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ARTICLE INFO ABSTRACT

Keywords: We present a multi-surface model (MSM) of plasticity to simulate the anisotropic and asym-
HCP materials metric yield responses often observed in hexagonal close-packed (HCP) materials such as
Magnesium and Mg alloys magnesium and its alloys. Motivated by the salient outcomes from high-resolution polycrystal

Multisurface model (MSM) of plasticity

. o plasticity simulations and experimental insights on magnesium alloys, we propose a three-
Glide and twinning

surface representation incorporating two separate anisotropic, symmetric yield surfaces for
the soft (basal) and hard (non-basal) glide, and an anisotropic, asymmetric yield surface for
extension twinning. This reduced representation of the high-resolution crystal plasticity offers
computational attractiveness to analyze large-scale engineering simulations while maintaining
key micromechanical details of soft versus hard glide. The model is calibrated to a particular
three-dimensional dataset for polycrystal magnesium alloy and is validated against a range of
crystal plasticity results for different loading conditions. The capability of the model is then
assessed for complex boundary-value problems at the macroscale (round notched bars) and at
the microscale (void growth and coalescence). The validation and assessment demonstrate the
ability of the proposed MSM to capture finer details of deformation such as identifying regions
where soft and hard glide may occur around the void or in other heterogeneous loading states.

1. Introduction

Many hexagonal close-packed (HCP) materials such as magnesium (Mg) and Mg alloys exhibit plastic anisotropy and tension—
compression asymmetry. The extents of the plastic anisotropy and asymmetry depend on the microstructural features including
grain size and texture, which are controlled by processing. Moreover, these behaviors evolve with progressive deformation. There
has been a continuing interest in modeling the anisotropic and asymmetric plasticity of such materials using homogenization-based
continuum plasticity theories. Since the seminal work on anisotropic plasticity theory by Hill (1948) (referred to here as HILL),
noteworthy developments in accounting for tension—compression asymmetry include the single-surface models (SSM) by Cazacu and
colleagues (Cazacu et al., 2006; Plunkett et al., 2008) (referred to here as CAZ06 and CAZ08 respectively), and have been shown
to work in several applications including zirconium (Plunkett et al., 2006, 2007), a—Ti (Nixon et al., 2010a,b; Revil-Baudard et al.,
2015), and magnesium alloy (Yoon et al., 2013; Chandola et al., 2015; Tari et al., 2014). However, there are some key unresolved
challenges associated with SSMs. The main issue is that they cannot naturally account for the evolution of plastic anisotropy and
tension—-compression asymmetry. They require calibration of the material parameters at a fixed level of applied strain and by way
of consequence, the same parameters need to be re-calibrated at multiple strain levels. Another difficulty is that it is not possible
to resolve the plastic flow into different constitutive components. Both these issues can limit their utility for situations where
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plastic anisotropy and tension—compression asymmetry evolution is significant, as is often the case with magnesium and its alloys.
Modifications to these models (see e.g., Yoon et al. (2013), Tari et al. (2014) and Muhammad et al. (2015)) typically result in a
significant increase in the set of calibration parameters, and may not guarantee convexity of the yield function (Kondori et al.,
2019). Based on the work of Lee et al. (2008), a notable effort in capturing the evolving plastic anisotropy and tension-compression
asymmetry of HCP materials is by Li et al. (2010) that adopts a modified von Mises criterion with an initial non-zero back stress
to account for asymmetry with combined isotropic-kinematic hardening. To evolve the asymmetry, an effective texture evolution
is mapped using a weighted discrete probability density function of (c)-axes orientations. The orientation of (c)-axes evolves with
twinning/detwinning using predefined rules.

In contrast to SSMs, a class of multi-surface models (MSM) have been proposed. They adopt different yield surfaces representing
different plasticity modes such that their intersection gives an effective yield surface. Notable developments include the multisurface
models by Kim and colleagues (Kim et al., 2013; Lee et al., 2017), which incorporate plastic anisotropy (HILL) and asymmetry
(CAZ06). Steglich et al. (2016) propose a two-surface model: one yield surface (Barlat et al., 1991, BAR91) representing dislocation
glide and the other incorporating a twinning affected mode (via CAZ06), which shows promise for a range of boundary value
problems including uniaxial tension and compression (Lee et al., 2018; Kondori et al., 2019) and shear, tube compression and
three-point bending of Mg alloy specimens (Lee et al., 2018). An attractive of feature these models is that they embed physically
justifiable constitutive hardening rules that capture the evolution of plastic anisotropy and tension-compression asymmetry. Yet,
some limitations persist. While the two-surface model adopts a computationally efficient single anisotropic yield surface to represent
the soft and hard glide modes, it may not be adequate to represent the disparate nature of slip (the soft (basal) and hard (non-basal))
modes that prevail. In most Mg alloys, for instance, the soft (basal) glide is significantly softer compared to the hard glide modes.
In pure Mg, basal slip (z; ~ 0.5 MPa) is typically to two orders of magnitude softer than pyramidal (c + a) slip (¢, ~ 40 MPa).
Moreover, these modes exhibit distinct self- and latent-hardening behaviors (Kelley and Hosford, 1967; Zhang and Joshi, 2012),
which play a role in materials experiencing highly heterogeneous stress states. Such situations routinely arise, among other, in
notched bars (Kondori and Benzerga, 2014; Selvarajou et al., 2017), indentation (Shin et al., 2013; Selvarajou et al., 2014), voided
microstructures (Nemcko et al., 2016; Selvarajou et al., 2019). Moreover, they may have implications on failure. For example, basal
slip may trigger macroscopic shear instability or microcracking (Koike and Ohyama, 2005; Ando et al., 2014). In contrast, the
plastically hard prismatic and pyramidal slip modes may contribute to the ductile processes of void growth (Crépin et al., 1996;
Nemcko and Wilkinson, 2016; Nemcko et al., 2016). It is not clear if and how such disparate effects can be captured without
separating the mechanistic details of the soft and hard glide modes. The reduced crystal plasticity model proposed by Becker and
Lloyd (2016) accounts for the disparate nature of soft and hard slip modes albeit at the grain scale, unlike the preceding models
that are implied to simulate the homogenized responses at the specimen scale.

In this work, we present a three-surface model for HCP materials that deform by slip and twinning with the goal of more adequate
accounting of the soft and hard glide modes. One HILL anisotropic yield surface accounts for the soft (basal) glide and another HILL
yield surface for the hard (prismatic (a), pyramidal (a) and pyramidal (c + a)) glide. The third yield surface (CAZ06), which is both
anisotropic and asymmetric accounts for twinning. A collateral effect of this modification is the increased number of constitutive
parameters compared to the two-surface model albeit with the potential to model the mechanical behaviors under complex stress
states. The model is applied to a range of boundary value problems including uniaxial, shear, and triaxial stress states. Finally, the
model is also applied to assess the micromechanics of void growth under controlled stress triaxiality. In each of these problems, the
emergent interaction between the glide and twinning is assessed against experiments and finer scale (crystal plasticity) simulations.
In the following, we present the theoretical formulation of a viscoplastic three-surface MSM for HCP metals with evolving plastic
anisotropy and asymmetry, its computational implementation, validation of the calibrated model for a particular texture, and a
comprehensive assessment of the model for a range of boundary value problems.

2. Theoretical formulation
2.1. Kinematics and kinetics

Given a material point X and its spatial coordinate x(r) at time 7, the total deformation gradient is F = dx/dX, and the total
velocity gradient L is L. = FF~! where the overdot represents the material time derivative. Further, L is additively decomposed into
a symmetric part D (rate-of- deformation) and a skew-symmetric part Q (continuum spin), L = D + Q. Then,

D=D,+D, m

where D, =L~! : &, is the elastic rate of deformation with L the fourth-order elastic moduli tensor and &, is the Jaumann rate of
Cauchy stress, which is related to the total rate of Cauchy stress 6 via 6; = 6 + 02 — Qo.

The total plastic rate of deformation D, is assumed to have three contributions: (i) soft plasticity (D;), (ii) hard plasticity (Dﬁ),
and (iii) twinning plasticity (D;w so that D, =D’ + D;’ +D.

Assuming the normality rule, these sub-terms are defined by their corresponding yield functions as:

.. OFS ., OF"  OFM
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where the yield functions
FS =55 — gs . 7_—-h — 5_h _ gh . plw — stw gtw (3)
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are described in terms of the current equivalent stress for each mode, 5’ (i = s, h,tw), and the corresponding current strength g'.

The effective plastic strain rate, £ for the ith mode, is prescribed as a power-law function:

_j11/m
L. . Gl
i i | O
C) [g,-] @
where ég is the characteristic strain rate and m' is the strain-rate sensitivity parameter.

In Eq. (3), F* and F" are symmetric (HILL) yield functions while F'* incorporates tension-compression asymmetry (via CAZ06).
Next, the basic features of these yield surfaces are described.

2.2. Soft and hard plasticity modes

Following Benzerga and Besson (2001), the HILL representations for the soft (s) and hard (k) plasticity modes are written as:

= s 3 0. 4] —h h 3 . on. o2

a(a,]h):[zo.]h.tr] and O'(O',]h)=[§0'.1h .0'] 5)
where h*® and h” are the fourth-order Hill-anisotropy tensors for the soft and hard plasticity modes, respectively. In general, the
matrix of h may comprise both, diagonal and off-diagonal terms. For a plastically orthotropic material with principal material
directions L-T-S, h is a diagonal matrix whose components (in Voigt notation) are h' = {A! h’T hg, hiTs, hf_s, hiLT} where i = s or A.
Note that h is symmetric positive definite, so that A, = hj;; = b = hyy;; and 6 th:o > 0,V o #0.

Let ¢? be the initial yield stress of the soft mode. Upon yielding, the self- and latent-hardening arising from interactions between

the different plasticity modes causes it to harden. These effects are accounted for in obtaining the current strength (g*) as:

g (8% & )=o)+ & +HE" + HS E ;
-
self
. latent
hardening hardening

where H*, H; and H;  are material hardening parameters for the soft plasticity mode.
Likewise, for the hard plasticity mode with the initial yield stress ag, we propose:

g" (&5, " &) =ol + 0" (1 —exp (-b"e")) + HIE* + M) & @)
~~
Voce-type self latent
hardening hardening

with Q”, b, H" and H! being its material hardening parameters.
2.3. Twinning plasticity mode

In the CAZ06 model, the effective stress for twinning is given by:
) a a al
5" (0, C k) = B [(Is,] = ks; )"+ (Isa] = ksy)* + (Is3] — ks3)“] ®)

where s; are the principal values of s = C : J : ¢ with J the deviatoric projection tensor, k controls the yield asymmetry and a
controls the yield surface curvature. Convexity is guaranteed so long as k € [—1,1] and integer @ > 1. The linear transformation
tensor C has nine independent parameters. For orthotropic plastic anisotropy (L-T-S), C is expressed as (using Voigt notation):
[cre ¢ v 0 0 0]
Gu cw ¢ 0o 0 0
¢w Cwocv 0o 0 0
0o 0 0 Cc® 0 0
o 0 0 0 C¥ o
0 0 0 0 0 CI’_L.‘I.’_

In Eq. (8), B is not an independent parameter but an implicit expression of parameters in C, k and a, and is obtained by equating
6" to a reference material direction tensile flow stress (e.g., L), cf. Plunkett et al. (2008).
The twinning yield surface is assumed to harden as

@tw = (9)

tw (zs zh ztw) _ _tw tw tw ztw\ _ 1w zs tw zh
g (e,e,e )—0'0 +Q (exp(b £ ) 1)+H55+Hh5 (10)
.
Exponential (sigmoidal) self latent
hardening hardening

where ¢ is the initial yield stress. The second term in Eq. (10) accounts for twinning induced (sigmoidal) hardening while the
latent hardening terms account for interaction with the glide modes.

The constitutive model described above is implemented in ABAQUS/STANDARD® via User MATerial (UMAT) subroutine. The
computational implementation is presented in Appendix A.
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Table 1
MSM parameters calibrated against CP data.
Plasticity modes Calibrated parameters for textured polycrystal
Hardening [ H* H; H;,
Soft glide (MPa) 215 7017 1500 1000
Anisotropy " A g iy s g
0.98 1.7 0.41° 1.03 23.8 58.6
Hardening o o" b H" H!
Hard glide (MPa) 83 164 36 o o
h h h h h h
AniSOtrOpy hL hT hS hLT hLS hTS
1.06 1.10 0.69" 1.27 1.60 1.64
Hardening o’ o b M H
(MPa) 89 1.83 65 5000 11500
Twinni w w w w w w
winning . < o c c c ci
Anisotropy and 12 0.76 -10.36 13.29 -2.18 -2.91
Asymmetry Atw Atw Atw
A s Crs k a
13.25 0.285 —-0.292 0.872 4%

aIndicates fixed (assumed) parameters.
Indicates dependent Hill coefficients.

3. Crystal plasticity dataset for MSM calibration

The model presented in Section 2 is calibrated against a particular polycrystal plasticity dataset from Indurkar et al. (2020). Fig. 1
consolidates salient information from that reference. Fig. 1(a) shows the computational domain with the principal material directions
(L-T-S) and Fig. 1(b) shows the textural details as (0001) and (1010) pole figures adopted to prescribe grain orientations to the 300
grains in the polycrystal; Figs. 1(c) and 1(d) show the uniaxial responses in tension and compression respectively along the principal
material (L, T, S) and off-axis (i.e., 45°) directions (LT, TS, and LS) signifying the response anisotropy and tension-compression asym-
metry. The MSM material parameter set calibrated to these dataset are: Y € {J,, V), Y"ard y,yj"‘} where Y, = {0, H*, H;, H} . h],

tw tw’
K s K s _ h h ph h h h ph ph h h hard _ tw tw ptw tw tw yield tw tw
hT’hLT’hLS’hTS}{ Y = {oy,0"0b ,HS,H,u,,hL,hT,hLT,flLs,hTs}, )7,“,. = {0y, Q b ,.H: JH, }, and y’“." = {C,_T,.C,_S,
C}’”,C’T’g’,Cé’”,CI’_'.‘“r,CI’_‘g’,C#‘S’,k}. These parameters are calibrated by minimizing the objective functions that include the yield

stresses and lateral strain (Lankford) ratios along the material principal and off-axis directions. Detailed expressions for the
objective functions and constraint conditions together with the calibration against crystal plasticity (CP) simulations are collated
in Supplementary Material and a broad outline of the parameter calibration algorithm is presented in Appendix B. In the calibration
process, we choose L-tension as the reference direction. This choice is not unique but a matter of convenience. The resulting
expressions are consolidated in Supplementary Material, see Table S1 and Table S2. Table 1 consolidates the calibrated material
parameters corresponding to the crystal plasticity results in Fig. 1. We note here that the keywords soft and hard respectively reflect
the basal and non-basal modes of plasticity in HCP materials. However, we did not constrain their yield stresses to be in any particular
order. With L-tension as the reference direction the calibration protocol gives 0'(')' < o;, which may appear to be at odds with the
hard versus soft notion. However, it merely reflects that the hard glide governs the response while soft glide plays a secondary role,
consistent with the CP results in Fig. 1(e).

4. Validation of the MSM

A detailed discussion of the calibrated MSM results is presented in the Section S2 of the Supplementary Material. As shown there,
the trends captured by the MSM corroborate well with the CP results and the computational efficiency is high given that the MSM
calibrations are performed using a single finite element.

In this section, we present several examples to demonstrate the validity of the calibrated MSM under uniaxial, biaxial and simple
shear loading along general material directions. The results are compared against full-field crystal plasticity simulations for which the
computational setup is the same as in Fig. 1(a). As in the calibration exercise, the crystal plasticity simulations are computationally
expensive with nearly 90,000 3D (C3D4) finite elements. In contrast, the MSM predictions are based on a single 3D (C3D8) finite
element calculation. We assume isotropic elasticity, with Young’s modulus, E = 43 GPa and Poisson’s ratio, v = 0.29. Quasi-static
loading condition is considered with a nominal strain-rate £"*" = 1 x 10~ s~1. The strain rate sensitivity parameters for the three
modes is taken to be m* = m" = m"¥ = 0.02. The linear interpolation parameter, f = 0.90 (Appendix A) is used in all the cases.

Off-axis uniaxial loading:

First, we consider the off-axis responses of the polycrystal magnesium alloy loaded along directions that are at different angles
to the principal material directions, cf. Indurkar et al. (2020). Two sets of loading orientations are considered (shown as insets in
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Fig. 1. (a) Polycrystal domain with material directions (L,T,S) and the global directions (x,y,z) and (b) (0001) and (1010) pole figures. Uniaxial stress—strain
responses from crystal plasticity (CP) simulations in (c) tension and (d) compression for the texture in panel (b). Panels (e-g) illustrate the cumulative plastic
shear strain evolution trends corresponding to soft glide (basal), hard glide (prismatic + pyramidal (a) + pyramidal (c + a), and extension twinning (ET)) for
loading along L (panel (e)), LS (panel (f)), and S (panel (g)).

Source: Adapted from Indurkar et al. (2020).

Fig. 2(a) and Fig. 2(b)): #;—the angle made by the loading (y-) axis with the L direction in the LS plane, and 6, —the angle made by
the loading axis with the T direction in the TS plane. An appropriate rotation matrix is provided as input in ABAQUS® using the
material orientation option, *ORIENT to align the particular direction in the material coordinate system with the global coordinate
system.

As shown in Fig. 2, the MSM predicts well the uniaxial tensile and compressive flow stresses at different strain levels over the
ranges of 6 (Fig. 2(a)) and 6, (Fig. 2(b)). In comparison, while the MSM predictions of the lateral deformation anisotropy ratios
for the range of 6; values is reasonable (Fig. 2(c)), there is some discrepancy for certain 6, values (Fig. 2(d)). This discrepancy
arises from the auxetic effect, which is captured by the crystal plasticity model (Indurkar et al., 2020) but not by the current MSM.
In crystal plasticity, multiple deformation mechanisms with different hardening rates may produce similar macroscopic stresses
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Fig. 2. Comparison of MSM results (solid or dashed lines) with crystal plasticity simulations (symbols) of Indurkar et al. (2020). Plastic anisotropy and tension—
compression asymmetry at different strain levels along the LS (panel (a)) and TS planes (panel (b)). Panels (c) and (d) respectively show Lankford ratios in these
planes.

but very different macroscopic lateral deformations, e.g. TS-tension versus TS-compression. In comparison, the HILL model, which
is operative in this regime of deformation is agnostic to such finer details. More sophisticated anisotropic yield models (Barlat
et al.,, 1991; Bron and Besson, 2004) or improved hardening models could remedy such special situations albeit with more fitting
parameters.

Fig. 3 illustrates the full tensile (Fig. 3(a), 3(b)) and compressive (Fig. 3(c), 3(d)) stress—strain responses, and the corresponding
mechanism strains (€%, a« = soft glide, hard glide, twinning) for two 6; and 6_ values. Comparing the tensile responses for 6; = 15°
and 30°, the role of the soft glide in the latter is obvious, which translates to an overall softer stress—strain behavior compared
to the former. In the compressive responses, the orientation effect on the interaction between twinning and glide mechanisms is
emphasized. These observations are consistent with the full-field crystal plasticity simulations (Indurkar et al., 2020).

Equibiaxial compression

Next, we examine the validity of MSM under equibiaxial compression in the LT and LS planes. In the crystal plasticity setting,
equibiaxial loading is applied to the polycrystal (Fig. 1(a)) by prescribing a constant velocity in the global x (i.e., material L) and
y (i.e., material T or S) directions using linear springs and adding a set of multi-point constraint equations such that the resulting
macroscopic stress is £= X, (e, ®e,)+ %, (e,®e, ) with £ _ =X .

As seen from Figs. 4(a) and 4(b), the MSM predictions corroborate reasonably with the crystal plasticity results. The LT loading is
initially governed by twinning deformation that saturates and is supplanted by the hard mode, which includes prismatic, pyramidal
(c), and pyramidal {c + a) slip, cf. Fig. 4(b). This reflects in the sigmoidal stress-strain response, cf. Fig. 4(a). Under LS loading, the
hard mode carries the plastic deformation, which compares very well with the crystal plasticity result. The corresponding evolution
of the three yield surfaces under both loading orientations (Fig. 4(c)) reflect these observations.
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Fig. 3. MSM prediction (solid lines) against crystal plasticity (symbols) for particular values of 6; and 6, . Panels (a,b) compare equivalent stress—strain responses
in tension (top row) and the mechanism strains (¢*) predicted by MSM. Panels (c,d) compare equivalent stress—strain responses in compression (top row) and
the mechanism strains (%) predicted by MSM.

Simple shear

Finally, we demonstrate the efficacy of the MSM under shear loading. To that end, crystal plasticity simulations are conducted
on the polycrystal with simple shear deformation applied in the LT and TS planes. For both simulations, nodes at the bottom LS
plane are pinned. Simple shear simulation along LT is conducted by applying a constant velocity along the top LS plane in the L
direction. Similarly, simple shear along TS is conducted by applying a shearing velocity along the top LS plane in the S direction.

Figs. 5(a) and 5(b) respectively show the Zog— Eeq and the accumulated mechanism shear strains. The comparison between the
crystal plasticity and MSM simulations is encouraging for both the loading conditions. The stronger response of LT loading is due
to the dominant hard mode. On the other hand, the TS response is weaker but with persistent hardening that emerges from the
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Fig. 4. (a,b) Comparison of MSM (solid lines) against crystal plasticity simulations (symbols) for equibiaxial compressive loading in the LT (top row) and LS
(bottom row) planes. Panel (c) shows the evolution of the MSM yield surfaces in the LT and LS planes.
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Fig. 5. Validation of MSM (solid lines) against crystal plasticity (symbols) for simple shear loading in the LT and LS planes.
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Fig. 6. Finite element geometries for (a) smooth, and (b) RN10, and (c) RN2 notched specimens. Panels (d) and (e) show the (0001) and (1010) pole figures of
the texture employed for the CP simulations (Selvarajou et al., 2017) and the one for which the MSM material data set was calibrated.

dominant soft mode supported by the hard mode (crystal plasticity simulations indicate dominant pyramidal (¢ + a) slip) at later
stages of deformation. Both the scenarios reveal lower extension twinning activity in the MSM compared to the crystal plasticity,
which is compensated somewhat by the soft plasticity mode.

5. Application to boundary value problems

In the preceding section, the MSM was applied to a series of material point calculations, which are essentially single element
calculations using the developed MSM-UMAT. As shown there, the MSM calculations corroborate very well with the high-resolution
crystal plasticity simulations while also being computationally inexpensive. In this section, we demonstrate the efficacy of the MSM
for larger scale calculations by choosing two sets of problems set at two different length-scales: (i) at the macroscopic scale: round
bar specimens with different notch acuity subjected to nominally uniaxial tensile loading, and (ii) at the micromechanical scale: unit
cell simulations of void growth and coalescence under prescribed triaxial stress states, typically occurring in notched bar geometries.

Round bar specimens

Fig. 6 shows three round-bar (smooth, RN10, and RN2) geometries subjected to nominally uniaxial tension. These geometries
are identical to the experiments on rolled AZ31 Mg alloys (Kondori and Benzerga, 2014) loaded along the rolling (L) direction.
The *ORIENT feature in ABAQUS/STANDARD® is used so that the material L direction is aligned with the global y-axis (loading
direction) and the material in-plane transverse (T) and normal-to-rolling plane (S) directions are respectively aligned with the
global x and z axes. At the top surface, a constant displacement rate (Uy) is applied while the x-displacement is unconstrained. At
the bottom surface, the y-displacement is constrained at all nodes while the x-displacement at the central node is fixed to avoid
rigid rotation. The nominal strain rate U,/ Ly = 1x 1073 s~! where L, is the original length of the specimen. In the figure, D, = 7 mm
and D, = 3.9 mm. The notch radii are also shown. The smooth, RN10 and RN2 are respectively discretized into ~ 20,000, 23,000,
and 29,000 eight-node hexahedral finite elements with reduced integration (C3D8R in ABAQUS/STANDARD®) (see Fig. 6). The
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macroscopic responses are expressed in terms of the normalized force (Z_yy = (F /AO)) and the normalized diametric reduction
(6, = 4D, /Dy) where F is the total force along the loading direction, Ay = (x/4)D?, AD, is the diametrical reduction along direction
a (=T or S). The magnitude of the total areal strain is e, = |e1|+|es| where £, =In (D,/Dy) is the logarithmic strain along a lateral
direction a. The strain anisotropy ratio is defined as R, = ey /eg.

As seen from Fig. 7(a), increasing notch acuity (higher stress triaxiality) results in a higher peak normalized force and
a delayed softening, which is consistent with the experiments (Kondori and Benzerga, 2014) and full-field crystal plasticity
simulations (Selvarajou et al., 2017). Fig. 7(b) shows a reasonable comparison for the peak normalized force (Z_peak) and lateral strain
anisotropy ratio (R, ) (measured at failure by Kondori and Benzerga (2014)) with the experiments and crystal plasticity simulations.

Defining the volume-averaged relative activity of the i"(= s, h, 1) mode:

gio [ édv

J Zem eV
Fig. 8(a)-8(c) shows its evolution for the three specimens. Notably, the extension twinning activity is higher in the notched
specimens, which results from the lateral tensile stresses, which is consistent with crystal plasticity simulations (Selvarajou et al.,
2017). The drop in £ (Fig. 8(c)) mimics the physical process of twinning induced reorientation by way of evolution of the twinning
yield surface, thereby activating other plasticity modes. Further, the soft plasticity (£*) also increases with increasing notch acuity.
The activation of these additional mechanisms in the notched specimens leads to extra hardening, which is responsible for the
higher Z_pcak. Fig. 9(a)-9(b) and Fig. 9(c)-9(d) respectively reveal the lateral stress distributions predicted by the MSM. While a
direct comparison of these distributions with full-field polycrystal notched bars simulations is difficult, we note that the qualitative

an
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Fig. 9. Lateral normal stresses (at ¢, =0.1) along T and S for (a,b) RN10 and (c,d) RN2 specimens. The contours are plotted in the LT (left sub-figures) and
LS (right sub-figures) planes.

and quantitative trends compare reasonably well with the single crystal results, which is a limiting scenario of a textured material
(see Fig. 8 in Selvarajou et al. (2016)).

Micromechanical scale: Unit cell simulation of void growth

Finally, we assess the MSM for a computationally intensive micromechanical problem of void growth under 3D tensile stress
states. The motivation stems from recent unit cell studies conducted using CP on Mg single crystals (Selvarajou et al., 2019). We
model a unit cell with an embedded spherical void at the center, Fig. 10, subjected to a constant stress triaxiality ratio (7 = X,/ %,,)
where %, and %,, are the macroscopic mean and von Mises equivalent stresses respectively. A 1/8th cell with symmetry boundary
conditions is modeled to reduce computational expense; the details of loading implementation can be found in Selvarajou et al.
(2019). The macroscopic stresses X, = X, with X, being the primary stress; The initial lengths along the x-, y- and z-directions
are L,y = Ly, = L,y = L. The primary loading is along the y-axis, which is aligned with the material L-direction while lateral T-
and S- directions are aligned along x and z respectively. This situation is similar to the limiting case of a porous single crystal unit
cell where the primary loading direction aligned along the prismatic (a)-axis, cf. Selvarajou et al. (2019), save for texture effect. The
macroscopic logarithmic strains are E; = In(L;/L) (i = x, y, z; no sum). The initial porosity f, = (477:r0 /3L ) = 0.01. The current unit
cell lengths are L, L, and L, and the void radii are r, r, and r,, and the current void aspect ratio and lateral ligament parameter
are, respectively, W; =r,/r; and y; = 2r;/L; (i = x, 2).

Fig. 11 shows the macroscopic responses of the porous unit cell for 1/3 < 7 < 3. As expected, the peak stress and onset of
coalescence (marked by x indicating the transition of from triaxial to uniaxial straining cf. Koplik and Needleman (1988)) decrease
with increasing 7, Fig. 11(a). The uniaxial (7 = 1/3) response of the porous cell is nearly identical to the pristine (no void) unit cell
case, which is a result of the lack of void growth, cf. Fig. 11(b). With increasing 7 the porosity grows exponentially, Fig. 11(b). In
Fig. 11(c), the anisotropy of the lateral cell strains (E,, and E,.) is seen. At a given E,, E.>E, for all levels of 7. Moreover, at
high 7 levels (> 2) the cell exhibits positive lateral straining along the z direction. These features are qualitatively consistent with
the single crystal porous unit cell calculations of Selvarajou et al. (2019).

11
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Fig. 10. Micromechanics of void growth. A (1/8)" portion of the voided unit cell is shown with the finite element discretization. The top, left and back faces
of the unit cell are shown with elastic springs that are used to subject the unit cell to a state of constant stress triaxiality.
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Fig. 11. Spherically voided unit cell (f, =0.01) subjected to constant stress triaxiality levels (7 =1/3,1,2 and 3). The maximum principal stress is along L: (a)

%, — E,, response; x denotes onset of coalescence, (b) Normalized porosity evolution, and (c) Evolution of lateral cell strains, E,, and E_; the dotted lines

indicate the response for an isotropic J, material.

Fig. 12 shows the trends for the critical strain at the onset of coalescence, (E) (Fig. 12(a)), and the corresponding critical
porosity at the onset (Fig. 12(b)), critical void aspect ratio anisotropy (Fig. 12(c)) and critical ligament ratio anisotropy (Fig. 12(d)).
Similar results for pure Mg porous single crystal from Selvarajou et al. (2019) are included for reference. A direct comparison
between the crystal plasticity and MSM is not the aim of these plots as the former is significantly more plastically anisotropic, while
the net plastic anisotropy is much tempered in the polycrystal to which the MSM is calibrated. Another aspect is that in the single
crystal unit cell calculations, the formation of twin sector boundaries around the void is observed, which affect the evolution of
void geometry. Such an effect is not directly incorporated in an MSM simulation. We note that the differences do not reflect the
limitation of the MSM but rather points to the potential deviations in the porous material response brought about by polycrystal
texturing.

Fig. 13(a)-13(c) collate the volume averaged relative activity evolution (£, Eq. (11)) predicted by the MSM as a function of 7.
For comparison, trends from single crystal plasticity simulations of voided pure Mg unit cell (Selvarajou et al., 2019) are shown
in Figs. 13(d)-13(f). Finer details aside, the trends for each set of mechanism in the MSM results corroborate well with those in

12
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ratio anisotropy ((W,/W,).), and (d) Ligament parameter anisotropy ((x./x,).)- The trends are compared against single crystal predictions of Selvarajou et al.
(2019) shown by square symbols.

the crystal plasticity results. For instance, note the strong dependence of the soft slip (correspondingly, the basal slip in crystal
plasticity) on 7. Similarly, MSM predicts a stronger contribution from twinning with increasing triaxiality, which is consistent with
the results of Selvarajou et al. (2019).

Fig. 14 shows a collage of the mechanism strain distributions at the onset of coalescence for different triaxiality levels, save for
T = 1/3 where no coalescence is predicted (distribution plotted for E., = 0.6). The simulations predict distinct domains around
the void where each mechanism prevails. The soft glide is dominant in the LS-plane but also emerges in the plane of coalescence
(i.e., TS plane) at high triaxiality levels, Fig. 14(a)-14(c). In contrast, twinning (Fig. 14(d)-14(f)) is concentrated in the polar region
of the void at low to moderate triaxiality levels (1/3 <7 < 1) but occupies a substantial portion of the LT plane at 7 = 3. Finally,
the hard glide (Fig. 14(g)-14(i)) persists in all three planes but is concentrated in the immediate neighborhood of the void. It also
governs the preferential strain localization in the T direction. These trends corroborate with the high resolution crystal plasticity
simulations (Selvarajou et al., 2019).

6. Summary

We present a multi-surface model (MSM) of plasticity incorporating anisotropy and tension—compression asymmetry for HCP
metals. Motivated by the importance of disparate nature of key deformation mechanisms in magnesium and its alloys — basal slip,
non-basal slip, and extension twinning and their evolution, a three-surface representation is proposed. The model is computationally
attractive compared to high-resolution single crystal plasticity while retaining for the main features of HCP deformation mechanisms
in a physically relevant manner. Using a two-stage calibration strategy, the MSM constitutive parameters are calibrated to a synthetic
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Fig. 13. (a-c) Triaxiality-dependent volume averaged relative activities ({') of different mechanisms as predicted by (a-c) MSM, and (d-f) pure Mg single crystal
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Table 2

A comparison of 7 and 7 values for smooth and round notched specimens.
Geometry SY8 °PU Y8 fePU
Smooth 4.91 3.14 4.92 3.14
RN10 2.98 1.5 2.9 1.49
RN2 3.16 1.05 5.56 1.81

3D response dataset obtained from CP simulations representing a rolled polycrystalline Mg alloy. The MSM responses are validated
against different crystal plasticity simulations for a range of loading orientations under uniaxial, equibiaxial, and simple shear
states. Further, the MSM is assessed for a range of boundary value problems including smooth and round notched bars, as well as
the micromechanics of void growth under controlled stress triaxiality.

We briefly comment on the computational efficacy of the MSM simulations compared to the CP simulations. For this purpose,
the smooth and notched bar problems serve as a good basis as the mesh discretization and boundary conditions are identical for the
CP and the MSM simulations. Both sets of simulations are conducted on the same computational cluster and using the same version

of ABAQUS/STANDARD®. Let 5¥5 = 575 /15Y5 and 7PV = 1SPU /1FD where 1575 and 1315 are respectively the system times taken
per increment by a CP and its MSM counterpart, and th and IMPSII{/I the total CPU time taken per increment. The corresponding

system time and total CPU time ratios taken per iteration are defined using 7°¥S and 7°PU. The information for the CP simulations is
extracted from Selvarajou et al. (2017).

Table 2 highlights the computational efficiency of the MSM calculations. While these ratios may seem modest in some cases, the
memory requirement of the MSM is much less compared to the CP, which is a significant advantage. The MSM computational cost
comes from the need to calculate the effective stress expressions and flow vectors of the plasticity modes, which is not required in
rate-dependent CP where the resolved shear stress calculation and explicit update of the Schmidt tensor is relatively less expensive.
Moreover, the high anisotropy, particularly at small strains makes the soft glide and the twinning yield surfaces very skewed, which
adds to the MSM computational time.

The efficacy of the MSM can be improved by optimizing the calculation of the effective stresses, flow vectors, and the mechanism
strains especially when the different modes have very different contributions. Further improvement could be realized by replacing
the current explicit update algorithm with a fully implicit stress update algorithm together with the consistent tangent modulus
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calculation (Simo et al., 1988; Simo and Hughes, 2006). Although the fully implicit algorithm can be computationally demanding
(as it requires calculating 025 /dc2), a faster convergence may be achieved. The MSM approach and its computational implementation
can be adapted to accommodate other yield criteria and hardening rules than those implemented in this work.
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Appendix A. Computational implementation

In Eq. (2), each yield surface satisfies the normality rule. For details on obtaining the flow vectors (Eq. (2)) p' = dF/dc for ith
mode (i = s, h, tw), the reader is referred to Indurkar (2020). The Jaumann stress rate is given by:

6;=L:D- ) &P (i € {s, h,tw}) (A1)
i
where P/ =L : p'. The effective stress rate, 5/ (Eq. (4)) is 6/ = p’ : &,. Defining 13; =p' : P/, Eq. (A.1) gives:
3i:pi:L:D—Z§j}3jf (A.2)
From a numerical standpoint, over the time interval {7,7 + At} the incremental effective viscoplastic strain, 4¢; for the ith mode

as:

AE' = At [(1 - p) & + pé!

tea] (A.3)

where 0 < § < 1 is an interpolation parameter; in this work, we set g = 0.9 (Peirce et al., 1984). Let & = (4&'/At), then at ¢ + At the

estimate for E’ +a, 15 obtained using Taylor series. For example, with i = s:

0 0&
= _h S fw S =
&= At + ——E" At + % 55 At (A.4)

0
8 + —8
0&; € o Oy

which yields (upon substltutlon in Eq. (A.3) and dividing both sides by 41),

. 0E, . 0 0 0E, .
B8 pr iy Dophy T gy P (A.5)
! 0, 05,, 6e,w 06

Note that the above Taylor series expansion is written following Eq. (4) such that £* is a function of &, £, &% and &°. Similar

expressions can be obtained for the other two modes and thus, for a mode i € {s, h,fw} (see Indurkar, 2020 for details), we write:

g1+& =¢ ),+— [Q’ : Zéfﬁj] (no sum on i) (A.6)
l J#i
where
q=p 0, 9¢; . i (p L %%; . =pat(H! i (A7)
i =P a?j [_0?/-’ Q_(p : ) 0?}- j:,»’ E=p ( j)j:i (no sum on i) .
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The resulting system of equations can be represented in the matrix form:

g [Aa+ey e g, [ mE+eQ D

eh| = eat AP (1+¢&h) ehAh HPEl 4 ¢ (QF - D) (A.8)
glw éth;w ger}tlw FI’%} (1 + ftw) Fltfx)giw + ﬁtw (Qtw . D)

(€] [A) [R]

Once € is calculated (i.e. the corrected rates of '), the stress update follows from Eq. (A.1). The flow vectors (p’) are updated to
calculate the plastic rates of deformation for each mode (D;,) using Eq. (2).
Substituting £°, " and £ from Eq. (A.8) in Eq. (A.2), we obtain:
6;, = L:D- PAR - PA"R — PwWA™R
—— —— —— S —— (A.9)

Elastic Soft glide Hard glide Twinning
update plastic corrector plastic corrector plastic corrector

where, A% = [A; AL Al Ah = [A? AZ Af’w], Amw = [A’Sw A’h'” A’“’] are respectively the first, second, and the third row

tw tw
of [A] in Eq. (A.8). Segregating the terms which involve D from the plastic correctors, we obtain:

6, =LE D (PA +PhAR 4 PwA™) [Fogs  mhéh  mMew] (A.10)

tw™t
where the tangent modulus L®" is:
tan _ 7 _ J AL (P J
L™ =L Z% ga; (P eQ’) (A11)
i.j = s,htw

Eq. (A.11) reduces to the one in Peirce et al. (1984) for the case of single yield surface.
The elastic (¢,) and the total plastic (e,) strains are calculated as:

t t
ee:/o D, d epz/o (D;+D;’+D;w) dr (A.12)

The computational implementation is verified for several simplified cases (including the degenerate cases of single surface
models), which can be accessed. here!

Appendix B. MSM calibration protocol

The calibration protocol for the MSM requires setting up objective functions (G;) using the expressions for the mechanism-based
flow stress and lateral deformation anisotropy (Lankford ratios) along the material principal (L,T,S) and off-principal (LT, LS, TS)
axes. In the present model, the soft and hard modes of plasticity are symmetric in tension and compression whereas the twinning
mode is asymmetric. In all, there are 24 objective functions: 6 direction x 2 loading states (tension, compression) x 2 variables (flow

) 2
stress and Lankford ratio). A particular objective function, G;, is normalized by the maximum value, i.e., either (max (as‘m )) or

dir,state
. 2 _
max (R:j’,r;‘ state ) , and is denoted hereafter by G,. Details of these objective functions are given in Supplementary Material. Based
on these objective functions, a constrained optimization problem is written as follows:
N
Minimize E = Z w;G;, such that J; <0and —1 <k <1 (B.1)

i=1
where w; are the weights (set equal to unity in the present work). Eq. (B.1) is subject to M(= 22) non linear conditions, J; < 0,
which involve a parameter set ) that includes all the material parameters of the MSM. The full parameter set to be calibrated is
Y= |:ys yh yhardening yyielding]’ where

tw w
Yo=loy 3 My My, B iy B ] (B.22)
— [sh h h h h h h h h h
Vp=lop o' " HI H} A Kt hlL Al KR (B.2b)
yrhbzfdeﬂmg — [a(t)w oQw  pw Héw H;’w] (B.2¢)
R = S e NS o/ S T (B.2d)

In Eq. (8), we set a = 4 (Kondori et al., 2019), and —1 < k < 1 to satisfy convexity condition for the asymmetric yield function (Cazacu
et al., 2006).

The calibration strategy for the parameter set ) presented above is informed by the CP observations (Indurkar et al., 2020) on
the deformation activity of the different modes for each loading scenario. The restriction on the non-dominant mode is realized via

1 https://1drv.ms/u/s!AkrBMGgawOPq7EYdy5Xs0KsKOcbc?e=tLbUEa
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Fig. 15. Two step methodology to calibrate Y for a given polycrystalline CP simulation dataset. Here * denotes that the data considered includes tension and
compression along L, T, S, LT, LS and TS. Chapter 2 refers to the Chapter in Indurkar (2020).

the non-linear conditions (J;), which in turn ensure the activation of the expected and dominating modes. Thus, the active modes
are calibrated to the CP responses.

The parameter set Y is calibrated to the polycrystal CP simulations corresponding to Texture E in Indurkar et al. (2020). We
adopt a two-stage calibration: In stage-I (Fig. 15), Eq. (B.1) is solved using fmincon function from MATLAB optimization toolbox
using interior-point algorithm, and results in an approximately calibrated MSM. We use a central difference gradient approximation.
Moreover, the symmetric positive definiteness for h® and h” is evaluated using Cholesky Factorization function (chol) in MATLAB.

The values for the set Y obtained from Stage-I are then used as initial guesses for stage II, which invokes the Levenberg—-Marquardt
algorithm (MATLAB) together with MSM-UMAT within ABAQUS®, Fig. 15. Note that, unlike Stage-I here no information about the
deformation mode activities is used. The objective function vector in this stage is straightforward and is calculated using the relative
squared difference between stress and Lankford ratios from the CP simulation, and the corresponding case in the MSM simulation.
Using this two-stage calibration protocol, Table 1 consolidates the calibrated parameters for the dataset corresponding to full-field
crystal plasticity simulations for texture E (Indurkar et al., 2020).

Appendix C. Supplementary data
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmps.2023.105302.
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