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Abstract

This article investigates a stochastic optimal control problem with linear Gaussian dynamics, quadratic performance measure,
but non-Gaussian observations. The linear Gaussian dynamics characterizes a large number of interacting agents evolving under a
centralized control and external disturbances. The aggregate state of the agents is only partially known to the centralized controller
by means of the samples taken randomly in time and from anonymous randomly selected agents. Due to removal of the agent
identity from the samples, the observation set has a non-Gaussian structure, and as a consequence, the optimal control law that
minimizes a quadratic cost is essentially nonlinear and infinite-dimensional, for any finite number of agents. For infinitely many
agents, however, this paper shows that the optimal control law is the solution to a reduced order, finite-dimensional linear quadratic
Gaussian problem with Gaussian observations sampled only in time. For this problem, the separation principle holds and is used
to develop an explicit optimal control law by combining a linear quadratic regulator with a separately designed finite-dimensional
minimum mean square error state estimator. Conditions are presented under which this simple optimal control law can be adopted
as a suboptimal control law for finitely many agents.
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I. INTRODUCTION

HIS paper is mainly motivated by applications in control of magnetic fluids, in which a large number of interacting

magnetic nanoparticles are collectively driven toward a desired target using an external magnetic field [1]-[8]. This
magnetic field is controlled by a feedback loop that incorporates samples of the nanoparticle positions taken randomly in time
and space by a high-resolution photodetector array. As a main component of a fluorescence imaging system [9], the photodetector
array records intermittent flashes of light emitted randomly from the fluorescent coating of the magnetic nanoparticles excited
by a laser source [10].

Beyond this motivating application, the mathematical model and problem formulation in this paper are general enough to
fit into a broad class of applications in which the dynamics of a large number of randomly interrogated, interacting agents is
manipulated by a centralized control identically applied to all these agents.

This formulation describes the dynamics of a large number of interacting agents by a set of coupled linear Gaussian state-
space equations; each equation representing a single agent, and their coupling represents the interactions between the agents.
The stochastic inputs included in the equations are intended to represent model uncertainty and external disturbances applied
to the agents. A common control input applied to all equations characterizes an external manipulation identically affecting the
agents. The aggregate state of the agents is partially observed by means of the samples taken randomly in time and in the
set of agents (referred to as space). The distinctive feature of these samples is that the identify of the agents from which the
samples are taken is not known to the measuring device. By removal of the agent identity from the measured samples, the
observation set no longer remains linear Gaussian, as opposed to the more conventional sampling scheme that associates each
sample to a specific agent.

The focus of this paper is on development of control laws for optimal regulation of the agents around the origin of their
state space. This control task is formulated as minimization of an expected quadratic cost functional involving the aggregate
state of the agents and the control applied to them collectively. This formulation would define a conventional linear quadratic
Gaussian (LQG) problem, if each observed sample was tagged by the identity of an agent. In that case, the separation principle
would hold, under which, the design of an optimal control law is decomposed into the convenient design of a linear quadratic
regulator (LQR), and separately, a finite-dimensional minimum mean square error (MMSE) state estimator [11]-[19]. For the
sampling scheme of this paper, however, the optimal control problem cannot be simply treated as an LQG problem, despite
the linear Gaussian dynamics of the agents and the quadratic form of the adopted cost functional. In fact, for a finite number
of agents, the solution to this problem is inherently nonlinear and infinite-dimensional.

For infinitely many agents, however, it is shown as the major contribution of this paper, that the formulated optimal control
problem reduces to a finite-dimensional LQG problem holding the separation principle. The solution to this reduced problem
introduces a finite-dimensional control law for infinitely many agents, although the optimal control law for any finite number of
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agents is essentially infinite-dimensional. This finding adds the case of this paper to the short list of few linear quadratic control
problems with non-Gaussian measurements known for holding the separation principle [20]-[22]. This principle is exploited
then to obtain the explicit form of the optimal control law by simply combining a LQR state feedback with a finite-dimensional
MMSE state estimator.

The stochastic optimal control problem studied in this paper resembles the class of mean field game (MFG) problems, in the
sense that both problems concern the dynamical behavior and design of optimal control for a large population of interacting
agents [23]-[33]. Specifically, the linear Gaussian model and the quadratic cost functional of this paper apparently resembles
the subclass of LQG mean field games [23]-[28]. Yet, the two problems fundamentally differ in the nature and objectives of
control, and the structure of the observation set.

In this paper, control is essentially centralized, and is applied collectively to all agents by a single controller, while in MFG
problems, each agent is individually controlled by its own local controller. Further, the control in this paper is generated from
the partial observations of the aggregate state of all agents, and in this sense, the observation set is centralized. In MFG
problems, however, the observation set is decentralized, in the sense that each agent only has access to the complete or partial
knowledge of its own state, and possibly, the state of a single major player, not having a counterpart in this paper [24]-[32].
Finally, the control in this paper optimizes a single measure of the collective performance of all agents, in opposition to MFG
problems in which each agent independently optimizes its own performance measure (and therefore, they are called games).
A mean field optimal control problem studied in [34], similar to this paper, adopts a single measure of collective performance,
but unlike this paper, shares the same decentralized structure of control and observation set with MFG problems.

The stochastic dynamical model in this paper with infinitely many agents is primarily intended to describe the dynamics
of magnetic fluids controlled under magnetic fields. In [1]-[4], we represented this dynamics by a partial differential equation
(PDE), considering the magnetic fluid as a continuum mass. It turns out that a PDE is an unnecessarily complex description
for the dynamics of magnetic fluids, at least for the purpose of magnetic control design. In fact, a magnetic fluid is a discrete
set consisting a large number of magnetic nanoparticles, rather than a continuum mass. Hence, the model of this paper seems a
more natural framework to describe the dynamics of magnetic fluids. Furthermore, the PDE model of magnetic fluids adopted in
[1]-[4] disregards the magnetic interactions between the nanoparticles comprising the magnetic fluid. This potentially important
factor is appropriately accommodated by the model of this paper.

The dynamical behavior of the nanoparticles comprising a magnetic fluid is indeed nonlinear. The linear model proposed in
this paper only describes the small deviations of the particles from a nominal trajectory generated by some coarse open-loop
control. The objectives and design of this open-loop control are beyond the scope of this paper; the goal here is to develop a
fine closed-loop control to maintain the particles close to the nominal trajectory despite the external disturbances and model
uncertainty.

The remainder of this paper is organized into four sections followed by a conclusion and an appendix. In Section II, the
dynamical model concerned in this paper is introduced and its associated optimal control problem is stated. The major results
of this paper focusing on model reduction for infinitely many agents are presented in Section III. This section reduces the
optimal control problem of Section II into a finite-dimensional LQG problem with measurements randomly sampled in time.
The solution to this nonstandard LQG problem is presented in Section IV. The proofs of theorems and lemmas in Sections III
and IV are presented in Appendix to improve the readability of the text. Finally, Section V investigates the possibility to adopt
the simple optimal control law developed for infinitely many agents as a suboptimal control law for a large but finite number
of agents.

II. MODEL AND PROBLEM STATEMENT

A population of N interacting identical agents (or particles) is considered and their dynamics is represented by N coupled
linear stochastic differential equations (SDE) of the form

N
1 ,
do} = Awridt + > Fy (af —a}) dt + Buudt + Dydwy + Gydgf', n=1,2,...,N.
i=1
As a shorthand, these SDEs are expressed throughout the paper by the state-space equations

N
i} = A} + Z} Fy (2} — 2) + Byug + Dyt + Gi£}, (1)
where 27 € R™*, n=1,2,..., N denotes the state of agent n at time ¢ > 0 and u; € R™ is a common control vector applied
to all N agents identically. The stochastic process {w;} and the collection of N stochastic processes {¢/'}, n = 1,2,..., N

are statistically independent standard Wiener processes of the dimensions n,, and ng, respectively. The formal derivative of
these processes are white noises denoted by {w;} and {ﬁt"} The time-varying matrices A, Fy, By, Dy, and G, are assumed
bounded, measurable, and of appropriate dimensions.

According to the set of state-space equations (1), the agents are coupled through three different mechanisms: the sum on
the right-hand side describes the pairwise interactions between the agents, the control u; identically manipulates all N agents,



and w; is a common disturbance or modelling error perturbing all agents in a similar manner. Beyond the coupling between
the agents, each agent is individually perturbed by a Brownian motion represented by &;'.

The initial states 2,23, ..., z{ of the stochastic state-space equations (1) are statistically independent of {w;} and {£!},
n=1,2,..., N, and are modeled as identically distributed Gaussian random vectors with the expected value E [z] = T and
the covariance and cross-covariance matrices

E [(xg—gzo)(xg—fco)T] —S. 4S5, n=1,2,....N
E [(xg —io)(xgl—fco)T} =S, n#m=12,...,N,
where S, and S, are n, X n, positive semidefinite matrices. Hence, each initial state can be decomposed into the sum
xy =z20+ey, n=12...,N 2)

of two independent Gaussian random vectors zo and e} of the expected values E [z9] = Zo and E [ej] = 0 and the covariance
matrices S, and S., respectively. The common term zq in this decomposition represents an identical shift of all agents from
the origin, while e}, e2, ..., e}’ describe the random dispersion of the agents around the central point zo.

The measurement model considered in this paper primarily intends to describe the output signal of a photodetector array
constructing the space-time distribution of a large number of magnetic nanoparticles by the fluorescence imaging technique.
This technique relies on the flashes of light emitted from the fluorescent coating of the nanoparticles excited by a coherent
light source. These flashes of light are intrinsically emitted at random times from random nanoparticles by the nature of the
fluorescence phenomenon [10]. Beyond this phenomenon, the measurement model of this paper is applicable to any scenario
involving multiple agents that intermittently report their state to a supervisory center without a means for synchronization.
This model is general enough to include the special case of periodic sampling in time (but not space) when the agents are
synchronized by a common clock.

The observation set provided for closed-loop control of N agents is a discrete set of space-time points sampled randomly
from them at the sampling times 0 < 73 < 72 < 73 < ---. The observation set generated during the time interval [0,¢] is
denoted by YV and is expressed as

YN =0, telo,m] (3a)
yt]V:{(Tlayl)a(TQayQ)a"'a(Tkayk)}7 tE(TkaTk+1]7 k:172137"" (3b)

The spatial components y1, Y2, y3, - - - of the space-time points in this observation set are random vectors in R™v statistically
depending on the state of the agents, as explained below.

Suppose C; is an n, X n, bounded matrix and a continuous function of time. Assume that {v1,v2,vs,...} is a sequence
of independent integer random variables uniformly distributed on {1,2,..., N}, and that {vq, va,vs,...} is an independent
identically distributed sequence of zero-mean Gaussian vectors in R™ with the covariance matrix V. Assume further that the
sequences {vy}, {vr}, and {7} are mutually independent, and independent of {w.}, {£'}, n = 1,2,..., N, and the initial

states z3, 23, ..., z{’. Then, the spatial components yj. of the observation set are given by
yp = Crozll +ok, k=1,23,.... 4)
This expression constructs the observation set by randomly sampling the aggregate state (:1:%, 22, N ) in the agent set

(referred to as space) and in time. The n, X n, matrix C} is incorporated into the model to extend its application to those
measuring devices which can only observe an n,-dimensional subspace of the entire state space of each agent (n, < n,). In
addition, the random sequence vy, ve, vs, ... is introduced to represent the measurement noise.

In the simplest form, the sampling times 71,72, 73, ... can take deterministic values, for instance, multiples of a constant
sampling period that implement a periodic sampling scheme. In the more general scenario of this paper, {71, 72,73,...} is
a point process consisting of the transition times of a counting process {n:, t > 0}. This process is fairly general and only
needs to satisfy two mild technical assumptions

Pr{m, =741} =0, k=1,2,3,...
E[la™] < o0, |a]<oo, 0<t<oo. 5)

An example of {r;} which holds both these condition is a homogenous Poisson counter with the constant rate A > 0. In
addition, periodic sampling with a period h; is represented by a point process {71, 72, T3, . . .} which assigns probability 1 to
the single sample path h,2hs, 3hs ... . Therefore, the results of this paper identically hold for a periodic sampling scheme.

In the context of the magnetic fluids controlled by magnetic fields, the original dynamics of the magnetic nanoparticles
is highly nonlinear. However, this nonlinear dynamics can be linearized around a nominal trajectory to approximate it with
the linear time-varying model (1). The nominal trajectory is generated by a coarse open-loop control designed to effectively
drive the magnetic nanoparticles along a desired path, albeit in the absence of disturbances and modeling errors. Then, the



linear model (1) is utilized for design of a fine feedback control that enhances the coarse open-loop control by suppressing
disturbances and modeling errors.

The state and control vectors in the state-space equations (1) represent the deviations of the state and control of the original
nonlinear system from their nominal values. Then, the goal of feedback control is to maintain z}’, n =1,2,..., N and u; as
close as possible to zero. This objective is formulated in this paper as minimizing the expected quadratic cost

T 1 N 1 N
n( 2 2 n 2
In = EU@ <N; l#llg, + IutllRt> dt + N; letllg, |- ©)

Here, T' > 0 is a fixed control time, (¢, t > 0 and Q7 are n, x n, positive semidefinite matrices, R¢, £ > 0 is an n, X n,
positive definite matrix, and [|z||, denotes the weighted norm

Izl = (27 Qx)* .

The problem in this paper is to develop an optimal control law that minimizes the cost functional (6) for infinitely many
agents, i.e., for N — oo. This problem can be interpreted in different ways, for instance, the optimal control law can be
viewed as the limit (at N — oo) of the sequence of optimal control laws developed for each N = 1,2,3,.... Of course,
this approach is barely tractable since it requires to obtain the optimal control law for each finite [V, a problem inherently
infinite-dimensional due to the non-Gaussian structure of the measurement model. A mathematically tractable alternative is
established in Problem 1 below. Before stating this problem, it is necessary to provide a solid definition for a control law.

Definition 1: A Y-map ¢ (-) is a vector function assigning a vector ¢ (J) € R™ to each instance

j} = {(7_—15.1?1)7(7_—27g2)v"'a(7_'K7gK)}

of the observation set Y. A YV-map is called continuous if it is continuous in (41, %, . .., yx ) for any fixed (71,72, ..., 7).
Definition 2: A control law p (-) is a time-dependent causal V-map (i.e., p (-, ¢) is a YV-map for each fixed t) with values
in R™. The causality of this map is defined by the property

u(yév,t):u(ytjv,t), s>t>0.

The control law i (+) is continuous if p (-, t) is a continuous Y-map for each fixed t.

The optimal control problem for infinitely many agents is formulated in this paper as follows.

Problem 1: For each fixed N € N, consider the stochastic state-space equations (1), the initial state (2), and the sampled
observation set Y defined in (3). Let y (-) be a control law generating the );}¥-measurable control u; according to

w=pY,t), tel0,T). 7
This control law is called admissible if it is continuous and for some p > 1, it satisfies the regularity condition

sup sup E [||ut||2p] < 0. (8)

NeN te[0,T]
For the control profile generated by (7) and its corresponding state trajectory (:v},:vf, coalN ), t € [0, 7], construct the cost
functional Jy in (6) and define the cost of each admissible control law p (-) as the limit

Joo () = lim Jy. C))
N — 00

Then, the goal is to minimize this cost functional on the set C of all admissible control laws, that is, to determine an optimal
control law p* (+) € C satisfying

Joo (0 (1) € Too (1 (1)), n(:) €C.

Remark 1: The set of admissible control laws includes at least a trivial control law p () = 0, therefore it is nonempty.

In the remainder of this paper, a solution for Problem 1 is obtained in two steps. First, a reduced order finite-dimensional
model is introduced in Section III that can adequately describe the dynamics of infinitely many agents to the extent necessary
for solving Problem 1. This problem is next reformulated as a LQG problem for the reduced order system, which is a linear
Gaussian state-space equation with a Gaussian observation set. For this new LQG problem, it is shown in Section IV that the
separation principle holds, which makes it possible to develop an optimal control law via combining a LQR controller with a
MMSE state estimator. Development of the optimal control law is discussed in details in Section IV.



III. MODEL REDUCTION FOR INFINITELY MANY AGENTS

As indicated by the stochastic state-space equation (1), the state of each agent is influenced by two categories of inputs:
the common inputs u; and w; identically applied to all agents, and the individual inputs §t1, §t2, e ,ftN independently applied
to each single agent. Similarly, each initial state 2} has two independent components: a common component 2o shared by all
agents, and an individual component ef.

The linearity of the set of equations (1) allows to decompose the state x7* of each agent into a common component z; and
an individual component e} such that

=z +e’, n=12,...,N. (10)

Here, the common component z;, ¢t > 0 solves the SDE

Zt = AtZt + Btut + tht (11)
with the initial state zg, and the individual components e} are the solutions to the coupled SDEs
1Y :
éﬁ:Atey+Nz;Ft(e?—e;)+Gt§f,n:1,2,...,N (12)
i=
with the initial states e, n = 1,2,..., N. The initial states are Gaussian random vectors zg ~ N (Zo,S,) and ef ~ N (0, Se)
independent of each other and independent of the stochastic processes {w;} and {{/'}, n =1,2,..., N.
In terms of the states z; and e}, e?, ..., el of the state-space equations (11) and (12), the spatial components y1, Y2, Y3, - - -
of the observation set ygV can be expressed as
Yk = Crozr, + Crelf +vg, k=1,2,3,... . (13)
The state vectors e}, eZ, ..., el in the dynamical system (12) are generated independent of the control input u,. Therefore,

they can be regarded as a colored noise process degrading the output vector (13).

In summary, the set of equations (11)-(13) can be interpreted as a dynamical system with the state z;, the control input u,
and the sampled output {y1, y2,ys, . . .} which is corrupted by the colored measurement noise {eZi JEP2 e } and the white
measurement noise {vi,va,vs,...}. The state of this system evolves in time according to the low-dimensional state-space
equation (11), while the colored noise is generated by the high-dimensional state-space equations (12) and uniform spatial
sampling of this high-dimensional state space.

It is clear from (12) that {e'}, n =1,2,..., N are Gaussian stochastic processes. Therefore, conditioned on the sampling
times {71, 72, 73, ...}, the random vectors ers, k=1,2,3,... are marginally Gaussian for any agent number N. However, by
the following argument, they are not jointly Gaussian for a bounded N. Consider the random vector (e;’ tep, ... els ) for an
arbitrary integer K and arbitrary but fixed sampling times t1,t2,...,tx € [0,T]. Conditioned on (1, va, ..., Vi), this random
vector is Gaussian, its elements are conditionally dependent, and its conditional covariance matrix depends on the instances of
(v1,v49,...,VK). Therefore, its unconditional density function cannot remain Gaussian after averaging the conditional density
function with respect to (v1,va,. .., VK).

For the limiting case with infinite number of agents, it will be shown, however, that the random vector (e;’ 11 , e;’j, co ey f: )
converges in distribution to some Gaussian random vector with statistically independent elements. This key finding allows then
to replace {eZi ez e, .. } with a white Gaussian process, through which, the system of infinitely many agents is simply
described by the finite-dimensional state-space equation (11) and a linear Gaussian measurement model. This key result is
formally stated in Lemma 2. The proof of this lemma requires the technical background stated next in Lemma 1.

Lemma 1: Let Ay, Fy, and G be bounded and measurable functions and consider the set of coupled SDEs (12) driven by
the independent standard Wiener processes {gtl, &,...,¢eN } The initial states of these equations are independent zero-mean
Gaussian random vectors of the bounded covariance matrix S.. Then, the solution e}’ to the SDE (12) can be decomposed into

1
ef =& +—=Pf n=12..N, tel0T] (14)
VN
where €} solves the SDE .
é?:(At—i-Ft)é?—i-Gtg?, n:1,2,,N (15)

with the same initial state as (12), and f3; is the solution to

1 XL
Bi = Afi — Vi ;F (16)

with the initial state 5y = 0. Besides, {é'} and {{;} maintain the following properties:



i. The set of stochastic processes {e;'}, n = 1,2,..., N are mutually independent and Gaussian, with zero mean and the
covariance matrix ©; solving the Lyapunov matrix differential equation
O, =(A+F)O,+ 6, (A + F)" +G,GT (17)

with the initial condition Oy = S..
ii. The stochastic process {;} is zero-mean and Gaussian, and (; has a uniformly bounded covariance matrix at each fixed

te[0,T].
Proof: See Appendix A. [ ]
An immediate consequence of Lemma 1 for infinitely many agents is that the Gaussian processes {e}'}, n = 1,2,..., N
tend to be statistically independent as N — oo. A heuristic argument for this claim maintains that {&}'}, n =1,2,..., N are
independent Gaussian processes according to (15), and that the random vector e}’ converges to e; as N — oo, by (14).
As the Gaussian processes {e] },{e?},{ef},... become statistically independent for infinitely many agents (i.c., when
N — o), the samples ey 5 e;’j, ceEf & collected from these processes must be Gaussian and independent. This statement can

be violated only by sampling the same process more than once. However, the occurrence probability of such event tends to 0
as N — oo. This heuristic argument is formalized in the following lemma.

Lemma 2: For each fixed integer IV, define the Gaussian stochastic processes {e%} , {ef} sy {eiv } as the solutions to
the coupled SDEs (12) with independent zero-mean Gaussian initial states of the covariance matrix S.. Let {v1,v2,v3,...} be
a sequence of independent integer random variables with uniform distribution on {1,2,..., N}. For any integer K and any
choice of distinct sampling times t1,ts,...,tx € [0,T], define the random vector

1/)N:(et”11,et”22,...,e;’§). (13)

Consider the n, x n, positive definite matrix ©; solving the Lyapunov equation (17) with the initial state S, and let M; be
any n, X n, matrix decomposing ©; into
M;MP =0, teclo,T) (19)

Let {(1,(2,(3,. ..} be a sequence of independent Gaussian random vectors in R™» with zero mean and identity covariance
matrix, and define the Gaussian random vector

1/}:(Mt1<17Mt2<27"'7MtK<K)' (20
Then, the sequence of random vector 1, 12, 93, ... converges in distribution to the Gaussian random vector 1) as N — oo,
i.e., the limit
J\}im Pr{yny € €} =Pr{y € €} 21
— 00

holds for any continuity set ¥ C RX"= of the probability measure on the right-hand side.
Proof: See Appendix B. [ ]
Remark 2: An alternative and equivalent definition for the convergence of random vectors in distribution is given in terms
of expected value [35, p. 253]. This new definition replaces the limit (21) in Lemma 2 with the limit

Jim Efo (o)) = Efo ()]

which holds for any bounded continuous scalar function ¢ (-).

A direct implication of Lemma 2 is that the non-Gaussian colored noise {eZ} e e, .. } in the observation model (13)
can be replaced for infinitely many agents by a white Gaussian process { M, (1, M;,(a, M,(3, .. .}. This replacement results
in a reduced order finite-dimensional system representing the dynamics of infinitely many agents. This reduced order system

maps the control input u; in the SDE (11) into the output

V=0, tel0,7] (22a)
Ve=A{(m1,91),(m2,92) s, Tk, 9k) > tE (ThyThr1], k=1,2,3,... (22b)
by solving this SDE with an initial state zo ~ N (Zg, S.), and then, taking its state z; to generate the spatial components
Yo =Cr. 2, +Cr, My G +vi, k=1,2,3,.... (23)
Here, 71,72, T3, ... denote the transition times of the counting process {7}, the matrix M; solves (19), and {¢1,¢2,C3, ...}

and {v1,v9,vs,...} are zero-mean white Gaussian processes with the covariance matrices I,,, x,, (identity matrix) and V/,
respectively. These white processes, the counting process {7}, the initial state z, and the Wiener process {w;} in (11) are
mutually independent.

Remark 3: For infinitely many agents, Lemma 1 implies

1 N
8 53 FUR)



where the convergence is understood in the mean square sense. This limit in turn results in

1 N

— 1 . n

Zt_zvlféozvzlx“ t20.
-

By this expression, the state z; of the state-space equation (11) is the ensemble average of the state of agents. This quantity
represents the center of mass of the agents in case the state of each agent represents its position in the 3D Euclidean space.
Therefore, the reduced order system simplifies control of a population of infinitely many agents to control of their center of
mass, while the deviations from the center of mass appear as an additional source of measurement noise.

For future reference, an N-agent system . as well as the reduced order system . are formally defined as follows.

Definition 3: For any integer N, the N-agent system . is a stochastic rule that generates the observation set V¥ from
the input process {us, 0 < s < t} according to (3)-(4) and by solving the coupled SDEs (1) with the initial states (2).

Definition 4: The reduced order system . is a stochastic rule that generates the observation set ); in terms of the input
process {us, 0 < s <t} according to (22)-(23) and by solving the SDE (11) with the initial state zo ~ N (Zg, S,).

It must be shown next that the sequence .¥7,.7%, .73, ... of N-agent systems converges to the reduced order system . in
some reasonable sense. A possible approach followed in this paper is to show that the sequence Y}, V2, V3, ... converges in
distribution to ); when the systems .%7,.%%, .7, ... and . are under the same control law. This approach is formalized in
the following lemma.

Lemma 3: Consider the stochastic systems . and .y as defined in Definitions 4 and 3. Assume that these systems are
controlled under the same control law y (+), i.e., the controls applied to . and .y are generated by u; = p (), t) and
Up = b (ytN , t), respectively. Then, for any continuous control law 1 (-), the sequence of outputs YV}, Y2, V3, ... converges in
distribution to ), i.e, the limit

Jim E[6(0)] ~BloO], 0.7 o

holds for every bounded and continuous scalar }-map ¢ (-) [see Definition 1]. Furthermore, at each fixed ¢ € [0, T], this limit
holds (and E [¢ ()/;)] is bounded) for every nonnegative continuous ¢ (-) for which there exists p > 1 such that

sup E [¢7 (V)] < o0. (25)

NeN
Proof: See Appendix C. [ ]
Remark 4: A more heuristic notion of convergence can be defined for a sequence of systems .7}, .%%, .3, ... in terms of
the convergence of conditional probability measures. In this notion, the sequence Y}, Y2, VP, ... converges in distribution to

Y, while the systems .7, ., .5, ... and . are excited by the same control input. In particular, the limit
Jim E o (V) %] =Bl (V) |7%], t€[0,T)

must hold for all bounded, continuous Y-maps ¢ (-) and every deterministic bounded control profile %; = {us, 0 < s < t}.
Convergence of stochastic systems in this sense is implied by the convergence in the sense of Lemma 3, taking the control
law 1 (+) as a deterministic function not depending on Y}V.

The main results of this section are presented in Theorem 1 below. This theorem states that the optimal control Problem 1 is
well defined, and reformulates it as another optimal control problem subject to the reduced order system .#. This new problem
admits an explicit solution presented in Section IV.

Theorem 1: Let p (-) € C be any admissible control law and ); be the observation set (22) generated by the reduced order
system .# in Definition 4. Apply the feedback control

ut:u(yt,t), tE[O,T]

to the stochastic state-space equation (11) with the Gaussian initial state zo ~ N (Zg,S;). In terms of this control and the
state z; of the state-space equation (11) define the functional

T
Ty =8| [ (Il + lully,) de+ el |+ 26)

where the constant J. is given by .
Jo = / tr{QuOy} di + tr {QOr} @7
0

in terms of the solution ©; to the Lyapunov matrix differential equation (17) with the initial state S.. Then, the limit (9) in
Problem 1 exists and the functional 7., (1 (-)) in this problem is equal to J (x4 (-)) in the sense that

Too (0 () =T (), n()ecC.
Proof: See Appendix D. -



IV. OPTIMAL CONTROL

This section presents a solution to Problem 1 based on the reduced order system . and Theorem 1. By this theorem, the
infinite-dimensional optimal control Problem 1 reduces to the finite-dimensional problem of minimizing the quadratic cost
functional (26) subject to the reduced order system .#. In fact, this new formulation represents a nonstandard LQG problem
with the linear Gaussian dynamics (11), the linear Gaussian measurements (23), and the quadratic cost functional (26). The
problem is nonstandard as the observation set includes samples randomly taken in time, rather than a continuous-time signal or
samples taken uniformly in time. Yet, the separation principle identically holds for this nonstandard LQG problem, as shown
in Section IV-A. Based on this principle, the solution to Problem 1 is decomposed into an estimation and a control problem
discussed in Sections IV-B and IV-C, respectively.

A. Separation Principle

Consider the reduced order system consisting of the linear Gaussian dynamics (11) and the linear Gaussian observations
sampled randomly in time according to (23). The history of the samples up to time ¢ is collected in the observation set ),
as defined in (22), and the problem is to obtain and admissible control law to minimize the quadratic cost (26). This section
verifies that the separation principle holds for this problem, in the sense that it can be solved in two separate steps: designing
an optimal control law while pretending the actual state of (11) is available for feedback, and then, replacing this state with its
MMSE estimate, pretending that the control applied to (11) is a solely deterministic function of time. To verify this property,
it must be shown that the information provided for estimation does not depend on the choice of control law.

In this paper, the separation principle is verified by adopting a stochastic open loop approach from [16], [19]. For a detailed
discussion of this approach, the reader is referred to [16], [19], while its implication to the problem of this paper is discussed
here. Let sz‘zo be the solution to the state-space equation (11) under the zero control u; = 0, and ygzo denote its associated
observation set generated as (22) with the measurements

Y= = Cr 22" + Cr M1, G + i (28)
Suppose that g (+) is an admissible control law and construct the stochastic process {ZZ”:O} as the solution to
#70 = A2 + Bup (V170,1) (29)
with the initial state 2’=" = 0. In terms of 27*=% and 2{*=°, construct the observation set }; as (22) with the measurements
Yo = Cr, (2270 + 227°) + Cr My, G + k. (30)
Then, it must be shown that
o (V) =0 (V=), telo,T], 31

where o ();) and o ( ;‘:0) denote the o-algebras generated by ); and V3=Y, respectively.

The condition (31) is verified by induction as follows. First, for any two successive sampling times 7 and 741, it is shown
that assuming the equality in (31) holds on ¢ € [0, 7], it will necessarily hold on ¢ € [0, 7%4+1]. To that end, it is observed
from (28) and (30) that

yr = yp=0 + Oy, 2270, (32)

Tk ~TE
Moreover, (29) implies that z;’fo is a sole function of yg;o, and therefore, measurable with respect to both o (yg;O), and by

the induction assumption, o (Y-, ). It is observed from (22) that Yy = {Vr, , (7, yx)} and Yp=0 = { V=0 (74, 9=°) } hold
on t € (7, Tk+1]. Then, substituting (32) into the former and comparing the expressions

Ve = {ka’ (Tkquklzo + CTkz;f;:O)}
0 = (920, (™))

while o (Y-, ) = o (V2=9), the equality o (V) = o (V}*=°) is concluded on ¢ € (7), Tk41], and therefore, on ¢ € [0, Tj41].
Since V; = V=0 =0, ¢ € [0, 71], the equality in (31) trivially holds on [0, 71]. Then, by induction, o (}}) = o (Y{*=°) holds
on t € [0, Tyast], where 745 is the last (largest) sampling time in the interval [0, T']. Finally, the condition (31) is established
as 0 () and o (Y{=°) remain unchanged over t € [ri45:, 7).

B. Minimum Mean Square Error Estimator

Once applicability of the separation principle is verified, the MMSE state estimator for the dynamical system . is reduced
to a continuous-discrete Kalman filter [36], [37]. Specifically, consider the state-space equation (11) with the state vector z,
the control vector u;, the initial state zo ~ A (Zo, S,), and the observation set ); generated according to (22)-(23). Denote
the conditional mean and conditional covariance matrix of z; given ), by 2, = E [2¢|)%] and Xy = cov (z¢|);), respectively.



Then, under any });-measurable control u;, the estimators Z; and X; can be determined from a continuous-discrete Kalman
filter adopted from [36], [37]. Using the notation of this paper, this filter is expressed by the stochastic state-space equations

2 = Ags + Boug + Ly (Y, — Ce2e) My (33a)
¥ =AYy + S AT + DD — 1,0 %0, (33b)
Or= (A + F) O+ 6, (A + F)" + G,GT (33¢)
Ly = %,CT (Cy (B3 +©,) CT + V) (33d)

with the state vector (2, X, ©;) and the initial state
(20, 20,00) = (%0, Sz, Se) . (34)

Among these equations, the first two are SDEs driven by the counting process {n;} (with the formal derivative {7;}), the
third is an ordinary differential equation (ODE), and the last is a shorthand for expressing the gain matrix L; in terms of the
state vector (Z¢, X, ©;). The interpretation of the SDEs (33a) and (33b) is as follows. During the time interval ¢ € (7,_1, 7x]
between successive sampling times 7;_; and 7, the counting process 7; does not change and 7, = 0 holds. Therefore, the
SDEs (33a) and (33b) reduce [36], [37, p. 194] to the ODEs

Z = Avz + By (35a)
¥ = A% + AT + D, DT (35b)
These equations resemble the Kalman-Bucy filter without any measurements over ¢ € (7i—1, Tk].
At each sampling time 73, a new sample y;, is observed and is made available to the Kalman filter (33). This new sample is
then incorporated into the state estimation via a discontinuity in the states of (33a) and (33b) represented by [37, p. 194]
27; = éTk + er (yk - C‘rk érk) (363)
E‘r;r :Eﬂc _LTkCTkETk' (36b)
These equations resemble the measurement update phase in a conventional Kalman filter.

It is worth mentioning that in opposition to the conventional Kalman and Kalman-Bucy filters which essentially work with
deterministic conditional covariance matrices, for the Kalman filter (33), this matrix is a stochastic process depending on the
observation. Due to this dependence on the observation, the overall system (33) is technically nonlinear, as opposed to the
conventional Kalman or Kalman-Bucy filters which are solely linear systems. Moreover, the conditional covariance matrix
in (33) cannot be precomputed like a conventional Kalman or Kalman-Bucy filter, rather, it must be generated in real time.

Remark 5: The conditional covariance matrix X; generated by the continuous-discrete Kalman filter (33) has a feature vital
to the development of an optimal control law in Section IV-C, namely, it does not depend on the choice of the control law

that maps )% into u;. According to (33b), {2:} is a stochastic process solely generated by the counting process {7}, which
indeed is constructed independent of the choice of control law.

C. Optimal Control Law
Under the assumption of perfect state knowledge, it has been shown in [38, Ch. 8] that the linear state feedback
Ut = —KtZt (37)

minimizes the quadratic cost functional (26) subject to the linear Gaussian dynamics (11). The optimal feedback gain K; is

an n, X n, matrix expressed as
K:=R;'Bl'p, (38)

based on the n, X n, matrix P; solving the Riccati differential equation
P, =—-PA,— ATP, + P,B,R;'BI'P, — Q, (39)

backward in time with the terminal condition
Pr=Qy. (40)

In the absence of the complete state knowledge, the state z; in the control law (37) is replaced with its MMSE estimate Z;
generated by the Kalman filter (33), leading to the control law

Uy = —Ktét. (41)

The optimality of this control law is verified in Theorem 2 of this section. For future reference, the control law (41) that
combines the estimator (33) with the linear state feedback (37) is denoted by p* (-) and is formally defined as follows.
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Let K; be the gain matrix (38) and consider the system of differential equations consisting of
§ = (A¢ — BLKy) 2t + Ly (yn, — Ct2e) ™

and (33b)-(33d), with the state vector (éj, X_It, ;). Suppose ), is an instance of the observation set )V, in (22) [or ytN in (3)],
and determine its associated instance (2,5, i, Gt) of the state vector by solving this system of equations over [0,¢] with the
initial state (34). The control law p* (-) is defined then as a deterministic mapping that maps the instance ), into

p (Vi t) = =K%, te[0,T]. (42)

Lemma 4: The control law p* () defined according to (42) is admissible for the optimal control Problem 1.
Proof: See Appendix E. [ ]
The following theorem presents the main result of this paper by offering a solution to the optimal control Problem 1.
Theorem 2: The control law p* (-) in (42) minimizes the cost functional 7, (-) in Problem 1 on the set of all admissible
control laws C. Moreover, the minimum value of this cost functional is given by

Joo (1" (1)) = Tz + Je

in terms of the constants J. in (27) and J, defined as

T T
J. = 2L Potg + tr { PyS.} + / tr {D} P,D;} dt + E / tr {P,B,R; 'B{ P, } dt| . (43)
0 0

Here, Zp and S, are the initial state (34) of the estimator (33), the matrices B;, D;, and R, are parameters of Problem 1, P,
is the solution to the Riccati differential equation (39) with the terminal condition (40), and 3J; is the solution to the stochastic
differential equation (33b) with the initial state S,.

Proof: Consider the reduced order system .# as defined in Definition 4 and the quadratic cost functional J (u (-)) as
given by (26). This system is represented by the state vector z;, the control u, and the observation set ). For this system, the
conditional mean 2; = E [2¢|)%] and the conditional covariance matrix ¥; = cov (z¢|)}) solve the state-space equations (33)
with the initial state (34).

It is shown in [38, p. 289] that the cost functional J (i (+)) can be rewritten as

T
Jp()=E l/ ”ut“"KtétH?ﬁ dt| + J, + J.. (44)
0

As discussed in Remark 5, {¥;} does not depend on the choice of control law that generates a );-measurable control. Hence,
the constant .J, as defined in (43) cannot depend on the choice of the control law either. This statement trivially holds for J,
as well. Noting that the integrand on the right-hand side of (44) is nonnegative and that J, + .J. is a constant not depending on
this integrand, the minimum of 7 (4 (+)) is attained when this integrand vanishes, i.e., u; = —K;2, must hold on ¢ € [0, T,
almost everywhere. This choice is in fact the control law p* () and results in a minimum value of J, + J..

By Lemma 4, the control law p* (-) is admissible, and by Theorem 1, the cost functional J (1 (+)) is equal to J (u (+))
for all admissible control laws. It is concluded that p* (-) also minimizes Jo, (-) over the set of all admissible control laws,
and that J, + J. is the minimum value of Jo (+). [ ]

V. SUBOPTIMAL CONTROL FOR FINITELY MANY AGENTS

The reduced order system introduced in Definition 4 offers a finite-dimensional description for the dynamics of infinitely
many agents, at least to the extent needed for the input-output characterization and design of an optimal control law. Based
on this finite-dimensional system, a control law was developed in Section IV to be optimal for infinite number of agents. This
control law is finite-dimensional and easy to implement by a set of state-space equations.

The simplicity of this control law motivates its deployment as a suboptimal control for finitely many agents. This idea is
explained mathematically as follows. Let Jy (u (-)) denote the value of the cost functional (6) for the dynamical system (1)
with N agents under the control law p (-) € C. By Theorem 1, this value can be expressed in terms of 7 (1 (+)) in (26) as

IN (@ () =T () +En (),

where Ey (+) is a functional holding limy_, o En (1 (+)) = 0 for any fixed () € C. Hence, Jn (-) =~ J (-) is a reasonable
approximation for a sufficiently large N, and as a result, J (-) can be minimized instead of Jy (-) to determine a suboptimal
control law. In this case, the approximation error is bounded within the interval

0< In (1" ()~ H(iggc IN (1 () <en, (45)
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where the nonnegative constant € is given by

en = sup 2[En (u())]. (46)
n(-)ec

As a result, u* () is e y-optimal for J (-) in the sense that

IN ()2 In (0 () —en, n()eC.

Following a quite sophisticated process, Theorem 1 together with Lemmas 1 through 3 prove the pointwise convergence of
the functional Jy (+) to J (-) for each fixed u () € C, albeit without explicitly providing an expression for |Ey (-)| or some
upper bound on its value. Yet, the proofs of these theorem and lemmas present strong indications to conjecture that there must
be a constant ¢ > 0 to upper bound €y in (46) by c

eN < il 47)
These indications include the upper bounds (54) and (66) (see the proofs of Lemma 2 and Theorem 1), which predict a rate
of convergence 1/v/N for Jy (+), as well as the boundedness condition (8) which can extend the convergence of Jy (-) from
pointwise to uniform sense. This extension allows to establish a bound on |Ex (1 (+))| independent of 1 (-). A complete proof
of (47), although seems possible, will be far from concise and needs several more pages beyond the limitation of this paper
(and possibly additional technical assumptions). Therefore, the formal proof of the upper bound (47) is skipped in this paper.

Even after proving this upper bound, it only implies that the approximation error (45) will decay with a rate 1/v/N, without
being able to provide a tight, numerically tractable value of c. Without the knowledge of ¢, (47) will be barely an effective
numeric tool to evaluate the suboptimal performable of p* (-). For practical applications, this section proposes an alternative
approach to establish lower bounds on the number N of the agents under which p* (-) is near-optimal. This approach relies
on the fact that .% is derived from .y based on two crucial properties: first, the stochastic processes {e}} e {e,{v } tend
to become mutually independent as N — oo, and second, the probability of sampling a single process {e}'} more than once
tends to 0 as N — oo. For approximating . with .7, the value of N must be then chosen large enough to hold a close
approximation of these properties.

A measure of mutual independence for the pair of Gaussian processes {e}'} and {e}"} is their cross-correlation function

B (en)" o]

(e et e [le])

For infinitely many agents, this function takes the exact value of 0. To attain a close approximation of this vlaue, N must be
chosen sufficiently large to maintain the absolute value of this function below a small threshold 0 < d; < 1 over the entire
control period ¢ € [0, T]. This condition explicitly requires the number of agents N to satisfy the inequality

sup |'-YN (tl,t2)| < 51. (48)
tl,tze[O,T]

N (t1,t2) =

It can be shown using Lemma 1 that the left-hand side of this inequality converges to 0 with the rate 1/N as N — oo. Thus,
there must exist some value of N to satisfy the inequality. An explicit expression for the cross-correlation function 7y (-) can
be derived from Lemma 1 via a straightforward but lengthy procedure, which is skipped here.

For an infinite number of agents, the probability of multiple sampling of a single process is identically zero over the entire
control time [0, T]. For a close approximation, this probability must be kept below a small threshold 0 < d; < 1. To be less
conservative, this condition is enforced only over a coherence time of the stochastic process {e}'} instead of the entire control
period. The coherence time is typically much shorter than the control time and is defined as the time interval between two
samples of the stochastic process {e}'} that are approximately independent. The coherence time is defined here as

T.(N) = inf {s‘ supeo,r lon (6t + 8)| < 51}
in terms of the autocorrelation function

E{(ep)" e

(t1, 1) = . 49)
O w e B e )

Using the law of total probability [35, p. 25], the probability of multiple sampling in the interval [t,t 4+ T, (IV)] is given by

=1 N
1_§m'mpr{nt+ﬂ(m—ﬁt:k},
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Fig. 1. Autocorrelation of the random sequence {67—1 s e.r2 s e.,3 ,. } estimated from sample paths of length 106 for N = 2,5, 20, 100.

where {1,} is the counting process used for sampling in time. Hence, the number of agents N must be large enough to keep
this probability below dy for every ¢ € [0, T]. This requirement constrains the smallest value of N to satisfy the inequality

N

. 1 N!
tel[TSfT]kZ:(J NN Z ) Pr{ngr.vy—m =k} >1-10,. (50)

The analysis above demonstrates the essence of the problem that leads to a lower bound on N. Yet, the key question of how
to select the numerical values of §; and d9 is not addressed. A plausible answer to this question requires a difficult trade-off
between two extremes: smaller values of §; and J5 result in closer approximations for the dynamics of the agents, but also
in excessively conservative lower bounds for V. In addition to the difficulty in choosing &; and d2, solving the inequality
conditions (48) and (50) is not straightforward analytically.

A more practical approach to establish a lower bound on V is the use of Monte Carlo methods and a whiteness test. This
approach is in particular easy to implement for a time-invariant system (1) with matrices Ay, F}, and G; independent of time.
It is reminded that the random sequence {eZ} JeP2 e } is not white for any finite IV, but it tends to a white sequence as
N — o0, as shown in Lemma 2. This fact is the core property used for model reduction in Section III, which eventually led
to the optimal control law of Section IV. Hence, for any finite value of NV for which {eZi ez els, .. } is effectively white,
this control law must perform near optimal.

To evaluate the whiteness of {eZi N } for a given number of agents, a long sample path of this random sequence
is generated by numerically solving the coupled SDEs (12), and then, applying the random sampling procedure introduced in
Section II. Next, the whiteness of the sequence is evaluated, for example, by estimating its autocorrelation function [defined
similar to (49)], and comparing it against the delta function.!

This procedure is demonstrated for the numerical parameter values A; = —1, I} = 0.2, and G; = 0.8. With these values, the
state of each agent is a scalar, but this scalar represents only one element of the 3-dimensional position vector of a magnetic
particle moving in a homogeneous and isotropic environment. The sampling is performed by a homogenous Poisson process
with the constant rate A\ = 100. In Fig. 1, the autocorrelation function of {eZi €72, eZg, . } is illustrated for different values
of N = 2,5,20,100. It is observed that this function tends to the delta function as /N increases. As a measure of whiteness,
the maximum distance (co-norm) between the autocorrelation function and the delta function is illustrated versus /N in Fig. 2.
By this figure, the autocorrelation function tends to the delta function asymptotically, which implies that {el’l ev2 ers . }

T17 T ©T3)
becomes in effect white for a large enough N, e.g., N > 50

A. Simulation Results

Section IV-C indicates that the control law p* () defined in (42) is optimal for infinite number of agents. This section
examines the performance of this control law for finite number of agents using computer simulations. A MATLAB simulator
simultaneously solves the stochastic state-space equations (1), generates the observation set J/¥ according to (3), solves the
equations of the Kalman filter (33), and applies the feedback control (41) to the dynamical system (1). The numerical values
of the simulation parameters are presented in TABLE 1.

!"This indeed is only a simple practical test of whiteness; strictly speaking, whiteness is not implied by uncorrelatedness for non-Gaussian processes. For
test of whiteness, more advanced techniques exist [39], for example, by using the auto-mutual information function [40].
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Fig. 2. Measure of whiteness of {eii s eig,e.'ﬁg . } versus IN. The vertical axis shows the maximum distance of the autocorrelation function from the
delta function, as a measure of whiteness. As N — oo, this distance clearly tends to 0, which implies that the autocorrelation function tends to the delta
function asymptotically.

N[A[E B [D |G [C| AV [ S8 [S.|Q] R | Qf | T
20 —1]02] 1 |25/08] 1 |100]0.04]0.16|0.4| 1 |0.001 | 0.031] 10

TABLE I
NUMERICAL VALUES OF THE SIMULATION PARAMETERS.

The simulation results are presented in Fig. 3. A comparison between the state value z; and its estimate Z; is illustrated in
Fig. 3(a), and the estimation error z; — Z; is shown versus time in Fig. 3(b). The variance of the estimation error is numerically
computed as 0.148. This value is compared with the expected value E [X;] estimated from Fig. 3(c) as 0.135. The small gap
between these numbers indicates that the actual variance of the estimation error is close to what is expected of the Kalman
filter. A stronger supporting evidence for near-optimal performance of the Kalman filter is the whiteness of its innovations
process. Specifically, the distance between the autocorrelation function of this process and the delta function is computed
numerically as small as 0.02.

The feedback control u; = —K;Z; is illustrated versus time in Fig. 3(d). The performance of this closed-loop control is
compared with the open-loop control u; = 0 in Fig. 3(e), when both controls are applied to the state-space equation (11),
and in Fig. 3(f) when the controls are applied to (1). In both cases, the control objective is to maintain the states z; and x}
as close as possible to 0. Evidently, the closed-loop control is far more effective in achieving this goal for both z; and z}.
The average power of z; is estimated as 0.26 and 3.2 for closed-loop and open-loop controls, respectively. The corresponding
numbers for z}* are 0.63 and 3.6.

VI. CONCLUSION

Optimal control of a large number of interacting agents was considered under a centralized control and a common external
disturbance acting on them collectively, as well as independent disturbances applied to them individually. These agents imitate
the magnetic nanoparticles comprising a magnetic fluid, which are driven toward a target by a controlled magnetic field, while
being perturbed by a common disturbance collectively, and by Brownian motion individually. The dynamics of the agents was
described by linear stochastic state-space equations driven by white Gaussian processes and a common input regarded as the
centralized control. Subject to this linear Gaussian dynamics, an optimal control problem was defined aimed at minimizing a
quadratic cost functional with an imperfect knowledge of the state of the agents. This knowledge was provided by samples
taken randomly in time from the state of anonymous randomly chosen agents.

Due to the non-Gaussian structure of the observation set, the optimal control law for this problem is nonlinear and infinite-
dimensional in essence. Yet, it was shown that for infinitely many agents, the problem can be systematically reduced into a
finite-dimensional but nonstandard LQG problem holding the separation principal. Using this principal, the optimal control
law was determined explicitly by combining a linear quadratic regulator with a separately designed finite-dimensional MMSE
state estimator. The possibility of adopting this explicit control law to approximate the optimal control for finitely many agents
was investigated, and conditions on the number of agents for a close approximation were presented.

APPENDIX
PROOF OF LEMMAS AND THEOREM 1
A. Proof of Lemma 1

Assuming that e}’ and (3, are the solutions to (15) and (16) with the initial states e = eff and 5y = 0, respectively, it is
straightforward to verify by direct inspection that (14) solves the SDE (12). The proof of statements i and ii are given below.
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Fig. 3. Simulation results: (a) the state z¢ of the dynamical system (11) and its estimate Z; versus time; (b) the estimation error z; — Z¢; (c¢) conditional
covariance X¢; (d) suboptimal control uy = —K¢2¢; (e) comparison of z; under the closed-loop control us = —KZ¢ and the open-loop control u; = 0; (f)
same comparison for the state z}* of the dynamical system (1), where n = 2 is randomly chosen.

Proof of i: The stochastic processes {&7'}, n = 1,2,..., N are generated by linear filtering of jointly independent Wiener
processes {&'}, n=1,2,..., N, therefore, they are Gaussian, zero-mean, and jointly independent. It is shown in [38, p. 66]
that the covariance matrix of {e}'} evolves in time according to the matrix differential equation (17).

Proof of ii: The stochastic process {f;} is generated by the linear state-space equation

Bt = AB — Frey

with zero initial state and the stochastic input
N
1 )
6 = —— E €. (S
VN i

Since {é;} is zero-mean and Gaussian, {(;} will be zero-mean and Gaussian as well. Moreover, & has a bounded covariance
matrix ©; not depending on N, implying that 5; must have a uniformly bounded covariance matrix.

B. Proof of Lemma 2
By Lévy’s continuity theorem [35, p. 322], convergence of the random vectors 11,12, %3, ... in distribution is concluded
from pointwise convergence of their characteristic functions:
: T _ T Kn,
A}gnooE[exp (jw z/;N)} _E[exp (jw 1/1)} , weR™",

By an additional condition of this theorem, the characteristic function of ¢ must be continuous at w = 0, which trivially holds
for the Gaussian random vector ¢. Hence, the pointwise convergence of the characteristic functions is verified in the remaining
of this proof.

By Lemma 1, the random vector ¢y can be written as

- 1
N =UN + —F= XN,
YN =19 NI
where 1/_) ~ and yn are Kn, x 1 random vectors defined as
%ZN = (é;,;?ét{j;?"'Jé?}I(()

XN = (Btwﬁtga"'aﬁt[()'
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The characteristic function of 1, is then expressed as
E [exp (jw"vn)] = E [exp (jw"¥n)] + Ry (), (52)

where the complex function Ry (w) is defined as

Ry (w) =E [eXP (jw"n) (eXP (jaij%N> - 1)} :

It is shown next that this function converges to 0 as N — oo. To that end, the identity ¢/2¢ — 1 = j2¢7% sin 6 is employed to
rewrite Ry (w) as

T T
Ry (w)=E [j2 exp <ij1/_)N + %) sin (0;\/)%\/)] .

Taking the absolute value of both sides, applying the inequality
[EX] <E[X]], (53)

noting that |e??| = 1, and using the inequality |sin 8| < |0, it is straightforward to show
Ry (w)] < 2F [

2V N
1
< —=B[lw|]. (54)

By Lemma 1, w” xy is a Gaussian random variable with zero mean and bounded variance, implying that

lim Ry (w) =0, weRE™,
N—o00

Let 2 be the event that the random variables v, va, .. ., Vi take distinct values, and denote its complement by 2’. Using
the statistical independence of v1, va, ..., vk, the probability of & is computed as
NN-1)(N=-2)---(N-K+1)
qN = NE .

Clearly, gn tends to 1 as N — oc.
The law of total expectation [35, p. 79] implies that

E [exp (jw"vn)] = E [exp (jw"Pn) |2] an + E [exp (jw"¥w) [2] (1 - an)
=E [exp (jwTdn) |2] + Ry (w), (55)
where Ry (w) is defined as
Ry (w) = (1 —qn) (E [exp (jw"¥n) |2'] = E [exp (jw n) |2]).
Taking the absolute value of both sides, applying the triangle inequality and (53), and noting that ]6‘79‘ =1, it is shown that
Ry ()] <2(1—aw).

This inequality implies that B
lim Ry (w) =0, we€RE™,

N—o00
Conditioned on v1,v, ..., vk and the event &, the random vectors é;/',€;>,...,¢/% are zero-mean Gaussian and jointly
independent with the covariance matrices ©;,, 0, ..., O, . Therefore, their conditional characteristic function is the same

as the characteristic function of 1. This fact and the law of total expectation result in
E [exp (jw”x) 2] = E [E [exp (joTbx) e, ., vic, 7] 1]
= E[E [exp (o' ¥)] |7]
=E [exp (ijd)H .
Combining this result with (52) and (55), the characteristic functions of 1 is expressed as
E [exp (ijz/JN)} =E [exp (ijz/J)} + Ry (w) + Ry (w).

Then, the proof is completed by taking the limit of both sides as N — oo, and noting that the last two terms on the right-hand
side vanish as N — oo.
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C. Proof of Lemma 3
The boundedness property (5) of n; implies (e.g., by using Markov’s inequality)

lim Pr{n > K} =0. (56)
K—oo

Application of the law of total expectation [35, p. 79] yields

ZE 2 ) I = k] Pri{ne = k} + E[¢ (V) lne > K] Pr{n, > K}

which in turn leads to the inequality

ZE M) e = K] Pridm =k} = [E [ (V) I > K| Pr{n. > K}

< oPrim > K}.

Here, 0 < ¢ < oo is an upper bound of |¢ (-)| and its existence is assumed by the lemma. By letting first N — oo and next
K — oo in both sides of this inequality and using (56), it is concluded that

lim B [¢( ZPr {m =k} Jim E[p (DY) |ne = k] (57)

N —o0

The law of total expectation also implies

Elp (V)] =Y Pri{m=Fk}E[p(V:)|m=F. (58)
It is shown that the left-hand sides of (57) and (58) are equal by verifying for all £ =0,1,2,3,... that
Jim E[¢ (V) e = k] = E[¢ (D) I = K] (59)
This equality trivially holds for £ = 0, therefore it is proven for £k = 1,2,3,... as follows.
Let ¢y and ¢ be the random vectors (18) and (20) defined in Lemma 2 (replace t1,ta,...,tx with 71, 72,..., 7). Define
the scalar function ¢ (-) as the conditional expected value
S W) =E 6 (V) Ime = k1,72, Tho N ] - (60)

The dynamical systems %y and . have similar structures and are controlled under the same feedback control law; they differ
only in the probability distributions of ¢, and 1. Hence, the same function ¢ (-) represents the conditional expectation

Elp (Vi) ne =k, 1,72y o Tho 0] = 6 (1) - (61)

Since by assumption, ¢ (-) is a bounded Y-map, ¢ (-) is a bounded function. On the other hand, ¢ (-) is generated via
a sequence of operations performed on the continuous control law g (-) and continuous )-map ¢ (-). These operations are
integration, function decomposition, and expected value, all preserving continuity. Therefore, gi;() is a continuous function.
Then, application of Lemma 2 and Remark 2 to ¢ (-) yields

Nli_r}IlOOE {(5(1/)]\;) |77t =k, m,T2,... ,Tk:| =E [J)(d)) |77t =k, T,T2,--. ,Tk:| .
Substituting (60) and (61) into this equality and using the smoothing property of conditional expectation result in
]vh—r>nooE [gb (ytN) |ne =k, m1,72,... ,Tk] = E[(b(yt) |ne =k, 7m1,72,... ,Tk}.
Conditioned on 7; = k, taking the expected value of both sides of this equality leads to
E [NliinooE [6 (V) e = ey 71,70, o7k e = k] =E[E[¢ (V) [m = k71,72, 7] e = k.

Since ¢ (-) is bounded by assumption, Lebesgue’s dominated convergence theorem [35, p. 187] allows to change the order of
limit and outer expected value in the left-hand side. Then, the smoothing property of conditional expectation leads to (59).
To prove the second statement, define the scalar function

o () =min{¢(),a}

indexed by the positive scalar a. Then, the expected value on the left-hand side of (24) can be expressed as

B o ()] = E [da )] + o (). (©)
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where 0y () is defined as
on (@) =E[(¢(¥") —a) T {o (V) > a}]

in terms of the indicator function
1, o>«

0 ¢<a.

I{¢p>a}= {
Since oy () in (62) is nonnegative, Lyapunov’s inequality [35, p. 193] and the assumption (25) result in
B[da ()] <B[s(0)]
1
< (Ber ()])7
1
< sup (E[¢" (7)])7
NEN
< 00.
Noting that ¢, (+) is a bounded and continuous function, the first statement of this lemma implies
B [qéa (yt)} = Jim mathrmE [a}a N )} < . (63)

In addition to being bounded, the left-hand side of this equality is an increasing function of «, leading to the existence and
boundedness of the limit

lim E [0 (00)] = E[p ()] < oo, (64)
By taking the limit of (62) first as N — oo and next o — oo and making use of (63) and (64), it is concluded that
: N\] _ . .
Jim o (YY) =E[p O]+ lim lim by ().

This equality proves (24) by showing next that the double limit on the right-hand side vanishes.
The definitions of §x («) and the indicator function together with Holder’s inequality [35, p. 193] imply

i (@) < B[6 () 1 {6 (91") > a}] 1
<E[lr M7 (B[1{o M) >a}])"
= Bl O o) > e}t
sup (B¢ (1)) " sup Pr{¢ (W) > a}* (65)

N

1 — 1. However,

fn (@) 2Pr{s (V) > a}

is a decreasing function of « and lim, o fv (@) = 0 holds for all N € N. Thus, for any € > 0, there exists @&y such that

where ¢ is a constant satisfying p~! + ¢~

0< frn(a)<e a>ap.
Setting & = sup yy @n and noting that fy («) is decreasing in ¢, it is concluded that

0<sup fv(a) <e, a>a
NeN

which is equivalent to
lim sup Pr{¢ (YY) >al =0.
Jim sup Pr {6 (77) > a}
This limit together with (65) implies

lim lim dy (o) =0.
a—00 N—o00
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D. Proof of Theorem 1

Let 1 () be an admissible control law and in terms of the observation set Y}V of the dynamical system .#y apply the
feedback control u; = p (ytN , t) to the set of stochastic state-space equations (1). By Lemma 1 and (10), the resulting state

vectors 2}, 22, ..., 2N can be equivalently generated through

xy =z +ep + By, n=1,2,...,N,

1
VN
where z; is the state of (11) under the same control, and €}’ and (; are the solutions to (15) and (16), respectively. Using this
expression, the quadratic cost functional (6) is rewritten as

T
Iy =E l/o (Hthth + ||Ut||?%t) dt+ |20l | + Je + On,
where dy is defined in terms of ¢&; in (51) as
2 T 2 T
on = i </0 E [/ Q&) dt + E [ﬁ@,@ﬂ) 5 </0 E [/ Qi3] dt +E [z%Q,ﬂﬂ)
2 T T _ T _ 1 r T T
+2 /0 E (67 Qe di + B [55Qser] ) + 1 /0 B [87 QA dt + B [55Qspr] | . (66)

By Lemma 1, ||&;|| and || ;|| both have uniformly bounded second moments. Further, it is shown later in this proof that for
a control u; generated by an admissible control law, ||z;|| has a uniformly bounded second moment for all ¢ € [0,T]. Since
both @; and Qs are bounded matrices, it can be concluded that the expressions in parentheses on the right-hand side of (66)
are bounded (easily shown by the Cauchy-Schwarz [35, p. 192] inequality). The boundedness of these expressions implies

lim 5]\[ =0.
N —o00

Let ® () denote the state transition matrix of A;. Then, the solution to the SDE (11) is given by
2y = /t D (t,8) Bsusds + g,
0
where g; is a Gaussian random vector defined as
gt = (¢,0) 20 + /t ® (t,s) Dydws.
0
Using the triangle inequality and properties of induced matrix norm, it is concluded that

t
A </O [ (t,5) Bsll - llusll ds + [lg|l - (67)

Application of Minkowski’s inequality [35, p. 194] (for its integral version see [41]) to the right-hand side of (67) yields

217] %

t L L
2 2
< / 1@ (t.) Bl - E [lusl*?| ™ ds + E [llgil*?] ™

1

1 t
2p| 2p
B|l=)”]” <E U/ 1@ (2, 5) Bl s | ds + llge

1 t 1
<sw sup B [ucl”] 7 sup [0 Bullds+ swp B [lal”]” (68)
NeN te[0,T] tel0,7]1J0 te[0,T

In the right-hand side of this inequality, the first multiplicative term is bounded by assumption, the second multiplicative term
is bounded since A; and B; are bounded matrices, and the additive term is bounded since ¢; is a Gaussian random vector of
bounded covariance matrix. These facts imply that

sup sup E [HthQp} < oo, te€]l0,T].
NEN t€[0,T]

Two conclusions are drawn from this result. First, applying Lyapunov’s inequality [35, p. 193] to the random variable ||z|
implies that it has a bounded second moment. Second, from Minkowski’s inequality and the regularity condition (8) it is

concluded that . »
supEK/ (mna+|ut|§t)dt+|zT|zf> ]<oo. 69)
NeN 0
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Define the scalar J-map ¢ () by the conditional expectation

T
o) =B V (ool + el ) e+ 12712, M .

Applying Lyapunov’s inequality to the conditional expectation on the right-hand side establishes the upper bound

T p
EK / (mnét+|ut|ét)dt+|zT|zf> \yN]

on ¢P (y%v ) By taking the expected value of this upper bound, applying the smoothing property of conditional expectation,
and using (69), it can be shown that

sup E [gbp (yfpv)] < 00.
NeN

Following an argument similar to the proof of Lemma 3, the Y-map ¢ (-) is continuous for any admissible control law
(which is continuous by definition). Furthermore, this }-map is inherently nonnegative. Therefore, the second statement of
Lemma 3 is applicable to ¢ (-), which leads to

Joo (1) = Jim Ty

Jim (B [6 (V)] + Je + o)

= lim B¢ (V)] +Je+ lim oy
=E [(b (yT)] + Je

=T k().

E. Proof of Lemma 4
Before presenting the proof, the following lemma is stated for future use. Suppose that X € R"*, k = 1,2,..., K are

random vectors and My, k =1,2,..., K are n X n; bounded matrices. Then, the inequality
K )% & op] 25
B[S ]| < X 1B )] 70)
k=1

holds for every p > 1, where ||My]|| denotes the induced matrix 2-norm of Mj. The proof is a straightforward application of
the triangle inequality and Minkowski’s inequality [35, p. 194].

The control law p* (-) given by (42) is trivially a continuous and causal }-map. Therefore, only the regularity condition (8)
must be verified for this control law. According to (42), the control u; in (8) is generated via the following process. The
observation set ygV of the system .y is applied to the MMSE estimator (33) to generate Z;, then the control u; = —K;2; is
constructed in terms of 2;. This control is applied to the set of coupled SDEs (1) to generate the state vectors zy,z7,...,x,
which in turn, generate Y} via (3).

It is shown first that the gain matrix L; in (33d) is uniformly bounded, i.e., there exists a constant ¢; > 0 independent of N
and YV such that

||Lt|| <o <oo, te [OaT]a (71)
where ||L|| is interpreted as the induced matrix 2-norm of L;. The proof of this fact is based on the inequality
-1
1Ll = [[s0f (@m0 0F + V)7

< 1=l - [lCf -

(Cizeroncr+v) ™|
<z ler |- o +v) 7

which is concluded from || M M| < ||My|| - [|M2]| property of the induced norms and positive definiteness of ¥,. Consider
the Lyapunov matrix differential equation )
¥, = A% + 2, AT + D, DT

with the same initial condition S, as (33b). The solution 3; to this equation is an upper bound on ¥, therefore ||| < ||2tH
Hence, the bounded constant ¢; chosen as

er= sup [[Si|-ef ||t +v) 7|
t€[0,T]
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satisfies (71).
Let z; and 2; be the solutions to (11) and (33a) under the same control input, and define the error vector

6t =2t — ét. (72)

Suppose that 71,79, ..., 7,, are the sampling times of the observation set y}v . Subtracting both sides of (35a) from (11), the
dynamics of §; over each interval ¢ € (751, 7] between the successive sampling times 751 and 7 is obtained as

(;t = At(st + tht-

The solution to this equation for the interval ¢ € (75—1, 7] is given by
t
0= (t, 1) 0,5+ / ® (t,5) Dsdws, (73)
-1
Tk—1
where ® (-) is the state transition matrix of A;. This expression identically holds for ¢ € [0, 7] with §,, £ 6y = 2o — T, and
for t € (7., T] by replacing d,, _, with J,,..
Define the scalar §; as the conditional expected value

1

gt:E|:H5tH2p|T1,TQ,...,T77T}%, tE[O,T]

Applying (70) to (73) with E[-|71, T2, ..., Ty, ] replacing E [-], and noting that {w,} is independent of 71,7, ..., T, yield

1
2p 2p
’Tk_1:| .

[l @t s) Deduw,

o < ||® (¢, 1) 57;71 +E U

This inequality leads to

0 < 6257;1 +c3, € (Th-1,7k), (74)
where the bounded constants co > 1 and c3 > 0 are given by

o= sup [|® (i1, 12)
tl,tze[O,T]

" @ (t,5) Dydws

L
2p] 2p
ty

c3= sup E U
t1,t2€[0,T]

The boundedness of c3 is simply concluded from the fact that the integral inside the norm is a zero-mean Gaussian vector
with a bounded covariance matrix.

Since {z;} is a continuous process, Zpb = 2y holds at each transition time ¢t = 7. Then, by subtracting both sides of (36a)
from z,, and using (13) and (72), it is concluded that

0.+ = 0r, = Ly, Cr,0p, — Ly, (Croet +up).
Application of (70) to the right-hand side of this equation leads to the inequality
6;; < (14 creq) grk + ci1¢5, (75)
where the bounded positive constants c4 and c; are defined as

ca= sup [|Cy
t€[0,T]

1
cs = sup E|||Cie} + kazp} .
t€[0,T]

Substituting (74) with ¢ = 7 into the right-hand side of (75) results in the recursive inequality
6+ <ced+ +eor, (76)
k k—1

where c¢g = (1 4+ c1c4) co > 1 and ¢7 = (1 4+ ¢1¢4) c3 + c105.
Starting from the bounded initial value

1
57_0+ £ cg = E |:||ZO - CE()H2P:| B < 00,
the recursive application of (76) for k = 1,2,..., K yields

K-1 K
N K k
57_; < cgcg + o7 g ck < max {cr, cg} 2 .
Cg —
k=0
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Since cg > 1, the right-hand side of the second inequality is increasing in K which implies that

et g

.0 < max{c7,cC 6
,TTTT\ {77 8} Cﬁ_l

0 _+,0_+,0

) ) +7 A
To ' T1 T

Combining this result with (74) leads to the inequality

nr+l

- c 1
8 < comax {c7,cg} 2 1 +ec3, tel[0,T)
which is equivalently written as
9 CnTJrl _1 2p
E{H&H p|7’1,7'2,...,7'nT:| g CQIH&X{C%Cg}Gcil-FCg s te [O,T]
6 —

By taking the unconditional expected value of both sides of this inequality, applying Minkowski’s inequality, and using the
boundedness property (5) of nr, it is concluded that

B[I6)*] <A <oo, tef0T], )

where the bounded constant A is defined as

E |:C§P(77T+1)} % _ 1

CG_1

A = comax {c7,cs} + c3.

By substituting u; = Ky (2: — d;) into the linear state-space equation (11), this equation is written as

4 = (Ay — BiKy) 20 — By K8y + Dytiy.

With 4, satisfying (77), an argument similar to (68) shows that there exists a constant 0 < Z < oo such that

B[] < 2 < oo, teo,T].

Finally, for any N € N, application of (70) implies

E [HutH%} =E [HKt (2 — (5t)||2p}
< K™ (E (B 7 LE L1621 )2

< (2% +a%)" 2p
< r + A% sup ||K¢|”", te€][0,T].
t€[0,T)

Since K, is a bounded matrix, this inequality verifies (8).
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