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The introduction of structural defects in otherwise periodic media is well known to grant space con-
trol and localization of waves in several fields of physics, from electromagnetism to acoustics and
elasticity. Despite the variety of designs proposed so far to achieve mode localization, most of the
approaches derive from contextual modifications that do not translate into a design paradigm due to the
lack of a general theory. Few exceptions include designs endowed with topological dispersion bands,
which, however, require changes over substantial portions of the structure. To overcome these limita-
tions, here we introduce a rationale inspired by fractional electronic charges, to achieve topologically
protected localized modes in continuous elastic media. We theoretically predict and experimentally
observe the spectral flow of a localized mode across a bulk frequency gap by modulating a single struc-
tural parameter at any chosen location of architectured elastic media. The simplicity and generality of
this approach may open avenues in designing elastic-wave-based devices for energy localization and

harvesting.
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I. INTRODUCTION

The quest for media capable of wave localization has
attracted increasing interest in many research fields, owing
to its promise of fostering new functionalities, such as
defect-immune and scattering-free wave propagation [1,
2], object cloaking [3], unidirectional transmission [4,5],
and enhanced energy transport and harvesting [6,7], to
cite a few. For this reason, wave localization has been
extensively studied for over a century in various phys-
ical domains, including electromagnetism, elasticity, and
acoustics [8,9].

Localized modes can be classified through the symme-
try of the structure hosting the wave propagation, i.e., (i)
random or disordered [10—14], (ii) quasiperiodic [15—18],
and (iii) periodic media with defects [19-22]. In this con-
text, continuous elastic media offer a rich playground in
such a quest because of their fourth-order tensor-based
physics coupling longitudinal, shear, and flexural defor-
mations [23]. It has been shown that mode localization
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in elasticity emerges by breaking specific symmetries,
adding/removing inclusions in the unit cell, or varying
its size/shape to create point [24—27] or line defects [28—
30]. However, despite the variety of designs proposed
so far, most of these approaches are based on ad hoc
modifications that do not translate into a general design
paradigm allowing a systematic prediction, a priori, of the
presence or absence of a localized mode under a geomet-
rical or structural modification. Also, these approaches are
extremely sensitive to the presence of additional defects in
the structure, implying the risk of uncontrolled frequency
shifts of the modes.

The recent introduction of topological protection in elas-
ticity [31-34] has opened new possibilities for a more
systematic design procedure to achieve localized modes
insensitive to defects [35-39]. Such a robustness arises
from dispersion bands with non trivial topology. However,
solutions explored so far require material or geometrical
modifications over the entire or substantial portions of
the structure [40], since such modes arise at the interface
between two domains with distinct topological proper-
ties characterized by different topological invariants, such
as the Zak phase or Chern number [41]. Notable excep-
tions include fragile topological phases [42,43], where a
family of localized modes arise across an interface under
twisted boundary conditions [44], and fractional topologi-
cal charges [45], granting mode localization at the corners
of lattice structures.
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These observations are limited to pressure acoustic
waves [43,46] (where the propagation is described through
a scalar field potential), electronic charges localizing at
corners and dislocation cores due to filing anomaly-
induced topological effects [47], and photonic lattices
[48]. On the contrary, the spectral flow of localized
modes in continuous elastic media has remained elusive
so far, due to the unique tensor-based nature of its wave
equations [23], implying high modal density and ten-
dency to hybridize under structural modifications. This has
often restricted the research of localized modes in solid
mechanics to one-dimensional (1D) structures, including
one-dimensional soft periodic plates [49], granular crys-
tals [50], and array systems with inerters [51] or resonators
[52]. In addition, as nontrivial localized modes are con-
cerned, the current state of the art is limited to modes
arising (i) at the edges of 1D chains with specific boundary
conditions, (ii) when at least two (different) subdomains
are considered, or (iii) when distributed modifications over
the structure are introduced.

In contrast to prior works, we propose here an approach
to localize a mode within a continuous elastic system at
any arbitrary location and by only modifying a single struc-
tural parameter (the stiffness) in one unit cell, leaving the
remaining structure unaltered.

The paper is organized as follows. First, we report the
experimental observation of a family of localized modes
spanning a frequency band gap between two bulk disper-
sion bands in polymeric 3D-printed mass-spring systems
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FIG. 1.

that accommodate a smooth local modulation of the stiff-
ness of a single unit cell. Second, the generality of the
above rationale is numerically confirmed in the case of
platelike structures, i.e., continuous elastic media with 2D
in-plane periodicity. In both cases, the observed behav-
ior is accompanied by a thorough interpretation based on
a theoretical model allowing us to fully predict, a priori,
the presence, or absence, of the localized mode as a func-
tion of the structural parameter change. We point out that
this approach allows the center of the localized mode to
be arbitrarily chosen or located within the original struc-
ture, suppressing the need for substantial modifications of
the periodic structure, as required, instead, by the tradi-
tional topological protection approaches. Furthermore, the
procedure, solely involving topological arguments (miss-
ing in prior works) remains valid across material proper-
ties and length scales, as demonstrated by its extension
to higher spatial dimensions (2D hexagonal lattice). We
believe that our results may open avenues in designing
wave-based devices for elastic energy localization, control,
and harvesting.

II. MODAL SPECTRAL FLOW THROUGH
STIFFNESS MODULATION (1D CASE)

A. Experimental observation

Figure 1(a) reports a discrete schematic representation
of a family of 3D-printed structures, employed to con-
firm the above rationale. The rectangle shaded in light
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Observation of the spectral flow. (a) Schematic representation of a mono-dimensional mass-spring chain. The unit cell,

highlighted as a light yellow rectangle, comprises two masses (green dots) and two springs of stiffness & (in black) and § (in gray),
respectively. A defect spring (in red) located in the chain is characterized by a stiffness modulated through parameter A. (b) Three-
dimensional rendering of the experimental samples (for £ > §). The stiffness modulation is obtained by gradually varying the radius
r4 of the central beam (grading colors going from white to dark blue) connecting its two adjacent masses. Ten stiffness modulations
indicated as #1-#10 are considered. (c) Measured frequency response functions (color map) in the 0—11-kHz frequency range for the
two classes of elastic chains (k > §, left panel, and £ < §, right panel) for different values of A. In the first case, a spectral flow of
the eighth mode from the lower to the upper bulk band is observed. In the second case, no crossing is observed. The data at each A
have been individually normalized with respect to their maximum value. Overlaid square white dots indicate analytically calculated
eigenmodes. Green arrows indicate the mode shapes that are fully reconstructed and presented in Fig. 3 below.
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yellow represents the unit cell of the chain consisting of
two identical masses (green dots) and two springs of alter-
nating stiffness & (in black) and § (in gray), respectively. A
defect spring (in red) located in the interior (middle) of the
chain is characterized by a stiffness modulation parameter
A e [0,1].

Figure 1(b) reports a 3D rendering of the printed struc-
tures manufactured to realize the elastic analogue of the
above-described discrete system. The unit cell (in yellow)
can be divided into three regions: a thick one with square
cross section, corresponding to the masses of the discrete
chain (masses in what follows) and two thin beams with
circular cross section of different radii, corresponding to
the springs of stiffness £ and § (springs in what follows).
The axial stiffness of each beam is £A4/L to first order, with
E, 4, and L the material Young modulus, the cross-section
area, and the length of the beam, respectively (geometri-
cal and material parameters of the considered unit cell are
reported below).

The first step towards a clear observation of a topologi-
cally protected modal spectral flow is to realize a complete
band gap for all the possible elastic polarizations (bend-
ing, shear, torsional, and axial modes) of the considered
unit cell. This is done by choosing an appropriate set of
geometric parameters for the unit cell under investigation
(considered as infinitely repeated along the x direction),
when k # 8. In our case, a band gap between 5840 and
8280 Hz is opened when k =24 (see Appendix A for
details on the dispersion diagram and mode shapes, and
the geometrical and material parameters of the consid-
ered unit cell). As the second step, a modulation of one
of the stiffer springs (those characterized by rigidity k)
is introduced at an arbitrary location (chosen for simplic-
ity at the center of the chain in our case) within a finite
structure, and thus now made of a finite number of unit
cells (seven in our case) to induce a selective shift in
the natural frequencies of the eigenmode closest to the
band gap.

To this end, two classes of finite chains hosting 14
masses (see Appendix B) are fabricated through additive
manufacturing (Stratasys Objet350 Connex3) using the
thermoplastic polymer VERO™ with the following nomi-
nal properties: density p = 1180 kg/m?, Young’s modulus
E =296 GPa, and Poisson ratio v = 0.38. The geomet-
rical parameters of the unit cells are the following: (i)
side of the square mass a = 10 mm, (ii) length of the
beams L = 15 mm, (iii) radii of the beams correspond-
ing to the springs of stiffness £ and § in the discrete
case are 71 = 1.20 mm (k) and 7, = 1.20 x +/2 =~ 1.70
mm (8) for the case k <& and r| = 1.20 x /2~ 1.70
mm (k) and 7, = 1.20 mm (§) for the case k£ > §. In
both cases, the radius of the defect is set to ry = rv/A.
Ten stiffness modulations are introduced through a gradual
variation of radius 7, of the central beam of the finite chain
[grading colors shading from white to dark blue in Fig.

1(b)] indicated as Ak, with A € [0.1, 1], and enumerated as
#1410, corresponding to A = 1 and A = 0.1, respectively.
A photograph of the manufactured samples is reported in
Appendix B.

Two distinct cases are considered to distinguish between
a trivial stiffness alteration and a topological one leading
to a modal spectral flow: (i) £ > § and (ii)) £ < §. The
transmissibility of the two classes of structures is inves-
tigated by scanning laser doppler vibrometry (SLDV) of
the samples. Longitudinal waves are excited into the spec-
imens by imparting axial displacements and longitudinal
velocity is acquired (Appendix C reports the details of the
experimental configurations). The transmissibility is cal-
culated as the ratio of the velocity amplitude detected at
the scanning points and at the excitation points. Figure
1(c) reports the frequency response function in the 0—11-
kHz frequency range for the two cases (k > §, left panel,
and k < 8, right panel) when ten different values of A are
adopted. In the first case, a spectral flow of the eighth mode
from the lower to the upper bulk region is observed as
energy spots passing across the entire band gap when A
is varied in the [0.1, 1] range. On the contrary, when &k < §,
no crossing is observed as A is changed. This provides a
direct observation of the modal spectral flow. The exper-
imental results are in perfect agreement with the natural
frequencies of the axial modes of the specimens calcu-
lated analytically by solving the corresponding eigenvalue
problem (see Appendix D for details on the analytical
calculations) and reported as overlaid white squares. The
rigid longitudinal translation modes at zero frequency are
filtered out in the experimental measurements through a
high-pass band filter. An additional comparison between
the analytical results and further numerical calculations are
also provided in Appendix E.

B. Integrated mode density

The emergence (or absence) of the localized modes
derives from topological properties associated with the
defectless periodic structure. To reveal the nontrivial origin
of the mode spanning the whole band gap, the integrated
mode density (IMD) is determined from the experimental
frequency responses of the finite periodic structure without
defect, i.e., when A =1 [see Fig. 2(a)]. The red segment
identifies, for each structure under consideration (k > § in
the top panel and k£ < § in the bottom panel), the interface
dividing the system into two subdomains (at the left and
at the right of the red springs of rigidity Ak) hosting S =
7 masses or 2N — S = 14 — 7 = 7 masses, respectively
(2N = 14 is the total number of masses in the consid-
ered finite structures, where N is the number of unit cells
composing the finite structure). IMD is calculated by con-
sidering the subdomain on one side of the interface (either
the left one or the right one) having S, or 14 — S, masses
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FIG. 2. Integrated mode density: the signature of the nontrivial topological behavior of the spectral flow. (a) Three-dimensional

rendering of the examined structures when k£ > &, A = 1 (top panel) and k£ < §, A = 1 (bottom panel). The location where the defect
is introduced as A is varied (red segment) divides the domain into two subdomains. The values of the experimentally determined
integrated mode density (IMD) for the domains on each side of the interface are reported in the light pink and light purple rectan-
gles, respectively. The IMD is a fraction when £ > § and an integer when k < §, unequivocally confirming the nontrivial and trivial
topologies of the two classes of structures, respectively. The numbers near each mass indicate the contributions to the IMD, Zle ugy.
(b) Frequency content of the measured axial displacement u; of masses i = 7 (left panel) and i = 10 (right panel). The red numbers
highlight the peaks corresponding to the mode shapes of the eigenfrequencies below the band gap in the left panel of Fig. 1(c). The
y axis of the figures, expressed in decibels, derives from 20 log,, u, where u is the longitudinal displacement derived from the SLDV

acquisitions at the edge of the sample.

and the Q mode shapes corresponding to the eigenfrequen-
cies below the band gap (Q = 7 in our case). The presence
or absence of localized modes is determined by

no localized mode,

0 s .
. 2 _ jinteger,
IMD = E E uy, = {
p=1 i=l

fraction, localized mode,

(M

with u;, the measured axial displacement of each mass.

Each mode shape p is normalized as vaz , ufp = 1. A frac-
tional (integer) value of the IMD guarantees the presence
(absence) of localized modes under the considered struc-
tural modification at the chosen location, in analogy to the
fractional charges in electronic media [48]. To determine
the IMD, the axial displacement u;, corresponding to each
mass i € [1,2N = 14] of the A = 1 chain for all the mode
shapes below the band gap are extracted from the mea-
sured frequency response functions, as those reported in
Fig. 2(a) for i = 7 and 10. In these plots, the red numbers
highlight the peaks corresponding to the mode shapes of
the left panel of Fig. 1(c) (k > § and A = 1). The bold num-
bers below the structures in Fig. 2(a) show that the IMD is
a fraction (3.5) when k£ > § and an integer (4) when k < §,
confirming the appearance of a localized mode at the inter-
face under structural modification [48] in the first case.
This confirms the nontrivial (trivial) topology of the £ > §
(k < §) structure [47], with the topology being protected
by the periodicity of the structure along the axial direction.
The numbers near each mass in the light pink and light pur-
ple rectangles indicate their respective contributions to the
IMD, Y2, 12,

p

C. Eigenvector reconstruction

When k > §, a family of modes, whose natural frequen-
cies traverse the band gap as the radius of a single beam is
varied, exists. To verify that these modes are indeed local-
ized (contrary to the case of £ < §), the eighth mode shape
is reconstructed (in terms of amplitude and phase) for the
two classes of structure.

Figure 3(a) reports the normalized amplitudes of the dis-
placement of the masses for the eighth mode shape of the
two chains (k > &, left panel, and £ < §, right panel), set-
ting A to 1 [green arrows in Fig. 1(c)]. Measured values
(red dots) are superimposed to the analytical predictions
(blue lines with square markers). Excellent agreement is
found. In both cases the displacement of the masses spans
the entire chain, confirming that the deformation can be
identified with a Bloch mode lying in the higher and
lower bulk bands (see Appendix D), as indicated by the
green arrows at A = 1 in Fig. 1(c), pointing up or down,
respectively.

Figure 3(b) reports the normalized amplitudes of the
displacement of the masses for the eighth mode shape of
the two chains (k > §, left panel, and & < 4§, right panel),
now setting A to 0.5. The chain with & > § (left panel)
presents a mode shape localized at the center of the struc-
ture (in correspondence of the stiffness modulation), with
its displacement magnitude rapidly dropping in the periph-
eral masses. On the contrary, when k& < § (right panel),
the eighth mode shape, still belonging to the (lower) bulk
band, shows no localization. Its displacement is maximum
at the sample boundaries and is characterized by a slight
amplitude decrease at the center of the structure.

The experimental results are corroborated by numerical
finite-element models; we report the deformation of the
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Eigenvector reconstruction. Measured normalized amplitudes (red dots) versus analytical predictions (blue lines with square

markers) of the axial displacement of masses for the eighth mode shape of the two chains (k > §, left panels, and k < &, right panels),
setting parameter A to (a) 1 and (b) 0.5, respectively. When A = 1, the displacement of the masses spans the entire chain regardless
of k > § or k < 6. When A = 0.5, if £ > §, a mode shape localized at the center of the structure is observed, whereas no localization
occurs when k < §. The amplitudes of both the measured and calculated mode shapes have been normalized to the absolute value
of the maximum displacement (measured or calculated, respectively). The insets below each subfigure show the displacement of the
masses (derived from finite-element models) with respect to their equilibrium position (the reference system is set at the center of the

chain).

mode shapes below each subfigure. Some of the masses
are numbered for reference. The axial displacement of
the masses with respect to their equilibrium position is
reported. The displacement is normalized with respect to
the absolute value of the maximum axial displacement.
Additional details of the numerical models are reported in
Appendix F.

D. Rationale

To understand the rationale of the observed spectral flow
as A is varied in the £ > § chain, two discrete chains in
the form of rings are considered [Fig. 4(a)]. Depending on
where the stiffness modulation is applied, i.e., on the spring
of stiffness & or § (highlighted in red), two conditions are
possible: (i) if A = 1, both chains in Fig. 4(a) reduce to
the closed one reported in the central panel of Fig. 4(b);
(i) when A = 0, the chains in Fig. 4(a) may result in the
two open chains in the top and bottom panels of Fig. 4(b),
depending on whether the k or § spring is removed, respec-
tively. Two classes of chains can thus be identified: closed
(in the form of a ring) and open (one spring is missing).

In both cases (open or closed finite chains), all the nat-
ural frequencies lie in bulk bands [light blue rectangles in
Figs. 4(d) and 4(e)]. Counting their number leads to dif-
ferent values for the different chain configurations. This
difference is the key factor determining the observed spec-
tral flow. Indeed, when the limit condition of A =8 =0
is enforced, the chains become disjoint units of masses and
springs [Fig. 4(c)]. Each connected mass-spring subsystem
generates eigenmodes with natural frequencies assuming 0
or «/2k/m values. Counting the number of such disjointed
mass pairs gives the corresponding multiplicities of natu-
ral frequencies in these limit-case systems. For example,
the open ring in the bottom panel of Fig. 4(c) has N mul-
tiples of w = 0 frequencies when A = § = 0, where N is
the number of unit cells. On the contrary, the open chain

in the top panel of Fig. 4(c) has N + 1 multiples of @ = 0
frequencies and N — 1 multiples of /2k/m frequencies,
since, going to the limit of A = § = 0, two masses are left
unconnected. Since all the natural frequencies lie in the
dispersion bulk bands that do not touch when &k > §, the
number of eigenmodes in each band is also expected to
remain unaltered for all the family of possible chains with
decreasing § (up to the limit condition of A = 0).

If A is varied from 0 to 1, both (open) chains shown
in the top and bottom panels of Fig. 4(b) reduce to the
closed one reported in its middle panel. In the first case,
the number of modes in the lower band must change from
N + 1 to N as we transition from the open to the closed
chain. Since the eigenvalues of the stiffness operator and
thus natural frequencies of the chains vary smoothly with
parameter A, the only way to achieve this change in the
number of modes is to have a net spectral flow of one
mode from the lower to the upper bulk band [Fig. 4(d)].
On the other hand, for the case of spring stiffhess chang-
ing by A8, the number of modes remains the same in each
band and no net spectral flow will happen as A varies
from 0 to 1 [Fig. 4(e)]. The spectral flow-based arguments
described above guarantee the emergence of a nontrivial
mode spanning the whole band gap when A € [0, 1]. If
A > 1 (and k£ > §), a localized mode may still appear in
the band gap, depending on the relative values of £ and §.
However, this mode is trivial in the sense that it is guaran-
teed not to span the band gap as parameter A is varied (see
Appendix D).

III. SPECTRAL FLOW IN THE CASE OF 2D
PERIODICITY

A. Numerical observation

The generality of the above-described rationale is here
further confirmed by considering platelike structures, i.e.,
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FIG. 4. Theoretical framework. (a) Schematic representation of two 1D mass-spring chains arranged in the form of rings. The
modulation parameter X is applied to the spring of stiffness & or § (highlighted in red) in the top and bottom panels, respectively. (b)
If A = 1, the two chains both reduce to a close ring (central panel). If A = 0, two different open chains are obtained depending on
if the spring of stiffness k or § is removed—top and bottom panels, respectively. In both cases, the natural frequencies of the chains
entirely lie in the bulk bands—light blue rectangles in subfigures (d) and (e). Taking the lower spring stiffness § to 0 (we recall here
that £ > §) as a limiting process (§ —> 0), two different sets of disjoint chains are obtained—top and bottom panels of subfigure
(c). These systems are characterized by a couple of natural frequencies w with multiplicity N 4+ 1/N — 1 or N, respectively. In the
first case, a variation of A from 0 to 1 brings a transition from an open to a closed chain; thus, the number of modes on the lower
bulk band changes from N + 1 (when A = 0) to N (when A = 1). (d) Since the eigenvalues of the stiffness operator, and thus the
natural frequencies of the chains, vary smoothly with parameter A, the only way to achieve such a change in the number of modes is
to have a net spectral flow of one mode from the lower to the upper bulk bands. (¢) When the spring stiffhess § is changed through
parameter A, the number of modes remains the same on each band (N); thus, there is no net spectral flow. Although the rationale is
here demonstrated via Su-Schrieffer-Heeger (SSH) model-based considerations (due to its simplicity), we point out that this approach
also applies to higher-dimensional structures (see the case of the hexagonal lattice reported in Sec. III below).

elastic media with 2D in-plane periodicity. The design The corresponding continuous elastic medium realizing
of the unit cell hosting the spectral flow of a family of  the analogue of the above-described discrete unit cell is
localized modes is driven by a lumped discrete model  reported in Fig. 5(b). It consists of an x-like unit cell, com-
(made of masses and springs). The masses of the previous  prising a hexagonal lattice when repeated along the two
lumped schematics reported in Fig. 4 are now distributed  lattice directions. It is made of aluminium and it is deco-
in a hexagonal lattice and, again, connected by springs of  rated on both sides with periodic steel pillars at the vertices
different stiffness k£ and §, as shown in Fig. 5(a). The par-  of the hexagonal lattice. The geometrical parameters of the
allelogram shaded in light yellow represents the unit cell . _ _ \/ 2 2

of the lattice. It consists of two masses (green dots) and of unit cell are Ly = aa/v/3, Lr = 0.5 Lita V3Lia.
springs of stiffness k (in black) and § (in gray). The masses /7 = /20, H = a/10, and ¢ = a/20, where a =1 m is
are identical, and exhibit only one degree of freedom: the ~ the unit cell lattice parameter and o = 0.6 (« indicates

out-of-plane motion. The structure has C,, (twofold rota-  the ratio of the length L; of the interior beam of the
tion and reflection) symmetry and a band gap opens when ~ unit cell to the length L* of the same beam in a corre-
k > 2§ (see the discrete model reported in Appendix G). sponding uniform hexagonal lattice—a uniform hexagonal

Also in this case, the effect of a defect spring [high- lattice would exhibit oo = 1; such a 40% reduction has been
lighted in red in Fig. 5(a)] characterized by a stiffness  adopted to assign this beam the desired higher stiffness).
modulation parameter A and located anywhere in the struc- ~ The geometrical parameters are chosen so that the beams

ture (either on the beam of softer § or stiffer & rigidity) composing the hexagongl lattice have the same rectangular
is examined to determine if it leads to a topologically  cross sections, A, but different lengths, L and 2L,. As the
protected localized mode. flexural stiffness of a beam scales as #(h/L)?, parameters L;
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FIG. 5. Case of platelike structures: from the discrete to the continuous model. (a) Schematics of a 2D discrete lattice with in-plane
periodicity. The masses can move out of plane only, and are connected by springs of different stiffness & and &, highlighted in black
and gray, respectively. The shaded yellow parallelogram indicates the unit cell. A defect introduced as a spring characterized by a
stiffness modulation parameter A and located anywhere in the structure (highlighted in red) is reported. (b) Unit cell of a continuous
elastic medium realizing the analogue of the discrete lattice in (a). It consists of an aluminum hexagonal lattice decorated with steel
pillars attached on both sides of the plate. The geometrical parameters are chosen so that the beams composing the hexagonal lattice
have the same cross sections, /¢, but different lengths, L; and 2L,. (c) Dispersion curves for the unit cell represented in (b) as infinitely
repeated in the plane. The inset shows the ['-M-K-K' boundary of the irreducible Brillouin zone. The dispersion curves are color coded
based on a polarization coefficient p that varies gradually from 0 (light gray; predominantly in-plane modes) to 1 (blue; predominantly
out-of-plane modes). The opening of a band gap for flexural waves between 80 and 95 Hz is emphasized by the light gray rectangle.
(d) The second and third mode shapes at half of the K-K’ path. The colors, indicating the out-of-plane displacement, emphasize the
radically different nature of the two modes (out of plane and in plane).

and L, allow us to tune the stiffness of the springs so as to
obtain an analogy of the different stiffness k and § provided
in Fig. 5(a). The following mechanical parameters (assum-
ing a linear elastic constitutive law) are adopted: p =
2700 kg/m?, E = 70 GPa, and v = 0.33 for the aluminium
(the beams), and p = 7800 kg/m?, Young’s modulus £ =

210 GPa, and Poisson ratio v = 0.3 for the steel (the
pillars).

For the sake of simplicity, we focus our attention on
flexural waves. Also in this case, the first step to achieve
a nontrivial protected spectral flow is to realize a fre-
quency band gap for the wave polarization of interest. In

Frequency (Hz)

50
10 28 46 64 82 100

10 28 46 64 82 100
%1073 n %107

n

FIG. 6. Spectral flow in the hexagonal lattice. (a) In the top panel a finite structure composed of 11 x 11 unit cells of the type
reported in Fig. 5(b) is presented. The two types of local stiffness modulations achieved by introducing a slit in the shorter or longer
beam are reported in the bottom panels. The modulation is achieved through parameter n, which is responsible for the variation of
the width of the slit. (b) Eigenfrequencies extracted via finite-element analyses as a function of the modulating parameter 7 in the
0-110-Hz frequency range for the two cases (nk and né). Frequencies are color coded based on coefficient p to distinguish in-plane
(gray dots) and out-of-plane (blue dots) modes. In the left panel, a spectral flow across the entire band gap (gray rectangle) is visible
when the k spring is varied as nk with n € [0.01,0.1]. On the contrary, in the right panel, when the § spring is varied, no band gap
crossing happens. (¢) The mode shape is localized as it crosses the band gap (top panel), whereas it concerns the entire structure when
no spectral flow is observed (bottom panel). In both cases, the mode shape is extracted for = 0.04—Dblack arrows in (b).
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other words, we look for a band gap concerning flexural
displacements not coupling with other polarizations. The
dispersion curves for the unit cell represented in Fig. 5(b)
as infinitely repeated in the plane are reported in Fig. 5(c).
The dispersion curves are color coded based on a coef-
ficient p that quantifies the mode polarization according
to the expression p = [, [w|*/~/u? + v2 +w? [53], with
(u,v) the in-plane components and w the out-of-plane
component of the displacement vector. The polarization
factor color bar varies gradually from 0 (light gray; pre-
dominantly in plane) to 1 (blue; predominantly out of
plane). With these metrics, the opening of a band gap
for flexural waves between 80 and 95 Hz is clearly vis-
ible (emphasized by the light gray rectangle) when £ =
2§. The band diagram is calculated by imposing Bloch-
Floquet periodic boundary conditions at the boundary
faces of the unit cell with normal direction lying in-plane
and by varying the wave vector along the I'-M-K-K'
boundary of the first irreducible Brillouin zone [see the
black line in the inset reported in Fig. 5(c)]. We point
out here that (i) the lattice vectors (aj,a;) are of equal
magnitude and make a 60° angle to each other and that
(i1) the reciprocal lattice vectors b; satisfy the condi-
tion a; - b; = 27 4;;, and they are also of equal magnitude
and at angle 2w /3. Thus, although the beam segments

(@)

Non-straight
line of defects

() r 17
v iy v 4;, l:‘ L 4 (W/Winay)
A y L \ﬂ\,».. ﬂ - 1.0
4 LA N v ,
/ & 7 0.6
Yk T‘ﬁ‘f 7 | AL
a4 >
4 I 7 02
7 T 7 7
Y d -0.6
1=0.19 (s) -1.0
FIG. 7.

are of distinct lengths, the first Brillouin zone remains a
regular hexagon. Nevertheless, owing to the twofold rota-
tional symmetry of the lattice, the irreducible Brillouin
zone is larger than that of a regular hexagonal lattice.
Figure 5(d) reports the second and third mode shapes at
half of the K-K’' path. The colors, indicating the out-
of-plane displacement, emphasize the radically different
nature of the two modes.

As the second step, a controlled local modulation of a
spring of the unit cell is introduced by producing a slit at
an arbitrary position within a finite structure of M x N =
11 x 11 unit cells [see Fig. 6(a)] to induce selective shifts
in the natural frequencies of the flexural eigenmode closest
to the band gap. Here the width ¢ of a beam segment is
varied by a factor 7 to achieve the stiffness modulation.

As in the previous 1D case, two conditions are consid-
ered, namely, when (i) the stiffer spring & is modulated and
(i1) the softer spring § is modulated [see the left and right
bottom panels of Fig. 6(a), respectively]. The eigenfre-
quencies of the two classes of structures are extracted via
finite-element analyses and 100 stiffness modulations are
considered with n € [0.01,0.1]; see Fig. 6(b). The eigen-
frequencies are reported as a function of 7 in the 0—110-Hz
frequency range when the & spring is modulated (left
panel) and when the § spring is modulated (right panel).

(b)
r 1T (90i)
[ L A 10
Y L [ "‘l L ; > 0.6
l%r\, b 4 f oy 02
s
4 7 0.2
L1 06
=010 (s) 10
(d)
“T,j et
o —y- \’ */L/\
v o [ (W)
4 7,,-/7; N T b 1.0
g 7~- o N A~ v - 0.6
A ey L
L LX) 02
/4 7 7 7
4 0.2
06

1=0.25(s)

Transient simulation along a nonstraight line of defects. (a) Finite structure made of 11 x 11 unit cells of the type reported

in Fig. 5(b), hosting a line of defects along an L path (highlighted by the light blue shading). The black arrow indicates the point
of excitation, where an out-of-place displacement has been imposed. The excitation signal F'(¢) consists of a Hanning modulated 21-
sine cycle centered at 90 Hz. (b)«d) Numerical wave-field reconstructions showing how the localized mode propagates rightward,
traversing the turn at the middle of the plate. The time snapshots show the out-of-plane displacement before the wave approaches
[t = 0.1 (s)], traverses [f = 0.19 (s)], and passes [t = 0.25 (s)] the turn. The colors, varying from blue to red, correspond to the

normalized out-of-plane displacement w/wp, of the plate.
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FIG. 8. Extension of the theoretical framework explaining the emergence (absence) of spectral flow in the case of 2D in-plane

periodicity. (a) Schematic representation of the 2D mass-spring hexagonal lattice. The modulation parameter A can be applied to the
spring of stiffness £, left panel of (b), or §, left panel of (c), corresponding to the springs highlighted in red. Taking the lower spring
stiffness 8 to 0 (we recall here that £ > §) as a limiting process, two different sets of disjoint mass-spring systems are obtained—central
panels of (b) and (c). These systems are characterized by a couple of natural frequencies w with multiplicities MN or MN + 1 and

MN — 1, as shown in the right panels of (a)—(c).

Also in this case the frequencies are color-coded based
on the previously described coefficient p so that we can
distinguish between in-plane polarized and out-of-plane
polarized modes. In the first case, a spectral flow across
the entire flexural band gap (light gray rectangle) happens
when 7 is varied. On the contrary, when the softer spring
() is modulated by the same factor 1, no crossing happens.

Finally, to confirm the localized nature of the migrat-
ing mode (i.e., when a stiffer spring & has a slit), the mode
shapes for the two classes of structures [nk in the top panel
of Fig. 6(c) and né in the lower panel of Fig. 6(c)] for
n = 0.04 [green arrows in Fig. 6(b)] are reported. From
the examination of Fig. 6(c), it is evident that the mode
under investigation [green arrows in the left and right pan-
els of Fig. 6(b)] remains localized while migrating from the
lower bulk region to the higher one (where the deformation
joins a bulk behavior). On the contrary, in the second case
[lower panel of Fig. 6(c)] the displacements corresponding
to the same mode number span the entire structure, i.e.,
it is a bulk mode. These computations provide numerical
evidence of the aforementioned modal spectral flow in 2D
continuous elastic media.

B. Transient simulation along a nonstraight line of
defects

To demonstrate the potential of such topological
localized modes for wave guiding, we analyze a
nonstraight line of defects introduced to the 2D finite struc-
ture composed of 11 x 11 unit cells, as shown in Fig. 7.
The nonstraight line of defects, arranged in an L-shaped
pattern, is highlighted with light blue shading. Out-of-
plane waves are excited at the location indicated by the
black arrow. To be sure of injecting into the plate frequen-
cies as close as possible to those of mode M1 shown in
Figs. 6(b) and 6(c), we choose the excitation signal F'(¢) as
a Hanning modulated 21-sine cycle centered at 90 Hz.

Figures 7(b)-7(d) present the numerical wave-field
reconstructions of the localized mode propagating right-
ward and traversing the turn at the middle of the plate.
The time snapshots are taken when the wave approaches
[t = 0.1 (s)], traverses [t = 0.19 (s)], and passes [t = 0.25
(s)] the turn. The colors, varying from blue to red, corre-
spond to the normalized out-of-plane displacement w/wyax
of the plate.
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C. Extension of the rationale to 2D in-plane periodicity

In this section, the extension to the case of 2D in-plane
periodicity of the theoretical framework proposed in Fig.
4 is proposed. Figure 8(a) reports a schematic of the 2D
mass-spring hexagonal lattice. As in the 1D case, the mod-
ulation parameter A is here applied to the spring of stiffness
k [left panel of Fig. 8(b)] or § [left panel of Fig. 8(c)], cor-
responding to the springs highlighted in red. Taking the
lower spring stiffness § to 0 (we recall here that £ > §) as a
limiting process, two different sets of disjoint mass-spring
systems are obtained [central panels of Figs. 8(b) and 8(¢)].
They are characterized by a couple of natural frequencies
w with multiplicities MN or MN + 1 and MN — 1 [right
panels of Figs. 8(b) and 8(c)]. As A is varied from 0.01 to
0.1, similarly to the 1D case, the number of modes on the
lower bulk band changes (or not) from MN + 1 to MN,
only when the stiffer & spring is altered. This change clearly
requires a spectral flow of a family of localized modes
across the band gap. On the other hand, when the spring
of stiffness § is altered, the number of modes on the lower
band remains MN, implying no net spectral flow.

IV. CONCLUSION AND DISCUSSION

In conclusion, we have presented a design strategy to
systematically achieve localized modes in continuous elas-
tic media based on simple selective stiffness alterations.
We have demonstrated the possibility of a spectral flow
across a bulk frequency gap of a family of localized
modes through experimental measurements and numerical
calculations in 3D structures with 1D and 2D periodic-
ities, respectively. The underlying mechanism has been
explained via a detailed analytical model. The same ratio-
nale could also be extended to three-dimensional periodic-
ity. Although the spectral flow theorem has often been used
to detect interface modes in different fields [54—56], includ-
ing elasticity [57], our work has the unique feature of not
requiring two distinct lattices. This allows the emergence
of a localized mode at any arbitrary location within a peri-
odic structure by solely changing a structural parameter at
a single location.

We strongly believe that these results will open excit-
ing opportunities in elastic energy localization, making it a
powerful design strategy of interest in all the fields where
vibrations play a crucial role, such as, for example, in res-
onant tracking sensors, i.e., devices that sense physical
quantities based on resonance frequency shifts [58,59].

The data that support the plots within this paper and
other findings of this study are available from the corre-
sponding author upon request.
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APPENDIX A: DISPERSION BAND DIAGRAM
FOR THE INFINITE STRUCTURE

Figure 9 reports the dispersion curves and mode shapes
for the unit cell highlighted in yellow in Fig. 1(b) of the
main text considered as infinitely repeated along the x
direction. The dispersion diagram is here reported for the
case of k > § = k/2. The chosen geometrical parameters
are the following: (i) side of the square mass a = 10 mm,
(i1) length of the beams L = 15 mm, (iii) radii of the beams
corresponding to the stiffer spring are 71 = 1.20 x v/2 ~
1.70 mm (k) and r, = 1.20 mm (§). The mechanical prop-
erties used in the calculations are those of the thermoplastic
polymer VERO™ and are reported in the main text.

The band diagram is calculated by imposing Bloch-
Floquet periodic boundary conditions over the left and
right surfaces of the model and by varying the reduced
wave number k* = km/a along the I'-X boundary of the
first irreducible Brillouin zone (I' = 0 and X = 7 /a) with
a the unit cell size. Despite all the possible polarizations
of the unit cell deformation (namely, bending, shear, tor-
sional, and axial modes) reported [Fig. 9(b)], a full band
gap is present (light green rectangle).

APPENDIX B: PHOTOGRAPH OF THE
MANUFACTURED SAMPLES

Twenty specimens are fabricated. Figure 10 shows a
photograph of the two sets of manufactured samples: those
exhibiting k£ < § (top part of the photograph) and those
with k£ > § (bottom part of the photograph). The stiff-
ness modulation in both cases only concerns the central
spring.

APPENDIX C: EXPERIMENTAL
MEASUREMENTS

Figure 11(a) reports a schematic representation of the
experimental configurations adopted to measure the fre-
quency response functions presented in Figs. 1(c) and 2(b)
and to reconstruct the mode shapes reported in Fig. 3 of the
main text. In the first case (transmissibility configuration),
the excitation F'(f) (red arrow) was provided at one edge
of the samples (mass #14), and the responses collected
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FIG. 9. Dispersion diagram and mode shapes of the continuous unit cell. (a) Dispersion diagram of the continuous unit cell reported
in Fig. 1(b) of the main text in the 0—11-kHz frequency range. A full frequency band gap is clearly visible and highlighted as the light
green rectangle. (b) Mode shapes corresponding to the red and yellow markers in (a) showing different types of mode polarization. The
first two masses of the lowest longitudinal mode have the same phase, but are in opposition to the third one. On the contrary, in the
higher longitudinal mode at the same wave number 77 /a, the second and third masses are in phase and in opposition to the first one.

at the opposite edge (mass #1)—light blue star and circle
markers with red contours. The frequency response func-
tions were calculated as the ratio of the detected (averaged
over 100 times) and the imparted velocities at the acqui-
sition and excitation points, respectively. Two lasers were

Family of samples
with nontrivial
stiffness
modifications

measurement),

used to measure the axial velocity of the masses: the OFV
353, collecting the signal at the excited point (reference

and the PSV 400, measuring the velocity

amplitude in the selected masses of the chains (points of
measurements)

. The sensitivity of the lasers was set to

Family of samples
with trivial
stiffness
modifications

k=0

FIG. 10. Photograph of the manufactured samples. The two sets of manufactured samples are divided into those exhibiting £ < §
(top part of the photograph) and those with £ > § (bottom part of the photograph).
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(@) (b)

Transmissibility config.

Y¢ | Points of measurement Mas% #14

O Reference measurement

& | Excitation point

OFV 353

Mode shape reconstruction config.

Y | Points of measurement

O Reference measurement

& | Excitation point

FIG. 11. Schematic representation of the experimental configurations. (a) The red and blue arrows point at the masses where the
excitation was provided: at the edge (mass #14) and the center (mass #7) of the chains, respectively. This allowed us to conduct the
measurements in two experimental setups. (i) The transmissibility configuration, where the excitation was provided at one edge of
the samples (mass #14) and data collected at the other edge (mass #1). This configuration has been adopted to measure the frequency
response functions shown in Figs. 1(c) and 2(b) of the main text. (ii) The mode shape reconstruction configuration, where the excitation
was provided at the center of the chain (mass #7) and data collected at all the masses of samples #1—#14. This configuration allowed
us to reconstruct the mode shapes reported in Fig. 3 of the main text. Two lasers, the PDV 100 and PSV 400, were used to measure the
axial velocity at the excitation points and at the masses composing the chains. The stars indicate the scanning points of measurement
on the structures, while the circles indicate the acquisition points used for reference. The reference measurements (blue and red lines)
taken at the excited masses are used to determine the input velocity with respect to which the results have been normalized. The
numerical models used to calculate the transmission spectra reported in Fig. 17 below reflect the first configuration (excitation at one
edge). (b) Photograph of the experimental configuration used to reproduce the free-free boundary conditions for the specimens under

investigation.

20 (mm/s)/V. The data measurements corresponding to
each XA have been individually normalized with respect to
their maximum value.

A similar procedure was adopted for the experimental
mode shape reconstruction configuration reported in Fig.
3 of the main text, but mass #7 was selected as the exci-
tation point (blue arrow) and the acquisition of data was
performed on all the masses (#1—#14)—light blue star and
circle markers with blue contours.

The structures were put in suspension by thin ropes
[Fig. 11(b)], so as to reproduce free boundary conditions.
Impulsive excitation was provided by manually hitting
the masses through a 3-mm hexagonal key. We calibrated
the procedure so that energy of approximately up to 10
kHz was injected into the specimen, which provided a
sufficient broadband excitation with respect to the local-
ized mode to observe. The rigid longitudinal translation
modes at zero frequency are filtered out in the experimental
measurements through a high-pass band filter.

APPENDIX D: DISCRETE MODELS

In this appendix, we show, through a discrete
model, how a localized mode can be induced anywhere

in an otherwise homogeneous finite mass-spring chain by
simply varying the stiffness of a single spring.

1. Localized modes when 0 < A < 1

Figure 12 reports a mass-spring discrete system with
identical masses m (green dots) and alternating springs
of stiffness k and &. The finite chain exhibits 2N masses,
where N is the number of unit cells (blue dashed rectan-
gle). Free boundary conditions apply at its edges.

The governing equations are thus given by

mii, + kr(ur —u—1) + kr+1(ur - ur+1) =0,

r=1,2,...,2N. (D1)
The stiffness of the springs is assumed to be k. = k for
odd values of r and k. = § for even values of r. To sat-
isfy the free boundary conditions, k; = kyy+1 = 0 applies.
In addition, the stiffness of an arbitrary spring (highlighted
in red) is set to Ak, where A takes values in the [0, 1] range.

For the sake of brevity, the analysis and results are here
presented only for the case of N being odd—the cases of
an even number of unit cells N and of an odd number of
masses, 2N + 1, can be derived by similar arguments and
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FIG. 12. Schematic representation of the mass-spring chain with an interface. A mass-spring finite discrete system with identical

masses m and alternating springs of stiffness £ and § is presented. The chain is composed of N unit cells (blue dashed rectangle) and
2N masses and springs. The spring stifthess is k, = k for odd values of » and k, = § for even values of r. Free boundary conditions
apply at its edges. The interface spring stiffness (in red) is modified by a factor A.

are briefly discussed at the end of this section. Two distinct
cases are examined: k > 6 and k£ < & (in both cases, the
mass is settom = 1).

Figure 13(a) reports the natural frequencies for a finite
chain characterized by N =40, k=2 and § = 1, while
Fig. 13(b) corresponds to the case of k =1 and § = 2. As
expected, a band gap in the natural frequencies due to the
dimer chain is present and it spans the frequency range
W) = /28/m to wy, = /2k/m. The key point to note here
is that the dispersion curves have a band gap when & # §
and the band gap closes when k = §.

As A varies in the range [0, 1], the natural frequencies of
the two chains show distinct behaviors. Most of the natural
frequencies are restricted to lie in the two dispersion bulk
bands. In the case of £ > & [Fig. 13(a)], a spectral flow of
a single mode happens from the bottom to the top band as
A increases. In contrast, no such spectral flow is observed
in the case of k < § [Fig. 13(b)].

Figure 14 reports the mode shapes of the (V + 1)th
mode for two distinct A values. In Figs. 14(a) and 14(b)
the mode shapes for both the chains at A = 1 are reported.
It is worth noting that all the modes of a finite chain with
free ends and A =1 lie in the dispersion pass bands. In
addition, they can be identified with zero wave-number
Bloch modes of a large supercell (shown in the next
subsection). Hence, they are bulk modes and their defor-
mation involves the entire chain. Figures 14(c) and 14(d)
report the mode shapes for these chains when A = 0.5.
The chain with k£ > § has a mode clearly localized at the
interface [Fig. 14(c)] and its displacement magnitude drops
rapidly away from the interface. In contrast, the same
mode for the chain with £ < § is characterized by a mode

involving the displacement of all the masses of the chain
[Fig. 14(d)].

2. Mathematical explanation of why the modes of
the finite chains considered at A = 0 and AL = 1 all
have frequencies in the bulk spectrum of
an infinite chain

Here we show that the modes of the finite chains con-
sidered at A = 0 and A = 1 all have frequencies in the bulk
spectrum of an infinite chain. In other words, they lie in
the dispersion pass bands. This observation provides the
foundation to establish spectral flow as A varies from 0 to
1. For A = 0 or A = 1, the ends are free and the stiffness
of the springs alternates between £ and §. Two possibilities
thus arise, as illustrated in Fig. 15, depending on whether
the total number of masses is even or odd.

a. Case 1: chain with 2NV masses

The case of a chain having an even number of masses,
as that reported in Fig. 15(a), is considered first. The origin
is fixed at the left end side of the chain and the distance
between adjacent masses is set to be unity. The govern-
ing equation may be written in matrix form as Mu +
Ku = 0. To determine the natural frequencies and mode
shapes, we set u(f) = ¢’U and the governing equation
becomes KU = »?MU. The mode shapes U and the nat-
ural frequencies w are thus obtained from the eigenvalue
problem

DU = o’U. (D2)

FIG. 13. Analytical eigen-
frequencies. Natural frequen-

N
<o .

cies for the chain with N = 40
and (a) k=2, 8 =1 and (b)
k=1, § =2. The frequency
of a mode traverses the band

gap as A varies from 0 to 1 in

the chain with k£ > § only.
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FIG. 14. Mode shapes. Deformation of the
(N + 1)th mode at . =1 (a),(b) and A = 0.5
(c),(d) for the two types of chain: k£ > § (a),(c)
and k£ < § (b),(d). The interface spring with
stiffness Ak is shown in red. The two chains
have identical mode shapes for A = 1 (a),(b).
Localized mode arises only in the £ > § chain
forO0 <A < 1.

el i

Here D = M~'K is the dynamic matrix. Since the chain
has reflection symmetry about its center x = N + 1/2,
the dynamic matrix D commutes with its corresponding
reflection operator R. In particular, D commutes with the
operator whose components are

1 ifj =i4+2N —1,
R; = ]
0 otherwise.

Physically, this commutation means that D remains iden-
tical when the coordinate axis is reflected about the center
of the chain. The mode shapes of D are thus eigenvectors
of R [60]. Hence, each mode shape can be identified with a
corresponding eigenvalues of R, namely, {—1, +1}. Phys-
ically, they correspond to even Agx = 1 and odd Az = +1
mode shapes about the center, respectively.

Each of these mode shapes can be identified with a
Bloch mode of a large supercell. First, let us consider
an even mode shape with components U = {U,, p =
1,2,...,2N}. These components satisfy the relation

Up = U2N+17p, p = 1,2,...,2N. (D3)

Let us now consider the displacement vector w of an
infinite chain with components w,, r € Z:

w, = U, r=p mod (2N). (D4)

By direct substitution into the governing equations, and
noting that U; = U,y and thus w; = wyy = wyy 41, it can

(@) ! 2 N N+1
! —M— — MWW
k k
® 1 2y .
k k k k
———x

be verified that e'w satisfies the governing equations of
an infinite chain. Thus, w is the mode shape of an infinite
chain and it satisfies the relation

r € 7. (D5)

WrpoN = Wy,

Finally, let us show that the frequency w of this mode
lies in the bulk dispersion band. To this end, we con-
sider a supercell of N unit cells having 2N masses.
The mode shape corresponding to a Bloch mode b =
(b1, by,...,byy) of this supercell at wave number u = 0
satisfies

br+2N = by, reZ. (D6)

Comparing the above condition with Eq. (D5), and noting
that b and w satisfy the same governing equations, we infer
that w is a Bloch mode of the supercell at wave number
@ = 0. Noting that the pass band of the dispersion surface
is the same for the supercell and the unit cell, we conclude
that the frequency w lies in the pass band of the dispersion
surface.

Next, let us show that the frequency of an odd mode
shape also lies in the pass bands of the dispersion sur-

face. Again, let its components be U = (U;, U,, ..., Uyy),
satisfying
Up =—U2N+1_p, p = 1,2,...,2N, (D7)

Let us consider the displacement of a finite chain with
4N masses and having components V = (V, V3, ..., Vay)

N FIG. 15. Possible configurations of

the mass-spring chain. Two possible

k finite configurations with (a) even and
(b) odd numbers of masses are possi-
ble. The distance between two adjacent
masses is set to 1.

2N+1
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given by

U, r <2N,

V, =
2N <r <4N.

D8
Usnyi1-r, (D8)

This longer chain has free boundary conditions at both
ends. Let us discuss why the components of V represent
a mode shape of the chain with 4N masses at the same fre-
quency as the odd mode shape of the shorter chain with
2N masses. A direct check shows that the components of
V satisfy the governing equations at masses » = 2N and
r = 2N + 1. At all other masses, the governing equation is
satisfied as a consequence of being an odd mode shape of
the shorter chain with 2N masses.

From Eq. (D8), we have the following relation between
the components of V:

Vi=U, = Usni1-an+1-rn = Vany1-»

foralll <r <2N. (D9)
Thus, the displacement vector V is an even mode shape of a
chain about x = 2N + 1/2. We have shown above that this
mode can be identified with a unique mode of the infinite
chain, or, equivalently, a zero wave-number Bloch mode
of a supercell, here of length 4N.

b. Case 2: chain with 2NV 4 1 masses

Finally, let us analyze the chain with an odd number of
masses, shown in Fig. 15(b). Let us consider a mode shape
with displacement components U = (Uy, Us, ..., Usy+1)
and frequency w. Note that this mode shape can be nei-
ther odd nor even, since the chain does not have reflection
symmetry about its center. Again, let us consider the dis-
placement vector of a chain with 4N 4 2 masses having
components V = (V,V,, ..., Vanio). These components
are given by

U, r<2N +1,

v, =
Usnysz—r, 7 >2N+1.

(D10)
A direct check shows that V, satisfies the governing equa-
tions at masses » = 2N + 1 and 2N + 2. At all other
masses, it is satisfied as a consequence of being a mode
shape of the shorter chain of 2N + 1 masses. Thus, V is a
mode shape of the longer chain with the same frequency
w. Using a reasoning similar to Eq. (D9), we see that V,
is an even mode shape of a chain of length 4N + 2, cen-
tered about x = 2N + 3/2. We have shown above that such
an even mode in a chain with an even number of masses
(4N + 2 here) can be identified with a unique mode of the
infinite chain, or, equivalently, a zero wave-number Bloch
mode of a supercell with 4N + 2 masses. Thus, all the
modes of a finite chain lie in the dispersion pass bands.

3. Localized modes when A > 1

Figure 16 presents the natural frequencies for both & > §
(left panel) and k£ < § (right panel) when A > 1.

In the first scenario (k > §), a localized mode may still
appear in the band gap, depending on the relative values of
k and 8. However, this mode is trivial in the sense that it is
not guaranteed to span the band gap as parameter A is var-
ied. This means that, when A > 1, the localization depends
on the specific material and geometric properties, with the
spectral-flow based arguments described above no longer
guaranteeing the localization of the mode in the band gap.
No localized mode appears when A > 1 (right panel).

APPENDIX E: ADDITIONAL NUMERICAL AND
ANALYTICAL COMPARISONS OF THE
SPECTRAL FLOW

In this appendix, a time domain numerical simulation
is performed by solving the following set of differential
equations of motion for a discrete system of masses and
springs through an in-house developed code including a
Maxwell dissipation model by using a fourth-order Runge-
Kutta method:

mu, = kr(ur—l - ur) - kr+1(ur - ur—H) - ?“r- (El)
Here r =1,2,...,2N (with 2N the total number of the
masses composing the chains), m is the mass of the par-
ticles, and k. = EA,/L is the longitudinal beam stiffness
linking the masses, where E, 4,, and L are Young’s mod-
ulus, the beam cross-section area, and the beam length,
respectively. The double- and single-dot notation represent
the second and first time derivatives, respectively. Free-
free boundary conditions for the first and last particles are
considered such that k; = 0 (or, equivalently, uy = u;) and
kon+1 = 0 (or, equivalently, usy+) = upy). Elastic waves
are generated by imposing an initial velocity condition on
the first particle to mimic the experimental kick [namely,
i1(t = 0) = Se™® ms~!]. The system of equations is lin-
ear; thus, the amplitude of the initial condition can be
arbitrarily taken. To account for wave attenuation, a linear
viscous on-site dissipation model is used, with a time of
decay T = 0.8 ms (this time of decay has been fitted from
the experimental measurements).

Figure 17 reports the frequency response functions in the
0—11-kHz frequency range for the two study cases [k > &
in Fig. 17(a) and k < § in Fig. 17(b)] when ten different
values of A are adopted. In the first case, the spectral flow
of the eighth mode from the lower to the upper bulk region
is clearly observed as energy spots passing across the entire
band gap when A is varied in the [0.1, 1] range. On the
contrary, when k& < §, no crossing is observed as parameter
A is changed. In both cases, excellent agreement between
the numerical simulations and the analytically calculated
mode shapes is found. In these calculations, contrary to
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FIG. 16. Natural frequen-
cies when A > 1. A local-
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ized mode appears in the
chain characterized by k > §
(a), but without spanning the
whole band gap. No local-
ized mode appears when
A > 1(b).

the measurements [Fig. 1(c) of the main text], no high-pass
filters are applied.

APPENDIX F: MECHANICAL AND
GEOMETRICAL PROPERTIES FOR THE
NUMERICAL MODELS

Numerical simulations are conducted via the finite-
element software COMSOL Multiphysics® for both the (i)
1D mass-spring systems and (ii)) 2D hexagonal lattice.
In both cases, domains are meshed by means of three-
dimensional tetrahedral elements of maximum size Lrg =

Amin/10, which is found to provide accurate eigensolu-
tions up to the frequency of interest (with Ay, the smallest
wavelength of interest). Quadratic elements have been
used to accurately capture the flexural deformation since
the strain is not constant but varies linearly across the cross
section. In both cases, linear elastic constitutive laws are
assumed for the materials.

APPENDIX G: HEXAGONAL LATTICE
DISCRETE MODEL

In this appendix, we present the details of how the dis-
crete model (made of masses and springs) has guided the

k>6 k<é
(a) (b)
10 000 10 000
(dB)
8000 8000 3
N N
= S
2 6000 2 6000
Q Q
& &
4000 4000
2000 2000

FIG. 17. Numerical calculations versus the analytical model. Numerical frequency response functions (color map) in the 0—11-kHz
frequency range for the two classes of elastic chain: (a) £ > § and (b) k£ < § for different values of A. In the first case, the spectral flow
of the eighth mode from the lower to the upper bulk band is clearly observed (the mode passes across the entire band gap as A is varied
in the [0.1, 1] range). On the contrary, in the latter case, no crossing is observed. Overlaid square white dots indicate the analytically

calculated eigenmodes.
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design of the unit cells of the continuous elastic system
hosting the spectral flow of a family of localized modes.
The discrete model is shown in Fig. 18(a) and consists
of point masses at the vertices of a hexagonal lattice
(green dots) connected by linear springs of stiffness & or
8 (highlighted in black and gray, respectively). The lat-
tice vectors are a; = a[1,0] and a, = a[cos /3, sinw/3].
Each mass has one degree of freedom and can only move
out of plane. The light yellow parallelogram indicates
the unit cell. It has C,, symmetry since there are two
springs of distinct stiffness (k and §). Hence, its first
irreducible Brillouin zone [Fig. 18(b)] is the quadrilat-
eral I'-M-K-K’, as shown by the black lines. Its coordi-
nates are M = (1,1/v/3)/a, K = (2/3,2/~/3)/a, K' =
(—2/3,2/«/§)n/a, and I" = (0,0), with a the size of the
unit cell.

For a given value of the masses (in this case fixed to
1 kg/m? for the sake of simplicity), we can show that
properly choosing the ratio of the springs k and 8, we can
open a band gap when k£ > 26 [see Fig. 18(c)]. Based on
these results, an elastic analogue comprising the beam seg-
ments in a hexagonal lattice configuration is considered.
A shorter (longer) beam segment corresponds to a higher
(lower) flexural stiffness.
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