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A B S T R A C T   

Electrode-imposed electronic inputs can generate various cues that can control the emergence of hierarchical 
structure and confer function to hydrogel systems. Here we describe three such top-down cues. Electrolytic re
actions can create pH cues that can induce the electrodeposition of pH-responsive self-assembling polymers (e.g., 
chitosan and alginate). The electric field provides a long-range cue that can induce polymer chains to migrate 
toward (or away from) the electrode and can align the polymer chains within the assembling hydrogel network 
(e.g., collagen). The electrochemical generation of diffusible oxidants provides a molecular cue that can induce 
oxidative assembly - typically through the formation of covalent bonds (e.g., disulfide bonds). Here, we review 
recent results on the use of these three cues for the electrofabrication of hydrogels and we illustrate how com
plementary capabilities from biotechnology allow the creation of functional hydrogel systems. Overall, we 
envision that electro-bio-fabrication could emerge as a scalable additive manufacturing method as well as a 
flexible approach for distributed manufacturing in public maker spaces.   

1. Introduction 

Research over the last couple decades has shown that electrodepo
sition provides unique opportunities for the fabrication of hydrogels 
with controlled structures and functions for various applications in 
biotechnology, medicine, and information processing. Often, biology 
serves as the source of materials, mechanisms, or inspiration for such 
hydrogel electro-fabrication. Specifically, biology provides many ex
amples of how information is encoded into polymers that enable them to 
be “cued” to organize over a hierarchy of length scales. Here, we 
describe three top-down cues that can be imposed by electrodes to 
organize hydrogels with complex internal structure. We also illustrate 
how function-conferring components can be integrated into these 

hydrogels especially through biotechnological methods. 

2. pH cues 

Biological polymers often contain weakly acidic and/or basic sub
stituents (carboxylates and amines) that can be (de)protonated at near- 
physiological pHs. In some cases, such changes in the polymer’s charge 
can switch the balance of intermolecular interactions allowing individ
ual dissociated chains to self-assemble through the formation of inter- 
chain associations. For instance, the aminopolysaccharide chitosan can 
be cued to undergo a reversible sol–gel transition by raising the pH near 
its pKa (6.3). This sol–gel transition is a type of self-assembly in which 
deprotonation eliminates electrostatic repulsions between isolated 
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chitosan chains and allows the formation of a network of inter-chain 
hydrogen bonds characteristic of crystalline regions. These crystalline 
regions serve as the gel’s network junctions (i.e., physical crosslinks) 
that can be reversibly formed or broken by shifting the pH. 

Fig. 1a shows that electrolytic reactions can generate the pH cue that 
induces chitosan’s electrodeposition at a cathode surface through a pH- 
neutralization mechanism. Specifically, the electrical input generates a 
region of high pH adjacent to the cathode and chitosan chains in this 
region are deprotonated and self-assemble to form a hydrogel. Both the 
high pH front and chitosan gelation front continue growing while the 
electrical input is imposed, and the rate of growth is controlled by the 
imposed electrical current. To our knowledge, chitosan was the first 
polysaccharide to be electrodeposited through a pH neutralization 
mechanism [1,2], and a few years later the acidic polysaccharide algi
nate was reported to undergo anodic electrodeposition through a pH 
neutralization mechanism [3–5]. Similarly, electrodeposition of pH- 
responsive low molecular weight hydrogelators have also been re
ported [6–9]. 

The electrodeposition of chitosan has been extensively investigated 
and these studies have demonstrated several important points that are 
presumably generalizable to other pH-responsive polymers. Chitosan’s 
electrodeposition from aqueous solution is simple, rapid (i.e., minutes), 
safe (<5 V) and reagentless. Compared to other additive manufacturing 
methods, chitosan’s electrodeposition can be performed in a covered 
solution (i.e., within a microfluidic channel) without the need for line- 
of-site (required by photolithography) or direct contact (required for 
printing) [10]. Also, if patterned electrodes are used, chitosan can be 
electrodeposited with spatial selectivity, and deposition can be per
formed either serially (to functionalize individual electrodes), or in- 

parallel (to pattern all electrodes simultaneously). Further, electrode
position scales with the electrode surface area (i.e., large surface area 
films can be generated by electrodeposition with a large electrode), and 
electrodeposition allows the conformal coating of complex surfaces 
[11,12]. Finally, Fig. 1b shows that function-conferring components that 
can be blended with chitosan in a deposition solution can often be co- 
deposited and entrapped within chitosan hydrogel films [13–15]. 

Chitosan also has the unique feature that its primary amines are 
nucleophilic and thus it is possible to use simple coupling chemistries to 
graft function-conferring components (e.g., proteins) to chitosan. This is 
illustrated in Fig. 1c which shows the enzymatic grafting of a model 
protein (green fluorescent protein; GFP) to chitosan [16,17]. Specif
ically, this protein was genetically engineered to have a short sequence 
of tyrosine residues to form an unstructured region capable of reacting 
with the oxidative enzyme tyrosinase. This enzymatic reaction generates 
quinone residues which are reactive and spontaneously conjugate the 
protein to chitosan. This GFP-chitosan conjugate retained both chito
san’s functionality (i.e., pH responsiveness) and the protein’s function
ality (i.e., fluorescence). As a result, Fig. 1c shows that the GFP-chitosan 
conjugate could be electrodeposited onto a patterned electrode. 

3. Electric field cues 

While the pH cue is essential for chitosan’s electrodeposition, the 
electric field plays an important role in organizing the hydrogel’s 
emergent microstructure. Specifically, the electric field can provide a 
driving force for chain migration toward the electrode and may also 
provide a driving force for the chains to change conformation and 
alignment. Importantly, the effects of the electric field are not well 

Fig. 1. (a) Chitosan’s electrodeposition in response to a pH cue, adapted from [18]. (b) Creating functional hydrogels by co-depositing chitosan with function- 
conferring components that become entrapped in the hydrogel, adapted from [19]. (c) Enzymatic conjugation (by tyrosinase) of a protein engineered with acces
sible amino acid residues (e.g., tyrosines) and electrodeposition of the protein-chitosan conjugate, adapted from [16]. 
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understood but the field does not seem to be able to induce deposition 
directly (i.e., chitosan must be deprotonated to self-assemble while the 
field imposed during deposition can control the emergent microstruc
ture). Initial evidence for the importance of the electric field were ob
servations that chitosan’s electrodeposition was markedly different in 
the presence or absence of salt that can screen the electrode-imposed 
electric field and screen inter-chain electrostatic repulsions [18]. 
When high levels of salt were added to the deposition solution, depo
sition was more rapid, but the deposited films were less dense (i.e., 
contained more water) and mechanically weak. 

This salt effect was used to generate a Janus film in a two-step 
electrodeposition process illustrated in Fig. 2a [20]. In the first step, 
the dense “face” was electrodeposited from a chitosan solution with no 
added salt. Next, this film-coated electrode was transferred to a depo
sition solution containing salt, and the “porous” face was electro
deposited onto the dense face. This Janus chitosan film has been tested 
for guided bone regeneration. 

Less direct evidence of the importance of the electric field on the 

emergent structure were results from a study in which electrodeposition 
was performed using an oscillating electrical input by stepping between 
a constant ON current and an OFF (current = 0). Fig. 2b shows that when 
a wire was used as the electrode, a segmented structure was generated 
by these oscillating inputs [21]. The segments grew during the ON steps 
while the boundaries were formed during the OFF steps. Subsequent 
studies indicated that during the OFF step, the open circuit potential was 
sufficient to “recruit” chitosan chains toward the interface, and this 
appears to explain the formation of the dense boundary regions [23]. 

In addition to chitosan, other biological polymers have been elec
trodeposited. To our knowledge, collagen was the first biologically- 
derived polymer to be electro-assembled although there seemed to be 
a gap of four decades between the initial report [24] and subsequent 
reports [25,26]. For collagen’s electroassembly, both the pH and elec
trical field are believed to be important. In a recent study, illustrated in 
Fig. 2c [22], collagen was electrodeposited from an acidic solution and 
was observed to form a partially aligned hydrogel that was described as 
a “molten fibril state”. This molten fibril state could be dissipated by re- 

Fig. 2. (a) Janus film generated by a two-step electrodeposition process, adapted from [20]. (b) Segmented structure generated by oscillating electrical inputs, 
adapted from [21]. (c) Collagen’s cathodic electrodeposition of a molten fibril state, adapted from [22]. 
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dissolving in acid or could be further organized/aligned by mechanical 
stretching and covalent crosslinking. Depending on subsequent pro
cessing, these molten collagen fibrils could be organized to offer struc
tural features and functional properties similar to the collagen found in 
the cornea [27,28] or in tendons [29]. 

4. Oxidant cues 

While the electric field cue can be imposed instantaneously and ap
pears to operate over a relatively long distance, the pH cue is molecular 
in nature requiring diffusion from the electrode and this limits the speed 
and distance over which this cue can operate. Other molecular cues can 
be generated at an electrode, and these have been described as “mor
phogens” [30,31] by analogy to the historical work of Alan Turing to 
explain how complex patterns could be generated by the diffusion and 
reaction of structure-inducing molecules [32]. We are focused on the 
electro-generation of molecular oxidants that can serve as cues for 
electrodeposition. 

Biology uses various oxidative mechanisms for materials fabrication 
(e.g., for crosslinking) and these include; the oxidative deamination of 
lysine to yield collagen crosslinks [33]; the conversion of thiols (e.g., 
cysteines) to a disulfide [34]; the tyrosinase-based oxidative setting of 
the mussel glue and hardening of the insect cuticle [35]; and the 
peroxidase based formation of dityrosine crosslinks that is being 
extended into technological applications (e.g., silk-tropoelastin gels) 
[36]. A common oxidant that biology generates as part of its immune 
reaction is HOCl, which can also be electrochemically generated by 
anodic oxidation in an NaCl-containing solution as illustrated in Fig. 3a. 
When HOCl is anodically generated in the presence of either the ami
nopolysaccharide chitosan or the protein gelatin, a hydrogel is observed 
to form on the anode surface. The presumptive gelation mechanism for 
this anodic deposition involves an oxidative deamination that forms an 
“active” aldehyde moiety that can react with available amines. This 
coupling between electrochemically-generated aldehydes and amines 
has been used to form crosslinked hydrogels either from chitosan [37] or 
gelatin [38] and to graft proteins to these hydrogels. 

Fig. 3b illustrates that mediators can be used as oxidants and can 
exert some selectivity to electro-assembly [39]. For instance, the 
oxidized ferrocene mediator (Fc) is a weak oxidant and can oxidize the 
cysteine residues of proteins but not the lysine or tyrosine residues. In 
contrast, the oxidized iridium mediator is a stronger oxidant and can 
oxidize cysteine, lysine, and tyrosine residues [39,40]. 

Fig. 3c shows that the underlying chemical mechanism associated 
with mediated oxidation (with Fc) of thiols to form disulfide bonds [41]. 
Fig. 3d illustrates a mediator-based deposition mechanism for a 4-armed 
thiolated polyethylene glycol (PEG). Importantly, after deposition, some 
of the hydrogel’s residues are in a sulfenic acid state and thus activated 
for disulfide bond formation. As illustrated, a protein (i.e., Protein G) 
that was genetically engineered to have a short sequence of accessible 
cysteine residues could be readily conjugated to the electrodeposited 
PEG hydrogel. Protein G is a useful protein in biotechnology since it can 
bind to the constant region of IgG antibodies [39]. Together, the com
bination of mediated electrodeposition and protein engineering allowed 
the facile fabrication of an “antibody-presenting” hydrogel for applica
tions in biotechnology. In addition, it is important to note that mediated 
oxidative assembly can be sufficiently mild that it allows living cells to 
be electroassembled and immobilized within the hydrogel matrix [39]. 

5. Conclusions and perspectives 

The electrodeposition of hydrogels uses externally-imposed elec
trical inputs to induce the bottom-up formation of hierarchical structure 
(e.g., to induce polymer chains to assemble into a hydrogel). As noted, 
the electrode can impose various cues that enable the electrofabrication 
of hydrogels with controlled internal microstructures. While it has 
generally been easier to understand/control the mechanisms associated 
with the molecular-based cues (pH and oxidant), the role of the electric 
field has been more difficult to understand. Recent results suggest the 
opportunity to tailor the imposed electric field not only to guide chain 
movement, but also to adjust the relative positions of the monomer units 
within a chain (i.e., the polymer conformation) and between chains (i.e., 
the chain alignment). The speed, simplicity, and versatility of 

Fig. 3. (a) Anodic oxidation can generate HOCl that can oxidize amine-containing polymers (e.g., chitosan or gelatin) to induce crosslinking or conjugation reactions. 
(b) Some amino acid residues can be selectively oxidized based on the redox potential of the mediators (i.e., the electrochemically-generated diffusible oxidants). (c) 
Oxidative crosslinking of thiols to form disulfides. (d) Electrofabricating an antibody-presenting hydrogel using mediators to oxidatively crosslink a 4-armed PEG-SH 
(as shown in (c)) that allows the subsequent conjugation of an antibody-binding Protein G that was genetically engineered with accessible cysteine residues. 
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electrodeposition, as well as the ability to integrate alternative assembly 
methods (e.g., bio-based mechanisms) suggests significant benefits in a 
manufacturing setting. Thus, we envision electro-bio-fabrication could 
emerge as a new approach to additive manufacturing [11,12]. 
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