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Modulation-agnostic single-shot estimation of quantum measurement confidence
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We experimentally explore single-shot state identification using long alphabets of states and employing

different modulation schemes. We use time-resolved quantum measurement and Bayesian inference to identify

the input state and demonstrate the advantage of this single-shot measurement over classical state identification.

For each single-shot measurement, we estimate the confidence of state identification based on the quantum

measurement and demonstrate the physical significance of confidence estimates. Particularly, we show that

a set of confidence values correctly represents the probabilities of successful state identification for a given

experimental outcome. We investigate the alphabets of coherent states with different modulations and show that

confidence estimates yield the reliability of each act of measurement independently of the modulation used.
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I. INTRODUCTION

The state of a physical system can be revealed to an

observer through measurement. However, in quantum me-

chanics, generally speaking, the complete knowledge of a

physical state cannot be obtained through measurements. That

is, it is impossible to know the state of the quantum system

that belongs to the nonorthogonal set with full certainty. A

class of problems in quantum measurement, known as state-

identification problems, is finding the particular unknown

state of a system that can be in one of the states from a

known set by measuring just one copy. Such state identifi-

cation, generally speaking, cannot be perfect due to inherent

uncertainties of the quantum measurement: only partial in-

formation about the measured state can be obtained [1,2].

Quantifying the amount of information and accuracy that can

be obtained is important. Certain figures of merit can be iden-

tified, and the measurement can be optimized accordingly [3].

One such figure of merit is the probability of incorrect iden-

tification. The fundamental limit of measurement accuracy

set by the quantum theory that leads to errors in identifying

one of the physical states is known as the Helstrom bound

[4]. Classically, the shot-noise limit sets the error bound.

It has been shown that quantum measurements can signifi-

cantly improve the accuracy of state identification compared

to classical measurements [5–10]. However, the probability

of incorrect identification and most other metrics considered
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in the literature use averages over a large ensemble of state

identifications to arrive at a quantitative result [11–13]. Yet

because quantum measurement outcomes are probabilistic,

every individual measurement is unique and can be either

more or less trustworthy than the statistical average.

Weak coherent states are advantageous for practical appli-

cations due to their ease of generation and manipulation. Dis-

criminating between weak coherent states is closely related

to classical communication. Recently, adaptive coherent-state

displacement strategies were successfully used to demon-

strate error rates that are below the (classical) shot-noise limit

[11–25]. Even though adaptive displacement measurement

strategies yield probabilistic outcomes for each individual

act of measurement, most of the prior literature uses large

ensembles to arrive at estimates. A recent report did consider

individual measurement outcomes [26]. Particularly, this work

confirmed that the set of posterior probabilities that the input

is in a particular state from the set is the best information about

the input that can be known after a single measurement. This

set of probabilities, called confidences, can be understood

as the estimate of the reliability of a given act of measure-

ment. However, only one alphabet set has been studied, the

quadrature phase-shift keying (QPSK). It is crucial to extend

the testing of single-shot confidence estimation to multiple

modulation schemes and use a larger number of states to

showcase the universal character of this concept and provide

experimental evidence of its robustness and versatility. The

implications of this research are threefold. Fundamentally,

the physical relevance of confidence sets needs to be ex-

perimentally established. Practically, if, indeed, a confidence
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FIG. 1. Constellation diagrams of modulation schemes with M = 8 coherent states that are used in this work. (a) M f = 8, Mph = 1,

where all states are encoded in eight different frequencies, known as CFSK. (b) M f = 4, Mph = 2, where states are encoded in four different

frequencies and two phases per frequency. (c) M f = 2, Mph = 4, where states are encoded in two frequencies and four phases per frequency.

(d) M f = 1, Mph = 8, where all states are encoded in phases with one frequency, known as PSK.

set is a more accurate description of our knowledge about

the input state after the measurement, this information may

be leveraged in practical devices such as telecommunication

receivers, e.g., for the most efficient error correction (cf. [27]).

Fundamentally, this research tests the quantum Bayesianist’s

view on quantum measurement [28].

Different degrees of freedom can be utilized to modulate

weak coherent states. Phase and frequency are the two es-

sential degrees of freedom that are especially convenient for

encoding digital information in optical communication. Here,

we use sets, or alphabets of M = 8 coherent states that are

modulated in phase [phase-shift keying (PSK)], frequency

[coherent frequency-shift keying (CFSK)], or both phase and

frequency [hybrid frequency-phase-shift keying (HFPSK)].

Here, PSK provides maximal bandwidth efficiency in the

channel at the expense of energy, CFSK provides energy ef-

ficiency at the expense of bandwidth, and HFPSK optimizes

both energy and bandwidth use in the communication chan-

nel [25,29]. We use the same experimental setup and take

advantage of the continuous quantum measurement. In our

measurement device, the optimal choice of adaptive signals

and the probability of identification error vary per modulation

scheme, as do the confidence estimates. In this work, we

obtain the confidence estimates of each act of measurement

independently and compare those estimates to the observed

probability of error using a long set of measurements and

ensemble averages. We find the direct correspondence be-

tween the confidence values (Bayesian posterior probability

estimates) and “intrinsic” (frequentist) probabilities obtained

experimentally. Our results demonstrate the direct relationship

between the two probabilities, which enables the practical

use of Bayesian estimates, e.g., for quantum-enabled error

correction.

II. RESULTS AND DISCUSSION

A. Modulation methods

We use different modulation schemes with eight states

(in other words, the alphabet length is M = 8). Particularly,

we use a modulation-scheme family that is common to op-

tical communication. The states in the modulation scheme

are encoded in frequency and/or phase. The coherent states

can be written as {|α(ωi, θi j )〉}. For each frequency ωi =

ω0 + (i − 1)�ω, i ∈ 1, . . . , Mf, the initial phase is θi j =
(i − 1)�θf + ( j − 1)�θph, where j ∈ 1, . . . , Mph and �θph =
2π/Mph, such that M = Mf × Mph. Note that we are interested

in nonorthogonal states, so that T �ω < 2π , where T is the

duration of our flat-top laser pulses. For each M, several en-

codings can be conceived depending on the choice of Mf and

Mph. When a single frequency carrier is used, Mf = 1, states

differ by only the initial phase; this encoding is known as PSK.

When Mph = 1, all states differ in frequency; this encoding

is known as CFSK. In all other cases, states differ by both

frequency and phase, and the encoding is a frequency-phase

hybrid (HFPSK). Figure 1 shows constellation diagrams of the

modulation-scheme family, and all those modulation schemes

are used in this work. Namely, there are four possible encod-

ing schemes with an alphabet length of M = 8. Solid circles

represent states, whose color represents the frequency, and the

angular position of a circle represents the phase shift at the

beginning of the pulse. The first constellation corresponds to

the CFSK modulation scheme, where all symbols have a dif-

ferent frequency, M f = 8 and Mph = 1. The second and third

constellations correspond to HFPSK modulation schemes in

which states are encoded in four frequencies and two phases,

M f = 4 and Mph = 2, and two frequencies and four phases,

M f = 4 and Mph = 2, respectively. The fourth constellation

corresponds to PSK, where all states have different phases,

M f = 8 and Mph = 1.

B. Continuous measurement and

the single-shot confidence vector

In a single-shot state-identification problem, we identify an

input state |ψs〉 that is randomly chosen among a predefined

set of states, s ∈ 1, . . . , M (as shown in Fig. 1). To do so, we

employ continuous measurement on the input state ψs with

unknown s over time t = [0, T ], where T is the pulse-duration

time. We assume the state is in a single spatial mode. The

continuous measurement can be written as an operator:

�̂ = lim
dt→0

(ĈT ÛT × · · · × Ĉ2dtÛ2dtĈdtÛdt ),

where Û denotes the coherent displacement oper-

ator and Ĉ denotes photon counting during time

dt . We record the measurement history Z[0, T ] =
(λt , . . . , λ2dt , λdt ; Ût , . . . , Û2dt , Ûdt ) for each period T .
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In the limit of weak input, this record contains detection

times on a photon-counting detector, whose number cannot

be predicted. It also contains information on all displacements

applied. The algorithm for selecting displacements depends

on the optimization goal for state identification. Here, we are

interested in reducing the symbol error rate (SER). To achieve

this goal, the state identification is done with a feedback

mechanism in which, during the measurement, we use an

incomplete detection record Z[0, t] to guess the most likely

input state s′ using the Bayes inference t < T [26] and apply

the local oscillator (LO) that will displace s′ to vacuum. With

such an LO, the likelihood that the detector will click is

close to zero if s = s′ and is nonzero if the guess is incorrect

(s �= s′):

p(ψs|Z[0, t]) =
p(Z[0, t]|ψs) p̃s

p(Z[0, t])
. (1)

Here, p(Z[0, t]|ψs) is the posterior probability that the mea-

surement record Z[0, t] occurs if the input state was ψs, and

p̃s is the prior probability. The values of prior probabilities

at the beginning of the measurement t = 0 are known from

the formulation of the problem. After each photon detection,

the probabilities are updated. This Bayesian calculation is

obtained for all M possible input states, and the resulting

posterior probabilities can be expressed as a vector, �P = {ps},
known as a confidence a posteriori vector. In our case, it

comprises eight probabilities corresponding to M = 8 states.

The state for displacement s′ corresponds to the maximal

component of �P. Once the measurement is completed, t = T ,

we calculate the final set of probabilities p(ψs|Z[0, T ]) to

find the final confidence vector �PT (also comprising eight

probabilities).

In our prior work we showed that, using a continuous mea-

surement on the input state can be advantageous compared

to traditional homodyne and heterodyne measurements. A

typical metric used to quantify this advantage is a comparison

of the state with the highest confidence and the true input state

for a large ensemble of measurements. An error occurs when

the two are different. The so-called symbol error rate is the

ratio of the number of incorrectly identified symbols to the

total number of symbols. As we will see, our measurements

compare favorably to the ideal symbol error rate of the optimal

classical heterodyne measurement. In other words, this rather

naive approach to state identification already offers a quantum

advantage. In this paper, we show that even more information

can be extracted from continuous measurement.

C. Experimental setup

The experimental setup for single-shot confidence esti-

mation is shown in Fig. 2. The same setup is used for all

constellations shown in Fig. 1. The only difference is the

firmware of the field-programmable gate array (FPGA), which

contains constellation-specific instructions to generate states

and rules to calculate p(Z[0, t]|ψs). During the single-shot

experiment of duration 0 to T (T = 64 µs), the input state

ψs is chosen at random. It is prepared by transmitter Tx

and sent to the receiver Rx. The mean photon number of

the input state is ≈1 photon/bit after adjusting to the sys-

tem efficiency. The receiver Rx comprises an LO, a 99:1

FIG. 2. The test-bed diagram. Transmitter Tx randomly chooses

an input signal state from a constellation and sends it to the quantum-

enabled receiver for state identification. The receiver Rx comprises

the LO, 99:1 BS, an SNSPD, and an FPGA. The FPGA controls the

Tx and Rx modules for simplicity of the setup. The FPGA generates

rf signals that modulate the Tx light and prepares the LO in the Rx

module. It also runs the adaptive Rx algorithm for the LO based

on feedback from the SNSPD. The inset shows an example of a

signal from a detector, here with three detected photons. The time

signatures of photon detections are resolved by the FPGA and used

as input for the feedback algorithm. Those time signatures are also

stored and transmitted to the PC as part of the measurement record

Z[0, t].

unbalanced beam splitter (BS), a superconducting nanowire

single-photon detector (SNSPD), and the FPGA. At the Rx,

the input signal is combined with the LO on a BS. Both Tx

and Rx operate at the telecom wavelength of 1550 nm and

are enabled by the same laser. The LO displaces the input

signal into the vacuum if the LO hypothesis matches the

input state; otherwise, the displacement can lead to photon

detection. The output of the BS is fed into the SNSPD, and

subsequently, the output of the SNSPD is sent to the FPGA

that runs the feedback algorithm. The example in the inset in

Fig. 2 shows time-resolved photon detections at the SNSPD

during the measurement. Although confidence vectors evolve

in time, only photon-detection events lead to the hypothesis

change. Thus, after each photon detection ti, the FPGA re-

calculates the confidence vector p(ψs|Z[0, ti]) and switches

the hypothesis to the state with the highest confidence, given

the new information (a click on the detector). At the end of

each measurement, its unique measurement history Z[0, T ] is

transferred to a personal computer in real time. The adaptive

algorithm is described in more detail in the next section.

We collect transmitted signals, times of photon detections,

displacement operators, and the final confidence vector. This

real-time information of each measurement is used for further

analysis, statistical verification, and visualization. To obtain

relevant ensemble averages (e.g., of successful state identifi-

cation) we repeat the measurement for all the possible states

in the alphabet 50 000 times.

D. The state-identification algorithm

The state-identification algorithm is an adaptive algorithm

that changes the LO settings to minimize the probability of
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error in identification. Because the input state is chosen at

random, we set all M of our prior probabilities to 1/M, so

that �Pt=0 = {1/M, . . . , 1/M}. Therefore, for M = 8, the initial

confidence vector is �Pt=0 = {0.125, . . . , 0.125}. Because all

components in �Pt=0 are equiprobable, we can set our initial

hypothesis to any state without the loss of generality. Here,

we begin our identification by setting the hypothesis to be the

first state ψs′=1. The LO is set to extinguish the output of a

beam splitter to vacuum if s = s′.

We monitor and record the time of photoelectronic detec-

tions in real time. These data are used to update the Bayesian

probabilities at intermediate times t < T . It turns out that the

hypothesis needs to be adjusted only if a photon detection

occurred. This is because the Bayesian probability that the

input is in the state identified by a hypothesis monotonically

grows in the absence of a photon detection. After each photon

detection, we update the confidence vector and choose the

hypothesis state with the highest probability s′ as the next best

guess hi. The LO is then set to displace the signal according

to the hypothesis. To compute probabilities, this algorithm

follows the Bayesian inference formula in Eq. (1): it uses

the incomplete measurement record Z[0, t] and calculates the

incomplete confidence vector. At the end of the measurement

duration T , we obtain the final record of measurement history

Z[0, T ] = (t1, t2, . . . , tM ; Ûh0
, Ûh1

, . . . , ÛhM
) and compute the

final confidence vector �PT = (p1, p2, . . . , pM ).

E. Experimentally obtained measurement records

and confidence vectors

In our experiment, we measure and store the measurement

record and recover the confidence vector and its evolution

in time for each individual measurement. Because photon-

detection times are random, both the number of photon

detections and the exact times of photon detections are unique

for each act of measurement. Owing to this inherent uncer-

tainty, these values are unpredictable, even in principle, before

the measurement commences. Examples of typical experi-

mental results for different modulation schemes are shown

in Fig. 3. Particularly, there are examples of the measure-

ment records Z[0, T ], which contain photon-detection times

and the history of applied displacements for an individual

act of measurement. Examples of corresponding confidence

vectors and their evolution through continuous measurement

are also shown. These values are obtained from Eq. (1). The

values of the final confidence vector �PT are shown in the

graph (at t = T ) and separately on a pie chart. Note that

the components of the vector are discontinuous. As discussed

before, each photon detection invalidates the current hypoth-

esis. Therefore, discontinuities occur every time a photon is

registered at the output. Figures 3(a)–3(d) show examples of

single-shot-measurement confidence estimation for Mph = 8

and Mph = 1, Mph = 4 and Mph = 2, Mph = 2 and Mph = 4,

and Mph = 1 and Mph = 8, respectively. For a given Tx, there

are eight possible confidence vectors (shown in eight different

colors), and its value changes over time. The graph represents

the evolution of the state’s probabilities for all the states in the

constellation with rapid jumps at each photon detection. The

eight colors represent the eight states of the alphabet, and the

corresponding colors are used in the pie chart to show the final

TABLE I. Experimentally obtained SER and the theoretical limit

for modulation schemes used in this paper at ≈1 photon/bit. The

quantum advantage is the ratio of the experimentally measured

SERexp to the theoretical shot-noise-limited SER (SERSNL).

Modulation SERexp (%) SERSNL (%)
SERexp

SERSNL

(dB)

M f = 8, Mph = 1 5.3 14.5 −4.3

M f = 4, Mph = 2 12.3 15.6 −1.3

M f = 2, Mph = 4 13.6 14.7 −0.3

M f = 1, Mph = 8 21.3 34.1 −2.0

confidence vector (probability distribution). Z[0, T ] contains

the information of photon arrival time (scaled to the measure-

ment time T ) and chosen displacements. We start with equal

probabilities of all states, and the initial hypothesis is ψs=1;

hence, the probability of state ψ1 (black) grows before the

first photon detection is registered. After each photon detec-

tion, based on the photon arrival time, probability vectors are

recalculated, and the state with highest probability is assigned

as a new hypothesis and included in the measurement record.

At t = T the state with the highest Bayesian probability (the

highest element of the confidence vector) is the received state

Rx, and all the probabilities in the confidence vector are im-

portant, as we will show next. Interestingly, some components

of the vector �P oscillate. This behavior is because we use

frequency modulations, and interfering coherent states at dif-

ferent, slightly detuned frequencies result in a temporal fringe

in the probability to detect a photon [see Fig. 3(d)], where

only one carrier frequency for all states in a constellation

is used.

We expect that the more “information” is acquired within

one measurement, the higher the confidence in the final re-

sult will be. Indeed, as is evident from Fig. 3(b), a click is

registered at the very beginning of the pulse, and the corre-

sponding hypothesis is tested for a relatively long time; thus,

the confidence in the result is high. A similar effect can be

seen in Figs. 3(a) and 3(d), where a significant number of

photon detections is combined with an appreciable time of

the final hypothesis testing. In all the above cases, the largest

Bayesian probability is 80% or higher. In contrast, in Fig. 3(c)

the last hypothesis is tested only briefly, so there is insufficient

time until the end of the measurement to verify it well. As a

result, a vector with low confidence values is recorded, and

a comparison of the transmitted and received states indicates

that the state identification has failed.

F. The physical significance of the confidence vector

If measurement records are not analyzed and only the state

with the highest confidence is considered as the identifica-

tion outcome, one can easily quantify the experimental SER

and compare it to the shot-noise limit (SNL) based on all

experimental data (a large ensemble). Table I shows the ex-

perimentally obtained SER and the corresponding theoretical

limit (SNL) at ≈1 photon/bit for each modulation scheme

in this paper. As seen from Table I, our quantum receiver

operates with quantum advantage.
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FIG. 3. Examples of the confidence vector during measurement period 0 to T , recorded measurement history Z[0, T ], and confidence

vector �P are shown for different modulations: (a) M f = 8, Mph = 1, (b) M f = 4, Mph = 2, (c) M f = 2, Mph = 4, and (d) M f = 1, Mph = 8.

The input states sent by Tx are shown in different colors and tagged by numbers 0 to 7. The confidence vector �P obtained at the end of the

measurement is depicted in the pie chart. Each graph shows different trends and resolves into unique outcomes. The received state Rx is the

state with the highest probability.

Here, we experimentally establish that individual Bayesian

estimates, different for each act of measurement, contain even

more useful information. Particularly, given the confidence

vector, one can predict the reliability of each measurement

separately, well beyond the ensemble-averaged benchmarks,

such as SER. Indeed, given the above discussion, one expects

that irrespective of the magnitude of a confidence value ps,

any sth component of the confidence vector (calculated based

on a single measurement record) correlates with the frequen-

tist probability (ensemble-based Kolmogorov probability) that

the true input state was s. At issue here is the uniqueness

of every measurement record and the need for an ensem-

ble that would allow us to correctly calculate a frequentist

probability. To do so, all elements of all collected confidence

vectors �P = p0, p1, . . . , pM are divided into 10% bins. To

find the average value of the Bayesian probabilities in each

10% bin, we calculated the mean values of the confidence

vector components that fall into that bin. It turns out that

most of those averages are close to the middle of the bin,

except in the very first and the very last bins. Indeed, the

first average is p̄[0%,...,10%] ≈ 0% �= 5% for all encodings, and

the last average p̄[90%,...,100%] �= 95% but varies from encod-
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FIG. 4. Experimental evidence of Bayesian probabilities truly represents the best knowledge of the input signal. Experimental probabilities

are plotted against the Bayesian probabilities for the modulation scheme: (a) M f = 8, Mph = 1, (b) M f = 4, Mph = 2, (c) M f = 2, Mph = 4,

and (d) M f = 1, Mph = 8. Blue dots are experimental results, and black solid lines are linear fits to the experimental data. Error bars show one

standard deviation estimated from statistical error.

ing to encoding. This is because our quantum measurement

often yields Bayesian probabilities that are close to unity

for one of the states, which means that other components

of the confidence vector should be close to zero. Thus, we

end up with 10 ensembles of Bayesian probabilities with

similar values. Now, for each such ensemble, we find the

fraction of times the sent state was in a state whose Bayesian

probability fell in that ensemble. The experimental ensemble

probabilities are q(p) = Ncorrect/(Ncorrect + Nincorrect ), where

q is a frequentist probability, p is the average Bayesian

probability in the ensemble, and Ncorrect and Nincorrect are

the numbers of successful and unsuccessful identifications,

respectively.

Now, to prove that the Bayesian confidence vector �P
represents the best knowledge about the input state, we exper-

imentally show that the ensemble average of the successful

identification of the measured state (a frequentist probability)

matches the single-shot probability (Bayesian probabilities),

shown in Fig. 4. The x axis represents the average Bayesian

probability in 1 of 10 bins, and the y axis represents frequentist

(Kolmogorov) probabilities. If, indeed, the confidence vector

represents our best knowledge of the input state postmeasure-

ment, the two values should be identical.

Figures 4(a)–4(d) show the Bayesian vs experimental prob-

ability for the modulations M f = 8 and Mph = 1, M f = 4

and Mph = 2, M f = 2 and Mph = 4, and M f = 1 and Mph =
8, respectively. We see experimentally, irrespective of the

modulation scheme, the measured frequentist probabilities of

successful identification observed for an ensemble of single-

shot measurements q are equal to the observed single-shot

confidence estimations p. Interestingly, this is true for any

value of p, including for low confidence, p ≈ 0, and high

confidence, p ≈ 1. In addition, this equality holds for all the

modulations we tested in our experiments. To test any devi-

ations from the expected dependence, q(p) = p, we use the

least-squares method for linear fitting of experimental data,

shown as black solid lines in Fig. 4. The linear fitting equation,

y = mx + c, and corresponding coefficients, slope m and x

intercept c, are shown in each plot. The obtained values of

m are close to unity, and the x intercepts c are close to zero

to within the measurement error. This is true for all modu-

lation schemes tested in the experiment. The unit slope and
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zero intercepts confirm that single-shot confidence a posteriori

vectors P indeed represent our best knowledge about the mea-

sured state and are directly related to the expected frequentist

probabilities, calculated from an ensemble of measurements.

III. CONCLUSION

In conclusion, we explored the concept of single-shot

continuous measurement where the unknown input state

is identified and confidence values associated with each

measurement are obtained. We used time-resolved quantum

measurement to identify the state to improve the probability

of successful identification with SER below the shot-noise

limit. Because of the unique features of our method, mul-

tiple modulation schemes can be tested without a change

in the optical layout. Accordingly, we tested eight states

(alphabet length M = 8) using four different modulations.

We experimentally showed that the ensemble average of the

successful identification probability of the measured state

matches single-shot Bayesian probabilities; therefore, the

Bayesian confidence vector represents our best postmeasure-

ment knowledge about the input state. Remarkably, this is

true for all tested modulation schemes. The result indicates

that our confidence-estimation algorithm for single-shot esti-

mation is robust and versatile; therefore, it can be used with

any desired modulation scheme and alphabet length. In prac-

tice, a communication protocol that uses quantum-enhanced

receivers can exploit confidence values for quantum-enabled

error correction, which can surpass classical detection and

error-correcting techniques. Combined with the extremely

low energy per bit required for quantum-enabled classical

communication, these error-correcting methods suppress the

error rate enabling reliable communication. The use of those

quantum methods not only enables resource-efficient commu-

nications but also can naturally solve the coexistence problem

of classical and quantum channels in the same fiber, enabling

future blended classical and quantum networks. In addition,

this study contributes to advancing the understanding of fun-

damental properties of quantum measurement and can be

thought of as a practical application of the quantum Bayesian-

ist paradigm [28].
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