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ABSTRACT

Drug-drug interaction (DDI), as a possible result of drug combina-
tion treatment, could lead to adverse physiological reactions and
increasing mortality rates of patients. Therefore, predicting poten-
tial DDI has always been an important and challenging problem.
Owing to the extensive pharmacological research, we can access
various drug-related features for DDI predictions; however, most
of the existing works on DDI prediction do not incorporate com-
prehensive features to analyze the DDI patterns. Despite the high
performance that the existing works have achieved, the incomplete
and noisy information generated from limited sources usually leads
to sub-optimal performance and poor generalization ability on the
unknown DDI pairs. In this work, we propose a holistic framework,
namely Multi-modality Feature Optimal Fusion for Drug-Drug
Interaction Prediction (MOF-DDI), that incorporates features from
multiple data sources to resolve the DDI predictions. Specifically,
the proposed model jointly considers DDIs literature descriptions,
biomedical knowledge graphs, and drug molecular structures to
make the prediction. To overcome the issue induced by directly
aggregating features in different modalities, we bring a new insight
by mapping the representations learned from different sources to a
unified hidden space before the combination. The empirical results
show that MOF-DDI achieves a large performance gain on different
DDI datasets compared with multiple state-of-the-art baselines,
especially under the inductive setting.
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1 INTRODUCTION

The combined medications are commonly used to treat patients
with complicated diseases. However, there is always a possibility
for the occurrence of adverse drug-drug interactions (DDIs). To
be more specific, the metabolisms of different drugs taken by pa-
tients at the same time may interfere with each other and thereby
could increase the mortality rate. For instance, the combined use
of Alprazolam and opioids can significantly increase the risk of
opioid-related death [28]. According to the estimation [31], more
than 30% of drug side effects are associated with adverse DDIs and
it has become one of the leading serious health threats. It has also
been reported that there are nearly 74,000 emergency room visits
and 195,000 hospitalizations are DDI-induced events in the United
States each year, not to mention the statistics of the whole world
[26, 29]. Therefore, predicting potential drug-drug interactions has
always been an important application in pharmacology and medical
health. Owing to the comprehensive research and clinical experi-
ments on drugs, various drug-related features can be leveraged in
the DDI research, which enables the application of computational
models on DDI predictions. Specifically, drug features like side ef-
fects [9], pathway similarity [7], and target gene [17] have been
proven to be effective in finding potential DDI pairs. However, those
features are mainly annotated by domain experts after extensive
clinical experiments, thereby limiting their application to drugs
with incomplete features.

To alleviate this issue, previous works propose to employ deep
learning models to automatically resolve DDI-related tasks (e.g.,
DDI prediction task[21, 50] and DDI extraction task [2, 15]) with
the easy-accessible raw features. For the DDI extraction task, the
medical literature text corpus are usually utilized as the input. In
this work, we focus on the DDI prediction task, in which the drug
molecular structures converted from SMILES strings [1] or Morgan
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fingerprints [30] are commonly employed [25, 41]. Particularly,
the sub-structures (functional groups) of a drug molecule usually
determine certain properties of the drug, therefore, two drugs with
similar molecular structures could have the same impact on humans.
In this case, the co-administration of the two drugs may generate
overly strengthened effects, which is also counted as a kind of DDI.
Meanwhile, the knowledge graphs (KGs) mined from the biomedical
literature corpus have been also proven to be a powerful predictor
[16, 21]. Besides DDI pairs, the large biomedical graph also includes
many other triples which reveal the metabolism activities of the
drugs (e.g., drug-gene and drug-disease), thereby benefiting the
prediction of potential DDI pairs from the pathway perspective.
For example, drugs can only come into effect with the help of
some proteins in human bodies (e.g., enzymes), therefore two drugs
with sharing the same kind of enzyme will compete for it and
interfere the metabolism activities of each other. In spite of the
input and label differences, the objectives of the DDI prediction
task and DDI extraction task are similar. Given a text description
of about co-administration of pair of drugs, DDI extraction task
requires training a model to accurately classify the interaction types
described in the text.

Most of the existing works only rely on a single kind of feature
source to predict the potential DDISs, but it is usually the case that
the feature in one source is incomplete and noisy. Inspired by the
remarkable performance of multi-modality models, some recent
works incorporate biomedical KGs and molecular structures for
the DDI prediction task [5, 50] and achieve obvious performance
improvement on corresponding tasks compared with those single-
source baselines. However, the limitations of those methods still
exist, which leaves space for improvements. On one hand, the inher-
ent information missing issue in KGs is still not solved, hurting the
model generalization ability. Here, we provide a concrete example in
Figure 1 to illustrate the advantage of incorporating contextualized
information. During the construction of the biomedical KG and DDI
graph, all the drug entities with DrugBank ID will be retrieved from
the literature text. Therefore, the DDI pair in the first description
(iopidine, opiates) will not appear in the constructed graph because
opiates is a general name that can refer to multiple drugs, including
morphine, codeine, naltrexone, etc. Meanwhile, the edges that are
supposed to exist between iodine and other opiate-related drugs
(e.g., morphine) are missed, causing incomplete graph structure for
DDI predictions. Fortunately, the contextualized information in the
second description can somehow align the representations of "opi-
ates" and "morphine’", thereby passing the relation between iopidine
and opiates to the representation of "morphine” so that the possible
interaction between iopidine and morphine can be detected. Hence,
the trained KG embedding is expected to own higher expressive
power and reasoning ability if we can inject the rich context infor-
mation into it. To do so, we need to propose a framework that can
jointly optimize the representations of text and KG entity nodes.
On the other hand, existing methods usually aggregate the features
learned from multiple sources via simple concatenation or weighted
aggregation. Though it is computation-efficient, they ignore the
fact that these features could be in different embedding spaces.
Consequently, such naive fuse operations will lead to meaningless
aggregated results and fail to guarantee semantic consistency. Thus,

2697

Qianlong Wen, Jiazheng Li, Chuxu Zhang, & Yanfang Ye.

Description #1: Although no specific drug interactions
with topical glaucoma drugs or systemic medications
were identified in clinical studies of iopidine, the
possibility of an additive or potentiating effect with
opiates should be considered.
Drug #1: lopidine = DB00964 J

Drug #2: Opiates * —>| Missing map to KG

Description #2: Previous studies have demonstrated a
significant reduction in the oral bioavailability of
trovafloxacin and Ciprofloxacin when administered
concomitantly with an intravenous opiates such as
morphine.

Drug #1: Trovafloxacin - DB00685 J
Drug #2: Morphine - DB00295 «

Figure 1: Two DDI description samples from the Pubmed. The
DDI pair in the first description is missed in the biomedical
KG since opiates can not be mapped to DrugBank ID.

a more reasonable fusion method is promising to further improve
the performance.

To fill the gap, we propose a novel method, named Multi-modality
Feature Optimal Fusion for Drug-Drug Interaction (MOF-DDI), to
resolve the DDI prediction task. In particular, we incorporate the
large biomedical knowledge graph, biomedical literature text cor-
pus and drug molecule structures converted from SMILES string
together in our framework. Due to the reason that the biomedical
literature text corpus are originally utilized for the DDI extrac-
tion task, the features learned from raw texts will not be directly
aligned with the features learned from other sources. Instead, we
are inspired by the recent work [53] to utilize a bidirectional cross-
modality text-graph encoder to pass the feature in text and KG
to each other, thereby improving the reasoning ability of learned
entity structural embeddings with the contextualized information
in texts. Then, the contextualized entity embeddings will be saved
and aligned with the embeddings learned from the drug molecule
structure. To overcome the spatial heterogeneity between their fea-
ture space and maintain semantic consistency, an optimal transport
map will be computed by minimizing the p-th Wasserstein distance
between the distributions of the two feature spaces. Finally, a uni-
fied drug representation will be obtained for the final prediction
task. To summarize, our contributions to this work are:

e We propose a novel model, namely MOF-DDI, which enables the
integration of features from multiple sources, including litera-
ture text from Pubmed, biomedical KG from Hetionet and drug
molecular features from Drugbank. To the best of our knowledge,
our model is the first work to incorporate text features in DDI
prediction task.

e We introduce a new feature fusion method to maintain the se-
mantics consistency: (i) The contextualized features are firstly
injected into structural KG features via a cross-modality text-
graph encoder for the text-augmented KG representation; (ii)
The contextualized KG entity embeddings are fused with the



A Multi-Modality Framework for Drug-Drug Interaction Prediction by Harnessing Multi-source Data

drug molecule graph embeddings after they are projected into
the same hidden space with an optimal transport map.

e Comprehensive experiments are conducted on two DDI datasets.
The proposed MOF-DDI achieves state-of-the-art performance
by comparison with many baseline methods on both the trans-
ductive settings and inductive settings, demonstrating its effec-
tiveness and promising future in predicting potential DDIs.

2 RELATED WORK
2.1 Graph Neural Networks

As a commonly-used and powerful graph learning paradigm, graph
neural networks (GNNs) map the non-Euclidean graph-structured
data into lower-dimensional hidden spaces for further utilization
of the node-level [12, 18, 37] and graph-level tasks [42, 46, 48]. Al-
though different taxonomies can apply existing GNN methods, the
key mechanism behind GNNs is message passing, where GNNs
learn node representations by transforming and aggregating the
information along the edges in graphs [18, 33], and information
from multi-hop neighbors can be captured by stacked layers. There-
fore, the learned node representations are generally optimized to
preserve the proximity features, i.e., the node representations can
reflect their neighborhood distributions [23]. GNN variants mainly
focus on improving the transformation or aggregation functions
[12, 37, 46, 51], achieving better effectiveness or scalability. Due to
the remarkable performance of GNN methods on graph data, they
have been broadly used in many applications, such as molecule
analysis [14, 45], social network analysis [8] and medical health
applications [43, 52].

2.2 Text-KG Augmentation

In the training of language models (LMs), external knowledge is
commonly employed to augment the input data in many NLP tasks
[11, 19, 54]. Specifically, the structural information in the knowledge
graph has been proven to be effective in grounding the sequential
token inputs and further improving the model reasoning ability.
Though most of them aim to enrich context features with the infor-
mation in KGs, those methods can be divided into two lines based
on the optimization strategy. One widely adopted way is to directly
add the pre-trained KG embeddings to the LM input and keep them
frozen afterward. While the other line proposes to use the cross-
modality encoder to jointly optimize the features in two modalities
to learn better embeddings for both of them [47, 53]. Despite these
works are initially proposed to improve the reasoning ability of
LMs, like question answering [20, 39] and text generation [49], the
second line opens a door to augment the KG embeddings and alle-
viate information incomplete issue in KGs with the contextualized
feature in raw text. Inspired by this, we aim to study the effect
of incorporating text features to enhance the entity embeddings
learned from the incomplete KGs.

2.3 Drug-Drug Interaction Prediction

The applications of machine learning models in predicting Drug-
Drug Interactions are widely studied. We generally assort the pre-
vious methods into three categories according to the features they
use: (1) Expert features that require professional verification, like
side-effect, molecular structure similarity [30], genomics similarity
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[17] and pathway similarity [7]. Those features reveal the working
mechanisms of DDIs from different perspectives and thereby pro-
vide valuable information to analyze the probability of potential
DDIs. However, an important drawback of using these features for
predictions lies in their accessibility. Such professional knowledge
usually needs the huge human cost of domain experts, which limits
the construction of large-scale datasets used for model training;
(2) Handcrafted features from existing observation, like biomedical
knowledge graph [16, 21], drug molecular structures [32, 41], etc.
Though human efforts are still necessary to construct those datasets,
the expertise levels that they require are relatively low because we
only need to set up a specific rule to convert this information to
structural datasets from existing experimental observations. Previ-
ous works usually employ state-of-the-art deep model architectures
in different fields to learn drug representations from the raw fea-
tures and combine them in pairs for DDI predictions. (3): Fused
handcrafted features. It is usually the case that there is incomplete
and noisy information in a handcrafted feature, e.g., the missing
links in KGs due to the mapping mistake during KG construction.
Consequently, the trained deep learning models can not achieve
satisfying performance equally on all the drugs. Therefore, some
previous works [2, 5, 15, 50] try to incorporate two kinds of fea-
tures mentioned above for better generalization ability. In spite
of their success, existing DDI predictions still can not propose a
framework to overcome the incomplete issue in KG and find an
optimal way to fuse the features in different modalities. In light of
this, we study the problem of using contextualized information in
the raw biomedical literature corpus to supplement the incomplete
knowledge in KG and introduce a new fusion strategy to maintain
semantic consistency.

3 PRELIMINARY

For the convenience of understanding our paper, we first introduce
some basic concepts used throughout this paper, then formally
define the problem.

Definition 1. Biomedical Knowledge Graph Given the biomed-
ical entity set V and the relation type set Rxg, the correspond-
ing biomedical knowledge graph (KG) can be defined as a set of
triplets, i.e., GG = {(vp, vt r)| vy, 0t € V,r € RgG}- Similarly, the
drug-drug interaction pairs can be expressed in the same form, i.e.,
GppI = {(Di,Dj, r)| D;i,D; € D,r € Rppr}, where each triplet
(Dj, Dj, r) represents the co-administration of drug D; and drug D;
could lead to pharmacological effect r. Specifically, there are also
drug-drug triplets in Gk representing the drug-drug interaction
pairs. However, unlike the triplets in Gppy with diversified inter-
action types, all of the drug-drug triplets in Gk are categorized
into the same interaction type, i.e. the two drugs will interact with
each other when taken at the same time. We align the drugs and
DDI pairs within the two graphs, i.e., D € V and Gppr € Gka.
and remove the overlapping drug-drug interaction pairs in them to
avoid information leakage.

Definition 2. Local KG construction and Text Retrieval. In this
work, the fusion of text features and KG features is operated on
the local KG of a pair of drugs in G and the text description.
Given a pair of drugs, we first construct the local KG of them
by returning their 2-hop subgraph Gs € Gk . We represent the



CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

node set of Gs as Vs = {v1,02,...,un}. Then the corresponding
literature reaction description in which the name of the two drugs
are included will be retrieved from the PubMed corpus, denoted
as S = {wy,wy,...,wy} € S. Then, the combination of the local
knowledge graph Gs and the sentence S will be taken as an input
instance, i.e., X = (Gs, S).

Definition 3. Multi-relational DDI Prediction The DDI predic-
tion problem is to learn a machine learning model which can be
further utilized to predict the pharmacological effect of any co-
administrated drug pair (D;, Dj). It can be formulated as:

F:DXD — Rppy- (1)

In this work, we evaluate the trained model under both the trans-
ductive setting and inductive setting, where any DDI pair in the
testing set includes at least one drug not existed in the training set
under the inductive setting.

4 METHODOLOGY

In this section, we present details of the proposed method MOF-
DDI, which is shown in Figure 2. The pipeline of MOF-DDI can be
divided into two phases and each of them is designed to incorporate
different kinds of features. In the first phase, we aim to augment
the KG embedding with the contextualized information in the DDI
description text. The contextualized KG node embeddings of the
drug entities will be saved to combine with the drug molecular
embeddings learned from their chemical structure and the DDI
graph Gppy during the second phase. Instead of directly minimiz-
ing the embedding distance between them, an optimal transport
is iteratively computed to map the two kinds of drug features into
the same spaces for semantic consistency. Finally, the aligned em-
beddings are aggregated and utilized for the DDI prediction. More
details about our proposed MOF-DDI are illustrated next.

4.1 Contextualized KG Representation

As we mentioned in the introduction, the rich context information
in the literature description about DDI pairs can contextualize the
structured information within the biomedical graph and further
enhance the reasoning ability. Since the raw literature text and
knowledge graph are in different modalities, we are inspired by
recent work [53] to employ a cross-modality text-graph encoder to
model the interaction between text and KG. Given an input instance
X = (Gs, S) defined in Definition 2 in Section 3, we first map the
raw input into initialized representations with a pre-trained BERT
model [10] and KG entity embeddings (e.g., TransE [3]). This initial
mapping procedure is formulated as:

(0) _(0)
(Vint Vi

(wl®

int >

,,..,vg\(]))) = KG-Embedding (vjnt, v1,-..,0N),
2

wgo), . ,wj(\g)) = BERT (Wint, Wi, - - -» WM) »

where we follow [53] to add a specific node vjy; to Gs that is con-
nected with all the entity nodes in the original Gs and insert a
special token wjp; at the beginning of S. Their representations will
serve as the bridge of the feature fusion between the two indepen-
dent modalities in our design.

The cross-modality text-graph model is stacked by L text-graph
fusion layers and each of them is equipped with a Transformer en-
coder fim(-) and a GNN encoder foNN(+) to process the input text
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representation and KG representation, respectively. Then, the rep-
resentation of wiyt and vj,; will be concatenated and go through a
modality interaction module InfoEx(-) to exchange the information
with each other,

=) (D) Y _ (I-1) _(I-1) (I-1)
(vim,v1 sV )_fGNN(Vint A s VN ),
=) () ) _ (I-1) _ (I-1) (I-1)
(Wint’wl e W )—fLM(Wint W Wy ) ®3)

(U]

Vint

[wl;

int’

] = InfoEx (\'xvﬁ(l) @V(l)

int int ) >

where @ is the concatenation operation and the input of the first fu-
sion layers is the initialized node/token representations in Equation
2. Particularly, we adopt a 2-layer MLP network as the InfoEx(-)
module and its output is equally split into follg and wl(riz as the
final representation of two special node/token produced by the [-th
layer. In this case, the information from one modality is enabled to
propagate to another one through the interaction node/token even
though other tokens/nodes are not directly involved in the modality
interaction process. After L-layer iteration, the contextualized KG
representations of the drug entities in the biomedical KG will be
selected and saved as Zgg € RIP%dk for further use.

4.2 Drug Molecular Structure Representation

In this section, we present the process of learning drug molecular
representations. For each drug D € D, its molecular structure
can be converted to a graph when we represent each atom and
chemical bond with a node and edge, respectively. The constructed
molecular graph is denoted as g = {V, E}, where V and E are the
atom set and chemical bond set within D. To map each molecular
graph with various atoms and chemical bonds into low-dimensional
embedding space, we employ a K-layer molecular GNN to process
the raw molecular graph. Due to the reason that the initial features
of atoms and chemical bonds are discrete, we first construct the
input node feature matrix of the molecular GNN by mapping the
discrete atom feature vectors a; of node i into continuous space with
trainable embedding matrices Wgsom € R9%da wwhere dg is the
dimension of a;. The initialization of chemical bonds is similar to
the atoms except each bond b;; that connects atom i and atom j will
be initialized at the beginning of every GNN layer. The initialization
matrix W}()i) € R%%4 can be either independent or shared across
different GNN layers. So, the initialization and message-passing
procedures are,

(0) I !
h®) = ReLU (Warom - ai) 5 hil) = ReLU (WD) - by;),

() _ () (I-1) ()
0= 3wl (o)
JjeN(@)

4

where hgl) eRY, wl(\/ll) € R¥% and N (i) represents the neighbor
set of atom i. After K-layer iterations, the drug molecule represen-
tation can be obtained by a readout function,

hy = ﬁ i;(hlf’)).

The learned drug molecular representations above are saved as
ZMmoL € RIDI%d and benefit the DDI prediction from the view of
fundamental chemistry mechanisms.

©)
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Figure 2: The overall Framework of MOF-DDI. (a) The construction of local KG and the retrieval of text description given a
DDI pair. An interaction node/token will be added to the text/KG for the information exchange. (b) The procedure to fuse the
information in the biomedical knowledge graph and raw literature text. (c) The hidden space alignment between the text-KG
embeddings and the molecular structure embeddings (learned from drug molecular graph) via the optimal transport map.
Finally, the combination of mapped text-KG embeddings and molecular structure embeddings is used for the DDI prediction.

4.3 Multi-modality Representation Alignment

Though it has been proved that the combination of the representa-
tions learned from multiple data sources can significantly boost the
performance of DDI prediction [5, 50], it might be sub-optimal to
directly combine them for the final prediction. To be more specific,
Zxg is learned from the structured knowledge graph which reflects
the drug metabolism pathway information, while Zyo, is based
on the drug molecular structure. Therefore, it is safe to say Zkg
and Zyor, are learned from the features in different modalities. As
stated in [4], the direct fusion of representations in different modal-
ities could lead to meaningless intrinsic distribution and thus fail to
maintain the semantic consistency in the separated representations.
For example, there will be certain dimensions of the Zgg indicate
what kinds of transporter proteins are involved in the metabolism
activity of the drugs, meanwhile, the corresponding dimensions of
the ZyjoL may represent the whether the drugs molecule contain
an aromatic ring or not. In this case, the aggregation of those di-
mensions will be meaningless and destroy the semantic consistency,
decreasing the expressive power of learned representations.

To alleviate this issue, we would like to map drug KG embed-
dings and drug molecular embeddings into the unified embedding
space before combining them for the DDI prediction task. This
problem can be formulated into the optimal transport problem [38]
in which we need to find a transport map T to project one prob-
ability distribution to another with minimized cost evaluated by
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p-th Wasserstein Distance. Specifically, given the learned Zgg and
Z)io1, we first need to compute the ground distance between each
dimension of them, where the ground distance between the i-th
embedding dimension of Zkg to the j-th embedding dimension of
ZnoL can be formulated as:

oo~

MOLH Vield],j € [d],

(6)

where we set p = 2 in this work. Assuming the empirical probability
distribution of Zxg and Zyior, being p and v, given the computed
ground distance C above, the optimal transport map is defined as:

Z ZTUCU,

i=1 j=1

min

OT(u,v,C
(HV ) Tell(p,v)

™)

where T € Ré%*d T, j is the transported probability from Z%(G

to ZIJ\/IOL and II(y, v) denotes the joint probability of ; and v. The
optimal transport map T is iteratively computed by the Sinkhorn
algorithm [6]. Then, we can use the optimal transport map T to
project Zgg into the unified space with Zyior, the aligned drug KG
representations are computed as,

(®)

ZxG = diag (1—"’) (TT + A1) Zka,

d

where 15 € R is all one vector, At is the adjustable parameter with
same size as T. After obtaining the aligned drug KG embeddings,
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we then carry out the fusion procedure by:

Z=21-Zgg+(1-2) - Zpor 9

where A is the balanced hyper-parameters, the fused drug represen-
tation Z will be utilized for the final DDI predictions.

4.4 Objective Function

In this section, we introduce the optimization objectives of our
method. Concretely, there are two phases in our pipeline, and they
own different optimization objectives.

4.4.1 Pre-training Objective. During the optimization of the text-
augmented KG representation procedure, we jointly optimize the
representations of text and KG with two tasks, i.e., the DDI ex-
traction task and the link prediction task. In particular, the DDI
Extraction task is to predict the DDI interaction type based on the
given text description, therefore it can be also treated as a multi-
class text classification task. However, unlike the DDI prediction
task, there are only five kinds of interaction types in the label set,
ie., C = {Mechanism, Effect, Advice, Int, Negative}. In particular,
we will append a text classification head frc(-) and a link predic-
tion head fip(-) on top of the cross-modality text-graph encoder
introduced in Section 4.1 to perform the two tasks, where both of
frc(+) and fip(+) are MLP-based networks. Given the text embed-
ding {wipt, Wi}?il of S, it will be fed into frc(-) to predict the DDI
interaction probability score of text S,

Vs = SoftMax (frc ([Wint ® w1 & - - wp])),

where the yg is the predicted probability score of DDI extraction
task. Thus, the objective of the DDI extraction task is:

IC]

LTeXtCls =- Z Z [YS]k 10g [}A’S]k s

SeS k=1

(10)

(11)

where yg is a one-hot vector that indicates the DDI relation types
described in text S.

On the other hand, the link prediction task is still similar to that
in the knowledge graph models. For any triplet (vp,v:,7) € Gs,
we retrieve the embedding of entity from {v,-}fi1 as vy and vy.
Meanwhile, we retrieve the embedding of relation r with trainable
relation embeddings { r,}‘lflK 6! Then a free-to-choose scoring func-
tion ¢, (-, -) is leveraged to discriminate the positive triplets from
negative ones. In this work, we employ the scoring function in
TransE for general consideration. So, the link prediction objective

is formulated as:

(op,0p,r) EQUQ™

Liinkpred = —ylogo (¢r(vp,ve) +y),  (12)
where o is the sigmoid function, Q is the positive triplets set ob-
served in Gg, Q™ represents the sampled negative triplets set and
y € {1,—1} indicates the label of the triplet (vp, v, r). Thus, the
model is optimized by the joint of the two objectives in Equation
11 and 12, i.e., L = Lrexicls + LLinkpred in the first phase. By do-
ing so, the text embeddings are enabled to make predictions with
the extra structural information in the biomedical KG and the rich
contextualized information can be leveraged to enhance the path-
way reasoning ability of the learned KG representations, especially
when there are missing links in the original KG.
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4.4.2  Fine-tuning Objective. During the second phase, the model
is optimized by the DDI prediction task. Depending on the dataset,
the task can be either multi-class predictions or multi-label pre-
dictions. Given a DDI pair (D;, Dj,r) € Gppr, the corresponding
drug representation z; and z; will be retrieved from fused drug
embedding Z in Equation 9. Then, their concatenation is fed into
an MLP network fppi(-) to predict the DDI probability score ¥;; of
the two drugs. Finally, the cross-entropy loss between ¥;; and the
ground truth y;; will be computed as the training objective:

¥ij = SoftMax (fppr (z: @ zj)).
[Rppr|

. (13)
[vij]; log [9i)] -

Lppr = -
(D;,Dj,r)eGppr k=1

5 EXPERIMENT

In this section, we first introduce the experimental settings of this
work. Then, comprehensive experimental results on different DDI
datasets and settings are provided to demonstrate the advantages of
MOF-DDI over other baselines. Ablation studies and other analysis
experiments are also included to justify the designs of MOF-DDI.

5.1 Experimental Settings

5.1.1 Datasets. (1) Drugbank [44]: Drugbank dataset is a huge
online dataset widely used in industry and academia. It contains
detailed drug information (e.g., generic name, chemical formula)
and corresponding drug targets. Hetionet [13]: Hetionet dataset is
a heterogeneous network of biomedical knowledge assembled from
29 different databases covering genes, drugs, diseases, and more.
Hetionet contains 47,031 nodes of 11 types (e.g., gene, symptom) and
2,250,197 edges of 24 types (e.g., treat, cause). According to Drug-
bank Accession Number, we map drugs in Drugbank to compounds
in Hetionet which outputs 1,414 approved drugs and 315,684 inter-
action pairs among these drugs. Next, we filter these interactions by
removing the interaction types which occur less than 100 times and
we filter these 1,414 drugs by removing the drugs without SMILES
sequence. In the end, we construct 310,049 drug-drug interaction
pairs consisting of 1,307 drugs and 89 types of pharmacological
relations. As for the knowledge graph, we follow the same filter-
ing strategy and construct a heterogeneous network consisting of
44,770 nodes out of 11 types with 2,248,814 edges from 24 relation
types. (2) TWOSIDES [36]: TWOSIDES is a database describing
drug-drug side effect information, which includes 1,318 side effects
types (e.g., hypotension and nausea) across 63,473 drug combina-
tions. In this work, we select 645 drugs and 46,221 drug—drug pairs
following [50]. We also sample 200 medium-frequency edge types
ranging from Top-600 to Top-800, ensuring every DDI type occurs
at least 1,000 times in the TWOSIDES dataset. Please note that edges
may have more than one DDI type. In our experiments, we follow
the previous work [24, 35] to omit the inductive setting experiment
on TWOSIDES since it is a smaller dataset with less rich drugs
compared with DrugBank.

5.1.2  Baselines. To thoroughly evaluate the effectiveness of our
propose MOF-DDI, we compare it with 11 baselines, including MLP,
two network embedding models (DeepWalk [27] and LINE [34]),
three graph neural network models (GraphSage [12] and GIN[46])
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Table 1: Overall performance comparison between MOF-DDI and baselines for both transductive and inductive settings on
the DrugBank dataset. Results are reported as meantstd%, the best performance is bolded and runner-ups are underlined. "-"

means the model is not applicable to the setting.

Dataset ‘ Drugbank (transductive) ‘ Drugbank (inductive)
Metric ‘ Accuracy Macro F1 ~ Macro Presicion Macro Recall ‘ Accuracy Macro F1 ~ Macro Presicion Macro Recall
MLP 70.14£0.37  57.32+0.58 65.15+0.30 53.81+0.42 58.9210.60  40.06%0.70 54.74+0.81 35.62+0.55
DeepWalk | 58.62+0.18  49.24+0.45 52.51+0.44 50.74+0.50 - - - -
LINE 62.57£0.49  33.27%0.35 44.34+0.25 28.17+0.32 - - - -
DeepDDI 82.29+0.18  76.58+0.18 79.75+0.20 76.12+0.18 68.43+£0.48  60.87+0.70 63.62+0.58 58.90+0.65
GraphSage | 81.21+0.35  76.25+0.34 81.83+0.28 72.90+£0.29 71.39£0.41  65.62%0.37 68.24+0.48 65.16+0.52
GIN 83.62+0.40  80.13%0.32 83.28+0.30 78.15+0.40 73.41£0.53  68.20£0.62 70.85+0.39 67.42+0.68
KG-DDI 85.14+0.32  78.14+0.22 83.47+0.51 76.75+0.27 74.85£0.62  64.82%0.65 67.36x0.70 64.43+0.45
MIRACLE | 86.54+0.51  79.90+0.36 84.22+0.20 77.87+£0.42 78.12£0.37  70.43%£0.26 74.40+0.16 68.36+0.20
KGNN 86.39+0.20  81.37%0.21 85.28+0.28 80.15+0.48 77.30£0.33  71.25%0.45 75.51+£0.32 67.35+0.52
SSI-DDI 87.10+0.45  84.95+0.26 83.76+0.49 82.86x0.28 79.60+£0.67  74.52%0.55 78.81+0.62 71.65£0.60
MUFFIN 88.31£0.30  86.69+0.27 85.83+0.18 85.31+0.40 80.68+0.45  75.57+0.52 79.90+0.38 73.88+0.49
SumGNN 88.85+0.21  85.20+0.44 86.62+0.31 84.32+0.16 81.54+0.44  76.21+0.29 79.13+£0.40 74.54+0.34
thFJDDI‘ 91.15+0.26  89.04+0.32 90.38+0.42 88.42+0.14 ‘84691&51 80.86+0.46 84.45+0.48 78.28+0.67

and six DDI-specified models (DeepDDI [32], KG-DDI [16], MIR-
ACLE [41], SSI-DDI [25], MUFFIN [5] and SumGNN [50]). For the
general baselines, we adopt the implementations from DGL [40]
and modify them to our datasets. For all the other DDI-specified
baselines, we simply adopt the code released by original authors.

5.1.3  Evaluation Strategy. We spilt the DDI dataset into 7:1:2 as
training, validation and test set. Because of the high class-imbalance
property of the dataset, we use the stratified split method to ensure
samples from every class would be equally separated in training,
validation, and test set. For every experiment, we run 3 times on 3
differently split datasets and report the average and standard devia-
tion. For the DrugBank dataset which is a multi-class classification
problem, we employ Accuracy, Macro-Precision, Macro-Recall and
Macro-F1 scores as the metrics for evaluation. For the TWOSIDES
dataset which is a multi-label prediction problem, we consider ROC-
AUC, PR-AUC and Average Precision as the metrics.

5.1.4 Implementation Details. During the optimization of text-
augmented KG embeddings, we initialized the KG embeddings with
TransE. Meanwhile, we follow the implementation of GreaseLM
[53] to employ the PubmedBERT [10] to initialize the text token
embeddings. To prevent label leakage during this phase, we only
retrieve documents related to DDI pairs that appear in the training
set (including positive and negative DDI pairs) and exclude any
other DDI pairs from the retrieval document corpus. When a text
summary contains multiple DDI pairs, we mask drug name tokens
that may cause information leakage. Additionally, it is worth not-
ing that many drug entities are not referred to by their generic
name in the text corpus. To address this issue, we leveraged the
drug brand names and synonyms provided in DrugBank to facil-
itate the mapping process and increase the mapping ratio. For
the implementation of the molecular GNN, we adopt the GIN
[46] encoder with mean readout function to learn the molecular
representations. We adopt the Adam optimizer for the optimiza-
tion. Besides, we find the best value of some hyper-parameters
through grid search. Specifically, the search spaces of learning
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rate [, embedding dimension d, batch size B the weighted aggre-
gation parameter A are {0.005,0.001,0.0005}, {128, 256,512, 1024},
{256,512,1024, 2048} and {0.1, 0.3, 0.5,0.7, 0.9}, respectively.

5.2 Overall Performance Comparison

In Table 1, we report the performance of our proposed MOF-DDI
and the eleven baselines on the DrugBank dataset, including the
transductive setting and inductive setting. From the table, we can
reach three observations: (1) The models leveraging external knowl-
edge (i.e., biomedical KGs and drug molecular structures) in the pre-
diction task can significantly outperform the baselines that solely
rely on the DDI graph (DeepWalk and LINE). Without external
knowledge, the trained models can not explain the mechanism
behind any DDI pair and only make predictions based on the prox-
imity of two drugs in the DDI graph. Besides, these models can
only make predictions for those drug pairs that both of the two
drugs are existing in the input DDI graph, which limits their appli-
cation to the drug pairs including new drugs (i.e., inductive setting);
(2) The large biomedical KG can boost the DDI prediction perfor-
mance by a large margin. Apart from MOF-DD], there are also three
other baselines (i.e., KG-DDI, KGNN and SumGNN) incorporating
the biomedical KGs and all of them achieve relatively high perfor-
mance than other baselines. Though the drug molecular structures
reflect the mechanisms from the view of fundamental chemistry,
it is more challenging to train a model to capture all the intrinsic
features of all the drugs because the drug molecules are in the 3-D
dimension and represent them with 2-D graphs will unavoidably
lose some information [22]. However, the advantages of methods
without considering drug molecular structures are less obvious
under the inductive setting due to the incomplete edges for the
under-explored drugs in KGs. (3) Our proposed MOF-DDI achieves
state-of-the-art performances in different settings compared with
other baselines. Particularly, the performance gain of MOF-DDI
over the state-of-the-art baseline is 2.30%, 2.25%, 3.76% and 3.13%
under the transductive setting. The improvement is much more ob-
vious under the inductive setting, where our method outperforms
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Table 2: Overall performance comparison between MOF-DDI
and baselines on the TWOSIDES dataset. Results are reported
as meantstd%, the best performance is bolded and runner-
ups are underlined.

Dataset | TWOSIDES
Metric ‘ Accuracy  ROC-AUC  Average Precision
MLP 70.28+0.43  81.44+0.86 80.65+0.82
DeepWalk | 80.08+0.56  87.67+0.49 84.09+0.36
LINE 80.50£0.79  88.20+0.54 87.25£0.48
DeepDDI 77.45+0.31  86.12+0.70 84.96+0.62
GraphSage | 77.89£0.50  87.12+0.48 85.65+0.50
GIN 78.94+0.90  88.14+0.25 87.15£0.66
KG-DDI 80.47+£0.39  89.75%0.97 87.28+1.05
MIRACLE | 82.45+0.70  90.86+0.63 88.35£0.86
KGNN 80.54£0.61  90.26+0.81 87.74£0.79
SSI-DDI 82.12£0.54  90.80+0.55 88.20+0.79
MUFFIN 82.87£0.69  90.65+0.48 88.26%0.60
SumGNN | 83.98+0.82  91.42+0.58 90.16£0.65
MOF-DDI | 85.284+0.66 92.50+0.72 91.59+0.68

the state-of-the-art baseline by 3.15%, 4.65%, 5.32% and 3.74% on the
four metrics, respectively. These results not only demonstrate the
effectiveness of MOF-DDI but also support our claim mentioned
in Section 1 that the rich contextualized information in biomedical
literature context is a helpful supplementary to the incomplete and
noisy information in KGs and will enhance the model generalization
ability on the unobserved drugs. Meanwhile, we demonstrate the
experimental results on the multi-label dataset TWOSIDES in Table
2, from which we can find very simialr observations as we analyzed
above. Our proposed MOF-DDI achieves 1.30%, 1.08% and 1.43%
improvements over the runner-up methods in the three metrics.
We noticed that the performance gain on the TWOSIDES dataset is
less obvious than that on the DrugBank dataset. One possible expla-
nation is that the TWOSIDES is less imbalanced than the DrugBank
dataset and our method can better handle the imbalanced scenario.

5.3 Ablation Study

In our proposed method, we incorporate various kinds of features
and add the optimal transport map to align them into the same
embedding spaces. To verify the effectiveness of each component
in MOF-DDI, we design three model variants and compare their
performance with MOF-DDI. The details of these model variants
are illustrated below and the comparison results on DrugBank and
TWOSIDES are shown in Table 3 and Table 4.

w/o Text. The raw text features are discarded and the output of
the vanilla KG model is taken as Zgg for the next step.

w/o InfoEx. The InfoEx component is discarded. KG entity em-
beddings are concatenated with the corresponding pre-trained
LM token embedding for prediction.

w/o OT. The optimal transport map is skipped. Zxg and ZyoL
are combined with weighted aggregation.

From the performance of the model variant w/o Text, one can clearly
see that the deficiency of text features will significantly decrease
overall performance and generalization ability. The phenomenon
indicates the contextualized information in texts can serve as a
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Figure 3: Performance with different training ratios.

supplement to the incomplete information in KGs. Meanwhile, the
model variant w/o InfoEx can only achieve comparable or even
worse performance than w/o Text, the experimental results can also
serve as evidence that the deficiency of a proper information fusion
module may fail fully taking advantage of the information in extra
features source and may deteriorate the learned embeddings. Last
but not least, the model variant w/o OT is outperformed by w/o Text
under the transductive setting but achieves the best performance
in the inductive setting among the three variants. On one hand,
the result further proves the importance of multi-source data in
enhancing the model generalization ability. On the other hand,
the improvement of overall performances induced by the optimal
transport reveals space heterogeneity existing among the features
from different sources.

5.4 Effects with Different Training Ratios

To further demonstrate the advantage of our method over other
baselines in handling incomplete knowledge. We conduct experi-
ments to test the effectiveness of our method and the other four
strong baselines on the two datasets with different training ratios
(i.e., 20%, 40%, 60% and 80%). From the experimental results in Fig-
ure 3, one can clearly find that the performances of all five methods
decrease monotonously with lower training ratios, however, their
performance deterioration amounts vary from each other. Taking
the experimental results on DrugBank as an example, the prediction
accuracy descends from 93.32% to 83.68, causing 9.64% reduction.
On the contrary, the performance decreases of the four baselines
from 80% training ratio to 20% training ratio are 10.87%, 11.83%,
13.32% and 15.91%, respectively. Also, we can find similar obser-
vations from the experimental results on the TWOSIDES dataset.
Hence, it is safe to claim our method achieves the best performance
and gains the highest robustness compared with other baselines.

5.5 Analysis on Feature Source

To thoroughly analyze the advantage of multi-source data on the
DDI prediction performance, we design three more model vari-
ants (i.e., w/o Mol, w/o KG, and w/o Text+KG) along with w/o
Text above to demonstrate the effectiveness of different features
sources. The experimental results of the four variants are shown
in Figure 4 to compare with our proposed MOF-DDL. It is easy
to find that MOF-DDI can consistently beat the four variants on
the two datasets, which indicates the DDI prediction performance
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Table 3: Performance comparison between MOF-DDI and its variants for both transductive and inductive settings on the
DrugBank dataset. Results are reported as meantstd%, the best performance is bolded.

Dataset ‘ Drugbank (transductive) ‘ Drugbank (inductive)
Metric ‘ Accuracy Macro F1 ~ Macro Presicion Macro Recall ‘ Accuracy Macro F1 ~ Macro Presicion Macro Recall
w/o Text 90.06£0.30  86.31+0.35 88.75+0.30 85.20+£0.34 81.76£0.49  76.35£0.60 79.20+0.72 75.32+0.50
w/o InfoEx | 89.85+0.30 86.83+0.52 87.06+0.47 85.26+0.50 81.90+0.63 76.70+0.39 79.51+£0.42 74.81+0.73
w/o OT 89.46+0.21 84.94+0.40 86.33+£0.40 83.72+0.16 82.54+0.44  78.52+0.48 80.31+0.30 77.54+0.34
MOF-DDI | 91.15+0.26  89.04+0.32 90.38+0.42 88.42+0.14 | 84.69+0.51 80.86+0.46 84.45+0.48 78.28+0.67
Table 4: Performance comparison between MOF-DDI and its E mean weighted OT-concat
variants on the TWOSIDES dataset. Results are reported as BN concat EEE OT-mean HEE OT-weighted
meanzstd%, the best performance is bolded. 010 93.0
Dataset TWOSIDES - U
g 90.0 =} 92.0
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Figure 4: The impacts of different feature sources.

will benefit from every feature source involved in our framework.
Among the four model variants, the deficiency of both the biomed-
ical KG and the text feature (w/o KG+Text) leads to the largest
performance deterioration (4.94% and 1.58%) compared with MOF-
DDI. When considering the impact of any single feature source,
one can see that biomedical KG tends to play the most important
role in DDI prediction. Though less performance deterioration was
gained without Text features, it still boosts the overall performance
by an obvious margin. Meanwhile, the input of w/o Text is the
same as some baselines, (i.e., MUFFIN and sumGNN), however, the
model variant can achieve even better performance than MUFFIN
and sumGNN, which further prove the effectiveness of our optimal
transport component.

5.6 Analysis on Optimal Transport

To demonstrate the impacts of the optimal transport map on the
prediction performance, we conduct experiments to evaluate the
effectiveness of six fusion strategies. The model variants OT-Mean,
OT-Concat and OT-Weighted fuse ZKG and Zyjor with mean ag-
gregation, concatenation and weighted aggregation, where the
weighted aggregation is the fusion operation employed in our meth-
ods. The other three variants, Mean, Concat and Weigted, are their
counterparts without the optimal transport map that transform Zgg
to Zkg. We show the experimental results of the six variants on
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to combine without extra effort, it can also be taken as another
advantage of the incorporating optimal transport map.

6 CONCLUSION

In this paper, we study the problem of predicting potential drug-
drug interactions, which is of great importance in the research
of pharmacology and medical health. Inspired by the promising
capabilities of multi-source data on enhancing model generaliza-
tion ability and further improving the overall performances, we
propose Multi-modality Features Optimal Fusion for Drug-Drug
Prediction, namely MOF-DDI, a DDI prediction framework that
can integrate the information from the raw biomedical literature
corpus, large biomedical KG and drug molecular structure at the
same time. We conduct extensive experiments on well-known DDI
datasets from both transductive setting and inductive setting to
compare our method with multiple state-of-the-art baselines. Ex-
perimental results show that MOF-DDI can consistently improve
the DDI prediction performances on all the datasets and settings.
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