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Aspects of plastic anisotropy in damage accumulation are considered for a class of hexagonal crystals that deform by
combined slip and twinning. Focus is placed on crystallographic aspects that are currently absent from constitutive
formulations of ductile damage. To this end, three-dimensional finite-element calculations are carried out using a cubic
unit cell containing a single void embedded in a crystal matrix. Plastic flow in the latter is described using crystal
plasticity with parameters representative of single crystal pure magnesium. The effect of void oblateness is analyzed
in some detail, as voids often form as blunted microcracks in Mg alloys. The analyses reveal two aspects peculiar to
twinning-mediated void growth: (1) insensitivity of the effective stress—strain response to void oblateless and (2) a plas-
tic auxetic effect. Both aspects manifest under certain circumstances. Some implications in terms of incorporating the
uncovered crystallographic aspects in coupled plasticity-damage formulations of anisotropic materials are discussed.
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1. INTRODUCTION

Significant progress has been made in recent decades in modeling ductile failure by void nucleation, growth, and
coalescence (see, e.g., Benzerga et al., 2016; Noell et al., 2022; Pineau et al., 2016). In particular, various aspects
of plastic anisotropy have been incorporated, often from first principles, in porous material plasticity models. This
includes incorporating void shape effects (Danas and Ponte Castaiieda, 2009; Gologanu et al., 1993, 1997; Madou
and Leblond, 2012a,b; Ponte Castafieda and Zaidman, 1994), matrix flow anisotropy (Benzerga and Besson, 2001;
Keralavarma and Benzerga, 2008, 2010; Monchiet et al., 2008; Morin et al., 2015; Stewart and Cazacu, 2011), and
void coalescence (Benzerga, 2002; Benzerga and Leblond, 2014; Keralavarma and Chockalingam, 2016; Torki et
al., 2015). This line of work does not take crystallographic aspects of void growth and coalescence into account. To
address these, various constitutive models of porous material crystal plasticity have been proposed in recent years for
high-symmetry materials (e.g., Han et al., 2013; Mbiakop et al., 2015; Paux et al., 2015; Song and Ponte Castafieda,
2017). However, the predictive capabilities of porous material crystal plasticity models for hexagonal close packed
(HCP) metals have not yet been assessed.|

TOnly recently has such assessment begun (Yang and Ghosh, 2022). At the time of writing, we were not aware of this publication.
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To gain insight into the complex interaction between voids, which generally mediate ductile failure, and crystal
deformation mechanisms, the voided cell model may be used following earlier paradigms for Mises-like materials
(e.g., Koplik and Needleman, 1988; Tvergaard, 1982). Building on earlier work for Hill materials (e.g., Keralavarma
et al., 2011), and FCC single crystals (Potirniche et al., 2006; Srivastava and Needleman, 2013; Yerra et al., 2010),
various authors have carried out two-dimensional (Prasad et al., 2016) and three-dimensional cell model analyses of
void growth in a crystal matrix deforming by combined twinning and slip with the focus generally placed on Mg alloys
(Selvarajou et al., 2019) and Ti alloys (Asim et al., 2019). Thus, Selvarajou et al. (2019) considered spherical voids in
pure Mg single crystal subjected to various proportional stressing histories and two loading orientations. They found
that, beyond mere directionality, the net plastic anisotropy affects the effective response as well as dilatation rates,
consistent with homogenization-based models of ductile damage (e.g., Benzerga and Besson, 2001; Keralavarma
and Benzerga, 2010). They also observed quite a few crystallographic aspects. Chief among these are mechanisms
associated with extension twinning. For example, under c-axis loading, twinning induced crystal reorientation leads
to a decrease in void growth rates and eventually to sector formation and quasi-polyhedral void shapes. Such findings
elude current constitutive formulations of anisotropic ductile damage.

Quite recently, Indurkar et al. (2022) have analyzed the combined effects of void shape and crystal anisotropy on
the effective behavior of unit cells as in Selvarajou et al. (2019). They focused on oblate void shapes, which represent
more faithfully the state of incipient damage, say as twin-induced microcracks or nascent voids after particle cracking
(Kondori and Benzerga, 2014; Rodriguez et al., 2016). Some findings were common to both spherical and oblate
voids. However, with oblate voids failure was found to ensue even under uniaxial loading for both prismatic and
c-axis loading. With increasing stress state triaxiality, void oblateness favors extension twinning (which would not
be active in the absence of a void) for the prismatic orientation but decreases extension twinning activity for the (c)-
axis orientation. In addition, when sector formation was favored (i.e., under c-axis loading), the distribution of twin
variants around the void was found to be more sensitive to void aspect ratio than to stress triaxiality. The flatter the
void, the higher the misorientation across twin sector boundaries, and this presumably plays a key role in premature
failure.

One issue with the analyses in Indurkar et al. (2022) is the extent to which the obtained trends are sensitive to
the idealized representation. For example, a single-void analysis does not take into account intrinsic void interactions,
which would require analyses with multiple voids. Likewise, the growth of the voids in polycrystals may be affected
by grain boundaries or texture effects depending on void size relative to the grain size (Azghandi et al., 2020). At
present, investigating such aspects would require large computational resources. Also, the analyses in Indurkar et al.
(2022) were carried out at a fixed initial void volume fraction. This implies that when void oblateness effects were
investigated (by varying the initial void aspect ratio) the relative ligament size was also varied. The extent to which
such variations affect damage progression to failure can only be ascertained if a complementary set of calculations
fixing the relative ligament parameter are conducted. This is precisely the aim of this paper. In doing so, special
attention is paid to early stages of void growth, which reveal an auxetic effect. Implications of such fine details in
ductile damage remain to be fully investigated. Throughout the paper, second- and fourth-order tensors are denoted by
bold and double-stroke symbols, respectively, e.g., I and I; the contracted product, inner product, and dyadic product
are such that A : B = A1 B, AB = Ay, By, and A ® B = A;; B); in component form. Similarly, given vectors
aand b,onehasa ® b = a;b; and a- b = a;b;.

2. FORMULATION

An oblate void of aspect ratio W) is placed at the center of a cubic unit cell, Fig. 1. When the cell is subjected
to transversely isotropic loading (with respect to the void axis) it deforms into a rectangular prism with current
dimensions L, L,, and L,; see Fig. 1(b). The initial cell aspect ratio is denoted by A\¢g = Lyo/Lyo = Lyo/L.o
with 0 referring to the initial state. Here, Ay = 1. Since the crystalline matrix is anisotropic, the void deforms into a
three-dimensional shape with principal radii r,,, 7, and .. In the transverse plane (plane of potential coalescence)
two ligament parameters may be introduced: x, = 2r,/L, and x, = 2r,/L, with x,0 = X.0 = Xo, the initial
ligament parameter.
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FIG. 1: The unit cell with key dimensions and loading setup: (a) typical finite element mesh (here for Wy = 1/6); and (b) section
in central xy-plane

Since only cubic cells are initially considered, the initial void volume fraction fj is not independent of W, and
Xo- In a companion paper (Indurkar et al., 2022), the effect of the void aspect ratio W, was analyzed at fixed fy. Here,
analyses are carried out at fixed ligament parameter . As will be discussed later, there is interest in considering both
situations based on an earlier study by Lassance et al. (2006) in which the matrix was taken to obey .J, flow theory
and subsequent extension to Hill materials by Keralavarma et al. (2011).

Cell-level stress and strain measures are defined as

Sy=y fouaVi  EBu=m(gZ) By=w(f2) Eeon(g) v
14

with o the Cauchy stress and V' the unit cell volume. Note that E,, # E. .. Then define

1 / /2
Yo = 52 I Yeg = %E’ I =7J:3; Beq = gE’ o 4 2)

as the mean normal stress, von Mises equivalent stress, stress deviator, and equivalent strain, respectively. Here,
J =1-(1/3)I® Iis the deviatoric projector.

The stress state is characterized using the triaxiality ratio 7 = X,/ Yeq With a major axial stress, i.e., Xy, >

Calculations are carried out for proportional stressing histories. This implies fixed triaxiality 7; see Indurkar et
al. (2022) and references therein for details.

A constitutive relation of crystal plasticity (Zhang and Joshi, 2012) is used for the matrix material, which accounts
for finite deformations, rate dependence, slip, and twinning, as in previous studies (Selvarajou et al., 2019, 2016). The
deformation gradient F is multiplicatively decomposed into an elastic part, F'¢, and a plastic part, F?. The plastic part
of the the velocity gradient is then

L? = F°FPFP~'Fe! 3)
where a dot stands for the material derivative. The flow rule is written as
Niw N Niw
LP = 1_fo5 Zyoc(soc(@mcc)_,'_zi,ﬁ(sﬁ ®m6) 4)
B=1 a=1 B=1
slip in parent twin in parent
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where N, and N, are the numbers of slip and twin systems in the parent region, respectively, m’ and s’ denote the
current slip/twin plane normal and direction vectors, respectively. The notation i = « for slip and ¢ = 3 for twinning
is merely for convenience. Also, fP is the twin volume fraction associated with the Bth twin system and y* is the
shear rate on the ith system.

For slip, it is given by:
i11/m

t
V' =0 sgn(t'); g =7+ / (981 + Gtw—s1) dt ©)
0

g

where v, is a reference slip rate, ' = o : (m’ ®s’) is the resolved shear stress (RSS), ¢* is the current strength
of the slip system, and m is the rate-sensitivity exponent. In Eq. (5),, T; is the initial critical RSS, ¢ is time, and g
represents hardening due to slip given by

Ns
Ga= ) hiV’ (6)
j=1
where h;; are hardening moduli that depend on the total accumulated shear due to slip, v, via:
_ . . . Ns ot
_ h(y i = j, self hardening B »
hi(V) = ¥ (=7 ) V=Z/v’ (7
gh(y¥) (i # j, latent hardening) —Jo
with ¢ the latent hardening coefficient and

~ hé, (basal slip)
h(y) = { ;

i 2| _hiv .
hgsech = 0713 , (nonbasal slip)

®)

Here, hj is the initial hardening modulus and T is the saturation stress of the ith slip system. The preceding
hardening equations are motivated by experiments on Mg single crystals.
The last term in Eq. (5), represents the effect of twinning on slip hardening and is given by

Niw
Gwst = Y hipV® )
B=1

Slip hardening is taken to be independent of slip system and saturating when affected by extension twinning (ET) or
nonsaturating when affected by contraction twinning (CT) such that:

he e
P sech? %ﬁﬁt (ET on slip)
hip = 1 Ts — T (10)
EHctfsl/\/ Yet (CT on slip)

where
Nt t Net t
e, [V ad gu=) [ (n
p=1"0 p=170
with Ng; and N being the numbers of ET and CT variants, respectively (with Ngy + Nt = Niy). The ET related
parameters in Eq. (10); have similar meaning as for nonbasal slip; see Eq. (8). The factor 1/2 is introduced in Eq. (10),

such that H._ represents the initial slip hardening rate due to CT.
The last term in the flow rule, Eq. (4), involves the shear rate for the 3th twin system:

1/my
iy =i (%) 12
S
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where f B 1P and sP respectively denote the twin volume fraction, RSS, and current strength, all associated with the
Bth twin system. Also, y*" is the theoretical twinning shear. The strength is specified through

t
sP=f +/O (8, 5B ydt (13)

The contribution of twin-twin interactions is given by

hBy
hP sech? 7ﬁetyetﬁ vB  (ET)
b= T (14)

Neg b
ma( X 1.) v

The hardening of ET systems is controlled by parameter hft and that of CT systems by H. and exponent b. Also,
fm denotes the twin volume fraction for the mth CT variant. Finally, the effect of slip on twin-system hardening is
neglected, i.e., S.fl—tw = 0, as in Zhang and Joshi (2012).

Twinning-induced lattice reorientation is taken to occur when the accumulated twin volume fraction, f =
Zf\’” fi, reaches a critical value f... The twin system that possesses the largest twin volume fraction is chosen
as the orientation of the twinned lattice.

3. RESULTS

Material parameters representative of pure Mg single crystals are used; see Indurkar et al. (2022) and references
therein. The elastic stiffness tensor is taken to be transversely isotropic with the five independent moduli given by
Ch1 = 59.40, C, = 25.61, C13 = 21.40, C53 = 61.60, and Cy4 = 16.40 (all in GPa). Table 1 lists all slip and twin
systems considered in the crystal plasticity formulation. Thus, N, = 18 and N, = 12.

Also, Yo = 0.001 s™';m = m; = 0.02; ¢ = 1;v*™ = 0.129 and 0.138 for ET and CT, respectively, fOB =
0.001s~! for all ET systems, and foﬁ = 0.0001s" for all CT systems. In addition, the initial and saturation strengths
as well as the initial hardening rates for all deformation systems are listed in Table 2 where superscripts for slip and
twin systems are dropped. Where applicable, note that the same parameters are used for each ET or CT system; see
Egs. (10) and (14).

Two crystal orientations are considered (see Table 3), as in Selvarajou et al. (2019) and Indurkar et al. (2022).
For the [1210} orientation, prismatic slip is expected to be dominant under uniaxial loading without a void. Also,
large anisotropy is expected in the transverse ([1210] — [0001]) plane. On the other hand, for the [0001] orientation,
extension twinning is favored under uniaxial loading without a void and tranverse anisotropy is not expected to be
strong before reorientation.

In all calculations, the initial ligament parameter xo = 0.2673 and the initial cell aspect ratio Ay = 1 are kept
fixed; see Fig. 1. Three values of the initial void aspect ratio are considered; see Table 4. The corresponding values

TABLE 1: Slip and twin systems in pure Mg

Slip/twin plane Slip/twin direction Number of systems

Basal (a) slip (0001) (1120) 3
Prismatic (a) slip {1010} (1120) 3
Pyramidal (a) slip {1011} (1120) 6
Pyramidal (c + a) slip {1122} (1123) 6
Extension twinning {1012} (1011) 6
Contraction twinning {1011} (1012) 6
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TABLE 2: Strength and hardening parameters used for pure Mg
To (MPa)  hy (MPa) T (MPa)

Basal slip 0.5 20 —
Prismatic (a) slip 25 1500 85
Pyramidal (a) slip 25 1500 85
Pyramidal (c + a) slip 40 3000 150

Ty (MPa) he (MPa) 7, (MPa)  he_o (MPa)
Extension twinning 3.5 100 20 100

7o (MPa) H. (MPa) H._q (MPa) b
Contraction twinning 55 6000 15 0.05

TABLE 3: Crystal and global (in parenthesis) orientations considered in this work

Orientation Loading direction (y) Lateral direction (x) Lateral direction (2)
Prismatic [1210] [1010] [0001]
(c)-axis [0001] [1210] [1010]

TABLE 4: Initial porosity configurations in a cubic
cell (A9 = 1) at fixed ligament parameter

Wy X0 Jo
1/10 0.2673 0.001
1/20 0.2673 0.0005
1/30 0.2673 0.00033

of the initial void volume fraction f; are also listed. This is in addition to the reference case of a spherical void
(Wy = 1) taken from Selvarajou et al. (2019). As noted after Eq. (2), the loading is triaxial with equilateral stresses
(322 = X..) and the range of triaxiality considered is 7 = 1/3 to 7 = 3. Several values of 7 within this range were
explored; however, the results herein focus on end values for brevity.

The unit cell is discretized using ~ 60,000 fully integrated linear hexahedral (C3DS8) elements in
ABAQUS/STANDARD. When possible, calculations are pursued until after the onset of void coalescence, i.e., when
the cell’s mode of deformation shifts to uniaxial stretching (Koplik and Needleman, 1988). This is simply detected
by the saturation of the overall lateral strains (E,, and E_,). In some cases, such transition does not occur.

First, consider the 7 = 1/3 case (uniaxial tension). Figure 2 shows macroscopic responses along with the cor-
responding evolution of void volume fraction for various values of the initial void aspect ratio. The response of the
void-free (pristine) matrix is shown for reference.

For prismatic loading (right plots), the stress—strain response of the pristine material is dominated by prismatic
slip with early saturation hardening at 3., ~ 200 MPa [see Fig. 2(a)]. Considering the porosity level (fy = 0.01 or
below), the response of the voided cell is always weaker than the matrix. The key observation, however, is that the
Wo = 1/10, Wy = 1/20, and W, = 1/30 responses corresponding to penny-shaped cracks are indistinguishable
from each other and even close to the W, = 1 case (solid red curve; color online). On the other hand, the evolution
of void volume fraction does depend on W), as shown in Fig. 2(b) (right plot). The rate of increase is higher for the
most oblate void. This is in spite of a decreasing level of initial porosity with increasing oblateness; recall that the
calculations are run at a constant Y. Also note that the porosity curves are concave downward.

For c-axis loading, the trends are essentially the same in terms of insensitivity of the effective stress to the
magnitude of oblateness despite the corresponding effect on porosity evolution (see left plots in Fig. 2). Here, two
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FIG. 2: Orientation dependent (a) effective stress Xeq and (b) normalized porosity f/ fo versus effective strain Eeq for various
values of the void aspect ratio Wy, xo = 0.2673,and 7 = 1/3

observations are worth making. First, the voided cell is harder than the pristine matrix for all cases considered. This
arises due to the formation of twin sectors that activate harder systems of nonbasal slip. Initial yield in the void-free
matrix occurs due to ET, followed by rapid hardening due to activity on nonbasal systems resulting from twinning-
induced crystal reorientation until saturation eventually ensues [see Fig. 2(a) (left)]. Second, there is a net porosity
decrease in the Wy = 1 case, which is due to lateral shrinking of the void that remains uncompensated for by the
lateral shrinking of the cell (Selvarajou et al., 2019). A similar trend is seen here for the Wy = 1/10 case at larger
strains.

The results in Fig. 2 stand in contrast to those of Indurkar et al. (2022) who varied the initial ligament parameter
xo while keeping the initial void volume fraction fj constant. They found that the flatter the void the weaker the cell
and that subsequent hardening of the cell depended on microstructure evolution.
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Under uniaxial loading, failure by the onset of coalescence did not occur for either loading orientation. On this
too, some results are in contrast with those of Indurkar et al. (2022) where failure under uniaxial loading was noted
in some cases due to higher porosity levels.

Next, consider the case of highly triaxial loading with 7~ = 3, Fig. 3. Now, the voided cell is significantly weaker
than the matrix, irrespective of (main) loading orientation. An exception is noted in the linear hardening regime af-
ter twinning is complete under c-axis loading [see Fig. 3(a) (left)]. Here too, the W) 1/10, Wy = 1/20, and
Wy = 1/30 responses are indistinguishable from each other [Fig. 3(a)] in spite of differing porosity levels [Fig. 3(b)].
However, under high triaxiality the responses of the cells containing penny-shaped cracks differ quite substantially
from the response of the cell with a spherical void (solid red lines; color online). For prismatic loading, such differ-
ences are noted from the outset of plastic flow. On the other hand, for c-axis loading differences only emerge after

LT =1%, xo0=0.2673
—Wo=1,f=1% Wo = 1/20, fo = 0.05%
Wo = 1/10, fo = 0.1% = = Wy = 1/30, fo = 0.033%
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FIG. 3: Orientation dependent (a) effective stress Yeq and (b) normalized porosity f/ fo versus effective strain Ecq for various
values of the void aspect ratio Wy, xo = 0.2673, and 7 = 3
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twinning is complete. All of this merits further discussion later. At high triaxiality, failure by void coalescence is
obtained, as expected. However, this aspect is not emphasized here.

Figure 3(b) shows the evolution of normalized porosity versus equivalent strain for all cases considered. Overall,
the curves are concave upward, unlike the uniaxial loading case [compare with Fig. 2(b)]. An exception is noted
during the twinning dominated regime for c-axis loading. Here, the results are given in terms of normalized porosity
because the initial values are vastly different as per the constant y prescription. On the other hand, the reader should
be warned that the aboslute porosity is much larger in the W, = 1 case than in other cells.

Under prismatic loading, an auxetic behavior was noted. Recall that plastic deformation in this case is highly
anisotropic. This has an interesting effect on the nature of unit cell deformation as reported in Fig. 4. For a plastically
isotropic material, the cell laterally shrinks as it extends axially. This reflects in negative values of lateral strains
E.. and E,,, as represented using dashed lines in Fig. 4. The same behavior is generally observed in conventional
anisotropic materials (Keralavarma et al., 2011). As shown in Fig. 4, a transient auxetic behavior is observed for all
triaxiality levels considered. The effect is observed in the z-direction, which corresponds to the c-axis (see Table 3).
Lateral strain E,,. is always negative (not shown here).

The auxetic effect results from a combination of factors. First, in the pristine matrix it is difficult to contract the
c-axis. This is estimated in Fig. 4 based on how far the corresponding curves (shown pink) are from the isotropic
reference case (dashed). Second, this trend is exacerbated in the presence of a void. The flatter the void, the stronger
the effect. In all cases, the effect is transient in that a decrease in lateral strain is eventually observed after sufficient
straining.

Further, this auxetic behavior depends on stress triaxiality. For low levels of triaxiality (7" < 1) and less oblate
voids (W, 2 1/6), E.. &~ 0. At higher levels of triaxiality (7 ~ 1) and for more oblate voids, E.. > 0 over a certain
range of deformation before transitioning to E,, < 0. At very high triaxiality levels (7 ~ 3), E., is always positive.
In essence, the cell has the tendency to behave in a plastically auxetic manner along the direction that is plastically
harder. As discussed by Selvarajou et al. (2019) in the context of spherical voids, this behavior is a direct result of
extension twinning. However, in that work this type of behavior was observed only at very high levels of triaxiality.
On that background, the present results highlight the role of void oblateness: the more oblate the void, the higher the
tendency of the cell to behave in a directionally auxetic manner. Moreover, the oblateness can drive such a behavior
even at modest levels of triaxiality.

4. DISCUSSION

Previous analyses of void growth and coalescence in hexagonal crystals have highlighted the important role of crystal
plasticity mechanisms, for example in twin sector formation (Selvarajou et al., 2019) and its extreme sensitivity to
void shape (Indurkar et al., 2022). Here, further insight is obtained by presenting complementary analyses. By way
of comparison, the calculations of Indurkar et al. (2022) were carried out at fixed initial porosity fo = 0.01. This

|——Wy=1—+Wy=1/2 —=—W,=1/6 Wy =1/10 Wy = 1/20 —— W, = 1/30]
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FIG. 4: Evolution of lateral strain E ., under prismatic loading for different stress triaxialities
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amounted to varying the initial ligament parameter in the range 0.27 < xo < 0.83. Here, a single ligament parameter
is considered (see Table 4). Consequently, the results are quite different from those of Indurkar et al. (2022). The
effective stress (flow stress of the porous material) is found to be insensitive to how oblate the void is, and this holds
for both loading orientations at all stress triaxiality levels considered; see Figs. 2(a) and 3(a).

One possible interpretation of the insensitivity to Wy of the effective stress is that the latter is governed by the
initial ligament parameter xo. The results of Indurkar et al. (2022) who varied x, at constant f, give credence to
this interpretation. However, this may be an appearance only. Indeed, note the modest levels of void volume fraction
reached in the present calculations. For example, for 7 = 1/3 in spite of an order of magnitude increase in porosity
[Fig. 2(b)], the porosity maxima are still below 0.01 when the calculations are stopped (at E.4 ~ 0.6). For reference,
0.01 is the value of f for the W, = 1 case. By way of contrast, the porosity was always higher than 0.01 in
the calculations of Indurkar et al. (2022) although the ratios f/f, vary within an order of magnitude in all cases
considered here and in Indurkar et al. (2022). So there seems to be a cutoff value of porosity (around 0.01) below
which the stress-strain response of the voided cell is mostly controlled by ¥y, in which case the values of either fj or
W play a negligible role.

The role of penny-shaped cracks in idealizing incipient states of void nucleation is important in a variety of
material systems. Because of this a limited number of studies had previously addressed the combined effects of initial
void volume fraction and initial ligament parameter by means of the voided cell model. Thus, Lassance et al. (2006)
carried out such analyses for an isotropic matrix. Later, Keralavarma et al. (2011) analyzed in further detail the role
of plastic anisotropy in the context of Hill materials.

For isotropic materials with highly oblate voids, Lassance et al. (2006) observed that the stress-strain responses
were insensitive to W (for a given ) and attributed that to porosity equivalence. They introduced an effective initial
porosity defined as the ratio of the actual void volume fraction and the void aspect ratio: £ = fo/W,. For a cubic
cell Ag = 1 such that the ligament parameter can be written as

1 1/3
o= (yva‘)o) (15)

where v is a constant factor that represents the shape of the cell (/6 for the cubic cell). Hence, 5 = yx3 so that
keeping o constant when exploring the effect of void oblateness amounts to keeping the initial value of effective
porosity constant. In all calculations reported here we have f§f = 0.01.

Clearly, the results in terms of effective stress and for 7 = 1/3 support this effective porosity concept. Not only
is the stress-strain curve independent of how oblate the void is, the three curves for oblate voids are quite close to that
of a spherical void, for which f, = 0.01 = OCH. However, unlike the results of Lassance et al. (2006) the evolution
of void volume fraction is highly dependent upon ;. An even more significant departure from the effective porosity
paradigm is noted at high triaxiality. For 7 = 3, the effective stress responses under (c)-axis loading are insensitive
to Wy in the twinning regime (Eeq < 0.06) but are sensitive to Wy after twinning. According to Lassance et al.
(2006), porosity equivalence is a consequence of the competing effects of increasing Wy, which promotes softening,
and decreasing f (for a fixed f§™), which retards it. Keralavarma et al. (2011) showed that Hill-anisotropic materials
that are weak in shear exhibit stress-strain responses are insensitive to W, whereas shear resistant materials are
sensitive to Wy. In other words, only shear-weak materials comply with the notion of porosity equivalence. Against
that backdrop, the insensitivity to W, during the twinning regime is a result of the shear-weak orientation. After
twinning is complete, however, the crystal exhibits a shear resistant response (due to the activation of nonbasal slip)
that is sensitive to Wy. Under prismatic axis loading (at 7 = 3), the material exhibits a shear-resistant response that
is sensitive to Wy, which is analogous to the post-twinning response under (c)-axis loading. Therefore, in general,
porous HCP crystals do not espouse the notion of porosity equivalence.

The fact that penny-shaped voids, such as those considered here, are representative of voids initiated as second-
phase particles is less questionable than for twin-induced microcracks. It is often reported that twin tips are severe
stress concentration points due to pile-up of zonal dislocations and can trigger brittle fracture in the adjacent matrix.
For this reason, twin-induced microcracks would extend following a Griffith—-Orowan process and not by a growth
and coalescence process, as would be the case for microvoids triggered by particle cracking. Should that scenario be
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the dominant one indeed, the present simulations would not apply until some brittle fracture criterion is incorporated
in the matrix. A few points are worth mentioning, however. First, Rodriguez et al. (2016) have reported extensive
blunting and growth of twin-induced microcracks (at sufficient temperature). Also, Kondori and Benzerga (2014)
have shown evidence of dimpled fracture in moderately notched bars whereas the quasi-cleavage aspects were only
reported in severely notched bars. Whether a Griffith theory can rationalize such facts remains to be explored. On
the other hand, Kondori and Benzerga (2017) have shown that a model based on void growth and coalescence can
account for all facts, and in particular predict quasi-brittle, triaxiality-dependent fracture, provided void shape effects
are taken into consideration.

The plastic auxetic effect under prismatic slip may have practical implications in failure that have not thus far
received the attention they deserve. The difficulty in contracting the c-axis is evident from how far the corresponding
lateral strain is from the isotropic reference [see curve labeled “pristine” in Fig. 4(a)]. This trend has been reported
experimentally, e.g., by Kondori and Benzerga (2014) in polycrystalline Mg alloy with a basal texture [see their
Fig. 4(b)]. All proportions kept, one common consequence in both the experiments and unit cell simulations is that
the other lateral direction a fortiori accumulates more plastic strain. In the simulations, plastic incompressibility of
the matrix is imposed so that straining along [IOTO} is maximized so as to compensate for the lack of deformability
along the c-axis. Interestingly, Kondori and Benzerga (2014) reported smaller lateral strains than simulated here,
and this implied plastic dilatation. In the presence of a void in the simulations, the material is overall plastically
compressible. Therefore, void growth mediates apparently positive lateral strains along the c-axis. Indeed, the matrix
itself does not deform or deforms very little, but the void boundaries move outward along the c-axis. This explains
the trends seen for example in Fig. 4. Accordingly, the higher the rate of void growth, the larger the auxetic effect.
This explains the effect of stress triaxiality seen in Fig. 4. In practice, the effect may be local, and because of the
potential strain incompatibility that results from confining grains or the like, failure may ensue locally. There is very
little documentation of such effects in currently available experimental reports.

The material parameters used in the analyses carried out here are representative of single crystal pure Mg. Al-
though some generic aspects of orientation and crystallographic effects remain relevant for both Mg alloys and other
HCP metals, care should be taken in generalizing all findings to other material systems. Some observations along
these lines were made by Selvarajou et al. (2017) in the context of textural effects in Mg alloys. More work is needed
in this area to uncover other aspects of void growth and coalescence in HCP metals.

5. CONCLUSION

The growth of initially oblate voids representing incipient damage in a class of HCP single crystals has been examined
under tensile loading in some detail. Complementary to a companion study, focus has been placed on keeping the
initial ligament size (relative to void spacing) constant when varying the void aspect ratio. From the analyses two
aspects of twinning-mediated void growth emerge:

o The insensitivity of the effective response to void oblateness noted in isotropic materials has been shown
to be limited to situations where twinning is active and the void volume fraction is low. When twinning is
inactive or complete (depending on the initial loading orientation) a significant effect of the void aspect ratio
is observed on the stress—strain curve. Also, in all cases, the evolution of void volume fraction is sensitive to
void oblateness, unlike in plastically isotropic materials.

o In addition, a plastic auxetic effect is observed under situations where the c-axis is induced to contract, such as
under prismatic loading here. Under more realistic conditions of plastic confinement by neighboring grains,
such local effects may lead to microcrack initiation and premature failure. Such aspects would merit exami-
nation based on careful experiments.
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