits of our Query Language

through three case studies.

The paper is organized as follows: Section II presents

Hatchet and HPCToolkit, the two tools this work builds on.

Section III describes the design of our Call Path Query Lan-

guage. Section IV defines the dialects of the Query Language

and their purpose. Section V provides the capability classi-

fications of the Query Language and its dialects. Section VI

demonstrates the capabilities of the Query Language and its

dialects through the three case studies. Section VII discusses

related work and Section VIII concludes the paper.

II. HPCTOOLKIT AND THE HATCHET LIBRARY

We briefly describe key tools on which we build the work

presented in this paper. We use HPCToolkit to collect profiling

data and we use the Hatchet library to analyze the data. Note

that prior to our work, Hatchet did not integrate capabilities to

effectively deal with the hierarchical nature of profiling data.
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A. HPCToolkit

HPCToolkit [5] is the profiling tool we use throughout

this work to profile applications. HPCToolkit is a suite of

profiling, analysis, and visualization tools designed primarily

for HPC applications. It uses sampling at both the thread and

process level to measure performance metrics of applications

with hybrid CPU parallelism. We selected this tool because it

does not require any code annotations and thus can be easily

used across runs of different applications. After collecting

performance metrics, HPCToolkit associates them with the full

call path in which they occur and stores the final profile in a

calling context tree.

B. The Hatchet Library

Users can feed profiling data from various tools, including

HPCToolkit, into the Hatchet library. Hatchet’s primary data

structure is the GraphFrame, which is comprised of two parts:

a custom Graph and a pandas DataFrame. The Graph data

structure stores the caller-callee relationships that define call

paths. The DataFrame stores the performance metrics asso-

ciated with each node in the Graph. To combine both the

Graph and pandas DataFrame into a single canonical data

model, Hatchet provides a structured index that allows nodes

in the Graph to be used as an index in the pandas DataFrame.

Besides providing a single canonical data model for profiling

data, Hatchet also provides readers to ingest data gathered

from several popular profiling tools, such as HPCToolkit [5],

Caliper [2], GNU gprof [1], and many others. Once the data

has been read into a Hatchet GraphFrame, users can deploy

provided operations such as filtering and comparisons across

GraphFrames, or they can extract the pandas DataFrame and

utilize other pandas-compatible Python data analysis tools.

III. CALL PATH QUERY LANGUAGE

The foundational contribution of our work is the design and

implementation of a Query Language. We design the Query

Language to enable a Hatchet user to extract a set of paths

from a call graph (e.g., function calls). We define a query as

a sequence of query nodes. A query node is comprised of a

quantifier and a predicate. A quantifier defines how many real

nodes in a call path to match to a query node. A predicate
defines what conditions must be satisfied for a real node to

match a query node.

By applying a query to profiling data, our Query Lan-

guage finds all paths in a call graph that match properties

described by the query. We frame this problem as a version

of the subgraph isomorphism problem. To this end, we use

a modified version of the Ullmann’s algorithm [13], one

of the most important algorithms for solving the subgraph

isomorphism problem. If used in its original version, the Ull-

mann’s algorithm has two shortcomings. First, the Ullmann’s

algorithm is not designed to handle graphs in which nodes

have attributes or metrics. Second, Ullmann’s algorithm cannot

process quantifiers. Thus, we modify the algorithm in two

ways. First, we replace degree-based node comparison with the

use of predicates to account for the fact that nodes in profiling

Algorithm 1 Apply Query to a given Call Graph

Input:
graphframe: the call graph data to query

query: the query being applied

Output: all paths in graphframe that match query

function APPLYQUERY(graphframe, query)

matches ← [ ]
for each node node in graphframe do

if node satisfies the predicate of query[0] then
new paths ← MatchPaths(node, query)
if matches �= ∅ then

add paths in new paths to matches
end if

end if
end for
return unique paths in matches

end function

data have metrics. Second, we add support for quantifiers.

Algorithms 1 and 2 show our modified Ullmann’s algorithm.

MatchPaths finds all paths that match the query and start with

a given node. ApplyQuery uses MatchPaths to capture a set

of all paths in the profiling data that match the query. After

applying our modified Ullmann’s algorithm, we output a new

Hatchet GraphFrame containing only the nodes in the captured

paths and any edges that connect these nodes.

A. Constructing Call Path Queries using the Query Language

The QueryMatcher class in Hatchet defines how to construct

a call path query. Using this class, we build queries using the

match and rel methods. The match method sets the first node

of the query. The rel method is called iteratively, each time

adding a new node to the end of the query. Both methods take

a quantifier and a predicate as input.

A quantifier can have one of four possible values:

• ".": match one node

• "*": match zero or more nodes

• "+": match one or more nodes

• An integer: match exactly that number of nodes

The "." quantifier matches one node, and the "*" quantifier

matches zero or more nodes. The "+" and integer quantifiers

are both implemented in terms of the "." and "*" quantifiers.

Specifically, the "+" quantifier is implemented as two nodes:

one with a "." quantifier followed by one with a "*" quantifier.

The integer quantifier is implemented as a sequence of nodes

with "." quantifiers. If a quantifier is not provided for a given

query node, the default "." quantifier is used.

A predicate is represented as a Python Callable that takes

the data for a node in a Hatchet GraphFrame as input and

returns a Boolean. The returned Boolean is used to determine

whether a GraphFrame node satisfies the predicate. If a

predicate is not provided for a given query node, the default

predicate is a function that always returns True.
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Algorithm 2 Match Paths for a given Starting Node

Input:
node: a node that matches the first query node

query: the query being applied

Output: all matches to the query starting with node

function MATCHPATHS(node, query)

query idx ← 0
matches ← [[node]]
while query idx < number of query nodes do

q ← quantifier of query[query idx]
p ← predicate of query[query idx]
new matches ← [ ]
for each partial match, m in matches do

prev node ← last node of m
if q indicates ”match 1 node” then

if prev node satisfies p then
add m to new matches

end if
else

sub matches ← all sequences of nodes that

start with prev node in which

every node satisfies p
if sub matches is not empty then

remove prev node from start of each

sequence in sub matches
prepend m to each sequence in

sub matches
add each sequence in sub matches to

new matches
end if

end if
end for
matches ← all unique sequences in new matches
if matches is empty then

return ∅

end if
query idx ← query idx+ 1

end while
return matches

end function

To illustrate the composition of queries, we consider the

Hatchet query in Figure 2a as an example. This query uses

two query nodes to find all subgraphs in the call graph rooted

at MPI (or PMPI) function calls that have more than five

L2 cache misses (as measured by PAPI [14]). Specifically,

the first query node has the quantifier "." and one predicate

that checks two conditions. The predicate first checks if the

”name” metric matches the regular expression

"P?MPI_.*". Then, the predicate checks if the

”PAPI L2 TCM” metric is greater than five. Both parts of

the predicate are combined using conjunction. The second

query node has the quantifier "*". Since no predicate is

provided for the second query node, the default predicate is

used. As a result, the second query node finds all nodes in

the call graph between MPI functions and the leaf nodes (i.e.,

functions that invoke no other functions).

IV. QUERY LANGUAGE DIALECTS

To simplify the use of our Query Language under diverse

circumstances (e.g., creating queries in JavaScript that will

be moved into Python code), we define an Object-based

Dialect and a String-based Dialect. These two dialects enable

alternative representations of predicates; these predicates are

translated into predicates in our Query Language.

e ∈ (Python-Style) Regular Expression

i ∈ I , where I is the set of integers

r ∈ R, where R is the set of real numbers

〈query〉 ::= [〈node tuple〉]
〈node tuple〉 ::= 〈node〉

| 〈node〉, 〈node tuple〉
〈node〉 ::= (〈quantifier〉, 〈condition〉)

| 〈quantifier〉
| 〈condition〉

〈quantifier〉 ::= "." | "*" | "+" | i

〈condition〉 ::= 〈cond expr〉
〈cond expr〉 ::= 〈sing cond〉

| 〈sing cond〉, 〈cond expr〉
〈sing cond〉 ::= met: 〈cond val str〉

| met: 〈cond val num〉
〈cond val num〉 ::= r | < r | <= r | == r | > r | >= r
〈cond val str〉 ::= e

Grammar 1: Syntax of the Object-based Dialect.

A. Object-based Dialect

The Object-based Dialect is a formal language that is built

around Python’s built-in objects. In the Object-based Dialect,

quantifiers are represented in the same way as in the Query

Language (see Section III-A). The rest of the query syntax for

the Object-based Dialect is unique in terms of its predicate

representation and composition. Specifically, in the Object-

based Dialect, queries are composed using Python’s list,

tuple, and dict built-in data structures. A predicate is a key-

value pair where the key is a metric name and the value is

a Boolean expression generated by using Grammar 1. For a

given query node, one or more predicates are combined into

a single Python dictionary. Multiple predicates are combined

using only conjunctions (i.e., AND).

To illustrate the Object-based Dialect, consider the query in

Figure 2b. This query identifies the same set of call paths as

the query in Figures 2a. It consists of two query nodes. The

first node has the quantifier "." and two predicates. The first

predicate is the key-value pair "name": "P?MPI_.*", and the

second predicate is "PAPI_L2_TCM": "> 5". As explained in
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query = (
QueryMatcher()
.match(

".",
lambda row: re.match(

"P?MPI_.*",
row["name"]

)
is not None
and row["PAPI_L2_TCM"] > 5

)
.rel("*")

)

(a) Query Language

query = [
(

".",
{
"name": "P?MPI_.*",
"PAPI_L2_TCM": "> 5"

}
),
"*"

]

(b) Object-based Dialect

query = """
MATCH (".", p)->("*")
WHERE p."name"=∼"P?MPI_.*" AND

p."PAPI_L2_TCM" > 5
"""

(c) String-based Dialect

Fig. 2: Examples of a query identifying the same set of call paths but using different languages (i.e., Query Language, the

Object-based Dialect, and the String-based Dialect).

Section IV-B, the second query node has the quantifier "*"

and the default ”always-true” predicate.

B. String-based Dialect

The String-based Dialect is a formal language that can be

used to create queries using a syntax derived from Cypher [12].

In the String-based Dialect, a query quantifier has the same

representation as in the Query Language and the Object-

based Dialect. On the other hand, predicates are represented

as Boolean expressions that are created using Grammar 2. To

extract one or more paths from profiling data, users can deploy

one or more quantifiers and predicates.

Queries generated using the String-based Dialect contain

two main syntactic pieces: a MATCH statement and a WHERE

statement. The MATCH statement starts with the MATCH keyword

and defines the quantifiers and variable names used to refer

to query nodes in the predicates. The WHERE statement starts

with the WHERE keyword and defines one or more predicates.

Multiple predicates can be combined using three Boolean

operators: conjunction (i.e., AND), disjunction (i.e., OR),

and complement (i.e., NOT). Each individual predicate takes

the form of <variable name>."<metric name>"<comparison

operation>. Grammar 2 shows the full String-based Dialect

syntax.

To illustrate the String-based Dialect, consider the query in

Figure 2c. This query identifies the same set of call paths as

the queries in Figures 2a and 2b. Once again, it consists of

two query nodes. The first node has the quantifier "." and two

predicates. The first predicate is the expression

p."name"=∼ "P?MPI_.*", and the second predicate is

p."PAPI_L2_TCM"> 5. As explained in Section III-A, the sec-

ond query node has the quantifier "*" and the default ”always-

true” predicate.

V. CAPABILITY CLASSIFICATIONS

Through quantifiers and predicates, we capture all the paths

that match the properties expressed in the query. To facilitate

the use of our Query Language and its dialects as well as

to illustrate the differences across the three query represen-

tations, we classify queries in terms of their properties and

a ∈ A, where A is the set of variable names

i ∈ I , where I is the set of integers

m ∈ M , where M is the set of metric names

s ∈ S, where S is the set of string literals

e ∈ (Python-style) Regular Expression

r ∈ R, where R is the set of real numbers

〈query〉 ::= 〈path expr〉 | 〈path expr〉
〈cond expr〉

〈path expr〉 ::= MATCH 〈path〉
〈path〉 ::= 〈node expr〉 | 〈node expr〉 -> 〈path〉
〈node expr〉 ::= (〈node〉)
〈node〉 ::= 〈quantifier〉, a | 〈quantifier〉 | a

〈quantifier〉 ::= "." | "*" | "+" | i

〈cond expr〉 ::= WHERE 〈condition〉
〈condition〉 ::= 〈unary cond〉 | 〈binary cond〉
〈binary cond〉 ::= 〈cond〉 AND 〈cond〉 | 〈cond〉 OR

〈cond〉
〈unary cond〉 ::= 〈sing cond〉 | NOT 〈sing cond〉
〈sing cond〉 ::= 〈str cond〉 | 〈num cond〉 |

〈exists cond〉
〈str cond〉 ::= a.m = s

| a.m STARTS WITH s

| a.m ENDS WITH s

| a.m CONTAINS s

| a.m =∼ e

〈num cond〉 ::= a.m = r

| a.m < r | a.m <= r

| a.m > r | a.m >= r

| a.m IS NAN
| a.m is NOT NAN
| a.m IS INF
| a.m IS NON INF

〈exists cond〉 ::= a.m IS NONE | a.m IS NOT NONE

Grammar 2: Syntax of the String-based Dialect.
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logical operators. Specifically, we classify properties into five

categories, one for quantifiers and four for predicates. They

are as follows:

• Quantifier Capabilities: match one, zero or more, one or

more, or an exact number of nodes;

• String Equivalence and Regex Matching Predicates:

match if the value of the specified string metric is

equal to a provided string or matches a provided regular

expression;

• String Containment Predicates: match if the value of the

specified string metric starts with, ends with, or contains

a provided string;

• Basic Numeric Comparison Predicates: match if the value

of the specified numeric metric satisfies the numeric

comparison (e.g., equal to, greater than, greater than or

equal to); and

• Special Value Identification Predicates: match if the value

of the specified metric is equivalent to the provided

“special value” (i.e., NaN, infinity, or None).

We can match multiple properties by combining multiple pred-

icates with logical operators. We classify the logical operators

using three categories. They are as follows:

• Predicate Combination through Conjunction: combine

predicates using conjunction (i.e., logical AND);

• Predicate Combination through Disjunction and Comple-
ment: combine predicates using disjunction (i.e., logical

OR) or find the complement (i.e., logical NOT) to a single

predicate; and

• Predicate Combination through Other Operations: com-

bine predicates through other means, such as exclusive

disjunction (i.e., logical XOR).

Table I presents the five property categories and the three cat-

egories of logical operators in relation to the Query Language

and its dialects. Note that not all categories are supported

across all three ways of creating queries. For the Property
Category, when using the Object-based Dialect, we do not

support the generation of queries with string containment

predicates and special value identification predicates. Adding

them would introduce syntactic complexity to queries not

justified by the intended simplifications of the Object-based

Dialect. For the Logical Operation Category, Object-based

Dialect predicates are represented through Python dictionaries,

and thus only one operation can be supported (i.e., con-

junction). Furthermore, predicate combinations through other

operations besides conjunction, disjunction, and complement

are currently not supported in the dialects. We provide users

with a suite of Jupyter notebooks containing use cases for all

these categories in [15].

VI. DEMONSTRATING THE NEW HATCHET CAPABILITIES

To demonstrate the new capabilities of Hatchet with our

Query Language and its dialects, we present three case studies.

In the first case study, we use the Query Language to compare

sequential and multi-threaded versions of a graph alignment

application called Fido [6], [7]. In the second case study,

Property Category QL Object String
Quantifier Capabilities � � �

String Equivalence
and Regex Matching Predicates

� � �
String Containment Predicates � �

Basic Numeric Comparison Predicates � � �
Special Value Identification Predicates � �

Logical Operator Category QL Object String
Predicate Combination
through Conjunction

� � �
Predicate Combination through
Disjunction and Complement

� �
Predicate Combination

through Other Operations
�

TABLE I: Support for each property and logical operator

category in Query Language (QL), Object-based Dialect, and

String-based Dialect.

we use the Object-based Dialect to examine the performance

of two MPI libraries in the AMG2013 [16] mini-application

and locate a potential root cause of performance differences

between the libraries. In the third case study, we examine the

use of the String-based Dialect to reduce profiling data through

Hatchet’s call path visualization tool [17].

A. Case Study 1: Sequential vs. Multi-threaded Fido

In this case study, we evaluate the effectiveness of Hatchet

once augmented with our Query Language to compare and

contrast the performance of the sequential and parallel imple-

mentations of the graph alignment application Fido [6], [7].

Fido builds on the GRAAL algorithm [18]. Tools such as Fido

can be used for the alignment of DNA, protein, and codon

in bioinformatics and medicine. We consider two different

versions of Fido: the original, sequential version and a multi-

threaded version implemented using the portability library

RAJA [19]. We run both versions of the code on a single node

of LLNL’s Lassen supercomputer, where each node contains

two IBM Power9 CPUs and four NVIDIA Volta V100 (though

only the CPUs were used in this work). For the multi-threaded

version of Fido, we use 40 OpenMP threads. We profile both

versions of Fido using HPCToolkit [5].

After profiling the two versions of the application, we first

use pandas [10], [11], matplotlib [20], and the original Hatchet

(without our Query Language) to measure the percentage of

total execution time spent in each function call. The results

of this analysis are shown in Figure 3. All functions that take

less than one second are summed into a single value called

”Remaining Time”. We observe that malloc is the largest

contributor to the execution time of both the sequential and

multi-threaded versions of Fido. This suggests that there is

some type of memory inefficiency in Fido that needs to be

addressed.

Because the malloc function takes such a large percent-

age of the execution time in both versions, other potential

bottlenecks directly linked to the source code of Fido are

not explicitly revealed when using the original Hatchet. The

Query Language can play an important role in revealing such

bottlenecks. To this end, we use the Query Language to remove
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(a)

(b)

Function Calls
malloc

GDV_functions::inducedSubgraph
Remaining Time

Fig. 3: Fido’s percent of overall runtime spent executing functions
that take longer than one second. All functions that take less than one
second are merged into ”Remaining Time”. For readability purposes,
Figure 3b zooms in on the upper range of Figure 3a (note: y-axis
range is now 80-100%).

all instances of malloc from the profiling data. Furthermore,

we add other predicates to our query to remove standard

language and compiler functions such as those with names

starting with C++’s std:: namespace or those with names

containing libc and gcc. The resulting paths highlight the

impact of functions related directly to Fido’s source code and

algorithm.

We repeat the analysis on the filtered profiling data without

malloc as well as the removed standard language and compiler

functions. Figure 4 shows the results for the filtered profiling

data. Again, all functions that take less than one second are

summed into ”Remaining Time”. The two items identified by

GDV Functions.hpp represent loops in the GDV_functions::

inducedSubgraph function from Figure 3. We observe that the

(a)

(b)

Function Calls
GDV_functions.hpp:57 ADJ_Bundle::ADJ_Bundle
GDV_functions.hpp:71 Remaining Time

Fig. 4: Fido’s percent of overall runtime spent in functions that
take longer than one second after using the Query Language to
hide malloc, standard language functions, and compiler functions.
All functions that take less than one second are merged into
”Remaining Time”. For readability purposes, Figure 4b zooms in
on the lower range of Figure 4a (note: y-axis range is now 0-
5%). GDV Functions.hpp represents loops in the GDV_functions
::inducedSubgraph function from Figure 3.

ADJ_Bundle::ADJ_Bundle function takes a longer percentage

of total runtime in the OpenMP version of Fido than in the

sequential version. Although the difference in overall runtime

(as indicated by the numbers above the bars in Figure 4a)

causes the OpenMP version of ADJ_Bundle::ADJ_Bundle to

be slightly faster than the sequential version, the difference

in percentage suggests that this function could be a target for

further performance improvements. Furthermore, we observe

that most Fido functions take less than one second and thus are

summed into the ”Remaining Time” value. This suggests that

there are no other key functions that impact performance in

isolation and can be individually optimized. On the other hand,
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(a) MPI functions (b) Children calls of MPI functions (c) MPI_Allgather

MPI Function Calls
MPI_Finalize MPI_Allreduce
MPI_Allgather MPI_Waitall

Remaining MPI Time

Child Function Calls
pthread_spin_lock.c:26 <unknown file> [libmlx5.so.1.0.0]:1133

<unknown file> [libmlx5.so.1.0.0]:0 memset.S:1133
Geometry.h:0 stl_vector.h:0
malloc.c:0 Remaining MPI Time

Fig. 5: AMG2013’s percent of (a) total MPI time spent in MPI functions, (b) total MPI time spent in the children calls of MPI functions,
and (c) total MPI_Allgather time spent in children calls. We denote the MVAPICH and Spectrum-MPI libraries by M and S. Results in
Figures 5b and 5c are generated from profiling data using the Object-based Dialect to obtain the child calls of all the MPI functions.

all the functions identified by our Query Language should be

considered in concert for any further optimization.

B. Case Study 2: MVAPICH vs. Spectrum-MPI in AMG2013
In this case study, we evaluate the effectiveness of Hatchet

when using the Object-based Dialect to identify sources

of performance losses associated with MPI calls in the

AMG2013 [16] mini-application. We use two different MPI

libraries (i.e., MVAPICH and Spectrum-MPI) with 64, 128,

256, and 512 ranks on LLNL’s Lassen supercomputer. We

profile all the runs using HPCToolkit [5].
First, we use pandas [10], [11], matplotlib [20], and the

original Hatchet (without our Query Language) to determine

the amount of time spent in functions defined by the MPI

standard. Figure 5a shows the results of this initial analysis. In

the figure, we use M and S for the MVAPICH and Spectrum-

MPI libraries, respectively. A first insight from the figure

is that MVAPICH outperforms Spectrum-MPI. To identify

possible causes of the performance differences, we use the

augmented Hatchet and its Object-based Dialect to generate

filtered profiling data containing the children calls of all the

MPI functions. We use the Object-based Dialect rather than

the Query Language or the String-based Dialect because of

its simplicity in providing us with the call paths containing all

the children calls. Figure 5b shows the total MPI time spent

in each children call. We observe that Spectrum-MPI spends

a large amount of time in libmlx5.so (i.e., the Mellanox

InfiniBand user-space driver). Note that MVAPICH is also

using the same function. Thus, the worse performance of

Spectrum-MPI may be linked to differences in its use of the

driver.

Figure 5a also shows that only four MPI calls have time

greater than 5% of the total MPI runtime with MPI_Allgather

taking more than 75% of the total MPI time across the execu-

tions. This suggests that another possible reason for the perfor-

mance differences is in the MPI_Allgather function. Thus, we

re-examine the profiling data for the two AMG2013 versions

using the Object-based Dialect to extract call paths containing

only functions called by MPI_Allgather. Figure 5c shows the

total time spent in each of MPI_Allgather’s children calls. We

observe that the time spent in the pthread_spin_lock function

is consistently larger in Spectrum-MPI than in MVAPICH.

Thus, the worse performance of Spectrum-MPI may be linked

to differences in its use of pthread_spin_lock.

The conclusions shown in Figures 5b and 5c are made

possible only with the support of the Object-based Dialect.

C. Case Study 3: Interactive Visualization of Call Paths

In this case study, we demonstrate Hatchet’s interactive call

path visualization [17] and its use of the String-based Dialect.

The interactive call path visualization presented in Figure 6

addresses the users’ need for more robust visualization options

when dealing with Hatchet GraphFrames. To augment users’

data analysis workflows, this visualization is designed for use

inside of Jupyter notebooks. Hatchet uses a library called

Roundtrip [21] to manage the passing of code and data

between the runtime context of the Jupyter notebook and the

JavaScript which powers the visualization. Note that Hatchet

assumes that the visualized call paths take the form of a tree-

based data structure. This tree-based representation of call

paths is referred to as a calling context tree.
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Fig. 6: An example of Hatchet’s calling context tree visualization. The String-based Dialect enables users to collapse tree-based

representation of call paths in this visualization and return a description of the representation in the form of an automatically

generated query.

Most relevant to the work in this paper, Hatchet’s call path

visualization supports the exporting of changes made to a tree

through point and click interactions. A user can collapse the

tree-based representation of call paths in the visualization and

return a description of the modified representation in the form

of an automatically generated query written in the String-based

Dialect. This query can, in turn, be used to synchronize the

visualization with the original profiling data.

We use the String-based Dialect rather than the Query

Language because of the Roundtrip interface which manages

the transfer of data. Since the query is constructed on the

JavaScript side of the visualization, it must be transferred back

to the Jupyter side as a string. While it is possible to pass a

string-encoded Python program back to the Jupyter notebook,

doing so introduces security risks and undesirable room for

error. Furthermore, we use the String-based Dialect rather than

the Object-based Dialect because the latter does not support

the creation of complex predicates using Boolean logic beyond

conjunction. In other words, the Object-based Dialect supports

the Predicate Combination through Conjunction capability

category, but not the other logical operator categories. As a

result, divergent tree-based representations of call paths cannot

be described by the Object-based Dialect even though it is very

common to produce such representations with point and click

manipulation.

Using the String-based Dialect allows us to generate queries

to pass back to Jupyter as a simple string and generate complex

queries with predicates combining options beyond conjunction

on the JavaScript side of the calling context tree visualization.

Furthermore, the String-based Dialect enables us to easily store

a query into a single variable that users can pass directly

into a filter function. This simplifies and abstracts the process

of applying changes made in the visualization to a Hatchet

GraphFrame. Finally, by representing queries as strings, the

String-based Dialect allows queries produced by the calling

context tree visualization to be easily saved to file. This allows

changes made with the visualization to be easily shared for the

purposes of reproducibility and replicability [22].

To evaluate the call path visualization supported by the

String-based Dialect, we use HPCToolkit-generated profiling

data collected from two KRIPKE [23] executions. KRIPKE is

a mini-application developed at LLNL to serve as a proxy for

a fully functional discrete-ordinates transport code. KRIPKE

is designed to support different in-memory data layouts, and

allows work to be grouped into sets in order to expose

more on-node parallelism. The profiling data is from runs

on 64 and 128 cores, resulting in trees of 1500 and 2700

nodes, respectively. The visualization allows us to significantly

reduce the tree-based representation of call paths down from

1500 mostly irrelevant nodes to just over 100 nodes. This

massive data reduction results in significantly faster runtimes

in subsequent executions of the visualization on the reduced

dataset. Furthermore, the data reduction results in more com-

prehensible visualizations as identified ”noisy” call paths can

be eliminated altogether.
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VII. RELATED WORK

In our work, we borrow key ideas of graph query languages

used in graph databases and adapt it to analyze profiling data.

The novelty of our work is in the use of the concepts for a

new domain such as the effective and scalable analysis of large

profiling datasets in scientific applications. Other examples of

successful use of graph processing can be found in numerous

areas of computer science (e.g., machine learning, computa-

tional sciences, medicine, and social media) [24] but not in

HPC performance analysis. For example, graph databases have

been developed to enable storing, manipulating, and analyzing

large, dynamic graph datasets [24]. Graph databases are a

type of NoSQL database that use some representation of a

graph (e.g., adjacency matrix, adjacency list) to store data

rather than a fixed, table-based schema [24]. Some examples

of graph databases are Neo4j [25] and Amazon Neptune [26].

Additionally, these systems also provide some form of lan-

guage (sometimes called a graph query language) to enable

creation, modification, access, and traversal of the dataset [27].

These languages are usually based on some form of pattern

matching, often involving finding all matches to some abstract

path or subgraph within the dataset [27]. Examples for graph

query languages are Cypher [12], Gremlin [28], and the in-

development ISO standard GQL [29].

VIII. CONCLUSIONS

In this work, we present a novel Call Path Query Language

and its two dialects for the in-depth analysis of profiling data

from scientific applications. We augmented Hatchet with our

Query Language and its dialects to provide new analysis capa-

bilities. The augmented Hatchet enables users to discover in-

sights into applications that would not otherwise be observable

with the original Hatchet library or traditional performance

analysis tools. In the case studies covered in this paper, our

Query Language and its dialects identify specific functions

that can be further optimized, attribute poor performance to

specific functions, and reduce the size of call paths from 1500

mostly irrelevant nodes to just 100 relevant ones. Additionally,

the String-based Dialect of our Query Language enables easy

and safe interaction between Hatchet and other tools (e.g.,

JavaScript-based visualizations).

In future work, we plan to use our Query Language and

its dialects to examine performance of additional HPC appli-

cations and their underlying software stacks, including in-situ

scientific workflows for studying protein structure changes as-

sociated with phenomena such as protein-protein and protein-

ligand interaction as well as membrane material properties.
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V. López, K. Srinivas, and C. Fortuna, Eds., vol. 2180. CEUR-WS.org,
2018. [Online]. Available: http://ceur-ws.org/Vol-2180/paper-79.pdf

[27] R. Angles and C. Gutiérrez, “Survey of Graph Database Models,” ACM
Comput. Surv., vol. 40, no. 1, pp. 1:1–1:39, 2008. [Online]. Available:
https://doi.org/10.1145/1322432.1322433

[28] M. A. Rodriguez, “The gremlin graph traversal machine and language
(invited talk),” in Proceedings of the 15th Symposium on Database
Programming Languages, Pittsburgh, PA, USA, October 25-30, 2015,
J. Cheney and T. Neumann, Eds. ACM, 2015, pp. 1–10. [Online].
Available: https://doi.org/10.1145/2815072.2815073

[29] A. Green, P. Furniss, P. Lindaaker, P. Selmer, H. Voigt, and
S. Plantikow, “GQL Scope and Features,” ISO, Tech. Rep., 2019.
[Online]. Available: https://s3.amazonaws.com/artifacts.opencypher.org/
website/materials/sql-pg-2018-0046r3-GQL-Scope-and-Features.pdf

266

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on December 18,2023 at 14:45:15 UTC from IEEE Xplore.  Restrictions apply. 


