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Laser Patterning of Composite Paper

ABSTRACT: Paper offers the potential as a sustainable substrate for electronics, yet a o -
key remaining challenge is patterning. While most demonstration studies pattern by — ceiose § o 'y
printing conducting inks onto cellulose, we adapt conventional paper making to create "
a stable non-conducting composite of graphene oxide (GO; 30%) and cellulose (70%)
and then pattern this composite using wet laser writing. Specifically, the GO/cellulose .
composite is as follows: soaked in a HAuCl, solution; laser patterned to simultaneously ’ ;};;I'meous — 8
reduce GO (rGO) and generate metallic gold seeds (typical writing speed 20 s-cm™>);  Vision for Large-Scale Production of Paper Eloctronics
and then incubated (30 min) in HAuCl, solution to “grow” gold nanoparticles (Au —
NPs) in the pre-seeded patterned region. Various methods demonstrate that laser

patterning induces spatially selective chemical changes in the composite. Functionally,
the patterned region (Au NPs/rGO/cellulose) shows a 200-fold increase in : ‘
conductivity (1362 S m™") compared to the unpatterned region (GO/cellulose). As HAuC, HAuCI, | Water
a simple demonstration, we fabricated patterned composite paper electrodes and
demonstrate excellent electrochemical sensing performance in terms of sensitivity,
selectivity, stability, and repeatability. We envision that laser patterning of composite paper offers unprecedented opportunities for
scalable manufacturing because conventional papermaking can generate the stable substrate and laser patterning can be extended
from serial writing to parallel photolithographic methods common in electronics fabrication.

Paper-making

KEYWORDS: cellulose paper electronics, laser patterning, graphene oxide, gold nanoparticle growth, electrochemical sensing

Bl INTRODUCTION stable substrate for subsequent patterning of the conducting
regions.”” " Previous studies indicate that such composite
paper can be manufactured reliably with the resulting
conducting paper being stable and reproducible. The limitation
is that the composite conducting paper is unpatterned and
paper-cutting was needed to exert spatial control.””*’

Here, we report a potentially scalable method to pattern
composite paper without printing. Figure la illustrates our
vision that traditional paper manufacturing can be modified to
generate a composite paper composed of graphene oxide
(GO) and cellulose, and this composite paper can be patterned
using an in-line laser patterning step. Figure 1b provides a
schematic illustration of the underlying hypothesis of our
patterning approach. Specifically, we provide evidence for the
hypothesis that laser irradiation can be used for patterning by
both converting GO to reduced GO (rGO) and by inducing
the nucleation of gold “seeds” that can be subsequently grown
into metallic gold nanoparticles. Previous studies have shown

Increasingly, paper is viewed as a technology platform for the
development of a sustainable electronics economy due to the
advantages such as low cost, light weight, easy availability,
flexibility, and biodegradability. " Various demonstrations
have reported paper-based electronics for a broad range of
applications that include electrochemical sensors, strain
sensors, transistors and circuits, energy storage, and human—
computer interfacing.” "> While these reports demonstrate
exciting opportunities, challenges remain in the large-scale
fabrication of reliable high-performance paper.

The key challenge for the scalable manufacturing of paper-
based electronics is the precise patterning of conducting and
non-conducting regions. The “traditional” approach to
patterned paper is to start with a non-conducting paper
substrate and print functional materials (i.e., inks) that confer
conductivity."'*~"7 Such printing has been realized in many
labs and successfully demonstrated the exciting opportunities
for patterned paper in a range of applications.'”~** There are

. ACS ),
concerns, however, associated with the reliability of printing in Received:  March 31, 2023 Sustamable

Chemisiy: Engincerng

actual manufacturing, the stability of the paper substrate and Revised:  June 4, 2023
printed pattern, and the reproducibility in the performance of Published: June 16, 2023
such print-patterned papers. An emerging alternative approach
is to adapt traditional paper manufacturing methods to
generate a homogeneous composite paper that serves as a
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(a) Vision for Laser Patterning Composite Paper
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Figure 1. Vision for scalable fabrication of electronic paper. (a) Conventional paper making can be adapted to make a non-conducting composite of
graphene oxide (GO) and cellulose substrate, while wet laser writing can be used to pattern conducting regions. (b) Proposed mechanism in which
laser writing both removes oxygen-containing functional groups from GO to generate reduced GO (rGO) and converts HAuCl, into metallic gold
seeds that can be subsequently grown into Au nanoparticles (Au NPs).

that laser writing can produce a variety of nanometals,”’ and
we use gold in our studies because of its good electrochemical
activity. As a proof of concept, we demonstrate that this
patterned composite paper offers superior capabilities for
electrochemical detection.

B EXPERIMENTAL SECTION

Materials. GO (piece of diameter 20 pm, thickness < 5 nm) was
purchased from Xiwang Company (Shanghai, China). Cellulose pulp
(poplar chemical pulp) was purchased from Huatai Paper Industry
Co., Ltd. (Dongying, China). Cationic polyacrylamide (CPAM) was
purchased from Tianjin Zhiyuan Chemical Reagent Co., Ltd.
(Tianjin, China). Ag/AgCl ink was purchased from Shanghai
Longsheng Co., Ltd. (Shanghai, China). Phosphate buffer solution
(pH 7), hydrogen peroxide, HAuCl,-3H,0O, and other chemicals were
purchased from Sigma-Aldrich. All reagents were used as received
without further purification. Ultrapure water (>18 MQ) prepared by
Super Milli-Q water system was used for experiments.

Fabrication of GO/Cellulose Paper. In initial studies, we
observed that while increases in the GO content could improve the
paper’s conductivity, it also reduced the water filtration efficiency
during the paper making process. The maximum amount of GO in the
optimized composite paper is approximately 50%. Here, we adapted
our previously reported method for preparing GO/cellulose paper.*
The procedure is as follows: a 0.5% GO slurry in water was obtained
after 1 h ultrasonic treatment with a cell crusher; preparation of mixed
pulp: softwood pulp was added and then 2 mL of 1% cationic
polyamide was added and stirred until the water became clear; finally,
this mixed pulp was poured into the Kaiser paper making machine
(RK3AKWT, Austria) and diluted with S L of water, for the GO/
cellulose paper making.

Fabrication of Au/rGO/Cellulose Paper-Based Electrochem-
ical Sensors. For the fabrication of Au/rGO/cellulose paper, the
GO/cellulose paper was soaked in 1% chloroauric acid solution for 10
min. Then, it was taken out and placed on the glass plate of the laser
writing machine. The laser direct writing was started on the GO/
cellulose paper according to the pattern program. The output power
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of the laser (wavelength is 405 nm) was 0.6 W, and the writing speed
was 20 s-cm™> The paper after laser writing was immersed in 1%
chloroauric acid solution for 30 min. The laser-patterned area of the
paper electrode changes from gray to golden, which indicates that the
Au/rGO/cellulose paper electrode has been successfully prepared.
After coating the reference electrode with Ag/AgCl ink, the paper
electrode was placed in an 80 °C oven for 20 min to obtain the Au/
rGO/cellulose paper-based electrochemical sensor. The preparation
of the Au/cellulose paper-based electrochemical sensor is the same as
the above method, but we replace GO/cellulose paper with filter
paper. In the filter paper, we need laser writing five times and grow
gold nanoparticles seven times.

Electrochemical Measurement. Cyclic voltammetry (CV)
experiments were performed under scan rates of 10, 20, 50, 100,
and 150 mV s™/, respectively, and a potential range between —0.2 and
0.7 V was used. 1 M KCI was used as a supporting electrolyte for 5
mM K;Fe(CN)y solution. Electrochemical impedance spectroscopy
was performed in a S mM K;Fe(CN),/K,Fe(CN)y4 solution, and a
frequency range of 100 kHz to 0.01 Hz was selected.

Electrochemical Sensing. Hydrogen peroxide (H,0,) was
detected by electrochemical sensing in phosphate buffer (pH 7).
The sensitivity and selectivity of the Au/rGO/cellulose paper-based
electrochemical sensor for H,O, were measured by chronoamperom-
etry (i—t), which was run for 20 min at a constant potential —0.25 V.

B RESULTS AND DISCUSSION

Laser Patterning to Simultaneously Reduce GO and
Generate Gold Seeds. Figure 2a illustrates our hypothesis
for the wet laser writing method. Initially, the GO/cellulose
composite is soaked in a solution of HAuCl, (1%) and the wet
paper is then irradiated to both remove oxygen-containing
substituents from GO to form rGO and induce HAuCl, to
form metallic gold “seeds” (the gold “seed” is small Au NPs
with the size of <100 nm; see Figure S2 for further
information). In a separate step, these seeds can then be
grown into Au nanoparticles (NPs) by soaking in an aqueous
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Figure 2. Chemical characterization. (a) Wet laser direct writing and subsequent Au nanoparticle (NP) growth are used to confer conductivity to
GO/cellulose composite paper. Chemical evidence for the formation of rGO and Au NPs includes (b) X-ray photoelectron spectroscopy (XPS),
(c) high-resolution XPS in the C 1s region, (d) high-resolution XPS in the Au 4f region, and (e) X-ray diffraction (XRD).

HAuCl, solution.*”** To provide evidence for this hypothesis,
we adapted standard paper making procedures to make a GO/
cellulose composite paper from GO (30%) and cellulose
(70%) and cut this composite into several specimens. Each
specimen was soaked in an aqueous solution with or without
HAuCl, (1%), and then the wet paper was written using a 405
nm laser (the laser-induced reactions only require irradiation
for seconds; however, the writing process required a 20 s-em 2
pattern).

Initial characterization of these specimens was performed
using XPS, as shown in Figure 2b. A comparison of the high-
resolution spectra in the C 1s region for the GO/cellulose
composite paper before laser irradiation and after irradiation
(designated rGO/cellulose) is shown in Figure 2c. These
spectra show a decrease in the C=0O and C—O peak areas
after laser irradiation, which is consistent with the removal of
oxygen-containing substituents from GO to generate rGO
(additional Raman spectra are shown in Figure S1 of the
Supporting Information.) The low-resolution spectra in Figure
2b shows peaks characteristic of Au when laser irradiation of
the GO/cellulose composite was performed after soaking in
HAuCl, solution (this specimen is designated Au(seed)/rGO/
cellulose). This observation is consistent with the formation of
a gold seed upon laser irradiation. When a composite specimen
was irradiated in the presence of HAuCl, and then
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subsequently soaked in HAuCl, solution (1%, 30 min) to
allow the seeds to grow into Au NPs, Figure 2b suggests that
the specimen has a higher content of gold. The high-resolution
XPS spectrum in the Au 4f region shown in Figure 2d shows
the presence of zero-valence metallic gold.”* These XPS results
in Figure 2¢ provide initial evidence that laser irradiation of the
GO/cellulose composite paper can convert GO into rGO and
also generate metallic gold.

These specimens were also analyzed by X-ray diffraction
(XRD). In addition to the above specimens, we soaked the
filter paper with HAuCl, and then irradiated it with laser and
grew the gold nanoparticles to obtain Au NP/cellulose
specimens as the control sample (note: the patterning of
cellulose specimens lacking GO is ineflicient, and both the
laser-writing and NP-growth steps were repeated multiple
times to generate observable patterns). Figure 2e shows that
the Au NP/rGO/cellulose specimen and Au NP/cellulose
specimen have the characteristic peaks for Au(111), Au(200),
Au(220), and Au(311).* This illustrates that the preparation
of Au NPs on the paper substrate is independent of GO. These
results are consistent with those from XPS and provide
evidence for the successful incorporation of metallic gold into
our composite paper.

Spatially Selective Au NP Growth on Pre-Seeded
Composite Paper. The above results indicate that laser
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Figure 3. Pattern emergence. (a) Schematic of Au-NP growth on the laser-patterned region that had been pre-seeded with metallic gold. (b)
Thermogravimetric analysis (TGA) indicates preferential NP-growth on the pre-seeded composite. (c) Scanning electron microscope (SEM)
images show preferential NP growth on the patterned area. (d) Elemental analysis from energy-dispersive spectroscopy shows spatially selective

removal of oxygen and Au-NP growth in the laser-patterned areas.

irradiation both converts GO to rGO and generates gold seeds,
and we next demonstrated the importance of pre-seeding on
the subsequent growth of Au-NPs. As illustrated schematically
in Figure 3a, we visually observed that when Au-NP growth
was performed with the unseeded specimen, considerably
more NPs were observed to form in the growth solution
compared to the specimen that had been pre-seeded with Au.
To quantitatively estimate the importance of pre-seeding, we
performed thermogravimetric analysis (TGA). Specifically,
Figure 3b shows small differences in residual mass (45 vs
47%) when specimens of the GO/cellulose composite were
laser irradiated without HAuCl, (designated rGO/cellulose) or
with HAuCl, that is needed to form gold seeds (designated
Au(seed)/rGO/cellulose). In contrast, when laser-irradiated
specimens were immersed in HAuCl, solution to allow Au NP
growth, the unseeded specimen (designated Au(no seed)/
rGO/cellulose) showed significantly less residual mass
compared to the pre-seeded Au(seed)/rGO/cellulose speci-
men (54 vs 68%). Thus, the TGA results in Figure 3b indicate
that pre-seeding the composite paper by laser irradiation in the
presence of HAuCl, enhances the subsequent generation of
metallic gold nanoparticles.

Further evidence for the importance of seeding is provided
by the SEM images in Figure 3c. The upper left image in
Figure 3c for the region of the specimen that was not laser
irradiated (i.e., the unpatterned region) shows cellulose fibers,
while the laser-irradiated patterned region appears smooth with
no obvious fibers. The higher-resolution image at the upper
right in Figure 3c shows that gold nanoparticles are evenly
distributed across the surface of the patterned region
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consistent with the conversion of HAuCl, into Au NP
seeds.’® The SEM images at the bottom in Figure 3¢ show
the specimen after the NP growth step. The bottom-left image
in Figure 3¢ shows a clear boundary between the patterned
region (rich in Au NPs) and the unpatterned region (few Au
NPs are observed). The high-resolution image at the bottom
right shows the formation of an extensive network of
interconnected gold NPs that preferentially grew in the
previously seeded region®”*® (the sizes of Au seeds and Au
NPs are shown in Figure S2). Interestingly, as discussed below,
it appears that the rGO in the patterned region synergistically
promotes the growth of Au NPs. Ultraviolet photoelectron
spectroscopy (UPS) results in Figure S3 of the Supporting
Information suggests that differences in redox potential may
facilitate the flow of electrons from rGO and HAuCl, to
accelerate NP growth.

To more clearly illustrate the spatially localized chemical
changes that are induced by laser patterning, we patterned a
GO/cellulose composite with a star (this patterned region is
expected to be AuNPs/rGO/cellulose). After patterning and
Au-NP growth, we analyzed the spatial distribution of the C,
O, and Au elements by energy-dispersive spectroscopy (EDS).
Figure 3d shows that the distribution of C is very uniform with
little difference between the patterned and unpatterned
regions. In contrast, the patterned region is depleted in the
O element, which is consistent with the laser-induced removal
of oxygenated substituents from GO. In addition, Figure 3d
shows a high content of Au in the patterned region consistent
with a laser-induced seeding of Au and a subsequent spatially
selective growth of Au NPs onto the pre-seeded regions. As
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Figure 4. Laser patterning. (a) Patterning of the GO/cellulose composite (right) is more efficient than patterning of filter paper (left). (b) Laser
patterning of dry paper burns the GO/cellulose composite. (c) Patterning confers functionality (i.e., conductivity) to the composite. The patterned

composite is stable in the (d) flexibility test and (e) friction test.

expected, the O-depleted and Au-enriched regions are co-
localized.

Macroscopic Characterization of Laser Patterning. To
further illustrate the spatial selectivity of laser patterning, we
programmed our system to write four English letters (SCUT)
onto paper that had been soaked in HAuCl, solution (the laser
writing speed is 20 s-cm™?, with line widths of ~200 ym and a
gap of ~40 um). As a control, we first wrote this pattern on
filter paper (without GO), as illustrated at the left in Figure 4a.
Initial studies showed that laser writing on filter paper was
inefficient presumably because the white filter paper reflects
most of the laser energy leading to low photothermal heating.*”
In the specimen at the left in Figure 4a, we repeated laser
writing five times over the same area and observed the
appearance of the red-colored “SCUT” pattern presumably due
to the thermal decomposition of HAuCl,. For nanoparticle
growth on the seeded filter paper, we placed the specimen in
1% HAuCl, solution containing hydroxylammonium chloride
(0.2%), a reducing agent, for 30 min. After NP growth, the
color of the letters on the filter paper changed from deep red to
bright red. Importantly, the unpatterned regions showed little
color change, indicating that Au NP growth is spatially
confined to the laser-induced pre-seeded region.

The right side of Figure 4a illustrates the patterning of the
GO/cellulose composite paper that had been soaked in
HAuCl, solution prior to laser irradiation. The images show
that the patterned region became bright gold in color after the
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NP growth step. Compared to patterning on filter paper, laser
patterning of the black composite paper is more efficient for
two reasons. First, patterning only required the laser to pass
over the surface once (vs five times for the white filter paper)
presumably because the composite absorbs the laser energy
more efficiently to yield a higher temperature. Second, growth
of Au NP on the pre-seeded region was rapid without requiring
an added reducing agent since the rGO appears to catalyze the
decomposition of HAuCl, into Au NPs (as suggested by the
UPS results in Figure S3).

To illustrate the importance of soaking the composite paper
before laser writing, we laser irradiated a dry GO/cellulose
specimen. Figure 4b illustrates that laser irradiation resulted in
such a high temperature that the dry cellulose substrate was
burned. While an oxygen-free inert environment may avoid
such damage, such a requirement would be less practical for
large-scale fabrication. Presumably, the residual aqueous
solution in the wet paper serves to limit such extreme
temperature excursions.

In addition to altering the chemical structure and visual
appearance, laser writing also alters the functional properties
(i.e, conductivity) of the paper. To demonstrate this
functional patterning, we prepared specimens from cellulose
and GO/cellulose papers and measured the conductivities of
the patterned and unpatterned regions using a standard four-
point probe method. Figure 4c shows that when white paper
was laser patterned, both the patterned and unpatterned
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Figure S. Electrochemical characterization of patterned paper electrodes. (a) Experimental setup for testing a paper-based electrochemical sensor.
(b) Cyclic voltammograms of various paper electrodes immersed in KOH solution, where Ai was used as a semi-quantitative estimate of the
electrochemically active area. (c) Scan rate studies indicate the AuNPs/rGO/Cellulose electrodes have the highest electrochemically active surface
area. Electrochemical measurements using K;Fe(CN)4 compare the electro-catalytic activity of patterned electrodes of (d) Au/cellulose; (e) rGO/
cellulose; and (f) Au NPs/rGO/cellulose. (g) Electrochemical impedance spectroscopy (EIS) shows that the Au NP/rGO/cellulose paper
electrode has the smallest charge transfer resistance. (h) The electrochemical stability of the paper electrode was tested by soaking in water for
varying times. (i) Reliability of fabrication was tested by preparing patterned electrodes from various batches of composite paper.

regions remained non-conductive (additional conductivity
results are shown in Figure S4). When laser patterning was
performed with the GO/ cellulose composite without Au, a 25-
fold difference in conductivity was observed between the
patterned (rGO/cellulose; 156 S m™") and unpatterned (GO/
cellulose; 6 S m™") regions. When laser patterning of GO/
cellulose was performed with Au, the conductivity of the
patterned region increased after the Au-NP growth step (Au
NP/rGO/cellulose; 1362 S m™"). Mechanistically, these laser-
induced conductivity increases are expected due to the
reduction of GO and the formation of a more continuous
gold film in the patterned region. Technologically, the
important conclusion is that laser patterning of the GO/
cellulose composite allows spatially selective modification with
a 200-fold conductivity difference (1362 vs 6 S m™") between
the patterned and unpatterned regions.

A more visual illustration of the patterned composite paper’s
conductivity is shown in Figure 4d. In this demonstration, the
patterned paper electrodes were connected in series in the
circuit to light a diode. As shown, this diode could be lit when
the paper electrode was either flat or folded. The stability of
the composite paper was tested by soaking in water to show
that the patterned electrode remains intact (Figure SS of the
Supporting Information) and by a friction test. As illustrated in
Figure 4e, the friction test was performed by placing the
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patterned side of the paper electrode onto sandpaper, adding a
200 g weight onto the surface, and then slowly dragging the
paper electrode across the sandpaper. Figure 4e shows that the
surface of the paper electrode did not change significantly
before and after the friction test, which demonstrates that
mechanical stability of the patterned composite paper (the
conductivity test of the paper electrode after multiple frictions
is shown in Figure S6). Finally, we verify that the patterned
paper electrode has good mechanical properties as measured in
tensile tests (Figure S7 of the Supporting Information).

Electrochemical Characterization of Patterned Paper
Electrodes. To compare the functional properties of various
patterned papers, we used the laser to generate a three-
electrode pattern for an electrochemical sensor, as illustrated in
Figure Sa. One of the electrodes was coated with a Ag/AgCl
conductive ink to serve as a reference electrode (RE), while the
remaining two patterned regions serve as either the working
electrode (WE) or the counter electrode (CE). To prepare a
Au NP/cellulose paper with sufficient conductivity for
comparison, we laser patterned cellulose paper five times and
then performed NP growth steps seven times (Figure S4 shows
how conductivity increases with each NP growth step for the
cellulose paper).

We first compared the electrochemical active surface area of
the paper electrodes by performing CV at various scan rates in
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Figure 6. Electrochemical detection by a paper electrode. (a) Demonstration of H,0, detection from a drop using the paper-based electrode. (b)
Experimental setup to perform more standard electrochemical characterization. (c) The sensitivity of the response to the H,0, concentration was
measured by chronoamperometry (i—t), and the inset at the top right shows the standard curve between current and H,0, concentration.
Selectivity was assessed using (d) common interfering compounds and (e) a complex background matrix (i.e, milk). (f) Comparison of the
performance of our paper-based electrode for H,0, detection (LOD is the limit of detection).*¢ ™3

aqueous potassium hydroxide (6 M; see Figure S8 for further
details). The CVs in Figure Sb show results for a scan rate of
200 mV s™' (potential range —0.2—0 V) and illustrates that the
double-layer capacitance current (Ai) is obtained by
calculating the current difference at a potential of —0.1 V.
Figure Sb shows that the patterned cellulose paper without GO
(Au NPs/cellulose) has a low Ai (0.20 mA); the patterned
composite without Au (rGO/cellulose) has an intermediate Ai
(0.45 mA); and the patterned composite with both GO and Au
(Au NPs/rGO/cellulose) has a high Ai (0.76 mA).

The active surface area is generally estimated from a linear fit
of the double-layer capacitance current as a function of scan
rate.*’ Figure Sc shows a good linear fit for our observed Ai
values for our three patterned papers: the patterned cellulose
paper without GO (Au NPs/cellulose) has the lowest slope;
the patterned composite without Au (rGO/cellulose) has an
intermediate slope; and the patterned composite with both GO
and Au (Au NPs/rGO/cellulose) has the highest slope. These
results indicate that the laser-patterned composite with both
rGO and Au NPs has an increased conducting surface area.

To compare the electrochemical activities of our paper-
based electrodes, we performed CV measurements from a drop
of solution containing S mM potassium ferricyanide (K;Fe-
(CN)g). Figure Sd shows that the patterned cellulose paper
without GO (Au NPs/cellulose) has small current peaks at
potentials near the redox potential of K;Fe(CN),. Figure Se
shows that the patterned composite without Au (rGO/
cellulose) has comparatively larger currents but no peaks
associated with the oxidation or reduction of KjFe(CN)g.
Mechanistically, it is interesting to note that this low
electrocatalytic activity is consistent with the ratio of D to G
Raman peaks (Figure S1), which indicates that the rGO
generated by laser irradiation has few defects, which are
important to electrocatalytic activity.*"** Figure 5f shows that
the patterned composite with both GO and Au (Au NPs/
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rGO/cellulose) has high peak currents for the oxidation and
reduction of K;Fe(CN),. These results indicate that the Au
NPs give electrocatalytic activity, which is important for
sensing, and the carbon is necessary for conductivity. By
comparing with the traditional screen-printing electrochemical
sensor,” Figure Sf shows that the Au NPs/rGO/cellulose
paper-based material has better electrochemical sensing
performance.

A final electrochemical characterization method was
impedance spectroscopy performed using a mixture of 5 mM
K;Fe(CN)g and S mM K, Fe(CN). This method characterizes
the conduction of electrons between the mediator and the
electrode.**** Figure 5g shows that the semicircular region for
the patterned cellulose paper without GO (Au NPs/cellulose)
indicates that it has an intermediate charge transfer resistance:
Presumably, its comparatively high electrocatalytic activity
compensates for its lower conducting surface area. The large
semicircular region for the patterned composite without Au
(rGO/cellulose) has a larger charge transfer resistance:
presumably due to its low electrocatalytic activity. The small
semicircular region for the patterned composite with both Au
and GO (Au NPs/rGO/Cellulose) indicates that it has the
smallest charge transfer resistance presumably because of good
conductivity and electrocatalytic activity.

We performed simple demonstration studies to illustrate the
stability and reliability of the composite patterned paper (with
Au NPs/rGO/cellulose). To demonstrate water stability, we
incubated a paper electrode in water for various times and
intermittently used these electrodes to perform CV measure-
ments in a solution of KyFe(CN); (5 mM).” Figure S5 shows
that the water remained clear during this incubation, which
provides visual evidence that the patterned composite is stable
in water. The oxidation peak current from the CV measure-
ments is plotted in Figure Sh and shows good reproducibility,
which provides functional evidence for the stability of the
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patterned composite. In a separate experiment, we prepared
laser-patterned electrodes from separate batches of composite
paper and tested their reproducibility using the analogous CV
measurements. The peak currents shown in Figure Si show
that the laser-patterned composite can be fabricated with
repeatable functional properties.

Au/rGO/Cellulose Paper Electrode for Electrochem-
ical H,0, Sensors. As a proof of concept, we evaluated our
paper-based electrode (patterned with Au NPs/rGO/cellulose
regions) for the electrochemical analysis using the commonly
studied analyte H,0,."°™** In our initial study, we added a
drop of H,0,-containing phosphate-buffered solution (PBS,
pH 7) to our electrode and performed CV measurements, as
shown in Figure 6a. The CV response for one electrode shows
a systematic increase in current with liquid drops containing
increasing levels of H,0,. This result indicates that the
electrodes that were laser-patterned onto the composite paper
were functional and could be used for electrochemical
detection.

To evaluate the sensitivity and selectivity of our paper-based
electrode patterned with Au NP/rGO/cellulose-conducting
regions, we immersed the electrode in various solutions, as
illustrated in Figure 6b. The sensitivity was evaluated by
adding aliquots of a H,O, solution and measuring the current
response by chronoamperometry (i—t) with the working
electrode poised to a reducing potential (at —0.25 V vs Ag/
AgCl). Figure 6¢ shows that with each H,0, aliquot added, a
rapid step-change in current was observed. The inset in Figure
6¢ shows the linear standard curve for H,0O, concentrations
below 10 mM (R* = 0.999). At higher concentrations (>10
mM), a linear relationship is also observed but with a smaller
slope (R* = 0.998). In the low-concentration region, the slope
of the standard curve indicates a sensitivity of 852.6 A mM™"
cm™2, while the limit of detection (LOD; signal to noise of 3)
was calculated to be 6.2 X 107" M.

The selectivity for H,0, detection by the paper-based
electrode was studied in two ways. First, we examined the
effects of the commonly studied interfering compounds
ascorbic acid (AA), dopamine (DA), uric acid (UA), and
glucose.54‘55 Experimentally, we started with a PBS and added
H,O, to adjust the solution to 20 M, as illustrated in Figure
6d. After the current response was observed to be stable, we
added individual aliquots of the putative interferences (each
added to 100 uM). Figure 6d shows that negligible changes in
current were observed after each addition. A final addition of
H,0, shows the expected, rapid step change in current.

Next, we examined selectivity by spiking a complex matrix
(i.e., milk) with aliquots of H,0, [Note: H,0, is commonly
added as a preservative to milk, and this practice has motivated
the development of rapid methods to detect residual H,0,.] As
illustrated in Figure 6e, with each H,0, aliquot added, a rapid
step-change in current was observed, while the inset shows a
linear standard curve with a slope that is nearly identical to that
observed in buffered solutions (i.e., in Figure 6c). These results
illustrate that the paper-based electrodes offer appropriate
sensitivities and selectivities for electrochemical analysis.

We compared the performance of our patterned paper
electrode to other reports using the sensitivity metrics
calculated from Figure 6c. Figure 6f shows that the high
sensitivity and low limit of detection (LOD) of our patterned
paper electrode compare favorably to other reported electro-
chemical sensors for H,0, detection. These results demon-
strate that conducting regions composed of rGO and Au NPs
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can be laser patterned onto the low-conductivity GO/cellulose
substrate to generate functional electronic circuits (i.e.,
patterned electrodes).

B CONCLUSIONS

In summary, we report a potentially scalable method to create
patterned electronic paper that starts with a non-conducting
GO cellulose composite, and patterns in conducting regions by
wet laser direct writing. Specifically, we report (we believe for
the first time) that wet laser writing can be used to
simultaneously reduce GO and generate metallic gold seeds.
Furthermore, we report that the subsequent growth of gold
nanoparticles (NPs) is confined to the previously laser-
patterned region. This two-step method (laser-patterning and
NP-growth) allows the non-conducting GO-cellulose “sub-
strate” to be patterned with conducting regions composed of
gold NPs and rGO. We envision that this work is important
because it provides a scalable, repeatable, and inexpensive
approach for the manufacture of paper-based electronics for a
broad range of applications (e.g., ranging from environmentally
friendly single-use sensors to self-powered wearable devices).
In particular, conventional papermaking is being adapted to
generate a robust composite substrate while optical patterning
technology is well established in both conventional micro-
fabrication (e.g., photolithography) and additive manufactur-
ing (e.g., laser patterning).
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