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The introduction of structural defects in otherwise periodic media is well known to grant space con-

trol and localization of waves in several fields of physics, from electromagnetism to acoustics and

elasticity. Despite the variety of designs proposed so far to achieve mode localization, most of the

approaches derive from contextual modifications that do not translate into a design paradigm due to the

lack of a general theory. Few exceptions include designs endowed with topological dispersion bands,

which, however, require changes over substantial portions of the structure. To overcome these limita-

tions, here we introduce a rationale inspired by fractional electronic charges, to achieve topologically

protected localized modes in continuous elastic media. We theoretically predict and experimentally

observe the spectral flow of a localized mode across a bulk frequency gap by modulating a single struc-

tural parameter at any chosen location of architectured elastic media. The simplicity and generality of

this approach may open avenues in designing elastic-wave-based devices for energy localization and

harvesting.

DOI: 10.1103/PhysRevApplied.20.064018

I. INTRODUCTION

The quest for media capable of wave localization has

attracted increasing interest in many research fields, owing

to its promise of fostering new functionalities, such as

defect-immune and scattering-free wave propagation [1,

2], object cloaking [3], unidirectional transmission [4,5],

and enhanced energy transport and harvesting [6,7], to

cite a few. For this reason, wave localization has been

extensively studied for over a century in various phys-

ical domains, including electromagnetism, elasticity, and

acoustics [8,9].

Localized modes can be classified through the symme-

try of the structure hosting the wave propagation, i.e., (i)

random or disordered [10–14], (ii) quasiperiodic [15–18],

and (iii) periodic media with defects [19–22]. In this con-

text, continuous elastic media offer a rich playground in

such a quest because of their fourth-order tensor-based

physics coupling longitudinal, shear, and flexural defor-

mations [23]. It has been shown that mode localization
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in elasticity emerges by breaking specific symmetries,

adding/removing inclusions in the unit cell, or varying

its size/shape to create point [24–27] or line defects [28–

30]. However, despite the variety of designs proposed

so far, most of these approaches are based on ad hoc

modifications that do not translate into a general design

paradigm allowing a systematic prediction, a priori, of the

presence or absence of a localized mode under a geomet-

rical or structural modification. Also, these approaches are

extremely sensitive to the presence of additional defects in

the structure, implying the risk of uncontrolled frequency

shifts of the modes.

The recent introduction of topological protection in elas-

ticity [31–34] has opened new possibilities for a more

systematic design procedure to achieve localized modes

insensitive to defects [35–39]. Such a robustness arises

from dispersion bands with non trivial topology. However,

solutions explored so far require material or geometrical

modifications over the entire or substantial portions of

the structure [40], since such modes arise at the interface

between two domains with distinct topological proper-

ties characterized by different topological invariants, such

as the Zak phase or Chern number [41]. Notable excep-

tions include fragile topological phases [42,43], where a

family of localized modes arise across an interface under

twisted boundary conditions [44], and fractional topologi-

cal charges [45], granting mode localization at the corners

of lattice structures.
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These observations are limited to pressure acoustic

waves [43,46] (where the propagation is described through

a scalar field potential), electronic charges localizing at

corners and dislocation cores due to filing anomaly-

induced topological effects [47], and photonic lattices

[48]. On the contrary, the spectral flow of localized

modes in continuous elastic media has remained elusive

so far, due to the unique tensor-based nature of its wave

equations [23], implying high modal density and ten-

dency to hybridize under structural modifications. This has

often restricted the research of localized modes in solid

mechanics to one-dimensional (1D) structures, including

one-dimensional soft periodic plates [49], granular crys-

tals [50], and array systems with inerters [51] or resonators

[52]. In addition, as nontrivial localized modes are con-

cerned, the current state of the art is limited to modes

arising (i) at the edges of 1D chains with specific boundary

conditions, (ii) when at least two (different) subdomains

are considered, or (iii) when distributed modifications over

the structure are introduced.

In contrast to prior works, we propose here an approach

to localize a mode within a continuous elastic system at

any arbitrary location and by only modifying a single struc-

tural parameter (the stiffness) in one unit cell, leaving the

remaining structure unaltered.

The paper is organized as follows. First, we report the

experimental observation of a family of localized modes

spanning a frequency band gap between two bulk disper-

sion bands in polymeric 3D-printed mass-spring systems

that accommodate a smooth local modulation of the stiff-

ness of a single unit cell. Second, the generality of the

above rationale is numerically confirmed in the case of

platelike structures, i.e., continuous elastic media with 2D

in-plane periodicity. In both cases, the observed behav-

ior is accompanied by a thorough interpretation based on

a theoretical model allowing us to fully predict, a priori,

the presence, or absence, of the localized mode as a func-

tion of the structural parameter change. We point out that

this approach allows the center of the localized mode to

be arbitrarily chosen or located within the original struc-

ture, suppressing the need for substantial modifications of

the periodic structure, as required, instead, by the tradi-

tional topological protection approaches. Furthermore, the

procedure, solely involving topological arguments (miss-

ing in prior works) remains valid across material proper-

ties and length scales, as demonstrated by its extension

to higher spatial dimensions (2D hexagonal lattice). We

believe that our results may open avenues in designing

wave-based devices for elastic energy localization, control,

and harvesting.

II. MODAL SPECTRAL FLOW THROUGH

STIFFNESS MODULATION (1D CASE)

A. Experimental observation

Figure 1(a) reports a discrete schematic representation

of a family of 3D-printed structures, employed to con-

firm the above rationale. The rectangle shaded in light
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FIG. 1. Observation of the spectral flow. (a) Schematic representation of a mono-dimensional mass-spring chain. The unit cell,

highlighted as a light yellow rectangle, comprises two masses (green dots) and two springs of stiffness k (in black) and δ (in gray),

respectively. A defect spring (in red) located in the chain is characterized by a stiffness modulated through parameter λ. (b) Three-

dimensional rendering of the experimental samples (for k > δ). The stiffness modulation is obtained by gradually varying the radius

rd of the central beam (grading colors going from white to dark blue) connecting its two adjacent masses. Ten stiffness modulations

indicated as #1–#10 are considered. (c) Measured frequency response functions (color map) in the 0–11-kHz frequency range for the

two classes of elastic chains (k > δ, left panel, and k < δ, right panel) for different values of λ. In the first case, a spectral flow of

the eighth mode from the lower to the upper bulk band is observed. In the second case, no crossing is observed. The data at each λ

have been individually normalized with respect to their maximum value. Overlaid square white dots indicate analytically calculated

eigenmodes. Green arrows indicate the mode shapes that are fully reconstructed and presented in Fig. 3 below.
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yellow represents the unit cell of the chain consisting of

two identical masses (green dots) and two springs of alter-

nating stiffness k (in black) and δ (in gray), respectively. A

defect spring (in red) located in the interior (middle) of the

chain is characterized by a stiffness modulation parameter

λ ∈ [0, 1].

Figure 1(b) reports a 3D rendering of the printed struc-

tures manufactured to realize the elastic analogue of the

above-described discrete system. The unit cell (in yellow)

can be divided into three regions: a thick one with square

cross section, corresponding to the masses of the discrete

chain (masses in what follows) and two thin beams with

circular cross section of different radii, corresponding to

the springs of stiffness k and δ (springs in what follows).

The axial stiffness of each beam is EA/L to first order, with

E, A, and L the material Young modulus, the cross-section

area, and the length of the beam, respectively (geometri-

cal and material parameters of the considered unit cell are

reported below).

The first step towards a clear observation of a topologi-

cally protected modal spectral flow is to realize a complete

band gap for all the possible elastic polarizations (bend-

ing, shear, torsional, and axial modes) of the considered

unit cell. This is done by choosing an appropriate set of

geometric parameters for the unit cell under investigation

(considered as infinitely repeated along the x direction),

when k �= δ. In our case, a band gap between 5840 and

8280 Hz is opened when k = 2δ (see Appendix A for

details on the dispersion diagram and mode shapes, and

the geometrical and material parameters of the consid-

ered unit cell). As the second step, a modulation of one

of the stiffer springs (those characterized by rigidity k)

is introduced at an arbitrary location (chosen for simplic-

ity at the center of the chain in our case) within a finite

structure, and thus now made of a finite number of unit

cells (seven in our case) to induce a selective shift in

the natural frequencies of the eigenmode closest to the

band gap.

To this end, two classes of finite chains hosting 14

masses (see Appendix B) are fabricated through additive

manufacturing (Stratasys Objet350 Connex3) using the

thermoplastic polymer VEROTM with the following nomi-

nal properties: density ρ = 1180 kg/m3, Young’s modulus

E = 2.96 GPa, and Poisson ratio ν = 0.38. The geomet-

rical parameters of the unit cells are the following: (i)

side of the square mass a = 10 mm, (ii) length of the

beams L = 15 mm, (iii) radii of the beams correspond-

ing to the springs of stiffness k and δ in the discrete

case are r1 = 1.20 mm (k) and r2 = 1.20 ×
√

2 � 1.70

mm (δ) for the case k < δ and r1 = 1.20 ×
√

2 � 1.70

mm (k) and r2 = 1.20 mm (δ) for the case k > δ. In

both cases, the radius of the defect is set to rd = r2

√
λ.

Ten stiffness modulations are introduced through a gradual

variation of radius rd of the central beam of the finite chain

[grading colors shading from white to dark blue in Fig.

1(b)] indicated as λk, with λ ∈ [0.1, 1], and enumerated as

#1–#10, corresponding to λ = 1 and λ = 0.1, respectively.

A photograph of the manufactured samples is reported in

Appendix B.

Two distinct cases are considered to distinguish between

a trivial stiffness alteration and a topological one leading

to a modal spectral flow: (i) k > δ and (ii) k < δ. The

transmissibility of the two classes of structures is inves-

tigated by scanning laser doppler vibrometry (SLDV) of

the samples. Longitudinal waves are excited into the spec-

imens by imparting axial displacements and longitudinal

velocity is acquired (Appendix C reports the details of the

experimental configurations). The transmissibility is cal-

culated as the ratio of the velocity amplitude detected at

the scanning points and at the excitation points. Figure

1(c) reports the frequency response function in the 0–11-

kHz frequency range for the two cases (k > δ, left panel,

and k < δ, right panel) when ten different values of λ are

adopted. In the first case, a spectral flow of the eighth mode

from the lower to the upper bulk region is observed as

energy spots passing across the entire band gap when λ

is varied in the [0.1, 1] range. On the contrary, when k < δ,

no crossing is observed as λ is changed. This provides a

direct observation of the modal spectral flow. The exper-

imental results are in perfect agreement with the natural

frequencies of the axial modes of the specimens calcu-

lated analytically by solving the corresponding eigenvalue

problem (see Appendix D for details on the analytical

calculations) and reported as overlaid white squares. The

rigid longitudinal translation modes at zero frequency are

filtered out in the experimental measurements through a

high-pass band filter. An additional comparison between

the analytical results and further numerical calculations are

also provided in Appendix E.

B. Integrated mode density

The emergence (or absence) of the localized modes

derives from topological properties associated with the

defectless periodic structure. To reveal the nontrivial origin

of the mode spanning the whole band gap, the integrated

mode density (IMD) is determined from the experimental

frequency responses of the finite periodic structure without

defect, i.e., when λ = 1 [see Fig. 2(a)]. The red segment

identifies, for each structure under consideration (k > δ in

the top panel and k < δ in the bottom panel), the interface

dividing the system into two subdomains (at the left and

at the right of the red springs of rigidity λk) hosting S =
7 masses or 2N − S = 14 − 7 = 7 masses, respectively

(2N = 14 is the total number of masses in the consid-

ered finite structures, where N is the number of unit cells

composing the finite structure). IMD is calculated by con-

sidering the subdomain on one side of the interface (either

the left one or the right one) having S, or 14 − S, masses
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FIG. 2. Integrated mode density: the signature of the nontrivial topological behavior of the spectral flow. (a) Three-dimensional

rendering of the examined structures when k > δ, λ = 1 (top panel) and k < δ, λ = 1 (bottom panel). The location where the defect

is introduced as λ is varied (red segment) divides the domain into two subdomains. The values of the experimentally determined

integrated mode density (IMD) for the domains on each side of the interface are reported in the light pink and light purple rectan-

gles, respectively. The IMD is a fraction when k > δ and an integer when k < δ, unequivocally confirming the nontrivial and trivial

topologies of the two classes of structures, respectively. The numbers near each mass indicate the contributions to the IMD,
∑Q

p=1 u2
ip .

(b) Frequency content of the measured axial displacement ui of masses i = 7 (left panel) and i = 10 (right panel). The red numbers

highlight the peaks corresponding to the mode shapes of the eigenfrequencies below the band gap in the left panel of Fig. 1(c). The

y axis of the figures, expressed in decibels, derives from 20 log10 u, where u is the longitudinal displacement derived from the SLDV

acquisitions at the edge of the sample.

and the Q mode shapes corresponding to the eigenfrequen-

cies below the band gap (Q = 7 in our case). The presence

or absence of localized modes is determined by

IMD =
Q

∑

p=1

S
∑

i=1

u2
ip =

{

integer, no localized mode,

fraction, localized mode,

(1)

with uip the measured axial displacement of each mass.

Each mode shape p is normalized as
∑N

i=1 u2
ip = 1. A frac-

tional (integer) value of the IMD guarantees the presence

(absence) of localized modes under the considered struc-

tural modification at the chosen location, in analogy to the

fractional charges in electronic media [48]. To determine

the IMD, the axial displacement uip corresponding to each

mass i ∈ [1, 2N = 14] of the λ = 1 chain for all the mode

shapes below the band gap are extracted from the mea-

sured frequency response functions, as those reported in

Fig. 2(a) for i = 7 and 10. In these plots, the red numbers

highlight the peaks corresponding to the mode shapes of

the left panel of Fig. 1(c) (k > δ and λ = 1). The bold num-

bers below the structures in Fig. 2(a) show that the IMD is

a fraction (3.5) when k > δ and an integer (4) when k < δ,

confirming the appearance of a localized mode at the inter-

face under structural modification [48] in the first case.

This confirms the nontrivial (trivial) topology of the k > δ

(k < δ) structure [47], with the topology being protected

by the periodicity of the structure along the axial direction.

The numbers near each mass in the light pink and light pur-

ple rectangles indicate their respective contributions to the

IMD,
∑Q

p=1 u2
ip .

C. Eigenvector reconstruction

When k > δ, a family of modes, whose natural frequen-

cies traverse the band gap as the radius of a single beam is

varied, exists. To verify that these modes are indeed local-

ized (contrary to the case of k < δ), the eighth mode shape

is reconstructed (in terms of amplitude and phase) for the

two classes of structure.

Figure 3(a) reports the normalized amplitudes of the dis-

placement of the masses for the eighth mode shape of the

two chains (k > δ, left panel, and k < δ, right panel), set-

ting λ to 1 [green arrows in Fig. 1(c)]. Measured values

(red dots) are superimposed to the analytical predictions

(blue lines with square markers). Excellent agreement is

found. In both cases the displacement of the masses spans

the entire chain, confirming that the deformation can be

identified with a Bloch mode lying in the higher and

lower bulk bands (see Appendix D), as indicated by the

green arrows at λ = 1 in Fig. 1(c), pointing up or down,

respectively.

Figure 3(b) reports the normalized amplitudes of the

displacement of the masses for the eighth mode shape of

the two chains (k > δ, left panel, and k < δ, right panel),

now setting λ to 0.5. The chain with k > δ (left panel)

presents a mode shape localized at the center of the struc-

ture (in correspondence of the stiffness modulation), with

its displacement magnitude rapidly dropping in the periph-

eral masses. On the contrary, when k < δ (right panel),

the eighth mode shape, still belonging to the (lower) bulk

band, shows no localization. Its displacement is maximum

at the sample boundaries and is characterized by a slight

amplitude decrease at the center of the structure.

The experimental results are corroborated by numerical

finite-element models; we report the deformation of the
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k > δ, λ = 1 k < δ, λ = 1 k > δ, λ = 0.5 k < δ, λ = 0.5
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FIG. 3. Eigenvector reconstruction. Measured normalized amplitudes (red dots) versus analytical predictions (blue lines with square

markers) of the axial displacement of masses for the eighth mode shape of the two chains (k > δ, left panels, and k < δ, right panels),

setting parameter λ to (a) 1 and (b) 0.5, respectively. When λ = 1, the displacement of the masses spans the entire chain regardless

of k > δ or k < δ. When λ = 0.5, if k > δ, a mode shape localized at the center of the structure is observed, whereas no localization

occurs when k < δ. The amplitudes of both the measured and calculated mode shapes have been normalized to the absolute value

of the maximum displacement (measured or calculated, respectively). The insets below each subfigure show the displacement of the

masses (derived from finite-element models) with respect to their equilibrium position (the reference system is set at the center of the

chain).

mode shapes below each subfigure. Some of the masses

are numbered for reference. The axial displacement of

the masses with respect to their equilibrium position is

reported. The displacement is normalized with respect to

the absolute value of the maximum axial displacement.

Additional details of the numerical models are reported in

Appendix F.

D. Rationale

To understand the rationale of the observed spectral flow

as λ is varied in the k > δ chain, two discrete chains in

the form of rings are considered [Fig. 4(a)]. Depending on

where the stiffness modulation is applied, i.e., on the spring

of stiffness k or δ (highlighted in red), two conditions are

possible: (i) if λ = 1, both chains in Fig. 4(a) reduce to

the closed one reported in the central panel of Fig. 4(b);

(ii) when λ = 0, the chains in Fig. 4(a) may result in the

two open chains in the top and bottom panels of Fig. 4(b),

depending on whether the k or δ spring is removed, respec-

tively. Two classes of chains can thus be identified: closed

(in the form of a ring) and open (one spring is missing).

In both cases (open or closed finite chains), all the nat-

ural frequencies lie in bulk bands [light blue rectangles in

Figs. 4(d) and 4(e)]. Counting their number leads to dif-

ferent values for the different chain configurations. This

difference is the key factor determining the observed spec-

tral flow. Indeed, when the limit condition of λ = δ = 0

is enforced, the chains become disjoint units of masses and

springs [Fig. 4(c)]. Each connected mass-spring subsystem

generates eigenmodes with natural frequencies assuming 0

or
√

2k/m values. Counting the number of such disjointed

mass pairs gives the corresponding multiplicities of natu-

ral frequencies in these limit-case systems. For example,

the open ring in the bottom panel of Fig. 4(c) has N mul-

tiples of ω = 0 frequencies when λ = δ = 0, where N is

the number of unit cells. On the contrary, the open chain

in the top panel of Fig. 4(c) has N + 1 multiples of ω = 0

frequencies and N − 1 multiples of
√

2k/m frequencies,

since, going to the limit of λ = δ = 0, two masses are left

unconnected. Since all the natural frequencies lie in the

dispersion bulk bands that do not touch when k > δ, the

number of eigenmodes in each band is also expected to

remain unaltered for all the family of possible chains with

decreasing δ (up to the limit condition of λ = 0).

If λ is varied from 0 to 1, both (open) chains shown

in the top and bottom panels of Fig. 4(b) reduce to the

closed one reported in its middle panel. In the first case,

the number of modes in the lower band must change from

N + 1 to N as we transition from the open to the closed

chain. Since the eigenvalues of the stiffness operator and

thus natural frequencies of the chains vary smoothly with

parameter λ, the only way to achieve this change in the

number of modes is to have a net spectral flow of one

mode from the lower to the upper bulk band [Fig. 4(d)].

On the other hand, for the case of spring stiffness chang-

ing by λδ, the number of modes remains the same in each

band and no net spectral flow will happen as λ varies

from 0 to 1 [Fig. 4(e)]. The spectral flow-based arguments

described above guarantee the emergence of a nontrivial

mode spanning the whole band gap when λ ∈ [0, 1]. If

λ > 1 (and k > δ), a localized mode may still appear in

the band gap, depending on the relative values of k and δ.

However, this mode is trivial in the sense that it is guaran-

teed not to span the band gap as parameter λ is varied (see

Appendix D).

III. SPECTRAL FLOW IN THE CASE OF 2D

PERIODICITY

A. Numerical observation

The generality of the above-described rationale is here

further confirmed by considering platelike structures, i.e.,

064018-5



MINIACI, ALLEIN, and PAL PHYS. REV. APPLIED 20, 064018 (2023)

= 0 (N + 1 multiples)

= / (N – 1 multiples)
0.0 1.00.2 0.4 0.6 0.8

= 0 (N multiples)

= / (N multiples)

(a)

(e)

(b) (c) (d)

N
o
rm

al
iz

ed
fr

eq
u
en

cy

λ

0.0
0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

1.00.2 0.4 0.6 0.8
λ

N
o
rm

al
iz

ed
fr

eq
u
en

cy

Bulk band

Band gap

Bulk band

Spectral flow

k

k

k

k

k

δδ

δ

δ δ

δ

k

k

k

k

k

k

δ

δ

δ δ

δ
k

k

k

k

k

k

δ

δ

δ δ

δ

k

k

k

k

k

k

δδ

δ

δ δ

δ

k

k

k

k

k

δδ

δ

δ δ

δ

k

k

k

k

k

k

k

k

k

k

k

λδ

λk
λ = 0

λ = 0

δ → 0

δ → 0

λ = 1

FIG. 4. Theoretical framework. (a) Schematic representation of two 1D mass-spring chains arranged in the form of rings. The

modulation parameter λ is applied to the spring of stiffness k or δ (highlighted in red) in the top and bottom panels, respectively. (b)

If λ = 1, the two chains both reduce to a close ring (central panel). If λ = 0, two different open chains are obtained depending on

if the spring of stiffness k or δ is removed—top and bottom panels, respectively. In both cases, the natural frequencies of the chains

entirely lie in the bulk bands—light blue rectangles in subfigures (d) and (e). Taking the lower spring stiffness δ to 0 (we recall here

that k > δ) as a limiting process (δ −→ 0), two different sets of disjoint chains are obtained—top and bottom panels of subfigure

(c). These systems are characterized by a couple of natural frequencies ω with multiplicity N + 1/N − 1 or N , respectively. In the

first case, a variation of λ from 0 to 1 brings a transition from an open to a closed chain; thus, the number of modes on the lower

bulk band changes from N + 1 (when λ = 0) to N (when λ = 1). (d) Since the eigenvalues of the stiffness operator, and thus the

natural frequencies of the chains, vary smoothly with parameter λ, the only way to achieve such a change in the number of modes is

to have a net spectral flow of one mode from the lower to the upper bulk bands. (e) When the spring stiffness δ is changed through

parameter λ, the number of modes remains the same on each band (N ); thus, there is no net spectral flow. Although the rationale is

here demonstrated via Su-Schrieffer-Heeger (SSH) model-based considerations (due to its simplicity), we point out that this approach

also applies to higher-dimensional structures (see the case of the hexagonal lattice reported in Sec. III below).

elastic media with 2D in-plane periodicity. The design

of the unit cell hosting the spectral flow of a family of

localized modes is driven by a lumped discrete model

(made of masses and springs). The masses of the previous

lumped schematics reported in Fig. 4 are now distributed

in a hexagonal lattice and, again, connected by springs of

different stiffness k and δ, as shown in Fig. 5(a). The par-

allelogram shaded in light yellow represents the unit cell

of the lattice. It consists of two masses (green dots) and of

springs of stiffness k (in black) and δ (in gray). The masses

are identical, and exhibit only one degree of freedom: the

out-of-plane motion. The structure has C2v (twofold rota-

tion and reflection) symmetry and a band gap opens when

k > 2δ (see the discrete model reported in Appendix G).

Also in this case, the effect of a defect spring [high-

lighted in red in Fig. 5(a)] characterized by a stiffness

modulation parameter λ and located anywhere in the struc-

ture (either on the beam of softer δ or stiffer k rigidity)

is examined to determine if it leads to a topologically

protected localized mode.

The corresponding continuous elastic medium realizing

the analogue of the above-described discrete unit cell is

reported in Fig. 5(b). It consists of an x-like unit cell, com-

prising a hexagonal lattice when repeated along the two

lattice directions. It is made of aluminium and it is deco-

rated on both sides with periodic steel pillars at the vertices

of the hexagonal lattice. The geometrical parameters of the

unit cell are L1 = αa/
√

3, L2 = 0.5

√

L2
1 + a2 −

√
3L1a,

h = a/20, H = a/10, and φ = a/20, where a = 1 m is

the unit cell lattice parameter and α = 0.6 (α indicates

the ratio of the length L1 of the interior beam of the

unit cell to the length L∗ of the same beam in a corre-

sponding uniform hexagonal lattice—a uniform hexagonal

lattice would exhibit α = 1; such a 40% reduction has been

adopted to assign this beam the desired higher stiffness).

The geometrical parameters are chosen so that the beams

composing the hexagonal lattice have the same rectangular

cross sections, ht, but different lengths, L1 and 2L2. As the

flexural stiffness of a beam scales as t(h/L)3, parameters L1
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FIG. 5. Case of platelike structures: from the discrete to the continuous model. (a) Schematics of a 2D discrete lattice with in-plane

periodicity. The masses can move out of plane only, and are connected by springs of different stiffness k and δ, highlighted in black

and gray, respectively. The shaded yellow parallelogram indicates the unit cell. A defect introduced as a spring characterized by a

stiffness modulation parameter λ and located anywhere in the structure (highlighted in red) is reported. (b) Unit cell of a continuous

elastic medium realizing the analogue of the discrete lattice in (a). It consists of an aluminum hexagonal lattice decorated with steel

pillars attached on both sides of the plate. The geometrical parameters are chosen so that the beams composing the hexagonal lattice

have the same cross sections, ht, but different lengths, L1 and 2L2. (c) Dispersion curves for the unit cell represented in (b) as infinitely

repeated in the plane. The inset shows the 	-M -K-K ′ boundary of the irreducible Brillouin zone. The dispersion curves are color coded

based on a polarization coefficient p that varies gradually from 0 (light gray; predominantly in-plane modes) to 1 (blue; predominantly

out-of-plane modes). The opening of a band gap for flexural waves between 80 and 95 Hz is emphasized by the light gray rectangle.

(d) The second and third mode shapes at half of the K-K ′ path. The colors, indicating the out-of-plane displacement, emphasize the

radically different nature of the two modes (out of plane and in plane).

and L2 allow us to tune the stiffness of the springs so as to

obtain an analogy of the different stiffness k and δ provided

in Fig. 5(a). The following mechanical parameters (assum-

ing a linear elastic constitutive law) are adopted: ρ =
2700 kg/m3, E = 70 GPa, and ν = 0.33 for the aluminium

(the beams), and ρ = 7800 kg/m3, Young’s modulus E =

210 GPa, and Poisson ratio ν = 0.3 for the steel (the

pillars).

For the sake of simplicity, we focus our attention on

flexural waves. Also in this case, the first step to achieve

a nontrivial protected spectral flow is to realize a fre-

quency band gap for the wave polarization of interest. In

(a) (c)(b)

M1
M2

M1

10 28 46 64 82 10010 28 46 64 82 100

×10–3×10–3
η η M2

(p)

F
re

q
u
en

cy
 (

H
z)

FIG. 6. Spectral flow in the hexagonal lattice. (a) In the top panel a finite structure composed of 11 × 11 unit cells of the type

reported in Fig. 5(b) is presented. The two types of local stiffness modulations achieved by introducing a slit in the shorter or longer

beam are reported in the bottom panels. The modulation is achieved through parameter η, which is responsible for the variation of

the width of the slit. (b) Eigenfrequencies extracted via finite-element analyses as a function of the modulating parameter η in the

0–110-Hz frequency range for the two cases (ηk and ηδ). Frequencies are color coded based on coefficient p to distinguish in-plane

(gray dots) and out-of-plane (blue dots) modes. In the left panel, a spectral flow across the entire band gap (gray rectangle) is visible

when the k spring is varied as ηk with η ∈ [0.01, 0.1]. On the contrary, in the right panel, when the δ spring is varied, no band gap

crossing happens. (c) The mode shape is localized as it crosses the band gap (top panel), whereas it concerns the entire structure when

no spectral flow is observed (bottom panel). In both cases, the mode shape is extracted for η = 0.04—black arrows in (b).
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other words, we look for a band gap concerning flexural

displacements not coupling with other polarizations. The

dispersion curves for the unit cell represented in Fig. 5(b)

as infinitely repeated in the plane are reported in Fig. 5(c).

The dispersion curves are color coded based on a coef-

ficient p that quantifies the mode polarization according

to the expression p =
∫

V
|w|2/

√
u2 + v2 + w2 [53], with

(u, v) the in-plane components and w the out-of-plane

component of the displacement vector. The polarization

factor color bar varies gradually from 0 (light gray; pre-

dominantly in plane) to 1 (blue; predominantly out of

plane). With these metrics, the opening of a band gap

for flexural waves between 80 and 95 Hz is clearly vis-

ible (emphasized by the light gray rectangle) when k =
2δ. The band diagram is calculated by imposing Bloch-

Floquet periodic boundary conditions at the boundary

faces of the unit cell with normal direction lying in-plane

and by varying the wave vector along the 	-M -K-K ′

boundary of the first irreducible Brillouin zone [see the

black line in the inset reported in Fig. 5(c)]. We point

out here that (i) the lattice vectors (a1, a2) are of equal

magnitude and make a 60◦ angle to each other and that

(ii) the reciprocal lattice vectors bi satisfy the condi-

tion ai · bj = 2πδij , and they are also of equal magnitude

and at angle 2π/3. Thus, although the beam segments

are of distinct lengths, the first Brillouin zone remains a

regular hexagon. Nevertheless, owing to the twofold rota-

tional symmetry of the lattice, the irreducible Brillouin

zone is larger than that of a regular hexagonal lattice.

Figure 5(d) reports the second and third mode shapes at

half of the K-K ′ path. The colors, indicating the out-

of-plane displacement, emphasize the radically different

nature of the two modes.

As the second step, a controlled local modulation of a

spring of the unit cell is introduced by producing a slit at

an arbitrary position within a finite structure of M × N =
11 × 11 unit cells [see Fig. 6(a)] to induce selective shifts

in the natural frequencies of the flexural eigenmode closest

to the band gap. Here the width t of a beam segment is

varied by a factor η to achieve the stiffness modulation.

As in the previous 1D case, two conditions are consid-

ered, namely, when (i) the stiffer spring k is modulated and

(ii) the softer spring δ is modulated [see the left and right

bottom panels of Fig. 6(a), respectively]. The eigenfre-

quencies of the two classes of structures are extracted via

finite-element analyses and 100 stiffness modulations are

considered with η ∈ [0.01, 0.1]; see Fig. 6(b). The eigen-

frequencies are reported as a function of η in the 0–110-Hz

frequency range when the k spring is modulated (left

panel) and when the δ spring is modulated (right panel).

(a) (b)

f (t)

Non-straight 

line of defects

(d)
(c)

t = 0.25 (s)

(w/wmax)

(w/wmax)

(w/wmax)

t = 0.10 (s)

t = 0.19 (s)

FIG. 7. Transient simulation along a nonstraight line of defects. (a) Finite structure made of 11 × 11 unit cells of the type reported

in Fig. 5(b), hosting a line of defects along an L path (highlighted by the light blue shading). The black arrow indicates the point

of excitation, where an out-of-place displacement has been imposed. The excitation signal F(t) consists of a Hanning modulated 21-

sine cycle centered at 90 Hz. (b)–(d) Numerical wave-field reconstructions showing how the localized mode propagates rightward,

traversing the turn at the middle of the plate. The time snapshots show the out-of-plane displacement before the wave approaches

[t = 0.1 (s)], traverses [t = 0.19 (s)], and passes [t = 0.25 (s)] the turn. The colors, varying from blue to red, correspond to the

normalized out-of-plane displacement w/wmax of the plate.
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(a)

, 0

(b)

(c)

= 0 (MN multiples)

= / (MN multiples)

= 0 (MN+1 multiples)

= / (MN−1 multiples)

= 0 (MN multiples)

= / (MN multiples)

, 0

, 0

FIG. 8. Extension of the theoretical framework explaining the emergence (absence) of spectral flow in the case of 2D in-plane

periodicity. (a) Schematic representation of the 2D mass-spring hexagonal lattice. The modulation parameter λ can be applied to the

spring of stiffness k, left panel of (b), or δ, left panel of (c), corresponding to the springs highlighted in red. Taking the lower spring

stiffness δ to 0 (we recall here that k > δ) as a limiting process, two different sets of disjoint mass-spring systems are obtained—central

panels of (b) and (c). These systems are characterized by a couple of natural frequencies ω with multiplicities MN or MN + 1 and

MN − 1, as shown in the right panels of (a)–(c).

Also in this case the frequencies are color-coded based

on the previously described coefficient p so that we can

distinguish between in-plane polarized and out-of-plane

polarized modes. In the first case, a spectral flow across

the entire flexural band gap (light gray rectangle) happens

when η is varied. On the contrary, when the softer spring

(δ) is modulated by the same factor η, no crossing happens.

Finally, to confirm the localized nature of the migrat-

ing mode (i.e., when a stiffer spring k has a slit), the mode

shapes for the two classes of structures [ηk in the top panel

of Fig. 6(c) and ηδ in the lower panel of Fig. 6(c)] for

η = 0.04 [green arrows in Fig. 6(b)] are reported. From

the examination of Fig. 6(c), it is evident that the mode

under investigation [green arrows in the left and right pan-

els of Fig. 6(b)] remains localized while migrating from the

lower bulk region to the higher one (where the deformation

joins a bulk behavior). On the contrary, in the second case

[lower panel of Fig. 6(c)] the displacements corresponding

to the same mode number span the entire structure, i.e.,

it is a bulk mode. These computations provide numerical

evidence of the aforementioned modal spectral flow in 2D

continuous elastic media.

B. Transient simulation along a nonstraight line of

defects

To demonstrate the potential of such topological

localized modes for wave guiding, we analyze a

nonstraight line of defects introduced to the 2D finite struc-

ture composed of 11 × 11 unit cells, as shown in Fig. 7.

The nonstraight line of defects, arranged in an L-shaped

pattern, is highlighted with light blue shading. Out-of-

plane waves are excited at the location indicated by the

black arrow. To be sure of injecting into the plate frequen-

cies as close as possible to those of mode M1 shown in

Figs. 6(b) and 6(c), we choose the excitation signal F(t) as

a Hanning modulated 21-sine cycle centered at 90 Hz.

Figures 7(b)–7(d) present the numerical wave-field

reconstructions of the localized mode propagating right-

ward and traversing the turn at the middle of the plate.

The time snapshots are taken when the wave approaches

[t = 0.1 (s)], traverses [t = 0.19 (s)], and passes [t = 0.25

(s)] the turn. The colors, varying from blue to red, corre-

spond to the normalized out-of-plane displacement w/wmax

of the plate.
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C. Extension of the rationale to 2D in-plane periodicity

In this section, the extension to the case of 2D in-plane

periodicity of the theoretical framework proposed in Fig.

4 is proposed. Figure 8(a) reports a schematic of the 2D

mass-spring hexagonal lattice. As in the 1D case, the mod-

ulation parameter λ is here applied to the spring of stiffness

k [left panel of Fig. 8(b)] or δ [left panel of Fig. 8(c)], cor-

responding to the springs highlighted in red. Taking the

lower spring stiffness δ to 0 (we recall here that k > δ) as a

limiting process, two different sets of disjoint mass-spring

systems are obtained [central panels of Figs. 8(b) and 8(c)].

They are characterized by a couple of natural frequencies

ω with multiplicities MN or MN + 1 and MN − 1 [right

panels of Figs. 8(b) and 8(c)]. As λ is varied from 0.01 to

0.1, similarly to the 1D case, the number of modes on the

lower bulk band changes (or not) from MN + 1 to MN ,

only when the stiffer k spring is altered. This change clearly

requires a spectral flow of a family of localized modes

across the band gap. On the other hand, when the spring

of stiffness δ is altered, the number of modes on the lower

band remains MN , implying no net spectral flow.

IV. CONCLUSION AND DISCUSSION

In conclusion, we have presented a design strategy to

systematically achieve localized modes in continuous elas-

tic media based on simple selective stiffness alterations.

We have demonstrated the possibility of a spectral flow

across a bulk frequency gap of a family of localized

modes through experimental measurements and numerical

calculations in 3D structures with 1D and 2D periodic-

ities, respectively. The underlying mechanism has been

explained via a detailed analytical model. The same ratio-

nale could also be extended to three-dimensional periodic-

ity. Although the spectral flow theorem has often been used

to detect interface modes in different fields [54–56], includ-

ing elasticity [57], our work has the unique feature of not

requiring two distinct lattices. This allows the emergence

of a localized mode at any arbitrary location within a peri-

odic structure by solely changing a structural parameter at

a single location.

We strongly believe that these results will open excit-

ing opportunities in elastic energy localization, making it a

powerful design strategy of interest in all the fields where

vibrations play a crucial role, such as, for example, in res-

onant tracking sensors, i.e., devices that sense physical

quantities based on resonance frequency shifts [58,59].

The data that support the plots within this paper and

other findings of this study are available from the corre-

sponding author upon request.
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APPENDIX A: DISPERSION BAND DIAGRAM

FOR THE INFINITE STRUCTURE

Figure 9 reports the dispersion curves and mode shapes

for the unit cell highlighted in yellow in Fig. 1(b) of the

main text considered as infinitely repeated along the x

direction. The dispersion diagram is here reported for the

case of k > δ = k/2. The chosen geometrical parameters

are the following: (i) side of the square mass a = 10 mm,

(ii) length of the beams L = 15 mm, (iii) radii of the beams

corresponding to the stiffer spring are r1 = 1.20 ×
√

2 �
1.70 mm (k) and r2 = 1.20 mm (δ). The mechanical prop-

erties used in the calculations are those of the thermoplastic

polymer VEROTM and are reported in the main text.

The band diagram is calculated by imposing Bloch-

Floquet periodic boundary conditions over the left and

right surfaces of the model and by varying the reduced

wave number k∗ = kπ/a along the 	-X boundary of the

first irreducible Brillouin zone (	 = 0 and X = π/a) with

a the unit cell size. Despite all the possible polarizations

of the unit cell deformation (namely, bending, shear, tor-

sional, and axial modes) reported [Fig. 9(b)], a full band

gap is present (light green rectangle).

APPENDIX B: PHOTOGRAPH OF THE

MANUFACTURED SAMPLES

Twenty specimens are fabricated. Figure 10 shows a

photograph of the two sets of manufactured samples: those

exhibiting k < δ (top part of the photograph) and those

with k > δ (bottom part of the photograph). The stiff-

ness modulation in both cases only concerns the central

spring.

APPENDIX C: EXPERIMENTAL

MEASUREMENTS

Figure 11(a) reports a schematic representation of the

experimental configurations adopted to measure the fre-

quency response functions presented in Figs. 1(c) and 2(b)

and to reconstruct the mode shapes reported in Fig. 3 of the

main text. In the first case (transmissibility configuration),

the excitation F(t) (red arrow) was provided at one edge

of the samples (mass #14), and the responses collected
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FIG. 9. Dispersion diagram and mode shapes of the continuous unit cell. (a) Dispersion diagram of the continuous unit cell reported

in Fig. 1(b) of the main text in the 0–11-kHz frequency range. A full frequency band gap is clearly visible and highlighted as the light

green rectangle. (b) Mode shapes corresponding to the red and yellow markers in (a) showing different types of mode polarization. The

first two masses of the lowest longitudinal mode have the same phase, but are in opposition to the third one. On the contrary, in the

higher longitudinal mode at the same wave number π/a, the second and third masses are in phase and in opposition to the first one.

at the opposite edge (mass #1)—light blue star and circle

markers with red contours. The frequency response func-

tions were calculated as the ratio of the detected (averaged

over 100 times) and the imparted velocities at the acqui-

sition and excitation points, respectively. Two lasers were

used to measure the axial velocity of the masses: the OFV

353, collecting the signal at the excited point (reference

measurement), and the PSV 400, measuring the velocity

amplitude in the selected masses of the chains (points of

measurements). The sensitivity of the lasers was set to

Family of samples 

with nontrivial 

stiffness 

modifications

Family of samples 

with trivial 

stiffness 

modifications

FIG. 10. Photograph of the manufactured samples. The two sets of manufactured samples are divided into those exhibiting k < δ

(top part of the photograph) and those with k > δ (bottom part of the photograph).
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Transmissibility config.

Points of measurement

Reference measurement

← Excitation point

OFV 353 

Mass #1

F(t)

Mass #14

(a) (b)

Mass #2

…

Mass #7
F(t)

Mode shape reconstruction config.

Points of measurement

Reference measurement

← Excitation point

PSV 400 

FIG. 11. Schematic representation of the experimental configurations. (a) The red and blue arrows point at the masses where the

excitation was provided: at the edge (mass #14) and the center (mass #7) of the chains, respectively. This allowed us to conduct the

measurements in two experimental setups. (i) The transmissibility configuration, where the excitation was provided at one edge of

the samples (mass #14) and data collected at the other edge (mass #1). This configuration has been adopted to measure the frequency

response functions shown in Figs. 1(c) and 2(b) of the main text. (ii) The mode shape reconstruction configuration, where the excitation

was provided at the center of the chain (mass #7) and data collected at all the masses of samples #1–#14. This configuration allowed

us to reconstruct the mode shapes reported in Fig. 3 of the main text. Two lasers, the PDV 100 and PSV 400, were used to measure the

axial velocity at the excitation points and at the masses composing the chains. The stars indicate the scanning points of measurement

on the structures, while the circles indicate the acquisition points used for reference. The reference measurements (blue and red lines)

taken at the excited masses are used to determine the input velocity with respect to which the results have been normalized. The

numerical models used to calculate the transmission spectra reported in Fig. 17 below reflect the first configuration (excitation at one

edge). (b) Photograph of the experimental configuration used to reproduce the free-free boundary conditions for the specimens under

investigation.

20 (mm/s)/V. The data measurements corresponding to

each λ have been individually normalized with respect to

their maximum value.

A similar procedure was adopted for the experimental

mode shape reconstruction configuration reported in Fig.

3 of the main text, but mass #7 was selected as the exci-

tation point (blue arrow) and the acquisition of data was

performed on all the masses (#1–#14)—light blue star and

circle markers with blue contours.

The structures were put in suspension by thin ropes

[Fig. 11(b)], so as to reproduce free boundary conditions.

Impulsive excitation was provided by manually hitting

the masses through a 3-mm hexagonal key. We calibrated

the procedure so that energy of approximately up to 10

kHz was injected into the specimen, which provided a

sufficient broadband excitation with respect to the local-

ized mode to observe. The rigid longitudinal translation

modes at zero frequency are filtered out in the experimental

measurements through a high-pass band filter.

APPENDIX D: DISCRETE MODELS

In this appendix, we show, through a discrete

model, how a localized mode can be induced anywhere

in an otherwise homogeneous finite mass-spring chain by

simply varying the stiffness of a single spring.

1. Localized modes when 0 < λ < 1

Figure 12 reports a mass-spring discrete system with

identical masses m (green dots) and alternating springs

of stiffness k and δ. The finite chain exhibits 2N masses,

where N is the number of unit cells (blue dashed rectan-

gle). Free boundary conditions apply at its edges.

The governing equations are thus given by

mür + kr(ur − ur−1) + kr+1(ur − ur+1) = 0,

r = 1, 2, . . . , 2N . (D1)

The stiffness of the springs is assumed to be kr = k for

odd values of r and kr = δ for even values of r. To sat-

isfy the free boundary conditions, k1 = k2N+1 = 0 applies.

In addition, the stiffness of an arbitrary spring (highlighted

in red) is set to λk, where λ takes values in the [0, 1] range.

For the sake of brevity, the analysis and results are here

presented only for the case of N being odd—the cases of

an even number of unit cells N and of an odd number of

masses, 2N + 1, can be derived by similar arguments and
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1 2 2NN

k δ k δ k δ kλk δδ k δ k δ

N+1

FIG. 12. Schematic representation of the mass-spring chain with an interface. A mass-spring finite discrete system with identical

masses m and alternating springs of stiffness k and δ is presented. The chain is composed of N unit cells (blue dashed rectangle) and

2N masses and springs. The spring stiffness is kr = k for odd values of r and kr = δ for even values of r. Free boundary conditions

apply at its edges. The interface spring stiffness (in red) is modified by a factor λ.

are briefly discussed at the end of this section. Two distinct

cases are examined: k > δ and k < δ (in both cases, the

mass is set to m = 1).

Figure 13(a) reports the natural frequencies for a finite

chain characterized by N = 40, k = 2 and δ = 1, while

Fig. 13(b) corresponds to the case of k = 1 and δ = 2. As

expected, a band gap in the natural frequencies due to the

dimer chain is present and it spans the frequency range

ω1 =
√

2δ/m to ω2 =
√

2k/m. The key point to note here

is that the dispersion curves have a band gap when k �= δ

and the band gap closes when k = δ.

As λ varies in the range [0, 1], the natural frequencies of

the two chains show distinct behaviors. Most of the natural

frequencies are restricted to lie in the two dispersion bulk

bands. In the case of k > δ [Fig. 13(a)], a spectral flow of

a single mode happens from the bottom to the top band as

λ increases. In contrast, no such spectral flow is observed

in the case of k < δ [Fig. 13(b)].

Figure 14 reports the mode shapes of the (N + 1)th

mode for two distinct λ values. In Figs. 14(a) and 14(b)

the mode shapes for both the chains at λ = 1 are reported.

It is worth noting that all the modes of a finite chain with

free ends and λ = 1 lie in the dispersion pass bands. In

addition, they can be identified with zero wave-number

Bloch modes of a large supercell (shown in the next

subsection). Hence, they are bulk modes and their defor-

mation involves the entire chain. Figures 14(c) and 14(d)

report the mode shapes for these chains when λ = 0.5.

The chain with k > δ has a mode clearly localized at the

interface [Fig. 14(c)] and its displacement magnitude drops

rapidly away from the interface. In contrast, the same

mode for the chain with k < δ is characterized by a mode

involving the displacement of all the masses of the chain

[Fig. 14(d)].

2. Mathematical explanation of why the modes of

the finite chains considered at λ = 0 and λ = 1 all

have frequencies in the bulk spectrum of

an infinite chain

Here we show that the modes of the finite chains con-

sidered at λ = 0 and λ = 1 all have frequencies in the bulk

spectrum of an infinite chain. In other words, they lie in

the dispersion pass bands. This observation provides the

foundation to establish spectral flow as λ varies from 0 to

1. For λ = 0 or λ = 1, the ends are free and the stiffness

of the springs alternates between k and δ. Two possibilities

thus arise, as illustrated in Fig. 15, depending on whether

the total number of masses is even or odd.

a. Case 1: chain with 2N masses

The case of a chain having an even number of masses,

as that reported in Fig. 15(a), is considered first. The origin

is fixed at the left end side of the chain and the distance

between adjacent masses is set to be unity. The govern-

ing equation may be written in matrix form as Mü +
Ku = 0. To determine the natural frequencies and mode

shapes, we set u(t) = eiωtU and the governing equation

becomes KU = ω2MU. The mode shapes U and the nat-

ural frequencies ω are thus obtained from the eigenvalue

problem

DU = ω2U. (D2)
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λ λ

FIG. 13. Analytical eigen-

frequencies. Natural frequen-

cies for the chain with N = 40

and (a) k = 2, δ = 1 and (b)

k = 1, δ = 2. The frequency

of a mode traverses the band

gap as λ varies from 0 to 1 in

the chain with k > δ only.
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(a) (b)

(c) (d)

k > δ, λ = 1 k < δ, λ = 1

k < δ, λ = 0.5k > δ, λ = 0.5

FIG. 14. Mode shapes. Deformation of the

(N + 1)th mode at λ = 1 (a),(b) and λ = 0.5

(c),(d) for the two types of chain: k > δ (a),(c)

and k < δ (b),(d). The interface spring with

stiffness λk is shown in red. The two chains

have identical mode shapes for λ = 1 (a),(b).

Localized mode arises only in the k > δ chain

for 0 < λ < 1.

Here D = M−1K is the dynamic matrix. Since the chain

has reflection symmetry about its center x = N + 1/2,

the dynamic matrix D commutes with its corresponding

reflection operator R. In particular, D commutes with the

operator whose components are

Rij =
{

1 if j = i + 2N − 1,

0 otherwise.

Physically, this commutation means that D remains iden-

tical when the coordinate axis is reflected about the center

of the chain. The mode shapes of D are thus eigenvectors

of R [60]. Hence, each mode shape can be identified with a

corresponding eigenvalues of R, namely, {−1, +1}. Phys-

ically, they correspond to even λR = 1 and odd λR = +1

mode shapes about the center, respectively.

Each of these mode shapes can be identified with a

Bloch mode of a large supercell. First, let us consider

an even mode shape with components U = {Up , p =
1, 2, . . . , 2N }. These components satisfy the relation

Up = U2N+1−p , p = 1, 2, . . . , 2N . (D3)

Let us now consider the displacement vector w of an

infinite chain with components wr, r ∈ Z:

wr = Up , r = p mod (2N ). (D4)

By direct substitution into the governing equations, and

noting that U1 = U2N and thus w1 = w2N = w2N+1, it can

be verified that eiωtw satisfies the governing equations of

an infinite chain. Thus, w is the mode shape of an infinite

chain and it satisfies the relation

wr+2N = wr, r ∈ Z. (D5)

Finally, let us show that the frequency ω of this mode

lies in the bulk dispersion band. To this end, we con-

sider a supercell of N unit cells having 2N masses.

The mode shape corresponding to a Bloch mode b =
(b1, b2, . . . , b2N ) of this supercell at wave number µ = 0

satisfies

br+2N = br, r ∈ Z. (D6)

Comparing the above condition with Eq. (D5), and noting

that b and w satisfy the same governing equations, we infer

that w is a Bloch mode of the supercell at wave number

µ = 0. Noting that the pass band of the dispersion surface

is the same for the supercell and the unit cell, we conclude

that the frequency ω lies in the pass band of the dispersion

surface.

Next, let us show that the frequency of an odd mode

shape also lies in the pass bands of the dispersion sur-

face. Again, let its components be U = (U1, U2, . . . , U2N ),

satisfying

Up = −U2N+1−p , p = 1, 2, . . . , 2N . (D7)

Let us consider the displacement of a finite chain with

4N masses and having components V = (V1, V2, . . . , V4N )

(a)

(b) 1 2 2N+1N N+1

1 2 N N+1 2N

2N

k δ k δ k δ k

x

x

δδk

k δ k δ k δ kδk

FIG. 15. Possible configurations of

the mass-spring chain. Two possible

finite configurations with (a) even and

(b) odd numbers of masses are possi-

ble. The distance between two adjacent

masses is set to 1.
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given by

Vr =
{

Ur, r ≤ 2N ,

U4N+1−r, 2N < r ≤ 4N .
(D8)

This longer chain has free boundary conditions at both

ends. Let us discuss why the components of V represent

a mode shape of the chain with 4N masses at the same fre-

quency as the odd mode shape of the shorter chain with

2N masses. A direct check shows that the components of

V satisfy the governing equations at masses r = 2N and

r = 2N + 1. At all other masses, the governing equation is

satisfied as a consequence of being an odd mode shape of

the shorter chain with 2N masses.

From Eq. (D8), we have the following relation between

the components of V:

Vr = Ur = U4N+1−(4N+1−r) = V4N+1−r

for all 1 ≤ r ≤ 2N . (D9)

Thus, the displacement vector V is an even mode shape of a

chain about x = 2N + 1/2. We have shown above that this

mode can be identified with a unique mode of the infinite

chain, or, equivalently, a zero wave-number Bloch mode

of a supercell, here of length 4N .

b. Case 2: chain with 2N + 1 masses

Finally, let us analyze the chain with an odd number of

masses, shown in Fig. 15(b). Let us consider a mode shape

with displacement components U = (U1, U2, . . . , U2N+1)

and frequency ω. Note that this mode shape can be nei-

ther odd nor even, since the chain does not have reflection

symmetry about its center. Again, let us consider the dis-

placement vector of a chain with 4N + 2 masses having

components V = (V1, V2, . . . , V4N+2). These components

are given by

Vr =
{

Ur, r ≤ 2N + 1,

U4N+3−r, r > 2N + 1.
(D10)

A direct check shows that Vr satisfies the governing equa-

tions at masses r = 2N + 1 and 2N + 2. At all other

masses, it is satisfied as a consequence of being a mode

shape of the shorter chain of 2N + 1 masses. Thus, V is a

mode shape of the longer chain with the same frequency

ω. Using a reasoning similar to Eq. (D9), we see that Vr

is an even mode shape of a chain of length 4N + 2, cen-

tered about x = 2N + 3/2. We have shown above that such

an even mode in a chain with an even number of masses

(4N + 2 here) can be identified with a unique mode of the

infinite chain, or, equivalently, a zero wave-number Bloch

mode of a supercell with 4N + 2 masses. Thus, all the

modes of a finite chain lie in the dispersion pass bands.

3. Localized modes when λ > 1

Figure 16 presents the natural frequencies for both k > δ

(left panel) and k < δ (right panel) when λ > 1.

In the first scenario (k > δ), a localized mode may still

appear in the band gap, depending on the relative values of

k and δ. However, this mode is trivial in the sense that it is

not guaranteed to span the band gap as parameter λ is var-

ied. This means that, when λ > 1, the localization depends

on the specific material and geometric properties, with the

spectral-flow based arguments described above no longer

guaranteeing the localization of the mode in the band gap.

No localized mode appears when λ > 1 (right panel).

APPENDIX E: ADDITIONAL NUMERICAL AND

ANALYTICAL COMPARISONS OF THE

SPECTRAL FLOW

In this appendix, a time domain numerical simulation

is performed by solving the following set of differential

equations of motion for a discrete system of masses and

springs through an in-house developed code including a

Maxwell dissipation model by using a fourth-order Runge-

Kutta method:

mür = kr(ur−1 − ur) − kr+1(ur − ur+1) −
m

τ
u̇r. (E1)

Here r = 1, 2, . . . , 2N (with 2N the total number of the

masses composing the chains), m is the mass of the par-

ticles, and kr = EAr/L is the longitudinal beam stiffness

linking the masses, where E, Ar, and L are Young’s mod-

ulus, the beam cross-section area, and the beam length,

respectively. The double- and single-dot notation represent

the second and first time derivatives, respectively. Free-

free boundary conditions for the first and last particles are

considered such that k1 = 0 (or, equivalently, u0 = u1) and

k2N+1 = 0 (or, equivalently, u2N+1 = u2N ). Elastic waves

are generated by imposing an initial velocity condition on

the first particle to mimic the experimental kick [namely,

u̇1(t = 0) = 5e−3 m s−1]. The system of equations is lin-

ear; thus, the amplitude of the initial condition can be

arbitrarily taken. To account for wave attenuation, a linear

viscous on-site dissipation model is used, with a time of

decay τ = 0.8 ms (this time of decay has been fitted from

the experimental measurements).

Figure 17 reports the frequency response functions in the

0–11-kHz frequency range for the two study cases [k > δ

in Fig. 17(a) and k < δ in Fig. 17(b)] when ten different

values of λ are adopted. In the first case, the spectral flow

of the eighth mode from the lower to the upper bulk region

is clearly observed as energy spots passing across the entire

band gap when λ is varied in the [0.1, 1] range. On the

contrary, when k < δ, no crossing is observed as parameter

λ is changed. In both cases, excellent agreement between

the numerical simulations and the analytically calculated

mode shapes is found. In these calculations, contrary to

064018-15



MINIACI, ALLEIN, and PAL PHYS. REV. APPLIED 20, 064018 (2023)

(a)

2.5

2.0

1.5

1.0

0.5

0.0

2.5

2.0

1.5

1.0

0.5

0.0
1 2 3 4 5

(b)
ω

 (
ra

d
/s

)

ω
 (

ra
d
/s

)

λ

1 2 3 4 5

λ

FIG. 16. Natural frequen-

cies when λ > 1. A local-

ized mode appears in the

chain characterized by k > δ

(a), but without spanning the

whole band gap. No local-

ized mode appears when

λ > 1 (b).

the measurements [Fig. 1(c) of the main text], no high-pass

filters are applied.

APPENDIX F: MECHANICAL AND

GEOMETRICAL PROPERTIES FOR THE

NUMERICAL MODELS

Numerical simulations are conducted via the finite-

element software COMSOL Multiphysics® for both the (i)

1D mass-spring systems and (ii) 2D hexagonal lattice.

In both cases, domains are meshed by means of three-

dimensional tetrahedral elements of maximum size LFE =

λ̄min/10, which is found to provide accurate eigensolu-

tions up to the frequency of interest (with λ̄min the smallest

wavelength of interest). Quadratic elements have been

used to accurately capture the flexural deformation since

the strain is not constant but varies linearly across the cross

section. In both cases, linear elastic constitutive laws are

assumed for the materials.

APPENDIX G: HEXAGONAL LATTICE

DISCRETE MODEL

In this appendix, we present the details of how the dis-

crete model (made of masses and springs) has guided the
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FIG. 17. Numerical calculations versus the analytical model. Numerical frequency response functions (color map) in the 0–11-kHz

frequency range for the two classes of elastic chain: (a) k > δ and (b) k < δ for different values of λ. In the first case, the spectral flow

of the eighth mode from the lower to the upper bulk band is clearly observed (the mode passes across the entire band gap as λ is varied

in the [0.1, 1] range). On the contrary, in the latter case, no crossing is observed. Overlaid square white dots indicate the analytically

calculated eigenmodes.
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FIG. 18. Dispersion curves for the

discrete hexagonal lattice for different

ratios of k and δ. (a) Discrete model

consisting of point masses at the ver-

tices of a hexagonal lattice (green dots)

connected by linear springs of stiff-

ness k or δ (in black and gray, respec-

tively). The light yellow parallelogram

indicates the unit cell. (b) The first

irreducible Brillouin zone (black line)

corresponding to the unit cell reported

in (a). (c) Dispersion curves for differ-

ent ratios of k and δ. For a given value

of 1 kg/m3 for the masses, no band

gap (left panel) is found when k/δ = 1,

whereas a band gap (right panel) is

opened when k/δ > 2.

design of the unit cells of the continuous elastic system

hosting the spectral flow of a family of localized modes.

The discrete model is shown in Fig. 18(a) and consists

of point masses at the vertices of a hexagonal lattice

(green dots) connected by linear springs of stiffness k or

δ (highlighted in black and gray, respectively). The lat-

tice vectors are a1 = a[1, 0] and a2 = a[cos π/3, sin π/3].

Each mass has one degree of freedom and can only move

out of plane. The light yellow parallelogram indicates

the unit cell. It has C2v symmetry since there are two

springs of distinct stiffness (k and δ). Hence, its first

irreducible Brillouin zone [Fig. 18(b)] is the quadrilat-

eral 	-M -K-K ′, as shown by the black lines. Its coordi-

nates are M = (1, 1/
√

3)π/a, K = (2/3, 2/
√

3)π/a, K ′ =
(−2/3, 2/

√
3)π/a, and 	 = (0, 0), with a the size of the

unit cell.

For a given value of the masses (in this case fixed to

1 kg/m3 for the sake of simplicity), we can show that

properly choosing the ratio of the springs k and δ, we can

open a band gap when k > 2δ [see Fig. 18(c)]. Based on

these results, an elastic analogue comprising the beam seg-

ments in a hexagonal lattice configuration is considered.

A shorter (longer) beam segment corresponds to a higher

(lower) flexural stiffness.
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