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ABSTRACT A conspicuous roadblock to studying marine bacteria for fundamental
research and biotechnology is a lack of modular synthetic biology tools for their genetic
manipulation. Here, we applied, and generated new parts for, a modular plasmid toolkit
to study marine bacteria in the context of symbioses and host-microbe interactions. To
demonstrate the utility of this plasmid system, we genetically manipulated the marine
bacterium Pseudoalteromonas luteoviolacea, which stimulates the metamorphosis of
the model tubeworm, Hydroides elegans. Using these tools, we quantified constitutive
and native promoter expression, developed reporter strains that enable the imaging
of host-bacteria interactions, and used CRISPR interference (CRISPRi) to knock down a
secondary metabolite and a host-associated gene. We demonstrate the broader utility of
this modular system for testing the genetic tractability of marine bacteria that are known
to be associated with diverse host-microbe symbioses. These efforts resulted in the
successful conjugation of 12 marine strains from the Alphaproteobacteria and Gam-
maproteobacteria classes. Altogether, the present study demonstrates how synthetic
biology strategies enable the investigation of marine microbes and marine host-microbe
symbioses with potential implications for environmental restoration and biotechnology.
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Effective genetic engineering approaches in model microbial species, such as
Escherichia coli, utilize standardized and modular cloning toolkits (13-19), which leverage
aligned plasmid parts based on the ordered pairings of restriction site overhangs to
enable innumerable mix-and-match plasmid assembly options. However, such modular
genetic tools have not yet been applied to most marine bacterial species. Thus, adapting
and applying standardized molecular cloning tools for studying marine bacteria can
provide a framework for addressing functional questions for basic science and biotech-
nology.

Marine bacteria are of specific interest as targets for genetic tool development due
to their ability to produce diverse bioactive metabolites (20), their prominent associa-
tions in aquatic microbiomes, and their involvement in host-microbe symbioses (21-23).
Alphaproteobacteria and Gammaproteobacteria, in particular, are the most abundant
orders in the ocean (12) and are prominent members of the microbiomes of animals such
as phytoplankton (12), tubeworms (21), and corals (24).

Of particular interest as targets for genetic manipulation are marine Pseudoalteromo-
nas species because they produce a number of bioactive secondary metabolites (8,
25-29) and are often found in association with marine invertebrates (30-36). Pseudoal-
teromonas species are known to engage in a transient symbiosis called bacteria-stimu-
lated metamorphosis, whereby surface-bound bacteria promote the larval-to-juvenile
life cycle transition in invertebrates such as tubeworms and corals (37, 38). Pseudoaltero-
monas luteoviolacea stimulates the metamorphosis of the tubeworm Hydroides elegans
(39, 40) by producing syringe-like protein complexes called Metamorphosis-Associated
Contractile structures (MACs). MACs stimulate tubeworm metamorphosis by injecting
an effector protein termed Mif1 into tubeworm larvae (40-42). Genes encoding the
MACs structure are found in the P. luteoviolacea genome as a gene cluster encoding
structural components, such as the macB baseplate and macS sheath, as well as the
protein effector gene mif1 (41). Despite the significant insights gained by using genetics
in P. luteoviolacea, new genetic tools are needed to further dissect the function of MACs
and their stimulation of tubeworm metamorphosis.

In this work, we utilize a modular plasmid toolkit, and contribute new Marine
Modification Kit (MMK) plasmid parts, to study bacteria-stimulated metamorphosis in
the Gammaproteobacterium, P. luteoviolacea. We demonstrate the broader utility of this
approach by conjugating MMK plasmids into marine Alphaproteobacteria and Gammap-
roteobacteria that have been shown previously to be involved in diverse host-microbe
interactions.

RESULTS
Toolkit-enabled quantitative promoter expression in P. luteoviolacea

To test the application of modular genetic tools in marine bacteria, we identified a
set of preexisting parts from the Yeast Toolkit and Bee Toolkit platforms (17, 18) and
used Golden Gate Assembly (14) for rapid, modular construction of plasmids (Fig. 1A
through Q). Each type of part is defined by its functional role (e.g., promoter and coding
sequence [CDS]) and directional 4 bp overhangs generated by flanking Type IIS (Bsal)
restriction sites. The modular parts include Type-1 and Type-5 stage-2 connectors with
BsmBlI recognition sites (17, 18), a Type-2 promoter with ribosome binding site (RBS), a
Type-3 protein CDS (e.g., gfp and Nanoluciferase), a Type-4 terminator, an optional Type-6
repressor and Type-7 promoter with RBS, and a Type-8 backbone. Preexisting Type-8
backbones are available with different origins of replication (ColE1 and RSF1010) and
antibiotic resistance markers (ampicillin, kanamycin, or spectinomycin resistance) (17,
18). For this work, we selected a broad-host-range (BHR) plasmid backbone contain-
ing a kanamycin resistance gene, a reporter CDS (fluorescent gfp-optim1, mRuby, or
Nanoluciferase [NLuc]), T7 terminator, and a stage-2 assembly connector. The back-
bone selected has an RSF1010 origin of replication which is known to replicate in a
broad range of Gram-positive and Gram-negative bacterial hosts at a copy number of
10-12 per chromosome and also contains a promiscuous origin of transfer and the
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plasmid-encoded mobilization genes repA, repB, repC, and mobC (43, 44). An auxotrophic
MFDAMpir strain was used as the E. coli donor, thus obviating the need to generate
antibiotic-resistant recipient strains to counter select E. coli donor cells after conjugation
(45).

To apply the modular genetic tools in a marine symbiosis model, we tested the
expression of five promoters in P. luteoviolacea. We assembled plasmids with each
promoter fused to NLuc and conjugated the plasmids into P. luteoviolacea. We utilized
two existing BHR promoters, PA3 and CP25, previously shown to work in diverse bee gut
microbes (17, 46, 47). We also created a Ptac lacO promoter part (pPMMK201), which is a
hybrid of the lac and trp promoters amplified from the pANT4 plasmid (48). When P.
luteoviolacea with the plasmids were grown in exponential, stationary, or biofilm growth
phases, we observed at least 10-fold more luminescence signal compared to the
background with all BHR promoters tested (Fig. 1D).

Previous observations have shown that the production of MACs is greatest during the
exponential phase of growth when P. luteoviolacea is cultured in rich media (40).
However, the expression of mac genes in live cultures has not been previously quantified.
To observe the expression of two native mac promoters, we constructed two plasmids
with P. luteoviolacea promoters driving the expression of the MACs structural genes;
promoters from the MACs sheath (macS promoter, pMMK203) and baseplate (macB
promoter, pMMK202) genes. The macSp luciferase reporter strain was elevated 1,000-fold
in exponential growth as compared to 100-fold in stationary and 10-fold in biofilm phase,
when compared to the detection limit (Fig. 1E). In contrast, the macB, baseplate pro-
moter exhibited similar levels of luminescence among each phase, approximately 10-fold
higher than the detection limit (Fig. 1E).

Functional CRISPRi knockdown of secondary metabolite biosynthesis in P.
luteoviolacea

While previous studies in P. luteoviolacea have used gene knockouts to interrogate gene
function, these approaches are time-consuming and low-throughput. We therefore
tested whether P. luteoviolacea is amenable to gene knockdown via CRISPR interference
(CRISPRi) (Fig. 2A and B) (49, 50). As a proof of concept, we targeted the vioA gene that
encodes a key enzyme in the biosynthesis of violacein (51), which gives P. luteoviolacea
its characteristic purple pigment (Fig. 2B). An assembled plasmid containing dCas9 and a
single-guide RNA (sgRNA) targeting vioA (pMMK603) was conjugated into P. luteoviolacea
resulting in the visible absence of the purple pigment associated with violacein produc-
tion on the plate (Fig. 2C). We also created a plasmid containing dCas9 and a sgRNA
targeting gfp to test whether the presence of the CRISPRi machinery adversely affected
wild-type (WT) P. luteoviolacea or violacein production. No difference was observed
between the growth and cell morphology of P. luteoviolacea containing gfp or vioA
sgRNA CRISPRi plasmids compared to WT (Fig. S1). WT P. luteoviolacea produced
violacein as expected, while P. luteoviolacea with CRISPRi with the gfp sgRNA produced a
statistically comparable amount of violacein (adjusted P = 0.26, n = 8, Dunn’s multiple
comparison test). A significant reduction of violacein production was observed between
cultures of P. luteoviolacea strains expressing the vioA and gfp targeting CRISPRi plasmids
(adjusted P = 0.02, n = 8, Dunn’s multiple comparison test) (Fig. 2D). The lack of violacein
in the vioA knockdown strain was comparable to that of a P. luteoviolacea strain with an
in-frame deletion of vioA (adjusted P = 0.26, n = 8, Dunn’s multiple comparison test) (Fig.
2D). These results demonstrate the successful implementation of CRISPRi for gene
knockdown in P. luteoviolacea.

Functional CRISPRi knockdown and visualization of P. luteoviolacea during a
tubeworm-microbe interaction

We next tested whether CRISPRi would be functional in the context of a marine host-
microbe interaction by targeting the macB gene, which encodes the MACs baseplate, an
essential component of the MACs complex that induces tubeworm metamorphosis (39,
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FIG 1 Schematic overview of the modular plasmid system and quantitative promoter measurements. (A) Schematic representation of the modular golden
gate assembly plasmid parts with flanking Bsal cut sites (dashed lines). Overlapping 4 bp overhangs are color coordinated. The modular broad-host-range
(BHR) backbone (pBTK402) contains inverted Bsal cut sites and an RFP dropout. (B) Golden Gate Assembly is performed in a one-tube reaction by digesting
the backbone and insert part plasmids with Bsal and ligating with T4 ligase. (C) A modular stage-1 plasmid is complete when all overlapping inserts are
successfully assembled in order. (D and E) Luciferase assays of P. luteoviolacea strains expressing plasmids with different promoters during exponential, stationary,
or biofilm growth driving a Nanoluciferase (NLuc) gene where (D) shows CP25-NLuc-T7, PA3-NLuc-T7, Ptac-NLuc-T7 and (E) compares native MACs macS and macB
promoters. Luminescence, as relative luminescence units (RLUs), is normalized to optical density at 600 nm (ODggp) and plotted on a log base 10 scale. The
dashed line indicates P. luteoviolacea cells expressing a non-luminescent plasmid as represented by the dotted line (Y = 524 RLU/ODg). Plotted is the mean of
three biological replicates. Error bars indicate standard deviations.

40) (Fig. 3A). Biofilm metamorphosis assays were performed comparing P. luteoviolacea
strains with sgRNAs targeting macB (pMMK604) or the sgRNA targeting gfp control (Fig.
3B). The strain with sgRNA targeting macB exhibited significantly reduced levels of
tubeworm metamorphosis compared to the gfp-sgRNA control (adjusted P < 0.0001,
Dunn’s multiple comparisons test, n = 12) (Fig. 3B). The reduction of metamorphosis
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FIG 2 CRISPRi knockdown of secondary metabolite production in P. luteoviolacea. (A) Schematic representation of modular CRISPRi parts adapted to include

dCas9-bla and Ptac sgRNA parts, pMMK601, and pMMK602, respectively. Part plasmids are combined, and a BsmBI Golden Gate Assembly was performed. (B)

Schematic representation of the violacein gene cluster vioABCD in P. luteoviolacea and the violacein molecular structure. The CRISPRi system was assembled with

an sgRNA targeting the vioA gene (pMMK603) and employed to knock down violacein production in P. luteoviolacea. (C) P. luteoviolacea with gfp (P MMK815)

or vioA (PMMK816) sgRNA plasmids grown on marine agar plates. (D) Quantification of violacein production (measured at 580 nm) between P. luteoviolacea

containing gfp or vioA sgRNA plasmids. Asterisks indicate significant differences (*P = 0.02, Dunn’s multiple comparisons test). Bars represent the mean of eight

total replicates and error bars indicate standard deviations.

stimulation in the macB-sgRNA knockdown strain was comparable to that of a P.
luteoviolacea strain with an in-frame deletion of macB carrying the gfp-sgRNA control
plasmid (adjusted P > 0.99, Dunn’s multiple comparison test, n = 12) (Fig. 3B). These
results demonstrate that CRISPRi paired with a modular plasmid system is a viable tool
for interrogating gene function during a marine host-microbe interaction.

To date, bacteria have not been visualized during or after the stimulation of metamor-
phosis in Hydroides. To test whether marine bacteria harboring a toolkit plasmid are
amenable to live-cell imaging when in association with juvenile tubeworms, we created
biofilms of P. luteoviolacea containing plasmids encoding CP25-gfp-T7 (gfp) or CP25-
Nanoluc-T7 (NLuc) and added competent Hydroides larvae. After incubation for 24 h,
biofilms of gfp-expressing P. luteoviolacea were clearly observed when visualized by
fluorescence microscopy (Fig. 3C). P. luteoviolacea stimulated Hydroides metamorphosis
while carrying a modular plasmid and fluorescent bacteria were observed being
ingested by the Hydroides juveniles. Bacteria can be seen collecting in the pharynx (Fig.
3C, yellow arrows), then moving in a peristaltic fashion toward the gut (Movie S1). In
contrast, bacteria containing a CP25-NLuc-T7 plasmid were difficult to visualize by light
microscopy, in the absence of the gfp fluorescent marker (Fig. 3D). Taken together, the
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FIG 3 Functional knockdown of MACs and visualization of P. luteoviolacea during the tubeworm-microbe interaction. (A) Schematic depicting P. luteoviolacea
and the production of MACs, which induce tubeworm metamorphosis. CRISPRi single-guide RNA (sgRNA) targeting the macB MACs baseplate gene prevents
MACs from assembling, rendering the bacterium unable to induce metamorphosis. Cells that produce intact MACs are able to induce tubeworm metamorphosis.
A strong fluorescent reporter strain (BHR-CP25-gfp) enabled visualization of live tubeworm-bacteria interactions. (B) Bar graph representing biofilm metamor-
phosis assays with P. luteoviolacea carrying a CRISPRi plasmid targeting macB or gfp and Hydroides tubeworms. A P. luteoviolacea AmacB strain with a sgRNA
targeting gfp and a treatment without bacteria (no bacteria) were included as controls. Biofilm concentrations were made with cells at ODggg 0.1. Bars plotted
show the average of 12 replicates, performed across three independent experiments. Each well contained 20-40 worms. Error bars indicate standard deviations.
Statistical significance between treatments was determined by Dunn’s multiple comparisons test (N = 12). (C and D) Merged fluorescence and DIC micrographs of
Hydroides elegans juveniles imaged 24 h after the competent larvae were exposed to inductive biofilms of P. luteoviolacea containing plasmids with (C) CP25-gfp
or (D) CP25-NLuc. Strains containing NLuc plasmids were used as a negative control to account for autofluorescence. Yellow arrows show accumulation of
fluorescent bacteria in the Hydroides juvenile pharynx. Scale bar is 100 um.

modular plasmid system enables live imaging and experimentation during a marine
host-microbe interaction.

Applying the modular toolkit in marine Alphaproteobacteria and Gammap-
roteobacteria

Given the success of genetic manipulation of P. luteoviolacea, we tested whether other
marine Proteobacteria might be amenable to conjugation and retention of a modular
genetic toolkit plasmid. To this end, we isolated or acquired representative bacteria that
are known to engage in symbioses with marine plants or animals in the ocean (Fig.
4A; Tables S1 and S2). To enable genetic selection using antibiotics, we determined
the minimum inhibitory concentration for each bacterial strain tested against kanamy-
cin (Table S1). When conjugation was performed using the BHR (RSF1010) plasmid
backbone, CP25 promoter, gfp reporter, and T7 terminator, we observed the expression
of gfp in 12 marine strains across two proteobacterial classes, four orders, and 10 genera
(Fig. 4B). Adaptations to the conjugation protocol and the use of constitutive promoters
driving gfp enabled visual confirmation of successful conjugation (Fig. 4B, Materials and
Methods).
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DISCUSSION

Modular genetic tools provide insights about bacteria-stimulated metamor-
phosis

We tested a modular plasmid toolkit on a genetically tractable marine bacterium, P.
luteoviolacea, that promotes the metamorphosis of the tubeworm Hydroides elegans (40,
41, 55) and produces several bioactive secondary metabolites (26, 29, 56, 57). We expand
the tools available for functional interrogation of bacteria-stimulated metamorphosis in
P. luteoviolacea by quantifying gene expression by a luminescence assay (Fig. 1D and E),
and using CRISPRI to knock down the secondary metabolite, violacein (Fig. 2C and D), as
well as a metamorphosis-associated gene, macB (Fig. 3B) during the bacteria-tubeworm
interaction. Distinct patterns of sheath (macSp) (41, 58) and baseplate (macBp) promoter
induction suggest distinct mechanisms of gene regulation within the MACs gene cluster.
Expression of the sheath gene was sensitive to bacterial mode of growth, while baseplate

July/August Volume 14 Issue 4

10.1128/mbio.01502-23 7

Downloaded from https://journals.asm.org/journal/mbio on 20 December 2023 by 72.220.70.218.


https://doi.org/10.1128/mbio.01502-23

Research Article

gene expression appeared static across the growth conditions tested. Although MACs
are known to produce two effectors that stimulate tubeworm metamorphosis and kill
eukaryotic cells (41, 58), the environmental conditions that promote MACs production
remain poorly characterized. The tools developed here could help to characterize the
conditions under which P. luteoviolacea MACs are produced or assembled and could help
in the development of MACs or other contractile injection systems for use in biotechnol-
ogy (59, 60). The modular tools in this work open new capabilities for interrogating
bacteriology, including the ability to quantify gene expression in live cultures, knock
down gene expression for rapid functional testing, and visualize bacteria during an in
vivo interaction.

Whether, and how, bacteria and the animal are harmed or benefit from the interaction
during bacteria-stimulated metamorphosis remains a prominent question in the field
(38,61, 62). Swimming Hydroides larvae initially encounter and are stimulated to undergo
metamorphosis by the bacterial biofilm. And MACs were previously visualized within
P. luteoviolacea biofilms by tagging the MACs baseplate with super-folder GFP (40).
However, less attention has been put on the interaction between Hydroides and the
bacteria after metamorphosis. Previous work by Gosselin et al. has shown that Hydroides
is able to feed on bacteria as the sole food source (63). In the present work, we visualize
live bacteria surrounding and being ingested by Hydroides juveniles (Fig. 3C) (21). The
visualization of transgenic bacteria in Hydroides will enable future lines of research that
can help dissect the role of microbiome seeding in bacteria-stimulated metamorphosis.
More broadly, our results showcase the feasibility of using a modular plasmid toolkit
to test hypotheses about bacteria-stimulated metamorphosis and provide a framework
for the interrogation of other bacteria and their products that promote host-microbe
symbioses (36, 64, 65).

Toolkit compatibility in marine bacteria

In this work, we explore genetic tractability in 12 ecologically relevant marine bacteria
that belong to two Proteobacterial classes (Fig. 4). The Gammaproteobacteria strains
conjugated successfully in this study are a selection of symbiosis-associated strains
representing five genera (Fig. 4A) (66-72). To our knowledge, this is the first report of
genetic tractability in strains from the genera Endozoicomonas, Nereida, and Cobetia (Fig.
4B). Endozoicomonas species are among the most abundant bacterial symbionts in some
corals and other marine hosts (73-75). Related strains of Cobetia have been implicated
in thermotolerance against bleaching in coral experiments with probiotic consortium
treatments (76). The conjugation of the representative Endozoicomonas and Cobetia
strains in this study is a considerable step toward exploring function in coral host-micro-
biome interactions at a critical time to encourage the restoration of coral reefs (6, 77,
78). The genetic conjugation of Pseudoalteromonas sp. PS5 in this study presents an
opportunity to explore secondary metabolite production, including the coral metamor-
phosis-inducing compound, tetrabromopyrrole (Fig. 4) (36, 79). The Alphaproteobacteria
strains tested for compatibility with MMK plasmids fall within the Roseobacter group
(Fig. 4A), an ecologically important group of bacteria known to play a role in sulfur and
carbon cycling on marine phytoplankton (80-82). Roseobacter strains have also been
explored as probiotics for the aquaculture industry (83-85). We tested the toolkit with
the tractable, phytoplankton-associated species of Phaeobacter gallaeciensis (86), and
Ruegeria pomeroyi (87), and demonstrated conjugation with invertebrate microbiome-
associated strains Phaeobacter sp. HS012 (88) and Leisingera sp. 204H (89) (Fig. 4). Using
modified Shimia sp. may be of interest for future coral microbiome studies (90-93).
Species in the Nereida genus have been isolated from kelp (94) and are associated with
gall formations (95, 96). Tractability in this strain could help guide further understanding
of microbe-seaweed interactions (97, 98), kelp aquaculture, and the development of kelp
probiotics (99). In summary, the development of methods and established tractability of
several new strains and genera have significant implications for the future of bacterial
genetic development in established and emerging symbiosis systems.
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Future modifications

The modularity of the plasmid toolkit enables the potential for creating new plasmids
that are compatible with the existing system to boost functionality. For example, the
addition of backbone plasmid parts (Type-8) with different origins of replication and
selectable markers could allow utilization in bacteria that are naturally resistant to
the antibiotics used in this and prior works (17, 18). We have created a Type-8 Tn10
transposon backbone for stable integration of toolkit parts into the genomes of marine
bacteria and used this part to integrate a fluorescent gfp marker into the genome of
Pseudoalteromonas sp. PS5 (79). Type-8 parts like this could be used to tag and track
marine bacteria for studying host-microbe interactions in the future.

The current promoter driving dCas9 is constitutive. However, adding an inducible
promoter driving dCas9 (e.g., Pgap for arabinose induction) would allow the CRISPRi
system to be controllable. The expression of gfp was not uniformly observed in the
Phaeobacter, Leisingera, and Nereida strains (Fig. 4B). However, the plasmid toolkit could
be used to identify plasmid components that would produce uniform expression (e.g.,
different origins of replication, selectable markers, promoters, etc.). In the future, more
strains may be tested for manipulation with the present toolkit plasmids for applying
genetics in a broader array of bacteria types.

Conclusion

The modular plasmid toolkit described here provides a basis for streamlining the genetic
manipulation of marine bacteria for basic and applied purposes. These tools reveal new
possibilities to study marine microbes in the context of plant and animal interactions, or
with challenging and diverse non-model bacteria, ultimately helping us harness marine
microbes for research, bioproduction, and biotechnology.

MATERIALS AND METHODS
Bacterial culture

A list of strains used in this study, isolation sources, accession numbers, and minimum
inhibitory concentration can be found in Table S1. Environmental strains of marine
bacteria were isolated and cultured on Marine Broth (MB) 2216 (BD Difco) and or natural
seawater tryptone (NSWT) media (1 L 0.2 um filtered natural seawater from Scripps Pier,
La Jolla, CA, 2.5 g tryptone, 1.5 g yeast extract, 1.5 mL glycerol). MB and NSWT media
are used interchangeably throughout the study; however, the experiments were always
conducted using only one media type. Marine bacteria were incubated between 25°C
and 30°C, and cultures were shaken at 200 rpm. All liquid cultures were inoculated with
a single colony and incubated between 16 and 18 h, unless otherwise indicated. E. coli
SM10Apir and S17-1\pir were cultured in LB (Miller, BD Difco) at 37°C, shaking at 200 rpm.
E. coli MFDApir (45) was cultured in LB supplemented with 0.3 mM Diaminopimelic acid
(DAP). For E. coli, antibiotic selections with ampicillin, kanamycin, and chloramphenicol
were performed using a concentration of 12.5 uyg mL™".

Plasmid construction and assembly

Golden Gate Assembly-compatible parts from the BTK, YTK (17, 18), and MMK used in
this work can be found in Table S3. New plasmid parts were made by PCR amplifying
insert and backbone fragments and combining them with Gibson Assembly with a 2:1
ratio (20 fmol insert: 10 fmol backbone) (100). PCR amplification was performed with
custom primers (Table S4), a high-fidelity DNA polymerase (PrimeSTAR GXL, Takara),
and purified using a DNA Clean and Concentrator kit (Zymo Research). Part plasmids
were assembled to make a stage 1 plasmid using Golden Gate Assembly, with T4 DNA
ligase (Promega) and either Bsal or BsmBI (New England Biolabs), depending on the
construct. Single-tube assembly was performed by running the following thermocycler
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program (Bsal/BsmBI): 37/42°C for 5 min, 16°C for 5 min, repeat 30x, 37/55°C for 10 min,
and 80°C for 10 min. The assemblies were directly electroporated into S17-1\pir cells,
confirmed by colony PCR (EconoTaq PLUS Green, LGC Biosearch) with internal primers,
and then electroporated into MFDApir cells for conjugation. To facilitate assembly for
and expression of CRISPRi parts in P. luteoviolacea, we moved the BsmBI cut site in
the dCas9 part plasmid (pBTK614) to a location where the existing bla gene will be
retained in the assembled plasmid (pMMK601), and thus also conferring resistance to
ampicillin. In the sgRNA plasmid (pBTK615), we replaced the existing PA1 promoter with
the Ptac promoter (including —35 and —10 sequences but excluding lacO), which drives
the sgRNA expression (pbMMK602). The CRISPRi assemblies were electroporated directly
into SM10Apir cells and shuttled to MFDApir cells for conjugation.

Biparental conjugation in marine bacteria

E. coli donor strains (MFDApir or SM10Apir) containing the mobilizable plasmids were
grown under antibiotic selection in LB with the appropriate supplements (including
0.3 mM DAP for E. coli MFDMpir). Conjugations were performed as previously described
(17) with modifications for culturing marine bacteria. Briefly, several colonies of the
recipient strains were inoculated and grown overnight in liquid culture. Recipient and
donor cultures were spun down (4,000 x g for 2 min) in a 1:1 ODggq ratio. All donor
supernatant was removed leaving only the cell pellet. All but 100 pL of the recipient
supernatant is removed, and the cell pellet is resuspended. The recipient suspension
was transferred to the donor pellet, which was resuspended with the recipient cells.
Two 50 pL spots are plated onto NSWT (supplemented with 0.3 mM DAP for MFDApir-
mediated conjugations) and incubated overnight at 25°C with the lids facing up. The
next day, spots were scraped up with a pipette tip and resuspended in 500 pL of liquid
marine media and 100 pL was plated onto marine media containing antibiotic selection,
according to the minimum inhibitory concentration (Table S1). Streptomycin-resistant
P. luteoviolacea (Table S1) were conjugated with E. coli SM10Apir, and counterselection
was performed with 100-200 pg/mL streptomycin. All other marine bacteria (Table S1)
were conjugated with E. coli MFDApir, and transconjugant selection was performed in
the absence of DAP. Several of the bacteria take longer to grow or do not reach a high
optical density (i.e., Endozoicomonas, Ruegeria, and Nereida) in culture. Slower-growing
marine bacteria were conjugated by growing larger 50 mL initial volumes of culture and
spinning down the entire culture to reach 1:1 (donor:host) ratios.

Phylogeny

Strains or close representative strains used in this study were compiled into a genome
group on PATRIC v3.6.12 (101). A whole genome phylogenetic codon tree composed
of 100 single-copy genes (102) was performed using the Phylogenetic Tree Service (103-
105). A maximum likelihood phylogeny was generated using the best protein model
found by RaxMLv8.2.11 (106), which was LG. Bootstraps were generated using the rapid
bootstrapping algorithm with the default of 100 resamples (54). The tree was visualized
with FigTree v1.4.4. and was rooted at the mid-line.

Growth curve

Pseudoalteromonas luteoviolacea AvioA and WT were grown on MB agar plates and
incubated overnight at 25°C. P. luteoviolacea strains expressing CRISPRi plasmids were
grown on MB agar plates with 200 pg mL™" of kanamycin and grown overnight at 25°C.
Single colonies were picked and inoculated into 5 mL of MB liquid media with the
respective antibiotics listed above. Two biological replicate cultures were inoculated for
each strain by picking different colonies from the agar plate and inoculating separate
5 mL cultures. Cultures were incubated at 25°C for 18 h shaking at 200 rpm. From the
initial cultures, a subculture was created by performing a 1:25 dilution into the subcul-
ture. The subculture consisted of 25 mL of MB liquid media and 1 mL of original culture
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along with the respective antibiotics into a 125-mL flask. Subcultures were incubated at
25°C shaking at 200 rpm throughout the growth curve experiment. Optical density (OD)
at a wavelength of 600 nm was measured from the subculture every half hour for the first
5 h and then measured every hour until 10 h with a final measurement at 24 h.

Luciferase culture and assay

P. luteoviolacea containing plasmids with constitutive or native promoters driving
Nanoluciferase (NLuc) were inoculated into 5 mL of MB or NSWT media with appropri-
ate antibiotics and grown at 25°C at 200 rpm for 24 h. Each biological replicate was
represented by a separate culture. Cultures used for the growth phase assay were
inoculated as a 1:100 dilution with the appropriate antibiotic, and then incubated at
25°C and shaking at 200 rpm. The luminescence of cultures was measured at exponential
(ODgpo 0.35-1.0), early stationary (ODggg 1.0-1.45), or late stationary (ODggg 2.38-2.54)
phases. For biofilm cultures, 1.5 mL of stationary-phase culture was pelleted and plated
as a single spot on NSWT or MB plates. Biofilm plates were incubated at 20-25°C for 24—
28 h. Each spot was scraped with a pipette tip and resuspended in 200 pL of NSWT or MB
media before being resuspended in NSWT or MB. Luciferase reactions were performed
with 100 pL of bacterial culture or biofilm resuspension aliquoted into opaque white
walled 96-well plates (Corning #3642), with a modified protocol as written for Promega
Nano-Glo Live Cell Assay System (Promega, catalog #N2011). Briefly, bacteria and the
final reagent mix (2.5 pL of Nano-Glo LCS dilution buffer, 0.5 uL of Nano-Glo live cell
substrate, and 17.5 uL of water) were read at a 1:1 ratio. Luminescence was measured
on a Molecular Devices Microplate FilterMax F5 reader with a custom program on the
Softmax Pro 7 software. Readings were done on the kinetic luminescence mode at 2 min
intervals for 20 min in total, using a 400-ms integration time, a 1-mm height read, and
no other optimization or shaking settings. The detection limit is defined as the average
expression of P. luteoviolacea cells expressing a non-luminescent plasmid across growth
conditions. Raw data were normalized to the ODgqq of the culture used and plotted with
an N = 3 biological replicates.

Violacein extraction

The specified P. luteoviolacea strains were struck onto NSWT media containing 200 ug
mL™" of streptomycin and kanamycin and incubated overnight at 25°C. Single colonies
were inoculated into 5 mL of liquid media containing the same antibiotic concentrations.
Cultures were incubated at 25°C, shaking at 200 rpm between 18 and 20 h. Cultures were
removed from the incubator and standardized to an ODgqq of 1.5. The cells were pelleted,
and the supernatant was removed. The cell pellet was resuspended in 200 pL of 100%
ethanol. The resuspended cells were pelleted and the supernatant containing the crude
extract was recorded on a BioTek Synergy HT plate reader (Vermont, USA) using the Gen5
program (v2.00.18) with an endpoint reading at 580 nm.

Microscopy

Microscopy was performed using a Zeiss Axio ObserverZ1 inverted microscope
equipped with an Axiocam 506 mono camera and Neofluar10x/0.3 Ph1/DICI (Hydroides
co-cultures) or Apochromat 100x/1.4 Oil DICIII (bacteria only) objectives. The Zeiss HE
eGFP filter set 38 was used to capture GFPoptim-1 expression and Zeiss HE mRFP filter
set 63 was used to capture mRuby2 expression. For Nanoluciferase controls, images were
captured using the same fluorescence exposure times as the gfp optim-1 and mRuby2
labeled strains of the same species.

Bacterial culture (2 pL) was added to freshly prepared 1% saltwater low-melt agarose
(Apex catalog #20-103, Bioresearch products) pads on glass slides and coverslips were
placed on top. Hydroides elegans were prepared in visualization chambers (Lab-Tek
Chambered Coverglasses catalog #155411PK) with bacteria and imaged.
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Hydroides elegans culture

Hydroides elegans adults were collected from Quivira Basin, San Diego, CA, USA. The
larvae were cultured and reared as previously described (40, 107). Larvae were main-
tained in beakers containing filtered artificial seawater (35 PSU) and were given new
beakers with water changes daily. The larvae were fed live Isochrysis galbana and cultures
were maintained as described previously. The larvae were used for metamorphosis
assays once they reached competency (between 5 and 7 d old) (108).

Hydroides elegans metamorphosis assays

Biofilm metamorphosis assays were performed using previously described methods (39,
40, 109). Briefly, bacteria were struck onto MB plates with 300 ug mL™' kanamycin as
appropriate and were incubated overnight at 25°C. Up to three single colonies were
inoculated into liquid broth and incubated overnight (between 15 and 18 h), shaking at
200 rpm. Cultures were pelleted at 4,000 x g for 2 min, the spent media were removed,
and the cell pellets were washed twice with filtered artificial sea water (ASW). The
concentration of the cells was diluted to ODggg of 0.1, and four 100 pL aliquots of the
cell concentrate were added to 96-well plates. The cells were given between 2 and
3 h to form biofilms, then the planktonic cells were removed and the adhered cells
were washed twice with filtered ASW. Between 20 and 40 larvae were added to each
well in 100 pL of filtered ASW. Metamorphosis was scored after 24 h. Three biological
replicates were performed on different days using separate Hydroides larvae originating
from different male and female animals.

Chambered metamorphosis assays were performed using the same preparation
principles as described above with the following modifications. Visualization chambers
(Lab-Tek, catalog # 155411) were used for setting up the metamorphosis assay, then
subsequently imaged. Inductive strains containing constitutively expressed gfp/mRuby/
NLuc plasmids were struck out onto MB media containing 300 ug mL™" kanamycin.
Several colonies were inoculated into 5 mL MB media with antibiotics. Cultures were
grown for 18 h and cells were washed and allowed to form biofilms as described above.
Cell concentrations ranging between ODggg 0.1 and 0.5 were used to elicit optimal
metamorphosis. Larvae were concentrated and the resident filtered ASW was treated
with 300 ug mL™" kanamycin. Larvae were imaged 24 h later.

Online protocols

Selected protocols used in this study can be accessed on the Shikuma Lab protocols.io
page: https://www.protocols.io/workspaces/shikuma-lab-sdsu (110-112).
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