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Abstract

This paper focuses on the discovery of unusual spatiotemporal associations across multiple
phenomena from distinct application domains in a spatial neighborhood where each phe-
nomenon is represented by anomalies from the domain. Such an approach can facilitate
the discovery of interesting links between distinct domains, such as links between traffic
accidents and environmental factors or road conditions, environmental impacts and human
factors, disease spread, and hydrological trajectory, to name a few. This paper proposes tech-
niques to discover spatiotemporal associations across distinct phenomena using a series of
anomalous windows from each domain that represent a phenomenon. We propose a novel
metric called influence score to quantify the associated influence between the phenomena. In
addition, we also propose spatiotemporal confidence, support, and lift measures to quantify
these associations. Two novel algorithms for finding multi-domain spatiotemporal associ-
ations across phenomena are proposed. We present experimental results across real-world
phenomena that are linked and discuss the efficacy of our approach.

Keywords Spatiotemporal associations - Anomalies - Spatial neighborhood -
Spatiotemporal confidence and support

1 Introduction

A fundamental law of geography says that everything is related to everything else [1]. Many
studies show this in single application areas, for example, rents in acommunity are similar, and
traffic in a vicinity is largely similar. This fundamentally also becomes true across multiple
areas. For example, (a) weather conditions at a location will impact traffic [2], (b) oil spills
in oceans will adversely impact underlying aquatic animal population [3], (c) pollution at
locations can affect disease spread [4], and many more. In addition, well-known phenomena
in polar science could also be drawn from such regularity. Changes in ice sheet mass are
deemed to be the key to understanding present and future sea level rise [5, 6], in which the
contribution to sea level rise depends on the interactions between ice, ocean, and atmosphere.
It is estimated that surface meltwater runoff, basal melting, and precipitation will all increase
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in a warmer climate, as evidenced for both Greenland and Antarctica ice sheets [7]. However,
observing ice mass changes associated with atmospheric and ocean forcing of the ice sheets
with a dataset has remained difficult despite advances in understanding ice sheet reactions to
climate change [8].

These are some common regularities that have long been established and validated by
long and rigorous studies. There are possibilities of links among domains in the underlying
space due to the fact that in a region of space a single process can govern the behavioral
changes across multiple domains; for example, childhood poverty and unemployment in a
region are related mainly because they are both influenced by lack of education. One thing
that makes studying such domain influences difficult is the vast amount of data generated even
for a single application domain. In addition to this, combining data from different application
domains can be challenging due to data heterogeneity. Now, what if we could avoid that by
not looking at individual raw data from distinct application domains but instead utilizing
extracted knowledge from each domain and further mining it to identify associated links
between the domains using space as the common point of reference.

The focus of this paper is to provide a mechanism by which we can study spatiotemporal
associations across two distinct application domains (such as traffic and weather or childhood
poverty and unemployment) in the same spatial region by combining the knowledge derived
in each domain. This is a subset of a bigger problem of looking at several associations in
space, which is currently out of scope in this paper. However, we intend to build the larger
model by currently considering the process of associations across two domains and later on
considering associations across several domains simultaneously.

We study these domain associations in the form of some phenomena captured in each
domain dataset. For example, in studying poverty, we look at the phenomena of unusual
poverty rates in a region. Thus, the knowledge we consider discovering the domain associa-
tions is derived from the anomalous windows representing the phenomenon in each domain,
for example, an unusual spatial window, which depicts highly unusual poverty rates. An
anomalous window comprises a set of points in a region that are unusual with respect to the
rest of the data points in that region in terms of some attribute of interest. Current methods in
spatial and spatiotemporal scan statistics study the unusualness of the phenomenon and detect
anomalous hotspots, which are anomalous spatial and spatiotemporal windows measured at
single or multiple time intervals.

Existing studies in co-location pattern mining [9] aim to discover the association between
two or more spatial objects with respect to non-spatial attributes. However, they mainly look
at spatial co-locations and not necessarily spatiotemporal co-locations. Moreover, existing
approaches to multi-domain link discovery [10] do not quantify the strength of the relation-
ships and also do not address the discovery of spatiotemporal relationships.

In this paper, we propose to identify the relationships between domains based on proximity
and overlap patterns of the anomalous windows representing the phenomena in each domain.
In other words, the co-occurrence of different anomalous windows from multiple phenomena
in areas of proximity determines spatial association. However, instead of using geographic
distance measures only, we propose a novel influence measure that utilizes knowledge from
the underlying phenomenon of study. Furthermore, we also discover spatiotemporal associ-
ations between phenomena based on spatial associations. This measures the links between
phenomena with spatial associations, which are long-lasting across a certain time period.

Our key contributions are as follows:

(a) We present a novel framework of algorithms and metrics for the discovery of spatiotem-
poral associations between phenomena from distinct application domains.
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(b) We introduce a metric called influence score for the measurement of spatial association
of phenomena, as well as a novel variation of spatiotemporal confidence, support and lift
measures for the measurement of spatiotemporal associations across phenomena.

(c) We present a method for evaluating the statistical significance of the spatiotemporal
associations using Monte Carlo simulations.

(d) We conduct detailed experiments on synthetic and real-world datasets, discovering spa-
tiotemporal associations among phenomena indicating strong influence relationships
between them, which demonstrates the efficacy of our algorithm.

2 Related work

Mining statistically significant associations across multiple domains has related works in co-
location pattern mining [9] and trajectory mining method [11]. Existing literature presents
two broad approaches in co-location mining, namely statistical approaches and data mining
approaches. Statistical approaches can be sub-divided into spatial as well as temporal analysis
techniques. Spatial analysis techniques discover the frequent co-location rules based on
correlation measures such as Ripley’s Cross-K function [12, 13]. Extensive studies have been
done in analyzing the temporal analysis techniques for co-location patterns, which include
first-order and second-order autocorrelation [14] and periodic pattern discovery methods like
periodicity transform proposed in [15]. However, spatial correlation measures suffer from
the disadvantage of expensive computation due to the exponential generation of candidate
subsets for large spatial Boolean features [16]. Data mining approaches include map overlay-
based clustering techniques [17, 18] which employ a layered approach for point-data to obtain
spatial association rules [19]. Spatial association rule mining, on the other hand, employs
general association rule mining together with spatial predictors to find interesting spatial
associations [20].

Some of the other interesting works that deal with spatiotemporal patterns in the spatiotem-
poral domain include [21, 22]. Tao et al. [21] uses a brute-force approach in the detection of
spatiotemporal association rules (STAR). However, despite creating simplified STAR defi-
nitions, the underlying spatial and temporal semantics like interest neighborhood and time
interval width are ignored. The work mentioned above is quite different from ours, which
involves studying underlying anomalies in potentially interrelated spatiotemporal phenomena
across multiple time intervals.

Spatial and spatiotemporal scan statistics methods [23, 24], hotspot detection methods
[25, 26], and also multivariate scan statistics approaches [14, 27] address the detection of
anomalous windows. However, spatiotemporal scan statistics-based methods typically focus
on a single phenomenon of study, and in contrast, the multivariate methodologies do not
address the linked association discovery among application domains. We address this issue
of discovering associations across multiple domains by proposing a novel framework that uti-
lizes resultant individual domain anomalies and ties them together with space as the reference
point but also considers time series into account.

Other approaches for the identification of co-location patterns, such as [9] utilize mono-
tonic composite interest measures with space and use time prevalence thresholds to eliminate
candidate sets for associations. In contrast to this, our approach utilizes the underlying multi-
domain spatiotemporal anomalies and finds linkages between them, thus reducing candidate
phenomena instead of analyzing complete large datasets. Also, on similar lines to the concept
of R-proximity neighborhood [16], we use a network of phenomena connected by influence
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distances which are governed according to the underlying phenomena instead of only the
spatial distances.

Using the basic concepts of trajectory mining from [11] and [28], we design a hierarchical
strategy for creating a trajectory of anomalous window geographic centers over time to ana-
lyze the movement of anomalous windows. We find trajectory clustering approaches [11, 28]
to be closely related to our approach; however, with one significant difference. Anoma-
lous windows typically consist of multiple spatial objects, whereas trajectory-clustering
approaches tend to work on single-point trajectories. Also, in contrast to the prevalence
measure of participation index (or support) and conditional probability (or confidence) pro-
posed in [9, 16], we propose a significant variation of spatiotemporal support, confidence,
and lift measures for each of the proposed approaches to quantify the relationships across
phenomena.

The rest of the paper is organized as follows: in Section 3 the approach and associated
terminologies are discussed in detail. Section 5 discusses the experimental evaluation and
results. Section 6 discusses the overall system architecture for mining phenomena-related
associations, and finally, we conclude in Section 7.

3 Methodology

Figure 1 describes our overall approach, and the terminologies used throughout the paper
are shown in Table 1. The discovery of unusual spatiotemporal associations starts with the
phenomenon representation in each domain, which is done by the discovery of anomalous
windows. These windows capture the unusualness of spatial nodes in terms of an attribute of
interest. For instance, a disease outbreak can be measured in terms of the number of disease
cases with respect to the base population. Thus, we identify and quantify these anomalous
windows in the initial step for different domains. Our approach is not fixed to a particular type
of anomalous window detection method and is adaptable to multiple such methods. Next, we
discover the spatial associations between phenomena where the anomalous windows build
the basis for detecting spatiotemporal associations. We next explain each step in detail.
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: : Window Spatio-temporal anomalous !
i | Discovery [ window discovery .
T SRS B
! ]
| [P ———— ————— F Attt bttt I
1 : Association Association discovery for : -
I , Discovery anomalous windows L
|l | o
! : Association discovery for : |
: | phenomena 11
l T —————— ——— ————————————————————————— - - :
"B ittt — e [
: : A_55°_°"“'°“ Monte Cario Simulation : 1
1 1 Significance !
1 1 testing 1 :
. -

Fig. 1 Discovering unusual spatiotemporal associations
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Table 1 Summary of

terminologies used in the paper v Phenomenon of paths

d;’, g Influence distance from spatial object
p to g for phenomena v

s}), g Influence score from spatial object p
to ¢ for phenomena v

8 Influence decay rate

A Anomalous window

AY Anomalous window for phenomena v

SZa Influence score with primary anoma-
lies only

Spa Influence score with primary and sec-
ondary anomalies both

St Influence score considering anoma-
lous window centers

STC)p spatiotemporal confidence consider-
ing all anomalies

STS)p spatiotemporal support considering
all anomalies

STL) spatiote.mporal lift considering all
anomalies

STCp spatiotemporal confidence consider-
ing only primary anomalies

STSp spatiotemporal support considering
only primary anomalies

STL) spatiotemporal lift considering only

primary anomalies

3.1 Anomalous window discovery

Our aim is to quantify links between domain datasets that have some phenomena taking
place in them; for example, a domain dataset of child poverty data could be capturing data
on counts of children under poverty and total population counts. The phenomenon in this
dataset is the clusters of child poverty, which can be measured by the unusualness of the
number of children who are poor in a contiguous region. We might want to consider linking
this poverty data to another domain of unemployment where the phenomena are clusters of
unusual unemployment rates in the region. We want to study the relationships between these
two distinct sets of clusters. We utilize anomalous window discovery to find these clusters
in the domain datasets.

Definition 1 (Anomalous Window) An anomalous window AV is a collection of spatial
objects sqgv = s1, -+, S, in proximity, where each node has associated spatial and non-
spatial attributes, such that s4» has a quantified unusual behavior as compared to that of
the other spatial objects in the data. The unusualness is quantified as a measurement of the
phenomena being observed.

Timely detection of such unusual phenomena is crucial; hence, appropriate solutions can

be devised and implemented to mitigate further other risks. As another illustration, in the polar
science domain, spatial variability in warming (e.g., measured by mean annual temperature)
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might be helpful to understanding the loss of land and sea ice, extreme weather at lower
latitudes, and low biodiversity in a polar region [29].

We consider phenomena as represented by a set of anomalous windows, which capture
unusual behavior in terms of an attribute of interest, for example, the count of cases of
childhood poverty. The first step is to employ available and existing techniques to detect
anomalous windows. Spatial scan statistics [23, 24, 30, 31] and spatiotemporal scan statis-
tics [32] techniques can be utilized in this regards to identifying anomalous windows for each
phenomenon of study. It is important to note that our approach is not specific to one such
technique and is adaptable to multiple types of anomalous window detection techniques.

Let us consider child poverty data, which is represented in terms of spatial objects with
distinct interest measures such as the number of children under the poverty level, age group,
and sex. This data can be captured in terms of location coordinates (spatial attributes) and the
number of children meeting the poverty criteria (non-spatial attributes). After discovering
spatiotemporal anomalous windows using any of the available detection techniques, we
then look for spatial associations between the phenomena. Table 1 summarizes some of
the terminologies used throughout this paper.

We utilize these anomalous windows to define spatiotemporal phenomenon. A spatial
phenomenon v is represented by an anomalous window AY which represents a set of spatial
objects s4v = s1, ..., 5, where each node has associated spatial and non-spatial attributes.
Extending this notion to spatiotemporal windows where phenomena vary over time can be
represented by a set of anomalous windows for each phenomenon A¥ = {A], A}, ..., A} }
over discrete intervals of time ¢ to t,,,. These anomalous windows across application domains
can hold information about significant hidden influence relationships between phenomena,
which we aim to quantify. We first outline the measures we use to quantify associations and
then explain the discovery of associations between anomalous windows.

3.2 Influence distance and influence score

We first start by defining the basic terminologies we use to quantify spatial associations.
Then, starting with anomalous windows associated with distinct phenomena, we propose
that spatial associations are quantified by two relationships, namely proximity and overlap of
the anomalous windows in each domain, suggesting strongly associated spatial phenomena.
Proximity represents how close the windows are in the geographic vicinity, and overlap
describes the identical nature of anomalous windows in terms of spatial locations. Figure 2
describes the basic terminologies used in this paper to quantify the spatial associations.

We introduce the notion of influence distance to measure these spatial properties. Unlike
the traditional spatial distances, the influence distance is associated with the underlying phe-
nomena of study which governs the anomalous windows. Influence distance thus indicates
the hardship of influence of spread between any two spatial objects. The network of phenom-
ena describes the flow of influence among spatial objects in a neighborhood. In this network,
vertices represent spatial objects, and edges represent the possible influence flow. The weight
on each edge indicates the influence reaches from one spatial object to another. Such a weight
takes into account the spatial distance and other underlying phenomena governed by related
factors such as barriers, which can even be geopolitical in nature. For example, suppose we
have an interrelated network of phenomena for two distinct domains located in the same
spatial neighborhood, as shown in Figure 3.

Let L = {Ly, Ly, L3, L4, Ls, L¢, L7, Lg, Lo, L1o} represent set of geographical loca-
tions in a particular region of study. For instance, Caroline and Allegany counties, even
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Fig. 2 Two different spatial properties, illustrating the spatial associations between spatial objects, such as
proximity (a) and overlap (b)

though they are in close proximity to each other, being in the same state of Maryland, will
have different rates of child poverty due to different demographics and county-level ini-
tiatives taken to eliminate child poverty. Thus, despite their proximity, their link weights
can be small due to consideration of underlying phenomena-related factors. Figure 3 repre-
sents a network of child poverty cases and unemployment cases. We can see that locations
{L1, L2, L3, L4, Ls, Lg, Lo}, share common edges due to detection of child poverty clus-
ters in the adjacent areas. We can calculate the distance between any two spatial objects by
considering the minimum number of hops required to traverse to that particular object in

a network. Considering every edge has a weight equal to 1, we can calculate the influence
child poverty 2 and dunemployement =1

distance between any two spatial objects, such as d|_, 4 = 153

Fig.3 Example of an interrelated network of phenomena
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We use influence distance to capture the underlying phenomena-related factors in capturing
proximity and overlap, such as location-related factors, the directionality of spread, and
others, as discussed in prior work [33]. We define influence distance as follows:

Definition 2 (Influence distance) Let v be the given phenomenon, and p and ¢ be two
spatial objects. We define d¥_. _ as the influence distance from spatial object p to ¢ for the

p—>q
phenomenon v. d_, , is the sum of the weights of the constituent edges of the shortest path
from p to g in the network of v. If p and g are one spatial object, then d¥_, , = 0. If p and

pP—q
v

g are not connected, then d p—gq

= OQ.

Based on influence distance, we calculate the influence score, which quantifies the prox-
imity and overlap of anomalous windows. The influence score is defined as follows:

Definition 3 (Influence score) Let dl'j_) q be the influence distance from spatial object p to
q for the phenomenon v. We define s?_. = as the influence score that measures the influence

p—q
of v that spatial object p hasong. s, _, . is then computed as s, _, , = ¢~ @p—g*1/5") where
8 > 0 is the influence decay rate for a phenomena v. If p and g are one spatial object, then
$p—g = L. If p and g are not connected, then s, _, , = 0.

The influence score ranges from O to 1. Thus, we can say that the larger the influence
scores, the greater the influence of a spatial object on another. Since the influence score is
dependent on the influence distance between spatial objects, an increase in distance between
two spatial objects can cause a diminishing effect on the influence between them. We use
the influence decay rate § to model the diminishing speed. The greater the value of §, the
quicker the influence decreases as the distance from the origin of influence increases. Table 2
describes an example calculation for computing influence score.

Extending this idea to the concept of anomalous windows, we can compute the influ-
ence score between anomalous windows, given influence scores between constituting spatial
objects. Let AV be the anomalous window of phenomenon v and AV be the anomalous win-
dow of phenomenon v’. We quantify the influence that a phenomenon v (represented by A?)
has on phenomenon v’ (represented by AY) through the influence score using Equation 1.

G _ quA”/ max(s;))—ni)pEA" (1)
SAvsaAY T | AV |

where max (s;_> q ) peav is calculated for every spatial object ¢ in anomalous window AV
given any spatial object p in anomalous window A". We use the maximum function to capture
all possible outlier behavior. That is, we aim at preserving striking examples of behavior. The
average of this maximum influence score of all spatial objects g in anomalous window AV is
then the influence that A has on A“/, denoted by szv—mv" If AV and AV are identical, there

= 1 forevery g € AV, there must be same g € AV thats, = L. If

, = 0, since for any

must be the s;

) /
V_y AV

AV and A are not connected by any of their spatial objects, then sV

V_y AV

Table 2 Example Influence Score Computation

Phenomena Decay Rate Influence distance Influence score
Child Poverty 10 0.8 0.92
Unemployment 50 0.2 0.99

@ Springer



Geolnformatica

p €AV andq € AY', p is not connected to g that s, = 0. The proximity of anomalous
windows can be indicated by an influence score larger than a certain threshold s7, which
acts as a lower bound for the proximity of anomalous windows. Thus, a maximum influence
score of 1 indicates a strong overlap between anomalous windows.

Given a set of anomalous windows for two distinct phenomena (v) within the same
spatial neighborhood and same time period, the network of phenomena is created as a two-
dimensional adjacency matrix Aperwork Structure with each cell Apewwork[Z, j] represents the
individual influence distance between each individual spatial node. Next, we compute the
influence scores as explained above and thus obtain the influence score matrix Minfyence
where Minfluenceli, j] represents the influence score between each spatial objects taken into
consideration. A sample influence score matrix is shown in Figure 4 below between the
counties L to Ljg. This sample influence matrix is built based on the network of phenom-
ena depicted in Figure 3. It shows influence scores computed only between corresponding
locations defined in the network of phenomena.

4 Associating anomalous windows

The process of associating multiple domains starts with the anomalous window discovery
within each domain, for example, child poverty and unemployment in the State of Maryland.
We first discretize the time series into distinct temporal intervals Ty, T», T3, - - - , T,, using
various data discretization strategies such as equal frequency discretization, equal width
discretization, and hierarchical time-series clustering-based discretization strategy. We then
apply multi-domain association discovery algorithms (MDA), shown in Figure 5, in each
temporal bin interval to get the overall influence between the two domains. We consider the
proximity and overlap patterns (MDAWnU-CP) of the anomalous windows while quantifying
the influence relationships across domains. Table 3 illustrates an example of detected single
domain anomalies at each temporal interval along with the decay rate for the phenomena.
We next discuss two methods of finding associations between anomalous windows: (1) pair-
wise approach, which utilizes pairwise relationships between location pairs in anomalous
windows, and (2) windows centers-based approach, which utilizes the geographic center of
the anomalous windows at each time interval.

4.1 Pairwise influence relationship approach

This approach utilizes pairwise relationships between location pairs in the anomalous win-
dows at any time instant 7; based on influence scores to compute the associations between two

L3 L4 L5 L6 L7 L8 L9 L10
0.904837418 0.818730753 0 0[ 0.740818| 0.818731
0.818730753 0.904837418| 0.904837| 0[ 0.818731| 0.904837|

olo|o|o|o

L3 0.904337418 0| 0.504837 0[ 0.67032( 0.740818
L4 0.818730753 0.904837418 0.740818221 0 0.818731| 0.904837| 0.818731
L5 0.818730753 0 0.740818221 0.818730753 0.904837| 0.740818| 0.818731
L6 0 0 0 0 0 0 0

olojolo|olo|o|o|o

L7 0 0 0 0 0 0 0
L8 0.740818221|  0.818730753 0.670320046 0.904837418| 0.740818 0 0.740818
L9 0.818730753 0 0.740818221 0.818730753| 0.818731 0
L10 0 0 0 0 0 0

Fig.4 Example of influence score matrix
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Fig.5 Multi-domain association framework

anomalous windows. Figure 6 illustrates this approach where AWA{J = {Ly, Ly, L3} and
AWA‘EP = {Lj, L3, L4, L5} represent anomalous windows for unemployment and child
poverty respectively at the discrete time interval 77 (where ty € T and T = {11, --- , T})
and L = {L1, Lo, L3, L4, Ls} represent constituent locations in the anomalous windows.
At time interval T;, we can associate anomalous windows A 41 and A 42 by considering all
the best possible combinations of location pairs present in anomalous windows across both
the domains based on influence scores. We compute the total influence of Aypemployment 0N
Achild poverty using Equation 1 to find overlaps between anomalous windows across domains.
We later compute the overall influence score between the two anomalous windows given
by the Equation 1, which constitutes the best pairing between the location pairs. A sample
illustration of this is shown in Table 4 below. For example, in time 77 we see the window for
child poverty is {L1, Ly, L3} and unemployment is L, L3, L4, Ls. For each time slice, we
compute the influence scores. We then aggregate the influence scores obtained across each
temporal interval to get the final influence between unemployment rates and child poverty.
We show the process for this complete approach in Algorithm 1. The algorithm takes a
series of anomalous windows from distinct, interrelated phenomena. It computes the overall
influence of one domain over another at a particular time interval #; by using the best pairing
between location pairs in the anomalous windows. Line 1 computes influence distance across

Table 3 Sample anomalous windows at each temporal interval

T Child poverty Unemployment Decay rate
T {L1, Ly, L3} {La, L3, Ly, Ls} 10
i) {L3, L4, Ls, Lg, L1o} (L2, Lg, L7, Lg} 10
T3 {Le, L7, L3, Ly} {L1,Le, Lg, Lo} 10
Ty (L3, Ls, Lg, L7, Lo} {L4, Lg, Ly, L2, L3} 10
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Fig.6 Pairwise influence relationship approach

anomalous windows for spatial location combinations between them. Lines 2 to 6 are used to
find the maximum influence score for each spatial location present in A4> for every location
available in Ay;. Line 7 computes the overall influence score of Ay; on Ags. Lines 8 to 12
compute the best available pairing of locations in Agy given each spatial location in Agg.
The goodness of pairing is determined by the total influence score of the pairs. Lines 13 to
15 quantify these discovered associations across domains.

We quantify these associations by proposing a novel variation of spatiotemporal confi-
dence (ST C), support (ST S,), and lift measure (ST L ) for our approach. The quantification
of these associations involves considering results based on primary (highly significant) only
or both primary and secondary (relatively less significant) anomalies. This leads to two
significant variations of formulae for computation of these measures: a) Primary Influence
Relationship: One considering only the primary anomalies with respect to all the obtained
anomalies (both primary and secondary), and b) Complete Influence Relationship: Consid-
ering all the obtained anomalies (considering both primary and secondary). The formulae for
both versions are explained in Tables 5 and 6 below.

(a) Primary influence relationship
We utilize the primary anomalous windows (which is highly statistically significant)
and analyze their influence with respect to all the discovered anomalous windows (both
primary and secondary). Table 5 explains various quantification measures regarding
primary influence relationships between two phenomena, v and v’.

(b) Complete influence relationship

Table 4 Sample influence score between anomalous windows

T Child poverty Unemployment Decay rate Influence score
T {L1, Ly, L3} {L2, L3, L4, Ls} 10 0.72620
() {L3. L4, Ls, Lg, L1o} {L2, Lg, L7, Ls)} 10 0.90710
T3 {Le, L7, L3, Ly} {L1, Le, Lg, Lo} 10 0.70241
Ty (L3, Ls, Lg, L7, L2} {L4, Lg, L9, L2, L3} 10 0.76193
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Algorithm 1 Pairwise influence relationship approach

Require: Phenomena for analysis {vl,v2,v3,.....,vn}, series of anomalous windows.

{A“l, AVZ AV3 Av4 AV} each at time intervals {t1, £2, ..., tn}.

Ensure: Each anomalous window AY" is a set of spatial locations S}”" where S;’” =
vm vm vm

{s7", 85 ,S3. sy SPYL

Ensure: Associated Network of Phenomena.

1. For any two anomalous window pairs A" and A" at time #;, compute influence distance dgvm_, qun
1 L

for every spatial location pair combination across A" and A".
2. for S; in AV do
3. for S;in A” do
4, Compute maximum_influence_score for each S 1,’”
5. end for ’
6. end for
7. Anomalous window influence = maximum_influence_score/length (AV")
8. for §; in A¥™ do
9. forevery S; in AV do

10. Compute best pairing for every spatial object S}fn given SP™.
11.  end for
12. end for

13. for vm, ..., vn do
14. Identify the spatiotemporal associations by using confidence and support measures.
15. end for

We utilize all the anomalous windows (both primary and secondary) and analyze their
influence with respect to all the discovered anomalous windows (both primary and sec-
ondary), thus considering all the obtained anomalies (considering both primary and
secondary). Table 6 explains various quantification measures regarding complete influ-
ence relationships, which consider both primary as well as secondary windows.

Thus, the main difference between the two sets of formulae lies in the type of anomalies
being considered, which aids in effectively analyzing the influence relationships from two
different perspectives, thus helping in efficient reasoning and analysis of spatiotemporal
associations across phenomena. These approaches, in turn, also yield different versions of
influence scores: influence score considering only highly significant primary anomalies(s,’ia)
and influence score considering both primary and secondary anomaly associations (s},
which form an important result for determination of influence relationships across domains.

4.2 Window centers-based approach

Considering the variety and tremendous amount of data generated at a spatial location in
our pairwise approach, testing for significant associations across all the phenomena can
become costly. Therefore, we propose a variation of the pairwise approach, which utilizes
the geographic center of the anomalous windows at each time interval ¢#; instead of pair-
wise computations of all locations in the anomalous windows, as is illustrated in Figure 7.
We quantify these associations between window centers across domains using the influence
scores between window centers across anomalous windows (s, .). We also utilize the respec-
tive variations of spatiotemporal confidence (S7 C,), support (ST S.) and lift (ST L.) for
window centers that are similar to 5, 6, and 7 mentioned above to quantify the associations
using the window centers-based approach. Algorithm 2 illustrates the overall approach for
window center associations.
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Fig.7 Window centers influence relationship approach

Algorithm 2 Spatiotemporal association discovery - window center influence relationship
approach.

Require: Phenomena for analysis {vl,v2,v3,.....,vn}, series of anomalous windows
AVL AV2 A3 Av4 AV each at time intervals {t1,12, ..., tn}.

Ensure: Each anomalous window AV is a set of spatial locations S;'" with C;’” be the window centers
given by C;m = {Cf’", C2"m, Cg'”, ., G

Ensure: Associated Network of Phenomena.

1. For any two anomalous window pairs A" and A"" at time #;, compute influence distance dgvm_, qun
1 i

for every anomalous window center combination across A" and AV".
2. for C; in CV" do
3. for C;in C"" do
4. Compute maximum_influence_score for each S}?”.
5. end for
6. end for
7. Anomalous window influence = maximum_influence_score/length (A""").
8. for C; in A" do
9. forevery C; in A¥" do

o : e v
10. Compute best pairing for every window centers C j" given C; mn,
11.  end for
12. end for

13. for vm, ..., vn do
14.  Identify the spatiotemporal associations by using confidence and support and lift measures.
15. end for
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Algorithm 3 Spatiotemporal association significance testing

Require: Replica value k, original data points. Discovered associations between phenomena v and v’.
Ensure: p-value
Ensure: Associated Network of Phenomena.

1. for 1, ...,k do
2. Randomize the network of phenomena links between the original data points.

3. Repeat the association discovery process to measure the current spatiotemporal

4. Association of phenomena v and v’ given the same influence score threshold value s,;,,.
5. if the confidence of the current association is greater than those of discovered association
6. then

7 p — value = p — value + 1/k

8. endif

9. end for

The algorithm takes in anomalous window centers for distinct time periods from each
phenomenon. It computes the overall influence of one domain over another at a particular
time interval 77 by using the best pairing between anomalous window centers. Line 1 computes
the influence distance across anomalous windows for window center combinations between
them. Lines 2 to 6 are used to find the maximum influence score for each window center
present in Ag» for every location available in Ag41. Line 7 computes the overall influence
score of Ay1 on Agz. Lines 8 to 12 compute the best available pairing of center locations in
Ago given each center in Ag;. The goodness of pairing is similarly determined by the total
influence score of the pairs. Lines 13 to 15 quantify these discovered associations across
domains using spatiotemporal matrices. We quantify these associations between window
centers across domains using the influence scores between window centers across anomalous
windows (s,.). We also utilize the respective variation of spatiotemporal confidence (ST Cy),
support (ST S.), and lift (ST L) for window centers that are similar to quantification measures
mentioned above in the case of the pairwise influence relationship approach thus resulting in
the quantification of associations using the window centers-based approach.

4.3 Spatiotemporal association significance test

Monte Carlo simulation is a widely used evaluation technique to determine the statistical
significance of an approach. A Monte Carlo simulation compares the findings from the
original data with several randomly generated samples. This process produces p-values to
quantify the statistical significance. The lower the p-value, the more significant the finding is.
The purpose of the Monte Catrlo test is to evaluate the statistical significance of our proposed
algorithm in comparison to links that are randomly generated. Under the null hypothesis, the
Monte Carlo test is practically beneficial because it does not adhere to the normal distribution,
t-distribution, or chi-square distribution. For evaluating if the expectation of samples D is
the sample average p using a Monte Carlo test, a bootstrap resampling of D and computing
their average is repeated multiple times, and a histogram of the average is constructed. The
testing of the hypothesis can be accomplished by determining if the target value u falls inside
the critical region « [34].

More specifically, we developed a permutation-based sampling method by randomizing
the links between the network of phenomena. This means, that we generate the new sample in
each replica by regenerating the network of phenomena, which links the spatial locations, and
finally, re-computing the influence relationships in each replica. This results in randomized
locations of anomalous windows for the same phenomena in each sample. The purpose is to
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see how often spatiotemporal associations discovered for those phenomena in the original
data can be discovered in the randomized samples with similar confidence. Thus, the less
often it appears in the sample, the p-value becomes, the more significant the association
is. Algorithm 3 explains the complete process of significance testing using Monte Carlo
simulations.

5 Experiments and results

We performed detailed experiments on synthetic as well as real world data sets to test the
efficacy of our approach.

5.1 Datasets

We consider two multi-domain datasets for our experimental results which are explained in
the sections below.

(a) MATCH dataset
In our experiments on a real-world dataset, we study unusual associations between child
poverty and unemployment cases in the state of Maryland. We conducted the experiments
to check for potential associations between child poverty rates and the unemployment rate
for the state of Maryland. “Mobilizing Action Towards Community Health” (MATCH),
which is a collaboration between the Robert Wood Johnson Foundation and the Univer-
sity of Wisconsin Population Health Institute, provides extensive and rich multi-domain
health ranking data for counties in the United States of America. We took a subset of this
extensive data and analyzed child poverty data against unemployment data for the state
of Maryland. The detailed child poverty data contains small area income and poverty
statistics for all 24 counties of Maryland and ranges from the year 2010 to 2016 [35]. We
aim to analyze the evident potential associations of child poverty with other phenomena,
such as unemployment rates. The unemployment rates, which were obtained from the
Bureau of Labor Statistics for all 24 counties in the state of Maryland and consists of
extensive unemployment statistics like the number of unemployed in the county for the
years 2010 to 2016. The list of 24 counties, along with the county code, is provided in
Table 7 below.
(b) Synthetic Dataset

We utilized a synthetically generated spatiotemporal dataset with point anomalies for
distinct application domains to test our approach. We generated anomalous windows for
specific locations in order to test potential associations between domains. The dataset
consists of point anomalies for spatial locations and had a time range from 1997 to 2012.
The major aim of this data set was to test our approach for multi-domain associations
with labeled data and validate our approach findings based on already known associations
across domains.

5.2 Experimental results
We performed detailed experiments on the above-discussed datasets to test our approach

to finding unusual spatiotemporal associations. We achieved a temporal discretization of
the datasets using the available discretization strategies and individually applied our multi-
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Table 7 The code of each county utilized in the MATCH dataset

County Code County Code
Allegany County AL Harford County HR
Anne Arundel County AA Howard County HW
Baltimore County BL Kent County KN
Baltimore City BC Montgomery County MG
Calvert County (6\% Prince George’s County PG
Caroline County CC Queen Anne’s County QA
Carroll County CL Somerset County SS
Cecil County CcC St. Mary’s County SM
Charles County CH Talbot County TB
Dorchester County DR Washington County WA
Frederick County FR Wicomico County wC
Garrett County GR Worcester County WR

domain association algorithm to detect anomalous windows in each temporal interval. Finally,
we quantify the combined association relationships using influence score, spatiotemporal
confidence, support, and lift measures. The experimental results are organized as follows:
1) We first present detailed results for each dataset based on our influence metrics. 2) we
discuss the performance of our approach using accuracy, precision, and recall measures. 3)
we perform ground truth validation on the obtained results.

5.2.1 Influence score results

We derived anomalous windows for analysis using spatiotemporal scan statistics using
Satscan. However, our approach is not limited to using Satscan-based anomalies, and we
have tested multiple methods for detecting anomalous windows. We outline our results with
Satscan windows due to the wide use and intuitive findings of Satscan-based anomalies. The
results were obtained using retrospective scan statistics employing a space-time permutation
model over the entire time scan. In the experiments, we set the influential score threshold
St = 0.7, influential decay rate for all phenomena as § = 10, and the Jaccard similarity
coefficient = 0.3.

Results for MATCH dataset Table 9 shows the associated anomalies discovered across both
domains using the 4-bin data discretization. We used the multi-domain framework and applied
retrospective space-time scan statistics within each bin interval to detect anomalies based on
the bin data. For example, we obtain anomalous window {SM, WC, WR, BC, GA, AL, WA,
FR, KN, QA, HR, CC, SM, WC, WR, BC, WA} for child poverty and {SM, WC, WR, BC,
WA, TB, KN, QA, HR, CC, CH, CL, SM, SM, WC, WR, WA, BC, TB} for unemployment
domains respectively for temporal bin ranging from 2010-2011 which contains anomalous
counties in the State of Maryland. The definitions for all the above-mentioned abbreviations
are provided in Section 5.1.

Later, our approach applies multi-domain association algorithms in each temporal bin and
then takes the combined aggregated measure of the discovered common associations across
temporal intervals and quantifies these associations using influence relationship metrics. After
initial analysis, we found that a significant part of the anomalous windows without temporal
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O diceretsation for the MATCH 7PN Sta Sta Sta p-value
dataset 2 0.959 0.5 0.94 0.001

3 0.970 0.88 0.97 0.001

4 0.988 0.97 0.98 0.001

discretization appeared in the 4-bin resultant anomalies (for example, counties like Frederick
(FR), Washington (WA), Carroll (CL), and Baltimore City (BC)) (Table 8).

We detected strong influence relationships from all three influence scores - influence score
with primary anomalies into consideration(s,), influence score considering both primary
and secondary anomaly associations (s,), and influence scores between window centers
across anomalous windows (s,;.) as shown in Table 9. These high influence scores were also
quantified by high values of spatiotemporal confidence and lift measures, which indicate a
strong influence relationship between the domains. Also, the Monte Carlo simulation results
show a strong p-value of 0.001, indicating the statistical significance of these influence rela-
tionship results. We also detected significant increases in the influence scores with significant
p-values on increasing the number of temporal bin intervals, which imply strong associations
with the child poverty and unemployment data as depicted in Table 8.

Results for Synthetic dataset We detected strong influence relationships from all three
influence scores - influence score with primary anomalies into consideration(s;a), influence
score considering both primary and secondary anomaly associations (s;,), and influence
scores between window centers across anomalous windows (s;,.) as shown in Table 10.
These high values of influence scores were also quantified by high values of spatiotemporal
confidence (given by (ST C),), STC, and ST Cy,) and lift measures (given by ST L), STL,
and ST L,,) values that indicate comparative results obtained from our approaches explained
above. Also, the Monte Carlo simulation results show a strong p-value of 0.001 (p < 0.05),

Table 9 Domain anomalies with 4-bin temporal discretization for MATCH dataset

Anomalies from child poverty ~ Time period range ~ Anomalies from unemploy- s, SI‘;a Sue
ment

SM, WC, WR, BC, GA, AL, 2010-2011 SM, WC, WR, BC, WA, TB,

WA, FR, KN, QA, HR, CC, KN, QA, HR, CC, CH, CL,

SM, WC, WR, BC, WA SM, SM, WC, WR, WA, BC,
TB

KN, QA, MG, PG, HW, HR, 2012-2013 MG, PG, HW, KN, QA, HR, 098 097 0098

CC, BL, SM, CV, CH, DH, CC, BL, AL, GR, SM, CL,

AL, GA, CL, SM, WC, WR, CH, DR, CR, SM, WC, WR,

HW, BC, KN, QA KN, QA

DH, CL, AL, BC, CV 2014-2015 DL, AL, BL

SM, WC, WR, CL, AL, BC, 2015-2016 CR, AA,CL, AL

AA, CV,CR

Child Poverty — Unemployment

STC, =0.625; STS,, = 0.010; STL, = 0.20;
STC), = 0.44; STS), = 0.11;

STCy = 0.62; ST Sy, = 0.15; STL,, = 23;

p — value = 0.001
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Table 10 Domain anomalies with 4-bin temporal discretization for synthetic dataset

Anomalies from child poverty ~ Time period range ~ Anomalies from unemploy- s5,  Sps Sy
ment

CR, FR, HW, BL, BC, MG, 1997-2002 PG, BL, AA, FR, WH, CR,

HR, WH, CR, CC, MG, PG, MG, HW, MG

BL

AL, GR, WH, FR, CR, MG, 2003-2005 MG, KN, QA, HR, CC, CL, 095 0.50 093

HW, CL, TB, QA, DR, KN, BC,BL

WC, AA, CV, CC, BC, HR,

WR, SS, CL, TB

PG, AL, GR, WH, FR, CR, 2006-2008 AA, CV, SM, CH, TB, DR,

MG, HW, QA, DR, KN, WC, PG, BC, BL

AA, CV, CC, BC, HR, WR,

SS, BL

GR, AL, WH, FR, MG, CR, 2009-2012 AA, MG, PG

HW, PG, CL, TB, QA, DR,
KN, WC, AA, CV, CC, BC,
HR, WR, SS, BL

Child Poverty — Unemployment

STCp =1;8TSp =0.012; STL, = 20.5;
STCp =1;STSp =0.28;

STCy =0.5; STSy, =0.11; ST Ly, = 140;
p — value = 0.001

which indicates the statistical significance of these influence relationship results. We also
detected significant increases in the influence scores with significant p-values on increasing
the number of temporal bin intervals, which imply strong associations with the child poverty
and unemployment data as depicted in Table 10. We also found a significant part of the com-
mon anomalous windows appears in the discovered 4-bin resultant anomalies (for example,
counties like Prince George (PG), Baltimore City (BC), and Baltimore County (BL)).

5.2.2 Ground truth and accuracy evaluations

In order to test our approach results, we performed ground truth validation by testing our
approach findings against the known anomalies for each of the two datasets. These are
explained in detail in subsequent sections below.

MATCH Dataset We utilized the health rankings of the counties as a ground truth validation
measure for the respective domains of child poverty and unemployment, which are provided
based on the health outcome model proposed on the match website. The known anomalies
for the child poverty dataset were Allegany (AL), Worcester (WR), Wicomico (WC), Gar-
rett (GR), Dorchester (DR), Somerset (SS), and Baltimore City (BC). Similarly, the known
anomalies for the unemployment data set were Allegany (AL), Worcester (WR), Wicomico
(WC), Washington (WA), Garrett (GR), Carroll (CL), Dorchester (DR), Somerset (SS), Kent
(KN), and Baltimore City (BC). Thus, the typical multi-domain anomalous counties across
both domains were Allegany (AL), Worcester (WR), Wicomico (WC), Garrett (GR), Dorch-
ester (DR), Somerset (SS), and Baltimore City (BC). These we accurately detected by our
approach with significant influence. We also compared our method with existing methods to
detect spatial outlier associations [10], which can be illustrated in Figure 8 below. Despite
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Fig.8 Performance comparison between the proposed approach and spatial anomaly detection [10]

having roughly similar performance measures as shown in Figure 8, we were able to find
two significant achievements. First, as compared to [10], our method could detect significant
anomalous window associations across domains and significantly quantify these associations
based on a novel metric of influence - influence score. Second, previous work in [10] address
the problem of outlier associations in a spatial context, whereas our current method extends
this problem to detect spatiotemporal associations.

Synthetic Dataset We test our approach on known pre-defined multi-domain anomalies and
check whether the approach is able to detect significant associations across domains. We
pre-defined and modeled the known anomalies for the data set at locations Prince George
(PG), Baltimore County (BL), and Baltimore City (BC) for Domain 1 and Prince George
(PG), Baltimore City (BC), Baltimore County (BL), Montgomery (MG), and Ann Arundel
(AA) for Domain 2. Thus, the common multi-domain anomalous counties for Domain 1 and
Domain 2 were Prince George (PG), Baltimore County (BL), and Baltimore City (BC). It was
observed that our approach was able to detect these known anomalies across all the temporal
discretized intervals.

Accuracy Evaluations Considering Locations This approach evaluates accuracy eval-
uations based on the anomalous window locations detected across the domains. The
performance measures for the approach in the form of accuracy, precision, and recall values
across datasets are plotted in Figure 9. It was observed that our approach was able to detect
anomalies across multi-domain datasets. However, it was observed that, as we increase the
number of bins, the accuracy value decreases significantly. This was associated with the
increase in false positives generated from the anomalous window discovery process. How-
ever, it was observed that our approach was able to detect all the associated anomalies across
domains. It is also observed that the same trend for accuracy, precision, and recall measures
is observed for both datasets, which justifies the efficacy of our approach. We also observe a
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Fig.9 Performance evaluation across datasets with respect to locations

higher recall value in the performance results, indicating that the model has a greater ability
to correctly identify positive instances or true positives, i.e., it is effective at capturing a larger
proportion of relevant or positive cases within both datasets.

Accuracy Evaluations Considering Phenomena Linkages Here we consider accuracy eval-
uations considering the discovery of phenomena linkages which are in the form of common
anomalous locations (space-time linkages between the domains) present across both domains.
The performance measures for the approach in the form of accuracy, precision, and recall
values across datasets are shown in Figure 10. It was observed that our approach was able
to detect linkages across multi-domain datasets with significantly high accuracy, precision,
and recall values for both the tested datasets. This finding resembles that of the evaluation
that took locations into account, but it is clear that there is not much of a trade-off between
recall and precision values.

6 System architecture

We developed a complete analysis dashboard application for analyzing these intersecting
spatiotemporal associations between anomalies across multiple spatiotemporal datasets to
identify interesting phenomena relationships. Figure 11 illustrates the overall system archi-
tecture for this dashboard application. The core functionality of this dashboard application
constitutes of a set of novel association algorithms developed in R. These algorithms utilize
data mining and statistical methodologies to find unusual spatiotemporal associations across
distinct inter-related domains such as traffic conditions and environmental factors, disease
spread epidemic trajectory patterns to name a few.

We first discover the single domain anomalies by interfacing with existing powerful tools
for scanning statistics-based anomalies. Subsequently, we find associations between the spa-
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Fig. 10 Performance evaluation across datasets with respect to phenomena locations

tial and spatiotemporal anomalies using a novel metric that is determined based on the spatial
and non-spatial overlaps between the anomalies. Each component of the above architecture
is explained in detail below, and the overall architecture is shown in Figure 11.

(a) Spatiotemporal datasets
This component accepts the spatiotemporal data from distinct domains as input for anal-
ysis. Developed in R Shiny package, it provides inputs, which are specifically .csv files,
which contain the datasets from the individual domains for analysis. We also provide
the functionality to format the data required for the single-domain anomaly detection
software. For example, SatScan input format files generated include a case file, which

GIS Visualization of

x r ~ f \ Multi Domain Anomaly
= H & QHE)| |
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T 1 — Multidomain
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- ! £ > £ Anomalous
§ : 2 £ Window . £% Window
;é 1 §§ Discovery E g-f{ ) Associations
g ¢3 ¥5%
2 3 ©g 3
EX 3t :
E | © 3
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z
Domainn Multi-domain Association

Mining Engine

Scan — istil
Software

Fig. 11 Overall system architecture for spatiotemporal dashboard applications
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contains the information regarding the number of cases by location (attribute of interest
in which we are discovering the anomalies) and associated time attribute (date or year),
the geo file, which contains the location information including the latitude and longitude
information of the location.
(b) Multi-domain association engine

This forms the core component of the application, which provides all the necessary
application functionality, including data preprocessing and modeling, interface with scan
statistics software for anomalous window discovery, and novel association algorithms,
which associate the multi-domain anomalies. The Data Preprocessing and Modelling
component involves effective pre-processing of the data required to be given as input to
scan statistics software. For handling the temporal element of the data, we discretize the
data by time and then perform anomaly detection in each of the time bins created. Our
application is equipped with three different categories of data discretization techniques
which include equal frequency binning, equal width binning, and hierarchical time series

Unusual Anomalous Window Associations =

Domain 1:

Spatiatl ocation Chid_Poverty Date

ty

Study Perkod Start Date for Domain 1:
Study Period End Date for Domaie 11 " —ty 1o
Domain 2:

Uplead Case fle: 2

Satscan Control Pannat
1. Bt St S P

e
e Mantme Spotiet Chuser S Gption
Manoma s e

RV —

[RPTA—-.

(b)

Fig. 12 Spatiotemporal data processing and modeling component
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clustering-based binning strategies. The modeling component handles the generation of
specific input files from individual discretized instances of datasets, which are ready
inputs for associations, such as specific formats required for SatScan. A glimpse of this
application component is shown in Figure 12a.

The Anomalous Window Discovery component takes in the respective input files modeled
from the previous component and processes it using the scan statistics methodologies
to obtain single domain anomalies. The rsatscan package in R acts as a wrapper for
interfacing R with SatScan software which needs to be installed on the user machine.
This package is responsible for interfacing the flow of data as input and generated output
between the R application and SatScan software, which runs on the local machine
where analysis needs to be conducted. It also provides multiple action controls that can
be used to set the parameters of the SarScan processing. The interface with SatScan is
much more tightly coupled in our current prototype, as it is a widely-used software. The
Multi-Domain Anomalous Window Association component discovers the associations
between the single-domain anomalies and forms the core component of this application.
We identify unusual spatiotemporal associations across distinct domains based on the
novel influence relationships algorithms explained in the above sections, which form
a significant part of this research. We then utilize novel matrices for the measurement
and quantification of spatiotemporal associations, which can thus act as supplementary
information for domain experts in order to obtain useful phenomena-centric relationships.
This is depicted in Figure 12b.

(c) GIS visualizations

This component provides a mechanism for interactive analysis and visualizations of
anomalous windows. The analysis is depicted in the form of visualization of the unusual
clusters and association quantification methods, which include support and confidence
measures that are adapted for influence the score-based computation of associations.
The application also incorporates actual GIS visualization of domain anomalies using
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Fig. 13 GIS visualization for anomalous windows
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SRgoogleMapsS package and leaflet package providing actual maps to visualize
anomalies which can prove effective in analytical insights. Figure 13 shows a sample
visualization obtained for the anomalous windows for the child poverty and unemploy-
ment dataset for the State of Maryland.

7 Conclusion

In this paper, we proposed a novel approach to detecting and associating unusual spa-
tiotemporal associations across distinct, interrelated application domains. We discovered
spatiotemporal associations between phenomena represented by anomalous windows. We
proposed a novel measure of influence score to find the influence between these phenomena.
In addition, we also quantified these associations using a novel variation of spatiotemporal
confidence and support measures. In our future work, we plan to present the associated influ-
ence between ‘n’ possible domains applicable to any possible real-world phenomena using
a fast phenomenon discovery algorithm to identify potentially associated phenomena while
keeping space as a common reference point. This will utilize the idea of window centers
for clustering trajectories and then apply the influence score metrics to phenomena clustered
together.

Acknowledgements This work is supported in part by the US Army Corps of Engineers, Engineers Research
and Development Center, agreement number: W9132V-15-C-0004 and by the National Science Foundation
(iHARP, Award #2118285).

Data Availability Datasets used in this paper are derived from public sources, links to which are provided in the
article. The code and sample dataset are available at the Github repository: https://github.com/MultiDatalab/
Multi-Domain- Spatiotemporal- Associations

Declarations

Conflicts of interest The authors have no competing interests to declare that are relevant to the content of this
article.

References

1. Tobler WR (1970) A computer movie simulating urban growth in the detroit region. Econ Geogr
46(supl):234-240

2. Cools M, Moons E, Wets G (2010) Assessing the impact of weather on traffic intensity. Weather Clim
Soc 2(1):60-68

3. Zhang B, Matchinski EJ, Chen B, Ye X, Jing L, Lee K (2019) Marine oil spills-oil pollution, sources and
effects. In World seas: an environmental evaluation, p 391-406. Elsevier

4. Xu R, Rahmandad H, Gupta M, DiGennaro C, Ghaffarzadegan N, Amini H, Jalali MS (2021) Weather,
air pollution, and SARSCoV-2 transmission: a global analysis. Lancet Planet Health 5(10):e671-e680

5. Mass balance of the antarctic ice sheet from 1992 to 2017 (2018) Nature, 558(7709):219-222

6. Bamber JL, Westaway RM, Marzeion B, Wouters B (2018) The land ice contribution to sea level during
the satellite era. Environ Res Lett 13(6):063008

7. Rignot E, Mouginot J, Scheuchl B, Van Den Broeke M, Wessem MJV, Morlighem M (2019) Four decades
of antarctic ice sheet mass balance from 1979-2017. Proc Natl Acad Sci 116(4):1095-1103

8. Smith B, Fricker HA, Gardner AS, Medley B, Nilsson J, Paolo FS, Holschuh N, Adusumilli S, Brunt K,
Csatho B et al (2020) Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes.
Science 368(6496):1239-1242

9. Celik M, Shekhar S, Rogers JP, Shine JA (2008) Mixed-drove spatiotemporal cooccurrence pattern mining.
IEEE Trans Knowl Data Eng 20(10):1322-1335

@ Springer


https://github.com/MultiDataLab/Multi-Domain-Spatiotemporal-Associations
https://github.com/MultiDataLab/Multi-Domain-Spatiotemporal-Associations

Geolnformatica

10.
11.

12.
13.

14.
15.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

30.

31.
32.
33.

34.
. The county health rankings, a key component of the mobilizing action toward community health 1034

Janeja VP, Palanisamy R (2013) Multidomain anomaly detection in spatial datasets. Knowl Inf Syst
36(3):749-788

Lee J-G, Han J, Whang K-Y (2007) Trajectory clustering: a partition-and-group framework. In Proceed-
ings of the 2007 ACM SIGMOD international conference on Management of data, p 593-604

Cressie N (2015) Statistics for spatial data. John Wiley & Sons

Schabenberger O, Gotway CA (2017) Statistical methods for spatial data analysis: Texts in statistical
science. Chapman and Hall/CRC

Chuang A (1991) Time series analysis: univariate and multivariate methods. Taylor & Francis

Cao H, Cheung DW, Mamoulis N (2004) Discovering partial periodic patterns in discrete data sequences
In Pacific-Asia conference on knowledge discovery and data mining, p 653-658. Springer

. Huang Y, Shekhar S, Xiong H (2004) Discovering colocation patterns from spatial data sets: a general

approach. IEEE Trans Knowl Data Eng 16(12):1472—-1485

. Lee I, Estivill-Castro V (2011) Exploration of massive crime data sets through data mining techniques.

Appl Artif Intell 25(5):362-379

. Estivill-Castro V, Lee I (2001) Data mining techniques for autonomous exploration of large volumes of

geo-referenced crime data. In Proc. of the 6th International Conference on Geocomputation, p 24-26.
Citeseer

. Huang Y, Zhang P (2006) On the relationships between clustering and spatial co-location pattern mining.

In 2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI-06), p 513-522.
IEEE

Koperski K, Han J (1995) Discovery of spatial association rules in geographic information databases. In
International Symposium on Spatial Databases, p 47-66. Springer

Tao Y, Kollios G, Considine J, Li F, Papadias D (2004) Spatio-temporal aggregation using sketches. In
Proceedings. 20th International Conference on Data Engineering, p 214-225. IEEE

Tsoukatos I, Gunopulos D (2001) Efficient mining of spatiotemporal patterns. In International Symposium
on Spatial and Temporal Databases, p 425-442. Springer

Kulldorff M (1997) A spatial scan statistic. Commun Stat - Theory Methods 26(6):1481-1496

Neill DB, Moore AW (2006) Chapter 16 - methods for detecting spatial and spatio-temporal clusters. In:
Wagner MM, Moore AW, Aryel RM (eds) Handbook of Biosurveillance. Academic Press, Burlington, pp
243-254

Xie Y, Shekhar S, Li Y (2022) Statisticallyrobust clustering techniques for mapping spatial hotspots: A
survey. ACM Comput Surv (CSUR) 55(2):1-38

Fitzpatrick D, Ni Y, Neill DB (2021) Support vector subset scan for spatial pattern detection. Comput
Stat Data Anal 157:107149

Kulldorff M, Mostashari F, Duczmal L, Yih WK, Kleinman K, Platt R (2007) Multivariate scan statistics
for disease surveillance. Stat Med 26(8):1824—1833

Tao Y, Pi D (2008) A neighborhood-based trajectory clustering algorithm. In 2008 Workshop on Power
Electronics and Intelligent Transportation System, p 272-275. IEEE

Post E, Alley RB, Christensen TR, Macias-Fauria M, Forbes BC, Gooseff MN, Iler A, Kerby JT, Laidre
KL, Mann ME et al (2019) The polar regions in a 2 ¢ warmer world. Sci Adv 5(12):eaaw9883

Shi L, Janeja VP (2009) Anomalous window discovery through scan statistics for linear intersecting paths
(sslip). In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining, p 767-776

Tango T, Takahashi K (2012) A flexible spatial scan statistic with a restricted likelihood ratio for detecting
disease clusters. Stat Med 31(30):4207-4218

Mohammadi SH, Janeja VP, Gangopadhyay A (2009) Discretized spatio-temporal scan window. In Pro-
ceedings of the 2009 SIAM International Conference on Data Mining, p 1197-1208. SIAM

Janeja VP, Adam NR, Atluri V, Vaidya J (2010) Spatial neighborhood based anomaly detection in sensor
datasets. Data Min Knowl Discov 20(2):221-258

Sugiyama M (2016) Introduction to statistical machine learning. Morgan Kaufmann

(match) project, 2010. http://www.countyhealthrankings.org/. Last Accessed 01-March-2011

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable

law.

@ Springer


http://www.countyhealthrankings.org/

	Discovery of multi-domain spatiotemporal associations
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Anomalous window discovery
	3.2 Influence distance and influence score

	4 Associating anomalous windows
	4.1 Pairwise influence relationship approach
	4.2 Window centers-based approach
	4.3 Spatiotemporal association significance test

	5 Experiments and results
	5.1 Datasets
	5.2 Experimental results
	5.2.1 Influence score results
	5.2.2 Ground truth and accuracy evaluations


	6 System architecture
	7 Conclusion
	Acknowledgements
	References


