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ARTICLE INFO ABSTRACT

Keywords: Electrode-imposed electronic inputs can generate various cues that can control the emergence of hierarchical
Chitosan ) structure and confer function to hydrogel systems. Here we describe three such top-down cues. Electrolytic re-
Electrodepositon actions can create pH cues that can induce the electrodeposition of pH-responsive self-assembling polymers (e.g.,
Electrobiofabrication . . s e . . . .
Hydrogel chitosan and alginate). The electric field provides a long-range cue that can induce polymer chains to migrate

toward (or away from) the electrode and can align the polymer chains within the assembling hydrogel network
(e.g., collagen). The electrochemical generation of diffusible oxidants provides a molecular cue that can induce
oxidative assembly - typically through the formation of covalent bonds (e.g., disulfide bonds). Here, we review
recent results on the use of these three cues for the electrofabrication of hydrogels and we illustrate how com-
plementary capabilities from biotechnology allow the creation of functional hydrogel systems. Overall, we
envision that electro-bio-fabrication could emerge as a scalable additive manufacturing method as well as a
flexible approach for distributed manufacturing in public maker spaces.

pH-responsive

1. Introduction hydrogels especially through biotechnological methods.
Research over the last couple decades has shown that electrodepo- 2. pH cues

sition provides unique opportunities for the fabrication of hydrogels

with controlled structures and functions for various applications in Biological polymers often contain weakly acidic and/or basic sub-
biotechnology, medicine, and information processing. Often, biology stituents (carboxylates and amines) that can be (de)protonated at near-
serves as the source of materials, mechanisms, or inspiration for such physiological pHs. In some cases, such changes in the polymer’s charge
hydrogel electro-fabrication. Specifically, biology provides many ex- can switch the balance of intermolecular interactions allowing individ-
amples of how information is encoded into polymers that enable them to ual dissociated chains to self-assemble through the formation of inter-
be “cued” to organize over a hierarchy of length scales. Here, we  chain associations. For instance, the aminopolysaccharide chitosan can
describe three top-down cues that can be imposed by electrodes to be cued to undergo a reversible sol-gel transition by raising the pH near
organize hydrogels with complex internal structure. We also illustrate its pKa (6.3). This sol-gel transition is a type of self-assembly in which
how function-conferring components can be integrated into these deprotonation eliminates electrostatic repulsions between isolated
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Fig. 1. (a) Chitosan’s electrodeposition in response to a pH cue, adapted from [18]. (b) Creating functional hydrogels by co-depositing chitosan with function-
conferring components that become entrapped in the hydrogel, adapted from [19]. (c) Enzymatic conjugation (by tyrosinase) of a protein engineered with acces-
sible amino acid residues (e.g., tyrosines) and electrodeposition of the protein-chitosan conjugate, adapted from [16].

chitosan chains and allows the formation of a network of inter-chain
hydrogen bonds characteristic of crystalline regions. These crystalline
regions serve as the gel’s network junctions (i.e., physical crosslinks)
that can be reversibly formed or broken by shifting the pH.

Fig. 1a shows that electrolytic reactions can generate the pH cue that
induces chitosan’s electrodeposition at a cathode surface through a pH-
neutralization mechanism. Specifically, the electrical input generates a
region of high pH adjacent to the cathode and chitosan chains in this
region are deprotonated and self-assemble to form a hydrogel. Both the
high pH front and chitosan gelation front continue growing while the
electrical input is imposed, and the rate of growth is controlled by the
imposed electrical current. To our knowledge, chitosan was the first
polysaccharide to be electrodeposited through a pH neutralization
mechanism [1,2], and a few years later the acidic polysaccharide algi-
nate was reported to undergo anodic electrodeposition through a pH
neutralization mechanism [3-5]. Similarly, electrodeposition of pH-
responsive low molecular weight hydrogelators have also been re-
ported [6-9].

The electrodeposition of chitosan has been extensively investigated
and these studies have demonstrated several important points that are
presumably generalizable to other pH-responsive polymers. Chitosan’s
electrodeposition from aqueous solution is simple, rapid (i.e., minutes),
safe (<5 V) and reagentless. Compared to other additive manufacturing
methods, chitosan’s electrodeposition can be performed in a covered
solution (i.e., within a microfluidic channel) without the need for line-
of-site (required by photolithography) or direct contact (required for
printing) [10]. Also, if patterned electrodes are used, chitosan can be
electrodeposited with spatial selectivity, and deposition can be per-
formed either serially (to functionalize individual electrodes), or in-

parallel (to pattern all electrodes simultaneously). Further, electrode-
position scales with the electrode surface area (i.e., large surface area
films can be generated by electrodeposition with a large electrode), and
electrodeposition allows the conformal coating of complex surfaces
[11,12]. Finally, Fig. 1b shows that function-conferring components that
can be blended with chitosan in a deposition solution can often be co-
deposited and entrapped within chitosan hydrogel films [13-15].
Chitosan also has the unique feature that its primary amines are
nucleophilic and thus it is possible to use simple coupling chemistries to
graft function-conferring components (e.g., proteins) to chitosan. This is
illustrated in Fig. 1c which shows the enzymatic grafting of a model
protein (green fluorescent protein; GFP) to chitosan [16,17]. Specif-
ically, this protein was genetically engineered to have a short sequence
of tyrosine residues to form an unstructured region capable of reacting
with the oxidative enzyme tyrosinase. This enzymatic reaction generates
quinone residues which are reactive and spontaneously conjugate the
protein to chitosan. This GFP-chitosan conjugate retained both chito-
san’s functionality (i.e., pH responsiveness) and the protein’s function-
ality (i.e., fluorescence). As a result, Fig. 1c shows that the GFP-chitosan
conjugate could be electrodeposited onto a patterned electrode.

3. Electric field cues

While the pH cue is essential for chitosan’s electrodeposition, the
electric field plays an important role in organizing the hydrogel’s
emergent microstructure. Specifically, the electric field can provide a
driving force for chain migration toward the electrode and may also
provide a driving force for the chains to change conformation and
alignment. Importantly, the effects of the electric field are not well
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Fig. 2. (a) Janus film generated by a two-step electrodeposition process, adapted from [20]. (b) Segmented structure generated by oscillating electrical inputs,
adapted from [21]. (c) Collagen’s cathodic electrodeposition of a molten fibril state, adapted from [22].

understood but the field does not seem to be able to induce deposition
directly (i.e., chitosan must be deprotonated to self-assemble while the
field imposed during deposition can control the emergent microstruc-
ture). Initial evidence for the importance of the electric field were ob-
servations that chitosan’s electrodeposition was markedly different in
the presence or absence of salt that can screen the electrode-imposed
electric field and screen inter-chain electrostatic repulsions [18].
When high levels of salt were added to the deposition solution, depo-
sition was more rapid, but the deposited films were less dense (i.e.,
contained more water) and mechanically weak.

This salt effect was used to generate a Janus film in a two-step
electrodeposition process illustrated in Fig. 2a [20]. In the first step,
the dense “face” was electrodeposited from a chitosan solution with no
added salt. Next, this film-coated electrode was transferred to a depo-
sition solution containing salt, and the “porous” face was electro-
deposited onto the dense face. This Janus chitosan film has been tested
for guided bone regeneration.

Less direct evidence of the importance of the electric field on the

emergent structure were results from a study in which electrodeposition
was performed using an oscillating electrical input by stepping between
a constant ON current and an OFF (current = 0). Fig. 2b shows that when
a wire was used as the electrode, a segmented structure was generated
by these oscillating inputs [21]. The segments grew during the ON steps
while the boundaries were formed during the OFF steps. Subsequent
studies indicated that during the OFF step, the open circuit potential was
sufficient to “recruit” chitosan chains toward the interface, and this
appears to explain the formation of the dense boundary regions [23].
In addition to chitosan, other biological polymers have been elec-
trodeposited. To our knowledge, collagen was the first biologically-
derived polymer to be electro-assembled although there seemed to be
a gap of four decades between the initial report [24] and subsequent
reports [25,26]. For collagen’s electroassembly, both the pH and elec-
trical field are believed to be important. In a recent study, illustrated in
Fig. 2c [22], collagen was electrodeposited from an acidic solution and
was observed to form a partially aligned hydrogel that was described as
a “molten fibril state”. This molten fibril state could be dissipated by re-
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Fig. 3. (a) Anodic oxidation can generate HOCI that can oxidize amine-containing polymers (e.g., chitosan or gelatin) to induce crosslinking or conjugation reactions.
(b) Some amino acid residues can be selectively oxidized based on the redox potential of the mediators (i.e., the electrochemically-generated diffusible oxidants). (c)
Oxidative crosslinking of thiols to form disulfides. (d) Electrofabricating an antibody-presenting hydrogel using mediators to oxidatively crosslink a 4-armed PEG-SH
(as shown in (c)) that allows the subsequent conjugation of an antibody-binding Protein G that was genetically engineered with accessible cysteine residues.

dissolving in acid or could be further organized/aligned by mechanical
stretching and covalent crosslinking. Depending on subsequent pro-
cessing, these molten collagen fibrils could be organized to offer struc-
tural features and functional properties similar to the collagen found in
the cornea [27,28] or in tendons [29].

4. Oxidant cues

While the electric field cue can be imposed instantaneously and ap-
pears to operate over a relatively long distance, the pH cue is molecular
in nature requiring diffusion from the electrode and this limits the speed
and distance over which this cue can operate. Other molecular cues can
be generated at an electrode, and these have been described as “mor-
phogens” [30,31] by analogy to the historical work of Alan Turing to
explain how complex patterns could be generated by the diffusion and
reaction of structure-inducing molecules [32]. We are focused on the
electro-generation of molecular oxidants that can serve as cues for
electrodeposition.

Biology uses various oxidative mechanisms for materials fabrication
(e.g., for crosslinking) and these include; the oxidative deamination of
lysine to yield collagen crosslinks [33]; the conversion of thiols (e.g.,
cysteines) to a disulfide [34]; the tyrosinase-based oxidative setting of
the mussel glue and hardening of the insect cuticle [35]; and the
peroxidase based formation of dityrosine crosslinks that is being
extended into technological applications (e.g., silk-tropoelastin gels)
[36]. A common oxidant that biology generates as part of its immune
reaction is HOCI], which can also be electrochemically generated by
anodic oxidation in an NaCl-containing solution as illustrated in Fig. 3a.
When HOCI is anodically generated in the presence of either the ami-
nopolysaccharide chitosan or the protein gelatin, a hydrogel is observed
to form on the anode surface. The presumptive gelation mechanism for
this anodic deposition involves an oxidative deamination that forms an
“active” aldehyde moiety that can react with available amines. This
coupling between electrochemically-generated aldehydes and amines
has been used to form crosslinked hydrogels either from chitosan [37] or
gelatin [38] and to graft proteins to these hydrogels.

Fig. 3b illustrates that mediators can be used as oxidants and can
exert some selectivity to electro-assembly [39]. For instance, the
oxidized ferrocene mediator (Fc) is a weak oxidant and can oxidize the
cysteine residues of proteins but not the lysine or tyrosine residues. In
contrast, the oxidized iridium mediator is a stronger oxidant and can
oxidize cysteine, lysine, and tyrosine residues [39,40].

Fig. 3c shows that the underlying chemical mechanism associated
with mediated oxidation (with Fc) of thiols to form disulfide bonds [41].
Fig. 3d illustrates a mediator-based deposition mechanism for a 4-armed
thiolated polyethylene glycol (PEG). Importantly, after deposition, some
of the hydrogel’s residues are in a sulfenic acid state and thus activated
for disulfide bond formation. As illustrated, a protein (i.e., Protein G)
that was genetically engineered to have a short sequence of accessible
cysteine residues could be readily conjugated to the electrodeposited
PEG hydrogel. Protein G is a useful protein in biotechnology since it can
bind to the constant region of IgG antibodies [39]. Together, the com-
bination of mediated electrodeposition and protein engineering allowed
the facile fabrication of an “antibody-presenting” hydrogel for applica-
tions in biotechnology. In addition, it is important to note that mediated
oxidative assembly can be sufficiently mild that it allows living cells to
be electroassembled and immobilized within the hydrogel matrix [39].

5. Conclusions and perspectives

The electrodeposition of hydrogels uses externally-imposed elec-
trical inputs to induce the bottom-up formation of hierarchical structure
(e.g., to induce polymer chains to assemble into a hydrogel). As noted,
the electrode can impose various cues that enable the electrofabrication
of hydrogels with controlled internal microstructures. While it has
generally been easier to understand/control the mechanisms associated
with the molecular-based cues (pH and oxidant), the role of the electric
field has been more difficult to understand. Recent results suggest the
opportunity to tailor the imposed electric field not only to guide chain
movement, but also to adjust the relative positions of the monomer units
within a chain (i.e., the polymer conformation) and between chains (i.e.,
the chain alignment). The speed, simplicity, and versatility of
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electrodeposition, as well as the ability to integrate alternative assembly
methods (e.g., bio-based mechanisms) suggests significant benefits in a
manufacturing setting. Thus, we envision electro-bio-fabrication could
emerge as a new approach to additive manufacturing [11,12].
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