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Optimal Control of a Large Population of

Randomly Interrogated Interacting Agents
Arash Komaee

Abstract

This article investigates a stochastic optimal control problem with linear Gaussian dynamics, quadratic performance measure,
but non-Gaussian observations. The linear Gaussian dynamics characterizes a large number of interacting agents evolving under a
centralized control and external disturbances. The aggregate state of the agents is only partially known to the centralized controller
by means of the samples taken randomly in time and from anonymous randomly selected agents. Due to removal of the agent
identity from the samples, the observation set has a non-Gaussian structure, and as a consequence, the optimal control law that
minimizes a quadratic cost is essentially nonlinear and infinite-dimensional, for any finite number of agents. For infinitely many
agents, however, this paper shows that the optimal control law is the solution to a reduced order, finite-dimensional linear quadratic
Gaussian problem with Gaussian observations sampled only in time. For this problem, the separation principle holds and is used
to develop an explicit optimal control law by combining a linear quadratic regulator with a separately designed finite-dimensional
minimum mean square error state estimator. Conditions are presented under which this simple optimal control law can be adopted
as a suboptimal control law for finitely many agents.

Index Terms

Linear quadratic Gaussian, non-Gaussian observation, separation principle, space-time sampling, stochastic control.

I. INTRODUCTION

T
HIS paper is mainly motivated by applications in control of magnetic fluids, in which a large number of interacting

magnetic nanoparticles are collectively driven toward a desired target using an external magnetic field [1]–[8]. This

magnetic field is controlled by a feedback loop that incorporates samples of the nanoparticle positions taken randomly in time

and space by a high-resolution photodetector array. As a main component of a fluorescence imaging system [9], the photodetector

array records intermittent flashes of light emitted randomly from the fluorescent coating of the magnetic nanoparticles excited

by a laser source [10].

Beyond this motivating application, the mathematical model and problem formulation in this paper are general enough to

fit into a broad class of applications in which the dynamics of a large number of randomly interrogated, interacting agents is

manipulated by a centralized control identically applied to all these agents.

This formulation describes the dynamics of a large number of interacting agents by a set of coupled linear Gaussian state-

space equations; each equation representing a single agent, and their coupling represents the interactions between the agents.

The stochastic inputs included in the equations are intended to represent model uncertainty and external disturbances applied

to the agents. A common control input applied to all equations characterizes an external manipulation identically affecting the

agents. The aggregate state of the agents is partially observed by means of the samples taken randomly in time and in the

set of agents (referred to as space). The distinctive feature of these samples is that the identify of the agents from which the

samples are taken is not known to the measuring device. By removal of the agent identity from the measured samples, the

observation set no longer remains linear Gaussian, as opposed to the more conventional sampling scheme that associates each

sample to a specific agent.

The focus of this paper is on development of control laws for optimal regulation of the agents around the origin of their

state space. This control task is formulated as minimization of an expected quadratic cost functional involving the aggregate

state of the agents and the control applied to them collectively. This formulation would define a conventional linear quadratic

Gaussian (LQG) problem, if each observed sample was tagged by the identity of an agent. In that case, the separation principle

would hold, under which, the design of an optimal control law is decomposed into the convenient design of a linear quadratic

regulator (LQR), and separately, a finite-dimensional minimum mean square error (MMSE) state estimator [11]–[19]. For the

sampling scheme of this paper, however, the optimal control problem cannot be simply treated as an LQG problem, despite

the linear Gaussian dynamics of the agents and the quadratic form of the adopted cost functional. In fact, for a finite number

of agents, the solution to this problem is inherently nonlinear and infinite-dimensional.

For infinitely many agents, however, it is shown as the major contribution of this paper, that the formulated optimal control

problem reduces to a finite-dimensional LQG problem holding the separation principle. The solution to this reduced problem

introduces a finite-dimensional control law for infinitely many agents, although the optimal control law for any finite number of
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agents is essentially infinite-dimensional. This finding adds the case of this paper to the short list of few linear quadratic control

problems with non-Gaussian measurements known for holding the separation principle [20]–[22]. This principle is exploited

then to obtain the explicit form of the optimal control law by simply combining a LQR state feedback with a finite-dimensional

MMSE state estimator.

The stochastic optimal control problem studied in this paper resembles the class of mean field game (MFG) problems, in the

sense that both problems concern the dynamical behavior and design of optimal control for a large population of interacting

agents [23]–[33]. Specifically, the linear Gaussian model and the quadratic cost functional of this paper apparently resembles

the subclass of LQG mean field games [23]–[28]. Yet, the two problems fundamentally differ in the nature and objectives of

control, and the structure of the observation set.

In this paper, control is essentially centralized, and is applied collectively to all agents by a single controller, while in MFG

problems, each agent is individually controlled by its own local controller. Further, the control in this paper is generated from

the partial observations of the aggregate state of all agents, and in this sense, the observation set is centralized. In MFG

problems, however, the observation set is decentralized, in the sense that each agent only has access to the complete or partial

knowledge of its own state, and possibly, the state of a single major player, not having a counterpart in this paper [24]–[32].

Finally, the control in this paper optimizes a single measure of the collective performance of all agents, in opposition to MFG

problems in which each agent independently optimizes its own performance measure (and therefore, they are called games).

A mean field optimal control problem studied in [34], similar to this paper, adopts a single measure of collective performance,

but unlike this paper, shares the same decentralized structure of control and observation set with MFG problems.

The stochastic dynamical model in this paper with infinitely many agents is primarily intended to describe the dynamics

of magnetic fluids controlled under magnetic fields. In [1]–[4], we represented this dynamics by a partial differential equation

(PDE), considering the magnetic fluid as a continuum mass. It turns out that a PDE is an unnecessarily complex description

for the dynamics of magnetic fluids, at least for the purpose of magnetic control design. In fact, a magnetic fluid is a discrete

set consisting a large number of magnetic nanoparticles, rather than a continuum mass. Hence, the model of this paper seems a

more natural framework to describe the dynamics of magnetic fluids. Furthermore, the PDE model of magnetic fluids adopted in

[1]–[4] disregards the magnetic interactions between the nanoparticles comprising the magnetic fluid. This potentially important

factor is appropriately accommodated by the model of this paper.

The dynamical behavior of the nanoparticles comprising a magnetic fluid is indeed nonlinear. The linear model proposed in

this paper only describes the small deviations of the particles from a nominal trajectory generated by some coarse open-loop

control. The objectives and design of this open-loop control are beyond the scope of this paper; the goal here is to develop a

fine closed-loop control to maintain the particles close to the nominal trajectory despite the external disturbances and model

uncertainty.

The remainder of this paper is organized into four sections followed by a conclusion and an appendix. In Section II, the

dynamical model concerned in this paper is introduced and its associated optimal control problem is stated. The major results

of this paper focusing on model reduction for infinitely many agents are presented in Section III. This section reduces the

optimal control problem of Section II into a finite-dimensional LQG problem with measurements randomly sampled in time.

The solution to this nonstandard LQG problem is presented in Section IV. The proofs of theorems and lemmas in Sections III

and IV are presented in Appendix to improve the readability of the text. Finally, Section V investigates the possibility to adopt

the simple optimal control law developed for infinitely many agents as a suboptimal control law for a large but finite number

of agents.

II. MODEL AND PROBLEM STATEMENT

A population of N interacting identical agents (or particles) is considered and their dynamics is represented by N coupled

linear stochastic differential equations (SDE) of the form

dxnt = Atx
n
t dt+

1

N

N
∑

i=1

Ft

(

xnt − xit
)

dt+Btutdt+Dtdwt +Gtdξ
n
t , n = 1, 2, . . . , N.

As a shorthand, these SDEs are expressed throughout the paper by the state-space equations

ẋnt = Atx
n
t +

1

N

N
∑

i=1

Ft

(

xnt − xit
)

+Btut +Dtẇt +Gtξ̇
n
t , (1)

where xnt ∈ R
nx , n = 1, 2, . . . , N denotes the state of agent n at time t > 0 and ut ∈ R

nu is a common control vector applied

to all N agents identically. The stochastic process {wt} and the collection of N stochastic processes {ξnt }, n = 1, 2, . . . , N
are statistically independent standard Wiener processes of the dimensions nw and nξ, respectively. The formal derivative of

these processes are white noises denoted by {ẇt} and
{

ξ̇nt
}

. The time-varying matrices At, Ft, Bt, Dt, and Gt are assumed

bounded, measurable, and of appropriate dimensions.

According to the set of state-space equations (1), the agents are coupled through three different mechanisms: the sum on

the right-hand side describes the pairwise interactions between the agents, the control ut identically manipulates all N agents,
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and ẇt is a common disturbance or modelling error perturbing all agents in a similar manner. Beyond the coupling between

the agents, each agent is individually perturbed by a Brownian motion represented by ξ̇nt .

The initial states x10, x
2
0, . . . , x

N
0 of the stochastic state-space equations (1) are statistically independent of {wt} and {ξnt },

n = 1, 2, . . . , N , and are modeled as identically distributed Gaussian random vectors with the expected value E [xn0 ] = x̄0 and

the covariance and cross-covariance matrices

E
[

(xn0 − x̄0) (x
n
0 − x̄0)

T
]

= Sz + Se, n = 1, 2, . . . , N

E
[

(xn0 − x̄0) (x
m
0 − x̄0)

T
]

= Sz, n 6= m = 1, 2, . . . , N,

where Sz and Se are nx × nx positive semidefinite matrices. Hence, each initial state can be decomposed into the sum

xn0 = z0 + en0 , n = 1, 2, . . . , N (2)

of two independent Gaussian random vectors z0 and en0 of the expected values E [z0] = x̄0 and E [en0 ] = 0 and the covariance

matrices Sz and Se, respectively. The common term z0 in this decomposition represents an identical shift of all agents from

the origin, while e10, e
2
0, . . . , e

N
0 describe the random dispersion of the agents around the central point z0.

The measurement model considered in this paper primarily intends to describe the output signal of a photodetector array

constructing the space-time distribution of a large number of magnetic nanoparticles by the fluorescence imaging technique.

This technique relies on the flashes of light emitted from the fluorescent coating of the nanoparticles excited by a coherent

light source. These flashes of light are intrinsically emitted at random times from random nanoparticles by the nature of the

fluorescence phenomenon [10]. Beyond this phenomenon, the measurement model of this paper is applicable to any scenario

involving multiple agents that intermittently report their state to a supervisory center without a means for synchronization.

This model is general enough to include the special case of periodic sampling in time (but not space) when the agents are

synchronized by a common clock.

The observation set provided for closed-loop control of N agents is a discrete set of space-time points sampled randomly

from them at the sampling times 0 < τ1 < τ2 < τ3 < · · · . The observation set generated during the time interval [0, t] is

denoted by YN
t and is expressed as

YN
t = ∅, t ∈ [0, τ1] (3a)

YN
t = {(τ1, y1) , (τ2, y2) , . . . , (τk, yk)} , t ∈ (τk, τk+1] , k = 1, 2, 3, . . . . (3b)

The spatial components y1, y2, y3, . . . of the space-time points in this observation set are random vectors in R
ny statistically

depending on the state of the agents, as explained below.

Suppose Ct is an ny × nx bounded matrix and a continuous function of time. Assume that {ν1, ν2, ν3, . . .} is a sequence

of independent integer random variables uniformly distributed on {1, 2, . . . , N}, and that {v1, v2, v3, . . .} is an independent

identically distributed sequence of zero-mean Gaussian vectors in R
ny with the covariance matrix V . Assume further that the

sequences {νk}, {vk}, and {τk} are mutually independent, and independent of {wt}, {ξnt }, n = 1, 2, . . . , N , and the initial

states x10, x
2
0, . . . , x

N
0 . Then, the spatial components yk of the observation set are given by

yk = Cτkx
νk
τk + vk, k = 1, 2, 3, . . . . (4)

This expression constructs the observation set by randomly sampling the aggregate state
(

x1t , x
2
t , . . . , x

N
t

)

in the agent set

(referred to as space) and in time. The ny × nx matrix Ct is incorporated into the model to extend its application to those

measuring devices which can only observe an ny-dimensional subspace of the entire state space of each agent (ny < nx). In

addition, the random sequence v1, v2, v3, . . . is introduced to represent the measurement noise.

In the simplest form, the sampling times τ1, τ2, τ3, . . . can take deterministic values, for instance, multiples of a constant

sampling period that implement a periodic sampling scheme. In the more general scenario of this paper, {τ1, τ2, τ3, . . .} is

a point process consisting of the transition times of a counting process {ηt, t > 0}. This process is fairly general and only

needs to satisfy two mild technical assumptions

Pr {τk = τk+1} = 0, k = 1, 2, 3, . . .

E [αηt ] <∞, |α| <∞, 0 6 t <∞. (5)

An example of {ηt} which holds both these condition is a homogenous Poisson counter with the constant rate λ > 0. In

addition, periodic sampling with a period hs is represented by a point process {τ1, τ2, τ3, . . .} which assigns probability 1 to

the single sample path hs, 2hs, 3hs . . . . Therefore, the results of this paper identically hold for a periodic sampling scheme.

In the context of the magnetic fluids controlled by magnetic fields, the original dynamics of the magnetic nanoparticles

is highly nonlinear. However, this nonlinear dynamics can be linearized around a nominal trajectory to approximate it with

the linear time-varying model (1). The nominal trajectory is generated by a coarse open-loop control designed to effectively

drive the magnetic nanoparticles along a desired path, albeit in the absence of disturbances and modeling errors. Then, the
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linear model (1) is utilized for design of a fine feedback control that enhances the coarse open-loop control by suppressing

disturbances and modeling errors.

The state and control vectors in the state-space equations (1) represent the deviations of the state and control of the original

nonlinear system from their nominal values. Then, the goal of feedback control is to maintain xnt , n = 1, 2, . . . , N and ut as

close as possible to zero. This objective is formulated in this paper as minimizing the expected quadratic cost

JN = E

[

∫ T

0

(

1

N

N
∑

n=1

‖xnt ‖2Qt
+ ‖ut‖2Rt

)

dt+
1

N

N
∑

n=1

‖xnT ‖2Qf

]

. (6)

Here, T > 0 is a fixed control time, Qt, t > 0 and Qf are nx × nx positive semidefinite matrices, Rt, t > 0 is an nu × nu

positive definite matrix, and ‖x‖Q denotes the weighted norm

‖x‖Q =
(

xTQx
)

1
2 .

The problem in this paper is to develop an optimal control law that minimizes the cost functional (6) for infinitely many

agents, i.e., for N → ∞. This problem can be interpreted in different ways, for instance, the optimal control law can be

viewed as the limit (at N → ∞) of the sequence of optimal control laws developed for each N = 1, 2, 3, . . .. Of course,

this approach is barely tractable since it requires to obtain the optimal control law for each finite N , a problem inherently

infinite-dimensional due to the non-Gaussian structure of the measurement model. A mathematically tractable alternative is

established in Problem 1 below. Before stating this problem, it is necessary to provide a solid definition for a control law.

Definition 1: A Y-map φ (·) is a vector function assigning a vector φ
(

Ȳ
)

∈ R
m to each instance

Ȳ = {(τ̄1, ȳ1) , (τ̄2, ȳ2) , . . . , (τ̄K , ȳK)}
of the observation set YN

t . A Y-map is called continuous if it is continuous in (ȳ1, ȳ2, . . . , ȳK) for any fixed (τ̄1, τ̄2, . . . , τ̄K).
Definition 2: A control law µ (·) is a time-dependent causal Y-map (i.e., µ (·, t) is a Y-map for each fixed t) with values

in R
nu . The causality of this map is defined by the property

µ
(

YN
s , t

)

= µ
(

YN
t , t

)

, s > t > 0.

The control law µ (·) is continuous if µ (·, t) is a continuous Y-map for each fixed t.
The optimal control problem for infinitely many agents is formulated in this paper as follows.

Problem 1: For each fixed N ∈ N, consider the stochastic state-space equations (1), the initial state (2), and the sampled

observation set YN
t defined in (3). Let µ (·) be a control law generating the YN

t -measurable control ut according to

ut = µ
(

YN
t , t

)

, t ∈ [0, T ]. (7)

This control law is called admissible if it is continuous and for some p > 1, it satisfies the regularity condition

sup
N∈N

sup
t∈[0,T ]

E
[

‖ut‖2p
]

<∞. (8)

For the control profile generated by (7) and its corresponding state trajectory
(

x1t , x
2
t , . . . , x

N
t

)

, t ∈ [0, T ], construct the cost

functional JN in (6) and define the cost of each admissible control law µ (·) as the limit

J∞ (µ (·)) = lim
N→∞

JN . (9)

Then, the goal is to minimize this cost functional on the set C of all admissible control laws, that is, to determine an optimal

control law µ∗ (·) ∈ C satisfying

J∞ (µ∗ (·)) 6 J∞ (µ (·)) , µ (·) ∈ C.

Remark 1: The set of admissible control laws includes at least a trivial control law µ (·) = 0, therefore it is nonempty.

In the remainder of this paper, a solution for Problem 1 is obtained in two steps. First, a reduced order finite-dimensional

model is introduced in Section III that can adequately describe the dynamics of infinitely many agents to the extent necessary

for solving Problem 1. This problem is next reformulated as a LQG problem for the reduced order system, which is a linear

Gaussian state-space equation with a Gaussian observation set. For this new LQG problem, it is shown in Section IV that the

separation principle holds, which makes it possible to develop an optimal control law via combining a LQR controller with a

MMSE state estimator. Development of the optimal control law is discussed in details in Section IV.
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III. MODEL REDUCTION FOR INFINITELY MANY AGENTS

As indicated by the stochastic state-space equation (1), the state of each agent is influenced by two categories of inputs:

the common inputs ut and ẇt identically applied to all agents, and the individual inputs ξ̇1t , ξ̇
2
t , . . . , ξ̇

N
t independently applied

to each single agent. Similarly, each initial state xn0 has two independent components: a common component z0 shared by all

agents, and an individual component en0 .

The linearity of the set of equations (1) allows to decompose the state xnt of each agent into a common component zt and

an individual component ent such that

xnt = zt + ent , n = 1, 2, . . . , N. (10)

Here, the common component zt, t > 0 solves the SDE

żt = Atzt +Btut +Dtẇt (11)

with the initial state z0, and the individual components ent are the solutions to the coupled SDEs

ėnt = Ate
n
t +

1

N

N
∑

i=1

Ft

(

ent − eit
)

+Gtξ̇
n
t , n = 1, 2, . . . , N (12)

with the initial states en0 , n = 1, 2, . . . , N . The initial states are Gaussian random vectors z0 ∼ N (x̄0, Sz) and en0 ∼ N (0, Se)
independent of each other and independent of the stochastic processes {wt} and {ξnt }, n = 1, 2, . . . , N .

In terms of the states zt and e1t , e
2
t , . . . , e

N
t of the state-space equations (11) and (12), the spatial components y1, y2, y3, . . .

of the observation set YN
t can be expressed as

yk = Cτkzτk + Cτke
νk
τk

+ vk, k = 1, 2, 3, . . . . (13)

The state vectors e1t , e
2
t , . . . , e

N
t in the dynamical system (12) are generated independent of the control input ut. Therefore,

they can be regarded as a colored noise process degrading the output vector (13).

In summary, the set of equations (11)-(13) can be interpreted as a dynamical system with the state zt, the control input ut,
and the sampled output {y1, y2, y3, . . .} which is corrupted by the colored measurement noise

{

eν1τ1 , e
ν2
τ2 , e

ν3
τ3 , . . .

}

and the white

measurement noise {v1, v2, v3, . . .}. The state of this system evolves in time according to the low-dimensional state-space

equation (11), while the colored noise is generated by the high-dimensional state-space equations (12) and uniform spatial

sampling of this high-dimensional state space.

It is clear from (12) that {ent }, n = 1, 2, . . . , N are Gaussian stochastic processes. Therefore, conditioned on the sampling

times {τ1, τ2, τ3, . . .}, the random vectors eνkτk , k = 1, 2, 3, . . . are marginally Gaussian for any agent number N . However, by

the following argument, they are not jointly Gaussian for a bounded N . Consider the random vector
(

eν1t1 , e
ν2
t2 , . . . , e

νK
tK

)

for an

arbitrary integer K and arbitrary but fixed sampling times t1, t2, . . . , tK ∈ [0, T ]. Conditioned on (ν1, ν2, . . . , νK), this random

vector is Gaussian, its elements are conditionally dependent, and its conditional covariance matrix depends on the instances of

(ν1, ν2, . . . , νK). Therefore, its unconditional density function cannot remain Gaussian after averaging the conditional density

function with respect to (ν1, ν2, . . . , νK).
For the limiting case with infinite number of agents, it will be shown, however, that the random vector

(

eν1t1 , e
ν2
t2 , . . . , e

νK
tK

)

converges in distribution to some Gaussian random vector with statistically independent elements. This key finding allows then

to replace
{

eν1τ1 , e
ν2
τ2 , e

ν3
τ3 , . . .

}

with a white Gaussian process, through which, the system of infinitely many agents is simply

described by the finite-dimensional state-space equation (11) and a linear Gaussian measurement model. This key result is

formally stated in Lemma 2. The proof of this lemma requires the technical background stated next in Lemma 1.

Lemma 1: Let At, Ft, and Gt be bounded and measurable functions and consider the set of coupled SDEs (12) driven by

the independent standard Wiener processes
{

ξ1t , ξ
2
t , . . . , ξ

N
t

}

. The initial states of these equations are independent zero-mean

Gaussian random vectors of the bounded covariance matrix Se. Then, the solution ent to the SDE (12) can be decomposed into

ent = ēnt +
1√
N
βt, n = 1, 2, . . . , N, t ∈ [0, T ], (14)

where ēnt solves the SDE
˙̄ent = (At + Ft) ē

n
t +Gtξ̇

n
t , n = 1, 2, . . . , N (15)

with the same initial state as (12), and βt is the solution to

β̇t = Atβt −
1√
N

N
∑

i=1

Ftē
i
t (16)

with the initial state β0 = 0. Besides, {ēnt } and {βt} maintain the following properties:
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i. The set of stochastic processes {ēnt }, n = 1, 2, . . . , N are mutually independent and Gaussian, with zero mean and the

covariance matrix Θt solving the Lyapunov matrix differential equation

Θ̇t = (At + Ft)Θt +Θt (At + Ft)
T
+GtG

T
t (17)

with the initial condition Θ0 = Se.

ii. The stochastic process {βt} is zero-mean and Gaussian, and βt has a uniformly bounded covariance matrix at each fixed

t ∈ [0, T ].

Proof: See Appendix A.

An immediate consequence of Lemma 1 for infinitely many agents is that the Gaussian processes {ent }, n = 1, 2, . . . , N
tend to be statistically independent as N → ∞. A heuristic argument for this claim maintains that {ēnt }, n = 1, 2, . . . , N are

independent Gaussian processes according to (15), and that the random vector ent converges to ēnt as N → ∞, by (14).

As the Gaussian processes
{

e1t
}

,
{

e2t
}

,
{

e3t
}

, . . . become statistically independent for infinitely many agents (i.e., when

N → ∞), the samples eν1t1 , e
ν2
t2 , . . . , e

νK
tK collected from these processes must be Gaussian and independent. This statement can

be violated only by sampling the same process more than once. However, the occurrence probability of such event tends to 0
as N → ∞. This heuristic argument is formalized in the following lemma.

Lemma 2: For each fixed integer N , define the Gaussian stochastic processes
{

e1t
}

,
{

e2t
}

, . . . ,
{

eNt
}

as the solutions to

the coupled SDEs (12) with independent zero-mean Gaussian initial states of the covariance matrix Se. Let {ν1, ν2, ν3, . . .} be

a sequence of independent integer random variables with uniform distribution on {1, 2, . . . , N}. For any integer K and any

choice of distinct sampling times t1, t2, . . . , tK ∈ [0, T ], define the random vector

ψN =
(

eν1t1 , e
ν2
t2 , . . . , e

νK
tK

)

. (18)

Consider the nx × nx positive definite matrix Θt solving the Lyapunov equation (17) with the initial state Se, and let Mt be

any nx × nx matrix decomposing Θt into

MtM
T
t = Θt, t ∈ [0, T ]. (19)

Let {ζ1, ζ2, ζ3, . . .} be a sequence of independent Gaussian random vectors in R
nx with zero mean and identity covariance

matrix, and define the Gaussian random vector

ψ = (Mt1ζ1,Mt2ζ2, . . . ,MtKζK) . (20)

Then, the sequence of random vector ψ1, ψ2, ψ3, . . . converges in distribution to the Gaussian random vector ψ as N → ∞,

i.e., the limit

lim
N→∞

Pr {ψN ∈ C } = Pr {ψ ∈ C } (21)

holds for any continuity set C ⊂ R
Knx of the probability measure on the right-hand side.

Proof: See Appendix B.

Remark 2: An alternative and equivalent definition for the convergence of random vectors in distribution is given in terms

of expected value [35, p. 253]. This new definition replaces the limit (21) in Lemma 2 with the limit

lim
N→∞

E [φ (ψN )] = E [φ (ψ)]

which holds for any bounded continuous scalar function φ (·).
A direct implication of Lemma 2 is that the non-Gaussian colored noise

{

eν1τ1 , e
ν2
τ2 , e

ν3
τ3 , . . .

}

in the observation model (13)

can be replaced for infinitely many agents by a white Gaussian process {Mτ1ζ1,Mτ2ζ2,Mτ3ζ3, . . .}. This replacement results

in a reduced order finite-dimensional system representing the dynamics of infinitely many agents. This reduced order system

maps the control input ut in the SDE (11) into the output

Yt = ∅, t ∈ [0, τ1] (22a)

Yt = {(τ1, y1) , (τ2, y2) , . . . , (τk, yk)} , t ∈ (τk, τk+1] , k = 1, 2, 3, . . . (22b)

by solving this SDE with an initial state z0 ∼ N (x̄0, Sz), and then, taking its state zt to generate the spatial components

yk = Cτkzτk + CτkMτkζk + vk, k = 1, 2, 3, . . . . (23)

Here, τ1, τ2, τ3, . . . denote the transition times of the counting process {ηt}, the matrix Mt solves (19), and {ζ1, ζ2, ζ3, . . .}
and {v1, v2, v3, . . .} are zero-mean white Gaussian processes with the covariance matrices Inx×nx

(identity matrix) and V ,

respectively. These white processes, the counting process {ηt}, the initial state z0, and the Wiener process {wt} in (11) are

mutually independent.

Remark 3: For infinitely many agents, Lemma 1 implies

lim
N→∞

1

N

N
∑

n=1

ent = 0, t > 0,
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where the convergence is understood in the mean square sense. This limit in turn results in

zt = lim
N→∞

1

N

N
∑

n=1

xnt , t > 0.

By this expression, the state zt of the state-space equation (11) is the ensemble average of the state of agents. This quantity

represents the center of mass of the agents in case the state of each agent represents its position in the 3D Euclidean space.

Therefore, the reduced order system simplifies control of a population of infinitely many agents to control of their center of

mass, while the deviations from the center of mass appear as an additional source of measurement noise.

For future reference, an N -agent system SN as well as the reduced order system S are formally defined as follows.

Definition 3: For any integer N , the N -agent system SN is a stochastic rule that generates the observation set YN
t from

the input process {us, 0 6 s 6 t} according to (3)-(4) and by solving the coupled SDEs (1) with the initial states (2).

Definition 4: The reduced order system S is a stochastic rule that generates the observation set Yt in terms of the input

process {us, 0 6 s 6 t} according to (22)-(23) and by solving the SDE (11) with the initial state z0 ∼ N (x̄0, Sz).
It must be shown next that the sequence S1,S2,S3, . . . of N -agent systems converges to the reduced order system S in

some reasonable sense. A possible approach followed in this paper is to show that the sequence Y1
t ,Y2

t ,Y3
t , . . . converges in

distribution to Yt when the systems S1,S2,S3, . . . and S are under the same control law. This approach is formalized in

the following lemma.

Lemma 3: Consider the stochastic systems S and SN as defined in Definitions 4 and 3. Assume that these systems are

controlled under the same control law µ (·), i.e., the controls applied to S and SN are generated by ut = µ (Yt, t) and

ut = µ
(

YN
t , t

)

, respectively. Then, for any continuous control law µ (·), the sequence of outputs Y1
t ,Y2

t ,Y3
t , . . . converges in

distribution to Yt, i.e, the limit

lim
N→∞

E
[

φ
(

YN
t

)]

= E [φ (Yt)] , t ∈ [0, T ] (24)

holds for every bounded and continuous scalar Y-map φ (·) [see Definition 1]. Furthermore, at each fixed t ∈ [0, T ], this limit

holds (and E [φ (Yt)] is bounded) for every nonnegative continuous φ (·) for which there exists p > 1 such that

sup
N∈N

E
[

φp
(

YN
t

)]

<∞. (25)

Proof: See Appendix C.

Remark 4: A more heuristic notion of convergence can be defined for a sequence of systems S1,S2,S3, . . . in terms of

the convergence of conditional probability measures. In this notion, the sequence Y1
t ,Y2

t ,Y3
t , . . . converges in distribution to

Yt, while the systems S1,S2,S3, . . . and S are excited by the same control input. In particular, the limit

lim
N→∞

E
[

φ
(

YN
t

)

|Ut

]

= E [φ (Yt) |Ut] , t ∈ [0, T ]

must hold for all bounded, continuous Y-maps φ (·) and every deterministic bounded control profile Ut = {us, 0 6 s 6 t}.

Convergence of stochastic systems in this sense is implied by the convergence in the sense of Lemma 3, taking the control

law µ (·) as a deterministic function not depending on YN
t .

The main results of this section are presented in Theorem 1 below. This theorem states that the optimal control Problem 1 is

well defined, and reformulates it as another optimal control problem subject to the reduced order system S . This new problem

admits an explicit solution presented in Section IV.

Theorem 1: Let µ (·) ∈ C be any admissible control law and Yt be the observation set (22) generated by the reduced order

system S in Definition 4. Apply the feedback control

ut = µ (Yt, t) , t ∈ [0, T ]

to the stochastic state-space equation (11) with the Gaussian initial state z0 ∼ N (x̄0, Sz). In terms of this control and the

state zt of the state-space equation (11) define the functional

J (µ (·)) = E

[

∫ T

0

(

‖zt‖2Qt
+ ‖ut‖2Rt

)

dt+ ‖zT ‖2Qf

]

+ Je, (26)

where the constant Je is given by

Je =

∫ T

0

tr {QtΘt} dt+ tr {QfΘT } (27)

in terms of the solution Θt to the Lyapunov matrix differential equation (17) with the initial state Se. Then, the limit (9) in

Problem 1 exists and the functional J∞ (µ (·)) in this problem is equal to J (µ (·)) in the sense that

J∞ (µ (·)) = J (µ (·)) , µ (·) ∈ C.
Proof: See Appendix D.
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IV. OPTIMAL CONTROL

This section presents a solution to Problem 1 based on the reduced order system S and Theorem 1. By this theorem, the

infinite-dimensional optimal control Problem 1 reduces to the finite-dimensional problem of minimizing the quadratic cost

functional (26) subject to the reduced order system S . In fact, this new formulation represents a nonstandard LQG problem

with the linear Gaussian dynamics (11), the linear Gaussian measurements (23), and the quadratic cost functional (26). The

problem is nonstandard as the observation set includes samples randomly taken in time, rather than a continuous-time signal or

samples taken uniformly in time. Yet, the separation principle identically holds for this nonstandard LQG problem, as shown

in Section IV-A. Based on this principle, the solution to Problem 1 is decomposed into an estimation and a control problem

discussed in Sections IV-B and IV-C, respectively.

A. Separation Principle

Consider the reduced order system consisting of the linear Gaussian dynamics (11) and the linear Gaussian observations

sampled randomly in time according to (23). The history of the samples up to time t is collected in the observation set Yt,

as defined in (22), and the problem is to obtain and admissible control law to minimize the quadratic cost (26). This section

verifies that the separation principle holds for this problem, in the sense that it can be solved in two separate steps: designing

an optimal control law while pretending the actual state of (11) is available for feedback, and then, replacing this state with its

MMSE estimate, pretending that the control applied to (11) is a solely deterministic function of time. To verify this property,

it must be shown that the information provided for estimation does not depend on the choice of control law.

In this paper, the separation principle is verified by adopting a stochastic open loop approach from [16], [19]. For a detailed

discussion of this approach, the reader is referred to [16], [19], while its implication to the problem of this paper is discussed

here. Let zu=0
t be the solution to the state-space equation (11) under the zero control ut = 0, and Yu=0

t denote its associated

observation set generated as (22) with the measurements

yu=0
k = Cτkz

u=0
τk + CτkMτkζk + vk. (28)

Suppose that µ (·) is an admissible control law and construct the stochastic process
{

zw=0
t

}

as the solution to

żw=0
t = Atz

w=0
t +Btµ

(

Yu=0
t , t

)

(29)

with the initial state zw=0
0 = 0. In terms of zu=0

t and zw=0
t , construct the observation set Yt as (22) with the measurements

yk = Cτk

(

zu=0
τk + zw=0

τk

)

+ CτkMτkζk + vk. (30)

Then, it must be shown that

σ (Yt) = σ
(

Yu=0
t

)

, t ∈ [0, T ], (31)

where σ (Yt) and σ
(

Yu=0
t

)

denote the σ-algebras generated by Yt and Yu=0
t , respectively.

The condition (31) is verified by induction as follows. First, for any two successive sampling times τk and τk+1, it is shown

that assuming the equality in (31) holds on t ∈ [0, τk], it will necessarily hold on t ∈ [0, τk+1]. To that end, it is observed

from (28) and (30) that

yk = yu=0
k + Cτkz

w=0
τk

. (32)

Moreover, (29) implies that zw=0
τk

is a sole function of Yu=0
τk

, and therefore, measurable with respect to both σ
(

Yu=0
τk

)

, and by

the induction assumption, σ (Yτk). It is observed from (22) that Yt = {Yτk , (τk, yk)} and Yu=0
t =

{

Yu=0
τk

,
(

τk, y
u=0
k

)}

hold

on t ∈ (τk, τk+1]. Then, substituting (32) into the former and comparing the expressions

Yt =
{

Yτk ,
(

τk, y
u=0
k + Cτkz

w=0
τk

)}

Yu=0
t =

{

Yu=0
τk ,

(

τk, y
u=0
k

)}

while σ (Yτk) = σ
(

Yu=0
τk

)

, the equality σ (Yt) = σ
(

Yu=0
t

)

is concluded on t ∈ (τk, τk+1], and therefore, on t ∈ [0, τk+1].
Since Yt = Yu=0

t = ∅, t ∈ [0, τ1], the equality in (31) trivially holds on [0, τ1]. Then, by induction, σ (Yt) = σ
(

Yu=0
t

)

holds

on t ∈ [0, τlast], where τlast is the last (largest) sampling time in the interval [0, T ]. Finally, the condition (31) is established

as σ (Yt) and σ
(

Yu=0
t

)

remain unchanged over t ∈ [τlast, T ].

B. Minimum Mean Square Error Estimator

Once applicability of the separation principle is verified, the MMSE state estimator for the dynamical system S is reduced

to a continuous-discrete Kalman filter [36], [37]. Specifically, consider the state-space equation (11) with the state vector zt,
the control vector ut, the initial state z0 ∼ N (x̄0, Sz), and the observation set Yt generated according to (22)-(23). Denote

the conditional mean and conditional covariance matrix of zt given Yt by ẑt = E [zt|Yt] and Σt = cov (zt|Yt), respectively.
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Then, under any Yt-measurable control ut, the estimators ẑt and Σt can be determined from a continuous-discrete Kalman

filter adopted from [36], [37]. Using the notation of this paper, this filter is expressed by the stochastic state-space equations

˙̂zt = Atẑt +Btut + Lt (yηt
− Ctẑt) η̇t (33a)

Σ̇t = AtΣt +ΣtA
T
t +DtD

T
t − LtCtΣtη̇t (33b)

Θ̇t = (At + Ft)Θt +Θt (At + Ft)
T +GtG

T
t (33c)

Lt = ΣtC
T
t

(

Ct (Σt +Θt)C
T
t + V

)−1
(33d)

with the state vector (ẑt,Σt,Θt) and the initial state

(ẑ0,Σ0,Θ0) = (x̄0, Sz, Se) . (34)

Among these equations, the first two are SDEs driven by the counting process {ηt} (with the formal derivative {η̇t}), the

third is an ordinary differential equation (ODE), and the last is a shorthand for expressing the gain matrix Lt in terms of the

state vector (ẑt,Σt,Θt). The interpretation of the SDEs (33a) and (33b) is as follows. During the time interval t ∈ (τk−1, τk]
between successive sampling times τk−1 and τk, the counting process ηt does not change and η̇t = 0 holds. Therefore, the

SDEs (33a) and (33b) reduce [36], [37, p. 194] to the ODEs

˙̂zt = Atẑt +Btut (35a)

Σ̇t = AtΣt +ΣtA
T
t +DtD

T
t . (35b)

These equations resemble the Kalman-Bucy filter without any measurements over t ∈ (τk−1, τk].
At each sampling time τk, a new sample yk is observed and is made available to the Kalman filter (33). This new sample is

then incorporated into the state estimation via a discontinuity in the states of (33a) and (33b) represented by [37, p. 194]

ẑτ+

k
= ẑτk + Lτk (yk − Cτk ẑτk) (36a)

Στ+

k
= Στk − LτkCτkΣτk . (36b)

These equations resemble the measurement update phase in a conventional Kalman filter.

It is worth mentioning that in opposition to the conventional Kalman and Kalman-Bucy filters which essentially work with

deterministic conditional covariance matrices, for the Kalman filter (33), this matrix is a stochastic process depending on the

observation. Due to this dependence on the observation, the overall system (33) is technically nonlinear, as opposed to the

conventional Kalman or Kalman-Bucy filters which are solely linear systems. Moreover, the conditional covariance matrix

in (33) cannot be precomputed like a conventional Kalman or Kalman-Bucy filter, rather, it must be generated in real time.

Remark 5: The conditional covariance matrix Σt generated by the continuous-discrete Kalman filter (33) has a feature vital

to the development of an optimal control law in Section IV-C, namely, it does not depend on the choice of the control law

that maps Yt into ut. According to (33b), {Σt} is a stochastic process solely generated by the counting process {ηt}, which

indeed is constructed independent of the choice of control law.

C. Optimal Control Law

Under the assumption of perfect state knowledge, it has been shown in [38, Ch. 8] that the linear state feedback

ut = −Ktzt (37)

minimizes the quadratic cost functional (26) subject to the linear Gaussian dynamics (11). The optimal feedback gain Kt is

an nu × nx matrix expressed as

Kt = R−1
t BT

t Pt (38)

based on the nx × nx matrix Pt solving the Riccati differential equation

Ṗt = −PtAt −AT
t Pt + PtBtR

−1
t BT

t Pt −Qt (39)

backward in time with the terminal condition

PT = Qf . (40)

In the absence of the complete state knowledge, the state zt in the control law (37) is replaced with its MMSE estimate ẑt
generated by the Kalman filter (33), leading to the control law

ut = −Ktẑt. (41)

The optimality of this control law is verified in Theorem 2 of this section. For future reference, the control law (41) that

combines the estimator (33) with the linear state feedback (37) is denoted by µ∗ (·) and is formally defined as follows.
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Let Kt be the gain matrix (38) and consider the system of differential equations consisting of

˙̂zt = (At −BtKt) ẑt + Lt (yηt
− Ctẑt) η̇t

and (33b)-(33d), with the state vector (ẑt,Σt,Θt). Suppose Ȳt is an instance of the observation set Yt in (22) [or YN
t in (3)],

and determine its associated instance
(

¯̂zt, Σ̄t,Θt

)

of the state vector by solving this system of equations over [0, t] with the

initial state (34). The control law µ∗ (·) is defined then as a deterministic mapping that maps the instance Ȳt into

µ∗
(

Ȳt, t
)

= −Kt
¯̂zt, t ∈ [0, T ]. (42)

Lemma 4: The control law µ∗ (·) defined according to (42) is admissible for the optimal control Problem 1.

Proof: See Appendix E.

The following theorem presents the main result of this paper by offering a solution to the optimal control Problem 1.

Theorem 2: The control law µ∗ (·) in (42) minimizes the cost functional J∞ (·) in Problem 1 on the set of all admissible

control laws C. Moreover, the minimum value of this cost functional is given by

J∞ (µ∗ (·)) = Jz + Je

in terms of the constants Je in (27) and Jz defined as

Jz = x̄T0 P0x̄0 + tr {P0Sz}+
∫ T

0

tr
{

DT
t PtDt

}

dt+ E

[

∫ T

0

tr
{

PtBtR
−1
t BT

t PtΣt

}

dt

]

. (43)

Here, x̄0 and Sz are the initial state (34) of the estimator (33), the matrices Bt, Dt, and Rt are parameters of Problem 1, Pt

is the solution to the Riccati differential equation (39) with the terminal condition (40), and Σt is the solution to the stochastic

differential equation (33b) with the initial state Sz .

Proof: Consider the reduced order system S as defined in Definition 4 and the quadratic cost functional J (µ (·)) as

given by (26). This system is represented by the state vector zt, the control ut, and the observation set Yt. For this system, the

conditional mean ẑt = E [zt|Yt] and the conditional covariance matrix Σt = cov (zt|Yt) solve the state-space equations (33)

with the initial state (34).

It is shown in [38, p. 289] that the cost functional J (µ (·)) can be rewritten as

J (µ (·)) = E

[

∫ T

0

‖ut +Ktẑt‖2Rt
dt

]

+ Jz + Je. (44)

As discussed in Remark 5, {Σt} does not depend on the choice of control law that generates a Yt-measurable control. Hence,

the constant Jz as defined in (43) cannot depend on the choice of the control law either. This statement trivially holds for Je
as well. Noting that the integrand on the right-hand side of (44) is nonnegative and that Jz +Je is a constant not depending on

this integrand, the minimum of J (µ (·)) is attained when this integrand vanishes, i.e., ut = −Ktẑt must hold on t ∈ [0, T ],
almost everywhere. This choice is in fact the control law µ∗ (·) and results in a minimum value of Jz + Je.

By Lemma 4, the control law µ∗ (·) is admissible, and by Theorem 1, the cost functional J∞ (µ (·)) is equal to J (µ (·))
for all admissible control laws. It is concluded that µ∗ (·) also minimizes J∞ (·) over the set of all admissible control laws,

and that Jz + Je is the minimum value of J∞ (·).

V. SUBOPTIMAL CONTROL FOR FINITELY MANY AGENTS

The reduced order system introduced in Definition 4 offers a finite-dimensional description for the dynamics of infinitely

many agents, at least to the extent needed for the input-output characterization and design of an optimal control law. Based

on this finite-dimensional system, a control law was developed in Section IV to be optimal for infinite number of agents. This

control law is finite-dimensional and easy to implement by a set of state-space equations.

The simplicity of this control law motivates its deployment as a suboptimal control for finitely many agents. This idea is

explained mathematically as follows. Let JN (µ (·)) denote the value of the cost functional (6) for the dynamical system (1)

with N agents under the control law µ (·) ∈ C. By Theorem 1, this value can be expressed in terms of J (µ (·)) in (26) as

JN (µ (·)) = J (µ (·)) + EN (µ (·)) ,
where EN (·) is a functional holding limN→∞ EN (µ (·)) = 0 for any fixed µ (·) ∈ C. Hence, JN (·) ≃ J (·) is a reasonable

approximation for a sufficiently large N , and as a result, J (·) can be minimized instead of JN (·) to determine a suboptimal

control law. In this case, the approximation error is bounded within the interval

0 6 JN (µ∗ (·))− inf
µ(·)∈C

JN (µ (·)) 6 εN , (45)
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where the nonnegative constant εN is given by

εN = sup
µ(·)∈C

2 |EN (µ (·))| . (46)

As a result, µ∗ (·) is εN -optimal for JN (·) in the sense that

JN (µ (·)) > JN (µ∗ (·))− εN , µ (·) ∈ C.
Following a quite sophisticated process, Theorem 1 together with Lemmas 1 through 3 prove the pointwise convergence of

the functional JN (·) to J (·) for each fixed µ (·) ∈ C, albeit without explicitly providing an expression for |EN (·)| or some

upper bound on its value. Yet, the proofs of these theorem and lemmas present strong indications to conjecture that there must

be a constant c > 0 to upper bound εN in (46) by

εN 6
c√
N
. (47)

These indications include the upper bounds (54) and (66) (see the proofs of Lemma 2 and Theorem 1), which predict a rate

of convergence 1/
√
N for JN (·), as well as the boundedness condition (8) which can extend the convergence of JN (·) from

pointwise to uniform sense. This extension allows to establish a bound on |EN (µ (·))| independent of µ (·). A complete proof

of (47), although seems possible, will be far from concise and needs several more pages beyond the limitation of this paper

(and possibly additional technical assumptions). Therefore, the formal proof of the upper bound (47) is skipped in this paper.

Even after proving this upper bound, it only implies that the approximation error (45) will decay with a rate 1/
√
N , without

being able to provide a tight, numerically tractable value of c. Without the knowledge of c, (47) will be barely an effective

numeric tool to evaluate the suboptimal performable of µ∗ (·). For practical applications, this section proposes an alternative

approach to establish lower bounds on the number N of the agents under which µ∗ (·) is near-optimal. This approach relies

on the fact that S is derived from SN based on two crucial properties: first, the stochastic processes
{

e1t
}

, . . . ,
{

eNt
}

tend

to become mutually independent as N → ∞, and second, the probability of sampling a single process {ent } more than once

tends to 0 as N → ∞. For approximating SN with S , the value of N must be then chosen large enough to hold a close

approximation of these properties.

A measure of mutual independence for the pair of Gaussian processes {ent } and {emt } is their cross-correlation function

γN (t1, t2) =
E
[

(

ent1
)T
emt2

]

(

E
[

∥

∥ent1
∥

∥

2
]

E
[

∥

∥emt2
∥

∥

2
])1/2

, n 6= m.

For infinitely many agents, this function takes the exact value of 0. To attain a close approximation of this vlaue, N must be

chosen sufficiently large to maintain the absolute value of this function below a small threshold 0 < δ1 ≪ 1 over the entire

control period t ∈ [0, T ]. This condition explicitly requires the number of agents N to satisfy the inequality

sup
t1,t2∈[0,T ]

|γN (t1, t2)| 6 δ1. (48)

It can be shown using Lemma 1 that the left-hand side of this inequality converges to 0 with the rate 1/N as N → ∞. Thus,

there must exist some value of N to satisfy the inequality. An explicit expression for the cross-correlation function γN (·) can

be derived from Lemma 1 via a straightforward but lengthy procedure, which is skipped here.

For an infinite number of agents, the probability of multiple sampling of a single process is identically zero over the entire

control time [0, T ]. For a close approximation, this probability must be kept below a small threshold 0 < δ2 ≪ 1. To be less

conservative, this condition is enforced only over a coherence time of the stochastic process {ent } instead of the entire control

period. The coherence time is typically much shorter than the control time and is defined as the time interval between two

samples of the stochastic process {ent } that are approximately independent. The coherence time is defined here as

Tc (N) = inf
{

s
∣

∣ supt∈[0,T ] |ρN (t, t+ s)| 6 δ1

}

in terms of the autocorrelation function

ρN (t1, t2) =
E
[

(

ent1
)T
ent2

]

(

E
[

∥

∥ent1
∥

∥

2
]

E
[

∥

∥ent2
∥

∥

2
])1/2

. (49)

Using the law of total probability [35, p. 25], the probability of multiple sampling in the interval [t, t+ Tc (N)] is given by

1−
N
∑

k=0

1

Nk
· N !

(N − k)!
Pr
{

ηt+Tc(N) − ηt = k
}

,
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N = 2 N = 5

N = 20 N = 100

Fig. 1. Autocorrelation of the random sequence
{
e
ν1
τ1 , e

ν2
τ2 , e

ν3
τ3 , . . .

}
estimated from sample paths of length 106 for N = 2, 5, 20, 100.

where {ηt} is the counting process used for sampling in time. Hence, the number of agents N must be large enough to keep

this probability below δ2 for every t ∈ [0, T ]. This requirement constrains the smallest value of N to satisfy the inequality

inf
t∈[0,T ]

N∑
k=0

1

Nk
· N !

(N − k)!
Pr

{
ηt+Tc(N) − ηt = k

}
� 1− δ2. (50)

The analysis above demonstrates the essence of the problem that leads to a lower bound on N . Yet, the key question of how

to select the numerical values of δ1 and δ2 is not addressed. A plausible answer to this question requires a difficult trade-off

between two extremes: smaller values of δ1 and δ2 result in closer approximations for the dynamics of the agents, but also

in excessively conservative lower bounds for N . In addition to the difficulty in choosing δ1 and δ2, solving the inequality

conditions (48) and (50) is not straightforward analytically.

A more practical approach to establish a lower bound on N is the use of Monte Carlo methods and a whiteness test. This

approach is in particular easy to implement for a time-invariant system (1) with matrices At, Ft, and Gt independent of time.

It is reminded that the random sequence
{
eν1τ1 , e

ν2
τ2 , e

ν3
τ3 , . . .

}
is not white for any finite N , but it tends to a white sequence as

N → ∞, as shown in Lemma 2. This fact is the core property used for model reduction in Section III, which eventually led

to the optimal control law of Section IV. Hence, for any finite value of N for which
{
eν1τ1 , e

ν2
τ2 , e

ν3
τ3 , . . .

}
is effectively white,

this control law must perform near optimal.

To evaluate the whiteness of
{
eν1τ1 , e

ν2
τ2 , e

ν3
τ3 , . . .

}
for a given number of agents, a long sample path of this random sequence

is generated by numerically solving the coupled SDEs (12), and then, applying the random sampling procedure introduced in

Section II. Next, the whiteness of the sequence is evaluated, for example, by estimating its autocorrelation function [defined

similar to (49)], and comparing it against the delta function.1

This procedure is demonstrated for the numerical parameter values At = −1, Ft = 0.2, and Gt = 0.8. With these values, the

state of each agent is a scalar, but this scalar represents only one element of the 3-dimensional position vector of a magnetic

particle moving in a homogeneous and isotropic environment. The sampling is performed by a homogenous Poisson process

with the constant rate λ = 100. In Fig. 1, the autocorrelation function of
{
eν1τ1 , e

ν2
τ2 , e

ν3
τ3 , . . .

}
is illustrated for different values

of N = 2, 5, 20, 100. It is observed that this function tends to the delta function as N increases. As a measure of whiteness,

the maximum distance (∞-norm) between the autocorrelation function and the delta function is illustrated versus N in Fig. 2.

By this figure, the autocorrelation function tends to the delta function asymptotically, which implies that
{
eν1τ1 , e

ν2
τ2 , e

ν3
τ3 , . . .

}
becomes in effect white for a large enough N , e.g., N � 50.

A. Simulation Results

Section IV-C indicates that the control law μ∗ (·) defined in (42) is optimal for infinite number of agents. This section

examines the performance of this control law for finite number of agents using computer simulations. A MATLAB simulator

simultaneously solves the stochastic state-space equations (1), generates the observation set YN
t according to (3), solves the

equations of the Kalman filter (33), and applies the feedback control (41) to the dynamical system (1). The numerical values

of the simulation parameters are presented in TABLE I.

1This indeed is only a simple practical test of whiteness; strictly speaking, whiteness is not implied by uncorrelatedness for non-Gaussian processes. For
test of whiteness, more advanced techniques exist [39], for example, by using the auto-mutual information function [40].
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N

Fig. 2. Measure of whiteness of
{
e
ν1
τ1 , e

ν2
τ2 , e

ν3
τ3 , . . .

}
versus N . The vertical axis shows the maximum distance of the autocorrelation function from the

delta function, as a measure of whiteness. As N → ∞, this distance clearly tends to 0, which implies that the autocorrelation function tends to the delta
function asymptotically.

N At Ft Bt Dt Gt Ct λ V Sz Se Qt Rt Qf T

20 −1 0.2 1 2.5 0.8 1 100 0.04 0.16 0.4 1 0.001 0.031 10

TABLE I
NUMERICAL VALUES OF THE SIMULATION PARAMETERS.

The simulation results are presented in Fig. 3. A comparison between the state value zt and its estimate ẑt is illustrated in

Fig. 3(a), and the estimation error zt− ẑt is shown versus time in Fig. 3(b). The variance of the estimation error is numerically

computed as 0.148. This value is compared with the expected value E [Σt] estimated from Fig. 3(c) as 0.135. The small gap

between these numbers indicates that the actual variance of the estimation error is close to what is expected of the Kalman

filter. A stronger supporting evidence for near-optimal performance of the Kalman filter is the whiteness of its innovations

process. Specifically, the distance between the autocorrelation function of this process and the delta function is computed

numerically as small as 0.02.

The feedback control ut = −Ktẑt is illustrated versus time in Fig. 3(d). The performance of this closed-loop control is

compared with the open-loop control ut = 0 in Fig. 3(e), when both controls are applied to the state-space equation (11),

and in Fig. 3(f) when the controls are applied to (1). In both cases, the control objective is to maintain the states zt and xn
t

as close as possible to 0. Evidently, the closed-loop control is far more effective in achieving this goal for both zt and xn
t .

The average power of zt is estimated as 0.26 and 3.2 for closed-loop and open-loop controls, respectively. The corresponding

numbers for xn
t are 0.63 and 3.6.

VI. CONCLUSION

Optimal control of a large number of interacting agents was considered under a centralized control and a common external

disturbance acting on them collectively, as well as independent disturbances applied to them individually. These agents imitate

the magnetic nanoparticles comprising a magnetic fluid, which are driven toward a target by a controlled magnetic field, while

being perturbed by a common disturbance collectively, and by Brownian motion individually. The dynamics of the agents was

described by linear stochastic state-space equations driven by white Gaussian processes and a common input regarded as the

centralized control. Subject to this linear Gaussian dynamics, an optimal control problem was defined aimed at minimizing a

quadratic cost functional with an imperfect knowledge of the state of the agents. This knowledge was provided by samples

taken randomly in time from the state of anonymous randomly chosen agents.

Due to the non-Gaussian structure of the observation set, the optimal control law for this problem is nonlinear and infinite-

dimensional in essence. Yet, it was shown that for infinitely many agents, the problem can be systematically reduced into a

finite-dimensional but nonstandard LQG problem holding the separation principal. Using this principal, the optimal control

law was determined explicitly by combining a linear quadratic regulator with a separately designed finite-dimensional MMSE

state estimator. The possibility of adopting this explicit control law to approximate the optimal control for finitely many agents

was investigated, and conditions on the number of agents for a close approximation were presented.

APPENDIX

PROOF OF LEMMAS AND THEOREM 1

A. Proof of Lemma 1

Assuming that ēnt and βt are the solutions to (15) and (16) with the initial states ēn0 = en0 and β0 = 0, respectively, it is

straightforward to verify by direct inspection that (14) solves the SDE (12). The proof of statements i and ii are given below.
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Fig. 3. Simulation results: (a) the state zt of the dynamical system (11) and its estimate ẑt versus time; (b) the estimation error zt − ẑt; (c) conditional
covariance Σt; (d) suboptimal control ut = −Ktẑt; (e) comparison of zt under the closed-loop control ut = −Ktẑt and the open-loop control ut = 0; (f)
same comparison for the state xn

t of the dynamical system (1), where n = 2 is randomly chosen.

Proof of i: The stochastic processes {ēnt }, n = 1, 2, . . . , N are generated by linear filtering of jointly independent Wiener

processes {ξnt }, n = 1, 2, . . . , N , therefore, they are Gaussian, zero-mean, and jointly independent. It is shown in [38, p. 66]

that the covariance matrix of {ēnt } evolves in time according to the matrix differential equation (17).

Proof of ii: The stochastic process {βt} is generated by the linear state-space equation

β̇t = Atβt − Ftēt

with zero initial state and the stochastic input

ēt =
1√
N

N∑
i=1

ēit. (51)

Since {ēt} is zero-mean and Gaussian, {βt} will be zero-mean and Gaussian as well. Moreover, ēt has a bounded covariance

matrix Θt not depending on N , implying that βt must have a uniformly bounded covariance matrix.

B. Proof of Lemma 2

By Lévy’s continuity theorem [35, p. 322], convergence of the random vectors ψ1, ψ2, ψ3, . . . in distribution is concluded

from pointwise convergence of their characteristic functions:

lim
N→∞

E
[
exp

(
jωTψN

)]
= E

[
exp

(
jωTψ

)]
, ω ∈ R

Knx .

By an additional condition of this theorem, the characteristic function of ψ must be continuous at ω = 0, which trivially holds

for the Gaussian random vector ψ. Hence, the pointwise convergence of the characteristic functions is verified in the remaining

of this proof.

By Lemma 1, the random vector ψN can be written as

ψN = ψ̄N +
1√
N

χN ,

where ψ̄N and χN are Knx × 1 random vectors defined as

ψ̄N =
(
ēν1t1 , ē

ν2
t2 , . . . , ē

νK
tK

)
χN = (βt1 , βt2 , . . . , βtK ) .
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The characteristic function of ψN is then expressed as

E
[

exp
(

jωTψN

)]

= E
[

exp
(

jωT ψ̄N

)]

+RN (ω) , (52)

where the complex function RN (ω) is defined as

RN (ω) = E

[

exp
(

jωT ψ̄N

)

(

exp

(

jωTχN√
N

)

− 1

)]

.

It is shown next that this function converges to 0 as N → ∞. To that end, the identity ej2θ − 1 = j2ejθ sin θ is employed to

rewrite RN (ω) as

RN (ω) = E

[

j2 exp

(

jωT ψ̄N +
jωTχN

2
√
N

)

sin

(

ωTχN

2
√
N

)]

.

Taking the absolute value of both sides, applying the inequality

|E [X ]| 6 E [|X |] , (53)

noting that
∣

∣ejθ
∣

∣ = 1, and using the inequality |sin θ| 6 |θ|, it is straightforward to show

|RN (ω)| 6 2E

[∣

∣

∣

∣

sin

(

ωTχN

2
√
N

)∣

∣

∣

∣

]

6
1√
N

E
[
∣

∣ωTχN

∣

∣

]

. (54)

By Lemma 1, ωTχN is a Gaussian random variable with zero mean and bounded variance, implying that

lim
N→∞

RN (ω) = 0, ω ∈ R
Knx .

Let D be the event that the random variables ν1, ν2, . . . , νK take distinct values, and denote its complement by D ′. Using

the statistical independence of ν1, ν2, . . . , νK , the probability of D is computed as

qN =
N (N − 1) (N − 2) · · · (N −K + 1)

NK
.

Clearly, qN tends to 1 as N → ∞.

The law of total expectation [35, p. 79] implies that

E
[

exp
(

jωT ψ̄N

)]

= E
[

exp
(

jωT ψ̄N

)

|D
]

qN + E
[

exp
(

jωT ψ̄N

)

|D ′
]

(1− qN )

= E
[

exp
(

jωT ψ̄N

)

|D
]

+ R̃N (ω) , (55)

where R̃N (ω) is defined as

R̃N (ω) = (1− qN )
(

E
[

exp
(

jωT ψ̄N

)

|D ′
]

− E
[

exp
(

jωT ψ̄N

)

|D
])

.

Taking the absolute value of both sides, applying the triangle inequality and (53), and noting that
∣

∣ejθ
∣

∣ = 1, it is shown that
∣

∣R̃N (ω)
∣

∣ 6 2 (1− qN ) .

This inequality implies that

lim
N→∞

R̃N (ω) = 0, ω ∈ R
Knx .

Conditioned on ν1, ν2, . . . , νK and the event D , the random vectors ēν1t1 , ē
ν2
t2 , . . . , ē

νK
tK are zero-mean Gaussian and jointly

independent with the covariance matrices Θt1 ,Θt1 , . . . ,ΘtK . Therefore, their conditional characteristic function is the same

as the characteristic function of ψ. This fact and the law of total expectation result in

E
[

exp
(

jωT ψ̄N

)

|D
]

= E
[

E
[

exp
(

jωT ψ̄N

)

|ν1, ν2, . . . , νK ,D
]

|D
]

= E
[

E
[

exp
(

jωTψ
)]

|D
]

= E
[

exp
(

jωTψ
)]

.

Combining this result with (52) and (55), the characteristic functions of ψN is expressed as

E
[

exp
(

jωTψN

)]

= E
[

exp
(

jωTψ
)]

+RN (ω) + R̃N (ω) .

Then, the proof is completed by taking the limit of both sides as N → ∞, and noting that the last two terms on the right-hand

side vanish as N → ∞.



16

C. Proof of Lemma 3

The boundedness property (5) of ηt implies (e.g., by using Markov’s inequality)

lim
K→∞

Pr {ηt > K} = 0. (56)

Application of the law of total expectation [35, p. 79] yields

E
[

φ
(

YN
t

)]

=

K
∑

k=0

E
[

φ
(

YN
t

)

|ηt = k
]

Pr {ηt = k}+ E
[

φ
(

YN
t

)

|ηt > K
]

Pr {ηt > K}

which in turn leads to the inequality
∣

∣

∣

∣

∣

E
[

φ
(

YN
t

)]

−
K
∑

k=0

E
[

φ
(

YN
t

)

|ηt = k
]

Pr {ηt = k}
∣

∣

∣

∣

∣

=
∣

∣E
[

φ
(

YN
t

)

|ηt > K
]∣

∣Pr {ηt > K}

6 φ̄Pr {ηt > K} .
Here, 0 < φ̄ < ∞ is an upper bound of |φ (·)| and its existence is assumed by the lemma. By letting first N → ∞ and next

K → ∞ in both sides of this inequality and using (56), it is concluded that

lim
N→∞

E
[

φ
(

YN
t

)]

=

∞
∑

k=0

Pr {ηt = k} lim
N→∞

E
[

φ
(

YN
t

)

|ηt = k
]

. (57)

The law of total expectation also implies

E [φ (Yt)] =

∞
∑

k=0

Pr {ηt = k}E [φ (Yt) |ηt = k] . (58)

It is shown that the left-hand sides of (57) and (58) are equal by verifying for all k = 0, 1, 2, 3, . . . that

lim
N→∞

E
[

φ
(

YN
t

)

|ηt = k
]

= E [φ (Yt) |ηt = k] . (59)

This equality trivially holds for k = 0, therefore it is proven for k = 1, 2, 3, . . . as follows.

Let ψN and ψ be the random vectors (18) and (20) defined in Lemma 2 (replace t1, t2, . . . , tK with τ1, τ2, . . . , τk). Define

the scalar function φ̃ (·) as the conditional expected value

φ̃ (ψN ) = E
[

φ
(

YN
t

)

|ηt = k, τ1, τ2, . . . , τk, ψN

]

. (60)

The dynamical systems SN and S have similar structures and are controlled under the same feedback control law; they differ

only in the probability distributions of ψN and ψ. Hence, the same function φ̃ (·) represents the conditional expectation

E [φ (Yt) |ηt = k, τ1, τ2, . . . , τk, ψ] = φ̃ (ψ) . (61)

Since by assumption, φ (·) is a bounded Y-map, φ̃ (·) is a bounded function. On the other hand, φ̃ (·) is generated via

a sequence of operations performed on the continuous control law µ (·) and continuous Y-map φ (·). These operations are

integration, function decomposition, and expected value, all preserving continuity. Therefore, φ̃ (·) is a continuous function.

Then, application of Lemma 2 and Remark 2 to φ̃ (·) yields

lim
N→∞

E
[

φ̃ (ψN )
∣

∣ηt = k, τ1, τ2, . . . , τk

]

= E
[

φ̃ (ψ)
∣

∣ηt = k, τ1, τ2, . . . , τk

]

.

Substituting (60) and (61) into this equality and using the smoothing property of conditional expectation result in

lim
N→∞

E
[

φ
(

YN
t

)

|ηt = k, τ1, τ2, . . . , τk
]

= E
[

φ (Yt) |ηt = k, τ1, τ2, . . . , τk
]

.

Conditioned on ηt = k, taking the expected value of both sides of this equality leads to

E
[

lim
N→∞

E
[

φ
(

YN
t

)

|ηt = k, τ1, τ2, . . . , τk
] ∣

∣ηt = k
]

= E
[

E
[

φ (Yt) |ηt = k, τ1, τ2, . . . , τk
]

|ηt = k
]

.

Since φ (·) is bounded by assumption, Lebesgue’s dominated convergence theorem [35, p. 187] allows to change the order of

limit and outer expected value in the left-hand side. Then, the smoothing property of conditional expectation leads to (59).

To prove the second statement, define the scalar function

φ̃α (·) = min {φ (·) , α}
indexed by the positive scalar α. Then, the expected value on the left-hand side of (24) can be expressed as

E
[

φ
(

YN
t

)]

= E
[

φ̃α
(

YN
t

)

]

+ δN (α) , (62)
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where δN (α) is defined as

δN (α) = E
[(

φ
(

YN
t

)

− α
)

I
{

φ
(

YN
t

)

> α
}]

in terms of the indicator function

I {φ > α} =

{

1, φ > α

0 φ 6 α.

Since δN (α) in (62) is nonnegative, Lyapunov’s inequality [35, p. 193] and the assumption (25) result in

E
[

φ̃α
(

YN
t

)

]

6 E
[

φ
(

YN
t

)]

6
(

E
[

φp
(

YN
t

)])
1
p

6 sup
N∈N

(

E
[

φp
(

YN
t

)])

1
p

<∞.

Noting that φ̃α (·) is a bounded and continuous function, the first statement of this lemma implies

E
[

φ̃α (Yt)
]

= lim
N→∞

mathrmE
[

φ̃α
(

YN
t

)

]

<∞. (63)

In addition to being bounded, the left-hand side of this equality is an increasing function of α, leading to the existence and

boundedness of the limit

lim
α→∞

E
[

φ̃α (Yt)
]

= E [φ (Yt)] <∞. (64)

By taking the limit of (62) first as N → ∞ and next α→ ∞ and making use of (63) and (64), it is concluded that

lim
N→∞

E
[

φ
(

YN
t

)]

= E [φ (Yt)] + lim
α→∞

lim
N→∞

δN (α) .

This equality proves (24) by showing next that the double limit on the right-hand side vanishes.

The definitions of δN (α) and the indicator function together with Hölder’s inequality [35, p. 193] imply

δN (α) 6 E
[

φ
(

YN
t

)

I
{

φ
(

YN
t

)

> α
}]

6
(

E
[

φp
(

YN
t

)])

1
p

(

E
[

I
{

φ
(

YN
t

)

> α
}q
])

1
q

=
(

E
[

φp
(

YN
t

)])

1
p Pr

{

φ
(

YN
t

)

> α
}

1
q

6 sup
N∈N

(

E
[

φp
(

YN
t

)])
1
p sup

N∈N

Pr
{

φ
(

YN
t

)

> α
}

1
q , (65)

where q is a constant satisfying p−1 + q−1 = 1. However,

fN (α) , Pr
{

φ
(

YN
t

)

> α
}

is a decreasing function of α and limα→∞ fN (α) = 0 holds for all N ∈ N. Thus, for any ǫ > 0, there exists ᾱN such that

0 6 fN (α) < ǫ, α > ᾱN .

Setting ᾱ = supN∈N
ᾱN and noting that fN (α) is decreasing in α, it is concluded that

0 6 sup
N∈N

fN (α) < ǫ, α > ᾱ

which is equivalent to

lim
α→∞

sup
N∈N

Pr
{

φ
(

YN
t

)

> α
}

= 0.

This limit together with (65) implies

lim
α→∞

lim
N→∞

δN (α) = 0.
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D. Proof of Theorem 1

Let µ (·) be an admissible control law and in terms of the observation set YN
t of the dynamical system SN apply the

feedback control ut = µ
(

YN
t , t

)

to the set of stochastic state-space equations (1). By Lemma 1 and (10), the resulting state

vectors x1t , x
2
t , . . . , x

N
t can be equivalently generated through

xnt = zt + ēnt +
1√
N
βt, n = 1, 2, . . . , N,

where zt is the state of (11) under the same control, and ēnt and βt are the solutions to (15) and (16), respectively. Using this

expression, the quadratic cost functional (6) is rewritten as

JN = E

[

∫ T

0

(

‖zt‖2Qt
+ ‖ut‖2Rt

)

dt+ ‖zT ‖2Qf

]

+ Je + δN ,

where δN is defined in terms of ēt in (51) as

δN =
2√
N

(

∫ T

0

E
[

zTt Qtēt
]

dt+ E
[

zTTQf ēT
]

)

+
2√
N

(

∫ T

0

E
[

zTt Qtβt
]

dt+ E
[

zTTQfβT
]

)

+
2

N

(

∫ T

0

E
[

βT
t Qtēt

]

dt+ E
[

βT
TQf ēT

]

)

+
1

N

(

∫ T

0

E
[

βT
t Qtβt

]

dt+ E
[

βT
TQfβT

]

)

. (66)

By Lemma 1, ‖ēt‖ and ‖βt‖ both have uniformly bounded second moments. Further, it is shown later in this proof that for

a control ut generated by an admissible control law, ‖zt‖ has a uniformly bounded second moment for all t ∈ [0, T ]. Since

both Qt and Qf are bounded matrices, it can be concluded that the expressions in parentheses on the right-hand side of (66)

are bounded (easily shown by the Cauchy-Schwarz [35, p. 192] inequality). The boundedness of these expressions implies

lim
N→∞

δN = 0.

Let Φ (·) denote the state transition matrix of At. Then, the solution to the SDE (11) is given by

zt =

∫ t

0

Φ (t, s)Bsusds+ gt,

where gt is a Gaussian random vector defined as

gt = Φ(t, 0) z0 +

∫ t

0

Φ (t, s)Dsdws.

Using the triangle inequality and properties of induced matrix norm, it is concluded that

‖zt‖ 6

∫ t

0

‖Φ (t, s)Bs‖ · ‖us‖ ds+ ‖gt‖ . (67)

Application of Minkowski’s inequality [35, p. 194] (for its integral version see [41]) to the right-hand side of (67) yields

E
[

‖zt‖2p
]

1
2p

6 E

[

∣

∣

∣

∣

∫ t

0

‖Φ (t, s)Bs‖·‖us‖ ds+ ‖gt‖
∣

∣

∣

∣

2p
]

1
2p

6

∫ t

0

‖Φ (t, s)Bs‖ · E
[

‖us‖2p
]

1
2p

ds+ E
[

‖gt‖2p
]

1
2p

6 sup
N∈N

sup
t∈[0,T ]

E
[

‖us‖2p
]

1
2p

sup
t∈[0,T ]

∫ t

0

‖Φ (t, s)Bs‖ ds+ sup
t∈[0,T ]

E
[

‖gt‖2p
]

1
2p

. (68)

In the right-hand side of this inequality, the first multiplicative term is bounded by assumption, the second multiplicative term

is bounded since At and Bt are bounded matrices, and the additive term is bounded since gt is a Gaussian random vector of

bounded covariance matrix. These facts imply that

sup
N∈N

sup
t∈[0,T ]

E
[

‖zt‖2p
]

<∞, t ∈ [0, T ].

Two conclusions are drawn from this result. First, applying Lyapunov’s inequality [35, p. 193] to the random variable ‖zt‖
implies that it has a bounded second moment. Second, from Minkowski’s inequality and the regularity condition (8) it is

concluded that

sup
N∈N

E

[(

∫ T

0

(

‖zt‖2Qt
+ ‖ut‖2Rt

)

dt+ ‖zT ‖2Qf

)p ]

<∞. (69)
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Define the scalar Y-map φ (·) by the conditional expectation

φ
(

YN
T

)

= E

[

∫ T

0

(

‖zt‖2Qt
+ ‖ut‖2Rt

)

dt+ ‖zT ‖2Qf

∣

∣

∣

∣

YN
T

]

.

Applying Lyapunov’s inequality to the conditional expectation on the right-hand side establishes the upper bound

E

[(

∫ T

0

(

‖zt‖2Qt
+ ‖ut‖2Rt

)

dt+ ‖zT ‖2Qf

)p
∣

∣

∣

∣

YN
T

]

on φp
(

YN
T

)

. By taking the expected value of this upper bound, applying the smoothing property of conditional expectation,

and using (69), it can be shown that

sup
N∈N

E
[

φp
(

YN
T

)]

<∞.

Following an argument similar to the proof of Lemma 3, the Y-map φ (·) is continuous for any admissible control law

(which is continuous by definition). Furthermore, this Y-map is inherently nonnegative. Therefore, the second statement of

Lemma 3 is applicable to φ (·), which leads to

J∞ (µ (·)) = lim
N→∞

JN

= lim
N→∞

(

E
[

φ
(

YN
T

)]

+ Je + δN
)

= lim
N→∞

E
[

φ
(

YN
T

)]

+ Je + lim
N→∞

δN

= E [φ (YT )] + Je

= J (µ (·)) .

E. Proof of Lemma 4

Before presenting the proof, the following lemma is stated for future use. Suppose that Xk ∈ R
nk , k = 1, 2, . . . ,K are

random vectors and Mk, k = 1, 2, . . . ,K are n× nk bounded matrices. Then, the inequality

E

[

∥

∥

∥

∑K
k=1MkXk

∥

∥

∥

2p
]

1
2p

6
K
∑

k=1

‖Mk‖ · E
[

‖Xk‖2p
]

1
2p

(70)

holds for every p > 1, where ‖Mk‖ denotes the induced matrix 2-norm of Mk. The proof is a straightforward application of

the triangle inequality and Minkowski’s inequality [35, p. 194].

The control law µ∗ (·) given by (42) is trivially a continuous and causal Y-map. Therefore, only the regularity condition (8)

must be verified for this control law. According to (42), the control ut in (8) is generated via the following process. The

observation set YN
t of the system SN is applied to the MMSE estimator (33) to generate ẑt, then the control ut = −Ktẑt is

constructed in terms of ẑt. This control is applied to the set of coupled SDEs (1) to generate the state vectors x1t , x
2
t , . . . , x

N
t ,

which in turn, generate YN
t via (3).

It is shown first that the gain matrix Lt in (33d) is uniformly bounded, i.e., there exists a constant c1 > 0 independent of N
and YN

t such that

‖Lt‖ < c1 <∞, t ∈ [0, T ], (71)

where ‖Lt‖ is interpreted as the induced matrix 2-norm of Lt. The proof of this fact is based on the inequality

‖Lt‖ =
∥

∥

∥
ΣtC

T
t

(

Ct (Σt +Θt)C
T
t + V

)−1
∥

∥

∥

6 ‖Σt‖ ·
∥

∥CT
t

∥

∥ ·
∥

∥

∥

(

Ct (Σt +Θt)C
T
t + V

)−1
∥

∥

∥

6 ‖Σt‖ ·
∥

∥CT
t

∥

∥ ·
∥

∥

∥

(

CtΘtC
T
t + V

)−1
∥

∥

∥

which is concluded from ‖M1M2‖ 6 ‖M1‖ · ‖M2‖ property of the induced norms and positive definiteness of Σt. Consider

the Lyapunov matrix differential equation
˙̄Σt = AtΣ̄t + Σ̄tA

T
t +DtD

T
t

with the same initial condition Sz as (33b). The solution Σ̄t to this equation is an upper bound on Σt, therefore ‖Σt‖ 6
∥

∥Σ̄t

∥

∥.

Hence, the bounded constant c1 chosen as

c1 = sup
t∈[0,T ]

∥

∥Σ̄t

∥

∥ ·
∥

∥CT
t

∥

∥ ·
∥

∥

∥

(

CtΘtC
T
t + V

)−1
∥

∥

∥



20

satisfies (71).

Let zt and ẑt be the solutions to (11) and (33a) under the same control input, and define the error vector

δt = zt − ẑt. (72)

Suppose that τ1, τ2, . . . , τηT
are the sampling times of the observation set YN

T . Subtracting both sides of (35a) from (11), the

dynamics of δt over each interval t ∈ (τk−1, τk] between the successive sampling times τk−1 and τk is obtained as

δ̇t = Atδt +Dtẇt.

The solution to this equation for the interval t ∈ (τk−1, τk] is given by

δt = Φ(t, τk−1) δτ+

k−1

+

∫ t

τk−1

Φ (t, s)Dsdws, (73)

where Φ (·) is the state transition matrix of At. This expression identically holds for t ∈ [0, τ1] with δτ0 , δ0 = z0 − x̄0, and

for t ∈ (τηT
, T ] by replacing δτk−1

with δηT
.

Define the scalar δ̄t as the conditional expected value

δ̄t = E
[

‖δt‖2p
∣

∣τ1, τ2, . . . , τηT

]
1
2p

, t ∈ [0, T ].

Applying (70) to (73) with E [·|τ1, τ2, . . . , τηT
] replacing E [·], and noting that {wt} is independent of τ1, τ2, . . . , τηT

yield

δ̄t 6 ‖Φ (t, τk−1)‖ δ̄τ+

k−1

+ E

[

∥

∥

∥

∫ t

τk−1
Φ (t, s)Dsdws

∥

∥

∥

2p
∣

∣τk−1

]
1
2p

.

This inequality leads to

δ̄t 6 c2δ̄τ+

k−1

+ c3, t ∈ (τk−1, τk], (74)

where the bounded constants c2 > 1 and c3 > 0 are given by

c2 = sup
t1,t2∈[0,T ]

‖Φ (t1, t2)‖

c3 = sup
t1,t2∈[0,T ]

E

[

∥

∥

∥

∫ t2
t1

Φ (t, s)Dsdws

∥

∥

∥

2p
]

1
2p

.

The boundedness of c3 is simply concluded from the fact that the integral inside the norm is a zero-mean Gaussian vector

with a bounded covariance matrix.

Since {zt} is a continuous process, zτ+

k
= zτk holds at each transition time t = τk. Then, by subtracting both sides of (36a)

from zτk and using (13) and (72), it is concluded that

δτ+

k
= δτk − LτkCτkδτk − Lτk

(

Cτke
νk
τk

+ vk
)

.

Application of (70) to the right-hand side of this equation leads to the inequality

δ̄τ+

k
6 (1 + c1c4) δ̄τk + c1c5, (75)

where the bounded positive constants c4 and c5 are defined as

c4 = sup
t∈[0,T ]

‖Ct‖

c5 = sup
t∈[0,T ]

E
[

‖Cte
n
t + vk‖2p

]
1
2p

.

Substituting (74) with t = τk into the right-hand side of (75) results in the recursive inequality

δ̄τ+

k
6 c6δ̄τ+

k−1

+ c7, (76)

where c6 = (1 + c1c4) c2 > 1 and c7 = (1 + c1c4) c3 + c1c5.

Starting from the bounded initial value

δ̄τ+

0

, c8 = E
[

‖z0 − x̄0‖2p
]

1
2p

<∞,

the recursive application of (76) for k = 1, 2, . . . ,K yields

δ̄τ+

K
6 c8c

K
6 + c7

K−1
∑

k=0

ck6 6 max {c7, c8}
cK+1
6 − 1

c6 − 1
.
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Since c6 > 1, the right-hand side of the second inequality is increasing in K which implies that

δ̄τ+

0

, δ̄τ+

1

, δ̄τ+

2

, . . . , δ̄τ+
ηT

6 max {c7, c8}
cηT+1
6 − 1

c6 − 1
.

Combining this result with (74) leads to the inequality

δ̄t 6 c2 max {c7, c8}
cηT+1
6 − 1

c6 − 1
+ c3, t ∈ [0, T ]

which is equivalently written as

E
[

‖δt‖2p
∣

∣τ1, τ2, . . . , τηT

]

6

(

c2 max {c7, c8}
cηT+1
6 − 1

c6 − 1
+ c3

)2p

, t ∈ [0, T ].

By taking the unconditional expected value of both sides of this inequality, applying Minkowski’s inequality, and using the

boundedness property (5) of ηT , it is concluded that

E
[

‖δt‖2p
]

6 ∆ <∞, t ∈ [0, T ], (77)

where the bounded constant ∆ is defined as

∆ = c2 max {c7, c8}
E
[

c
2p(ηT +1)
6

]
1
2p − 1

c6 − 1
+ c3.

By substituting ut = Kt (zt − δt) into the linear state-space equation (11), this equation is written as

żt = (At −BtKt) zt −BtKtδt +Dtẇt.

With δt satisfying (77), an argument similar to (68) shows that there exists a constant 0 < Z <∞ such that

E
[

‖zt‖2p
]

6 Z <∞, t ∈ [0, T ].

Finally, for any N ∈ N, application of (70) implies

E
[

‖ut‖2p
]

= E
[

‖Kt (zt − δt)‖2p
]

6 ‖Kt‖2p
(

E
[

‖zt‖2p
]

1
2p

+ E
[

‖δt‖2p
]

1
2p

)2p

6
(

Z
1
2p +∆

1
2p

)2p

sup
t∈[0,T ]

‖Kt‖2p , t ∈ [0, T ].

Since Kt is a bounded matrix, this inequality verifies (8).
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