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INTRODUCTION: Comparative epigenomics is
an emerging field that combines epigenetic
signatures with phylogenetic relationships to
elucidate species characteristics such as max-
imum life span. For this study, we generated
cytosine DNA methylation (DNAm) profiles
(n= 15,456) from 348mammalian species using
amethylation array platform that targets highly
conserved cytosines.

RATIONALE: Nature has evolved mammalian
species of greatly differing life spans. To re-
solve the relationship ofDNAmwithmaximum

life span and phylogeny, we performed a large-
scale cross-species unsupervised analysis. Com-
parative studies in many species enables the
identification of epigenetic correlates of max-
imum life span and other traits.

RESULTS:We first tested whether DNAm levels
in highly conserved cytosines captured phylo-
genetic relationships among species. We con-
structed phyloepigenetic trees that paralleled
the traditional phylogeny. To avoid potential
confounding by different tissue types, we gen-
erated tissue-specific phyloepigenetic trees. The

high phyloepigenetic-phylogenetic congruence
is due to differences in methylation levels and
is not confounded by sequence conservation.
We then interrogated the extent to which

DNA methylation associates with specific bio-
logical traits.Weusedanunsupervisedweighted
correlation network analysis (WGCNA) to iden-
tify clusters of highly correlated CpGs (comet-
hylationmodules).WGCNA identified 55 distinct
comethylation modules, of which 30 were sig-
nificantly associated with traits including max-
imum life span, adult weight, age, sex, human
mortality risk, or perturbations that modulate
murine life span.
Both the epigenome-wide association anal-

ysis (EWAS) and eigengene-based analysis iden-
tified methylation signatures of maximum life
span, andmost of these were independent of
aging, presumably set at birth, and could be
stable predictors of life span at any point in life.
Several CpGs that are more highly methylated
in long-lived species are located nearHOXL sub-
class homeoboxes and other genes that play a
role in morphogenesis and development. Some
of these life span–related CpGs are located next
to genes that are also implicated in our analysis
of upstreamregulators (e.g.,ASCL1 andSMAD6).
CpGs with methylation levels that are inverse-
ly related to life span are enriched in transcrip-
tional start site (TSS1) and promoter flanking
(PromF4, PromF5) associated chromatin states.
Genes located in chromatin state TSS1 are con-
stitutively active and enriched for nucleic acid
metabolic processes. This suggests that long-living
species evolved mechanisms that maintain low
methylation levels in these chromatin states
that would favor higher expression levels of
genes essential for an organism’s survival.
The upstream regulator analysis of the EWAS

of life span identified the pluripotency tran-
scription factors OCT4, SOX2, and NANOG.
Other factors, such as POLII, CTCF, RAD21,
YY1, and TAF1, showed the strongest enrich-
ment for negatively life span–related CpGs.

CONCLUSION: The phyloepigenetic trees indi-
cate that divergence of DNA methylation pro-
files closely parallels that of genetics through
evolution. Our results demonstrate that DNA
methylation is subjected to evolutionary pres-
sures and selection. The publicly available data
from ourMammalianMethylation Consortium
are a rich source of information for different
fields such as evolutionary biology, develop-
mental biology, and aging.▪
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Blood-based phyloepigenetic tree in mammals
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DNAm network relates to mammalian phylogeny and traits. (A) Phyloepigenetic tree from the DNAm data
generated from blood samples. (B) Unsupervised WGCNA networks identified 55 comethylation modules. (C) EWAS
of log-transformed maximum life span. Each dot corresponds to the methylation levels of a highly conserved
CpG. Shown is the log (base 10)–transformed P value (y axis) versus the human genome coordinate Hg19 (x axis).
(D) Comethylation module correlated with maximum life span of mammals. Eigengene (first principal component
of scaled CpGs in the midnightblue module) versus log (base e) transformed maximum life span. Each dot
corresponds to a different species.
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Using DNA methylation profiles (n = 15,456) from 348 mammalian species, we constructed phyloepigenetic
trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all
samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life
span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation
levels in HOXL subclass homeobox genes and developmental processes and is potentially regulated by
pluripotency transcription factors. The methylation state of some modules responds to perturbations such as
caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and expression of
Yamanaka factors. This study reveals an intertwined evolution of the genome and epigenome that mediates the
biological characteristics and traits of different mammalian species.

C
omparative epigenomics is a burgeoning
field that integrates epigenetic signa-
tures with phylogenetic relationships
to decipher gene-to-trait functions (1–3).
Prior research has investigated the cap-

acity of DNAmethylation (DNAm) patterns in
regulatory sequences to reflect evolutionary
relationships among species (3, 4). A recent
study comparedmethylation data across multi-
ple animal species at orthologous genepromoters

using a sequencing-based assay that did not
specifically target conserved CpGs (4). Previ-
ous investigations faced limitations regarding
the measurement platform, particularly the
low sequencing depth at conserved CpGs and
the sample size per species.
Our study overcomes these constraints in

several ways. First, we used a measurement
platform ensuring high effective sequencing
depth at conserved CpGs, allowing for a more
precise analysis of DNAm patterns in highly
conserved DNA regions. Second, we increased
the sample size per species, aiming for many
samples per species. We profiled 348 species
from25of the 26mammalian taxonomic orders.
This comprehensive dataset enables examina-
tion of phylogenetic relationships, comethyla-
tion relationships between cytosines, and their
associations withmaximum life span and other
species characteristics.
We profiled 15,456 samples (Fig. 1A and

table S1) using a methylation array platform
that provides effective sequencing depth at
highly conserved CpGs across mammalian spe-
cies (5). This dataset is the product of the
multinational Mammalian Methylation Con-
sortium. In previous studies, we applied super-
vised machine learning methods to generate
DNAm-based predictors of age called epige-
netic clocks for numerous species (6-31).
Here, we performed a large-scale cross-species

unsupervised analysis of the entire dataset to
reveal the relationship of DNAm with mam-
malian phylogeny. We show that we could
construct phyloepigenetic trees that parallel
traditional phylogenetic ones. We then pro-
ceed to interrogate the extent to which DNAm
underpins specific biological traits by using
unsupervised weighted correlation network
analysis (WGCNA) to minimize the influence
of bias on our observations. This approach iden-
tifies modules (clusters) of comethylated CpGs
comethylation that are associated with species
characteristics, including taxonomy, tissue type,
sex, life span, and aging.

Results
Evolution and DNAm

We generated a dataset consisting of DNAm
profiles of 15,456 DNA samples derived from
70 tissue types from 348 mammalian species
using the mammalian methylation array (5).
We evaluated whether methylation levels of
cytosines (CpGs) in DNA sequences that are
conserved across species would allow us to
construct what could be called a phyloepige-
netic tree. To avoid potential confounding by
different tissue types, we generated tissue-
specific phyloepigenetic trees (Fig. 1B and figs.
S2 and S3). We defined the “congruence” be-
tween traditional phylogenetic trees and phylo-
epigenetic trees as the Pearson correlation
coefficient between distances (branch length)
based on phyloepigenetic trees and evolutionary
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distances in traditional phylogenetic trees. We
observed high congruence (0.93) (Fig. 1C and
fig. S2) for the blood-based phyloepigenetic
tree (124 species) and lower congruence values
for nonblood tissues (congruence = 0.58 for
liver and 0.72 for skin; fig. S2). The lower con-

gruence in liver (158 species) and skin (133
species) may have been due to potential var-
iability in sampling between species. The vary-
ing congruence across tissue types shows that
the CpG probes do not serve as genotyping
proxies. The tissue dependence of congruence

indicates that phyloepigenetic trees are de-
rived based on differences inmethylation levels
and not sequence conservation. This point was
also corroborated by three sensitivity analyses,
which confirmed that the high congruence was
indeed due to differences in methylation levels
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Fig. 1. Phyloepigenetic trees parallel the mammalian evolutionary tree. (A) The
traditional phylogenetic tree from the TimeTree database (44) based on 321 (of 348)
species in our study. A full description of the species in our study is reported in
table S1. (B) Blood-based phyloepigenetic tree created from hierarchical clustering
of DNAm data in this study (for additional analysis, see fig. S3, A and B). We formed
the mean value per cytosine across samples for each species. The clustering used
1 minus the Pearson correlation (1-cor) as a pairwise dissimilarity measure and the
average linkage method as intergroup dissimilarity. Phyloepigenetic trees for skin and
liver can be found in fig. S2. Additional analyses, e.g., involving different choices of
CpGs or intergroup dissimilarity measures, are reported in the supplementary

materials (fig. S2). The colored bars reflect the branch height. (C) Scatter plot of
the distances in blood phyloepigenetic (1-cor) versus the traditional evolutionary tree.
(D) Scatter plots displaying the log-odds ratios of regions exhibiting phylogenetic
signals relative to the TSS are presented. The phylogenetic signal is determined using
Blomberg’s K statistic (32). In this analysis, CpGs were grouped into categories
using sliding windows relative to the TSS. To assess enrichment, the Fisher’s exact
overlap test was used, focusing on the top 500 CpGs displaying phylogenetic
signals within each region. The red dots highlight the regions with the Fisher’s exact
P value < 0.05. The results indicate notable enrichment (OR > 3) in certain intergenic
and genic regions but not in promoters. For additional analysis, see fig. S4.
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(see the supplementary text). In particular, the
phyloepigenetic trees based on the 180 CpGs
with the most significant detection P values
across all 348 species still are congruent with
traditional trees (fig. S2, F and G).
To identify CpGs that exhibit a pronounced

phylogenetic signal in relation to methylation
and phylogenetic trees, we used Blomberg’s K
statistic (32). Among the top 500 CpGs show-
ing significant phylogenetic signals (nominal
Blomberg P < 0.001, selected by variance z
score), we observed an enrichment in upstream
intergenic regions [odds ratio (OR)= 1.4, Fisher’s
exact P < 0.05; fig. S4B]. To further investi-
gate regions with the strongest phylogenetic
signal, we divided the data into groups rela-
tive to the transcriptional start sites (TSSs).
This analysis also confirmed that intergenic
regions exhibit significant phylogenetic sig-
nals (OR > 3, Fisher’s exact P < 0.05), whereas
the promoter regions did not show such sig-
nals (Fig. 1D).

DNAm networks relate to individual and species traits

We used signed WGCNA, an unsupervised
analysis (33), to cluster CpGs with similar
methylation dynamics across samples into co-
methylation modules. We then summarized
their methylation profiles as “module eigen-
genes.” The respective eigengenes of these
modules were used to identify their potential
correlations with various traits within and
across mammalian species.
Our data analysis proceeded in two sequen-

tial phases. First, we developed several comet-
hylation networks using data from 11,099 DNA
samples from 174 species (discovery dataset
finalized March 2021). A eutherian network
[network 1 (Net1)] was formed from 14,705
conserved CpGs using this dataset (Fig. 2A).
Later, we generated a second dataset of 4357
samples from 30 tissues of 240 mammalian
species (174 new species and 66 that are rep-
resented in the discovery set), which were
not used to define modules and were used as
an independent validation set. All eutherian
modules were present in the independent
validation dataset according to module pres-
ervation statistics (corKME) (34), validating
the presence of these modules (corKME >
0.43, P < 10−22; median corKME = 0.84) (fig.
S5). Thesemodules were designatedwith colors
according to WGCNA convention (Fig. 2A).
The smallest module (lavenderblush3) con-
sisted of 33 CpGs and the largest (turquoise)
had 1864 CpGs.
To characterize the 55 modules with respect

to species characteristics (e.g., maximum life
span and average adult weight), module eigen-
geneswere calculated in all samples (discovery
and validation set combined, 331 eutherian
species). Because information on taxonomic
order, tissues, maximum life span, age, sex
and adult weight of each species was available,

we were able to assess whether any of themod-
ule eigengenes correlated with these traits. Of
the 55modules, 30were found to be correlated
with at least one trait (Fig. 2B, fig. S7, and table
S3). Specifically, 15 modules were related to
taxonomic orders such as primates, rodents,
or carnivores (Fig. 2B and fig. S11). Ten mod-
ules related to tissue type (fig. S11), two to sex
(fig. S11), one to age, seven to maximum life
span, and four to average adult species weight.
Some modules were related to multiple char-
acteristics. In the following sections, we mainly
focus on the modules that relate to mamma-
lianmaximum life span, adult weight, and age.
Other modules related to taxonomic order, tis-
sue type, and sex are described in the supple-
mentary materials (fig. S11). We performed two
analyses to ascertain whether these eutherian
modules are also applicable to marsupials and
monotremes. Using the discovery dataset, we
first trained a network (Net2) in both eutherians
and marsupials based on only 7956 probes that
are mappable to both. The color bands under
the hierarchical tree reveal that all the Net1
modules were also preserved in Net2 (Fig. 2A).
Second, we selected CpGs in Net1 modules that
were alsomapped tomarsupials ormonotremes
and confirmed that their eigengene relation-
ships to primary traits were retained in these
mammalian clades (table S3). For example,
the magenta module, which is related to blood
in eutherians, was also found to be so in mono-
tremes (table S3), which confirms that the Net1
modules can indeed be applied to other mam-
malian clades by selecting probes that are also
mapped to those clades.
A functional enrichment study, accounting

for themammalian array background, revealed
that the genes neighboring to module CpGs
are implicated in many biological processes in-
cluding development, immune function, me-
tabolism, reproduction, stem cell biology, stress
responses, aging, and various signaling path-
ways (Fig. 2C and fig. S9).

Relationship with protein-protein interactions

We investigatedwhether the proteins encoded
by cognate genes (closest to respective CpGs)
within modules are known to mutually inter-
act or predicted to do so by STRING protein-
protein interaction networks, which integrate
known and predicted protein associations from
>14,000 organisms (35). A permutation test
analysis evaluating the global cluster coeffi-
cient (36) of each module showed that 14 mod-
ules are significantly enriched (P < 0.001) for
genes encoding mutually interacting proteins
(Fig. 2D). Overall, these results suggest that
comethylation relationships can be reflected
at the protein level for a subset of modules.

Modules related to maximum life span

To adjust for potential confounders, we used
four regression modeling approaches to iden-

tify modules that are associated with the log-
transformed maximum life span (dependent
variable): (i) a univariate regression model
with a covariate that was the module eigen-
gene (averaged per species); (ii) a phylogenetic
regression model with a covariate that was
again the module eigengene (averaged per spe-
cies); (iii) amultivariate linear regressionmodel
that included themodule eigengene, sex, tissue,
and relative age as covariates; and (iv) model
approach (i) applied to specific tissue types.
The marginal analysis identified four mod-

ules: magenta, black, midnightblue, and tan,
that related significantly to maximum life span
(the absolute value of the Pearson correlation
exceeded r = 0.6, Student’s t test P < 1 × 10−33).
The CpGs underlying the implicated modules
exhibit the sample patterns, as can be seen
from corresponding heatmaps (fig. S14C).
Phylogenetic regression also identified asso-
ciations of the same modules (table S3). Our
fourth modeling approach, i.e., the tissue-
stratified marginal analysis, indicates that
the relationship of modules to maximum life
span is often tissue specific. For example, the
magenta and midnightblue modules relate
to maximum life span in lung and liver (fig.
S14A). By contrast, the black module relates
to maximum life span only in skin, and the
tan module exhibited a weak relationship to
life span in the tissue-specific analysis.
For ease of comprehension, modules were

labeledwith the trait and direction of relation-
ship by superscript plus and minus signs; for
example, magenta is the Lifespan+Weight
+Blood+ module). The two modules (magenta
with480CpGs, andmidnightbluewith249CpGs)
that correlated with life span in lung and liver
also correlated significantly with average
adult weight across all eutherian species
(r = 0.47 to 0.55, P < 1 × 10−18; Fig. 3). The
magenta module (Lifespan+Weight+Blood+)
is enriched with developmental genes such as
HOXA5, VEGFA, SOX2, andWNT11 (table S4).
Themidnightblue (Lifespan+Weight+)module
implicates genes involved in transfer RNAme-
tabolism (P = 2 × 10−6, e.g., URM1), lipopoly-
saccharides (P = 5 × 10−6, e.g., CERCAM),
development (P = 10−4, e.g., the HOXL gene
family), and fatty acids (P = 2 × 10−3, e.g.,
ACADVL). The magenta module also relates
to life span and average weight of dog breeds
(r = –0.30, P = 0.003; Fig. 3C). Furthermore, it
is related to the hazard of humandeath [hazard
ratio (HR) = 0.91, MetaP = 0.0016; Fig. 3D) in
epidemiological cohort studies.
After adjustment for phylogeny, the cyan

module relates to mammalian life span phylo-
genetic contrast (r = 0.42, P = 4 × 10−14; fig.
S13I). The Lifespan+Liver– (cyan) module con-
sists of genes that play a role in adaptive im-
munity (P = 2 × 10−6), histone and protein
demethylation (P = 0.0001), and metabolism
(P = 0.0004) (table S4).
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Fig. 2. DNAm network relates to species and individual characteristics in
mammalian species. (A) the WGCNA network of 14,705 conserved CpGs in eutherian
species (Net1). The identified modules related to species or individual sample
characteristics. Net1 modules were compared with eight additional networks (fig. S5).
The modules with strong associations with species and sample characteristics are
labeled below the dendrogram. Gray color indicates CpGs that are outside of modules.
(B) Summary of the modules showing strong associations with species and individual
sample characteristics. The plus and minus labels are the direction of association
with each trait. (C) Top defined functional biological processes related to Net1modules
(for details, see fig. S9 and table S4). (D) Mammalian comethylation modules form
clusters of proteins in the STRING protein-protein interaction (PPI) network. For the

sake of visualization, the analysis was limited to the top 50 CpGs with the highest
module membership value per module. Colors indicate mammalian Net1. The lollipop
plot shows the global cluster coefficient (36) of the proteins within a module (up to
500 top CpGs) in a PPI network. Our permutation analysis matched the distribution
of the original module sizes. We evaluated 1100 random permutations, i.e., 20 for
each of the 55 modules. The boxplot reports the global clustering coefficient per
module (y axis) versus permutation status: module resulting from a random selection
of proteins (left) versus original module resulting from WGCNA (right). The modules
with cluster coefficients larger than themaximum permutation cluster coefficient were
considered as significant at P = 0.001. The dashed vertical line corresponds to the
maximum global clustering coefficient observed in the 1100 random permutations.
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Fig. 3. Comethylation modules related to mammalian maximum life span,
weight, human mortality, and age. (A and B) Modules associated with log
maximum life span (P < 10−20) (A) or log average species weight (P < 10−17) (B) in
marginal association (correlation test with themeanmodule eigengene of the species).
The module eigengene is defined as the first principal component of the scaled
CpGs underlying a module. The species are randomly labeled by their animal number
(table S1). (C) The top modules associated with median life expectancy, upper limit
life expectancy, or average adult weight of 93 dog breeds, model (marginal correlation
test of the mean module eigengene with target variables; for detailed breed
characteristics, see table S8). R, Pearson correlation* coefficient; P, correlation test

P value. (D) Forest plots of the top modules associated with mortality risk in the
Framingham Heart Study Offspring Cohort (FHS), and Women’s Health Initiative
(WHI) study totaling 4651 individuals (1095, 24% death). n denotes the number
of deaths per total number of individuals in each study. We report the meta-analysis
P value in the title of the forest plot. (E) Module that correlates significantly
(P < 1 × 10−300) with relative age (defined as ratio of age/maximum life span) across
mammalian species using a multivariate regression model. Covariates were tissue,
sex, and species differences. Each dot corresponds to a eutherian tissue sample
(n = 14,542). Dots are colored by taxonomic order as in Fig. 1. (F) Volcano plot of the
rmCorr of all purple module genes in GTEx data (for additional analysis, see fig. S11).
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The multivariate model analysis included
sex, tissue type, and relative age as covariates
to reveal additional modules that relate to life
span in different tissues. The regression analysis
found two modules with opposing correlations
with maximum life span: the green module
(life span r = 0.42, average weight r = 0.38, P <
10−300) and the greenyellow module (life span
r = –0.44, average weight r = –0.35, P < 10−300;
fig. S13J). The CpGs of the Lifespan–Weight–

Rodentia– (greenyellow) are located near genes
that play a role in development (P = 5 × 10−13;
table S4) and inRNAmetabolism (P=6× 10−12).

Age-related consensus module in mammals

The purple module (denoted subsequently as
RelativeAge+ module) exhibited the strongest
positive correlation with relative age (relative
age r = 0.35, P < 10−300; Fig. 3E and fig. S13).
To remove the confounding effects of spe-

cies and/or tissue type, we also constructed
seven consensus networks (denoted cNet3,…,
cNet9; for a description, see the supplemen-
tary materials). The RelativeAge+ module was
preserved in threedifferent consensus networks
(cNet3, cNet4, and cNet6; Fig. 2A), suggesting
conservation in different species and tissues
(scatter plot in fig. S11H). The purple Relative-
Age+module is positively enriched for CpGs in
regulatory regions (e.g., promoters and 5′ un-
translated regions) and depleted in intron re-
gions (fig. S15). Functional enrichment of this
module highlighted embryonic stem cell reg-
ulation, axonal fasciculation, angiogenesis, and
diabetes-related pathways (table S3). The CpGs
in this module are adjacent to Polycomb re-
pressor complex 2 (PRC2, EED) targets, which
are marked by H3K27me3 (table S3).
Ingenuity pathway analysis implicated POU5F1

(aliasOCT4), SHH,ASCL1, SOX2, andNEUROG2
proteins as putative upstream regulators of
the RelativeAge+ module. We used Genotype-
Tissue Expression project (GTEx) data to deter-
mine whether the mRNA levels of any of these
upstream regulators are altered with age in sev-
eral human tissues. OCT4 [repeated-measures
correlation (rmCorr) = 0.07, P = 2 × 10−14],
which is among the four known Yamanaka
factors for cellular dedifferentiation, showed a
positive increase with age in several, but not
all, human tissues (fig. S11F). Nine other genes
(e.g., HOXD10, rmCorr = 0.16, P = 4 × 10−50;
SRXN1, rmCorr = –0.14, P = 4 × 10−52) from the
RelativeAge+ module also had a nominally sig-
nificant rmCorr (P < 0.005) in GTEx data (Fig.
3F and fig. S11G), although opposite aging pat-
terns could be found in select tissues. These
observations highlight the relevance of genes
in the RelativeAge+ module to stem cell bio-
logy and aging in human tissues.

Interventional studies in mice

We related our methylation modules to in-
terventions that are known to modulate the

life span of mice (Fig. 4, A to C). This in-
cluded growth hormone receptor knockout
(i.e., dwarf mice) (37) and caloric restriction
(38), which extended life, and a high-fat diet,
which elicited the opposite effect (12). Six mod-
ules, including the purplemodule (RelativeAge+)
showed a significant decrease (P < 0.05) of
the module eigengene in dwarf mice and after
caloric restriction and, conversely, a modest
increase after a high-fat diet. Although the
magenta, black, midnightblue, tan, and green-
yellowmodules have connections to themax-
imum life span in mammals, they did not
present a clear relationship with interven-
tions that modify murine life span (growth
hormone receptor knockout, caloric restric-
tion, and high-fat diet). This suggests a mu-
tual exclusivity between the modules related
to the maximum mammalian life span and
those affected by interventions modulating
the murine life span.

Transient expression of Yamanaka factors

We investigated whether a transient expres-
sion of the Yamanaka factors in the 4-factor
(4F) mouse affects the module eigengenes.
The experimental design is shown in Fig. 4D,
with additional details reported in the original
article (39). Four of six of the above-mentioned
murine intervention modules showed a nom-
inally significant dose-dependent rejuvenation
in murine skin (P < 0.06), and two modules
showed the same in kidney (dose refers to the
duration of 4F treatment: 0, 1, 7, and 10months
of intermittent expression of 4F factors) (Fig.
4E). The purple, ivory, and lavenderblush3
modules were particularly sensitive to the
4F treatment (Pearson’s r ≪ –0.64 in skin). In
addition, the purple RelativeAge+ module’s re-
sponse to the 4F treatment is consistent with
bioinformatic findings that OCT4 is an
upstream regulator of this module. Among the
life span modules, only the black module de-
monstrates an increase (P = 0.007) in skin of
4F treated mice, but this was not observed in
the kidney.

Epigenome-wide association analysis of
maximum life span

We performed epigenome-wide association
studies (EWASs) to identify individual CpGs
with methylation levels that correlate with
maximum life span. To reduce bias resulting
from different levels of sequence conservation,
our EWASs of maximum life span focused on
333 eutherian species, excludingmarsupial and
monotreme species. We restricted the analysis
to 28,318 high-quality probes that are con-
served between humans and mice.
When relating individual CpGs to log-

transformed maximum life span, we used
several modeling approaches (for details,
see the supplementary text). Briefly, our first
approach, generic modeling, applied regres-

sion analysis ignoring tissue type and age. In
our second approach, we repeated the regres-
sion analysis after focusing on a given tissue
type. Third, we focused on specific nonover-
lapping age groups: young animals (defined
as age <1.5 times the age at sexual maturi-
ty), middle-aged, and old (defined as age >3.5
times the age at sexual maturity; fig S19).
Some of these regressionmodels were further
adjusted for average species weight (denoted
LifespanAdjWeight).
For brevity, we will focus on linear regres-

sion models because phylogenetic regression
models led to qualitatively similar conclusions
(tables S13 and S14). The most significant life
span–related CpGs are located in the distal in-
tergenic region neighboring TLE4 (Pearson’s r =
0.68, P = 5.8 × 10−46; Fig. 5A and table S11) and
two CpGs near the promoter region ofHOXA4
(r = 0.66, P = 7.5 × 10−45; Fig. 5A, midnightblue
module) and are negatively correlated with a
CpG in an intron ofGATA3 (r= –0.65,P= 8.8 ×
10−42; Fig. 5A). Many of these significant CpGs
remained soafter phylogenetic adjustment, such
as the CpGs neighboring TLE4 andHOXA4 (P =
4.2 × 10−5 andP=4.8 × 10−3, respectively; fig. S17
and tables S11 and S12). The top 1000 life span–
relatedCpGs (comprising 500positively and 500
negatively life span–related CpGs) significantly
overlapped (Fisher’s exact P = 5.5 × 10−134) with
those found in our weight-adjusted analysis
(LifespanAdjWeight).
In general, methylation of life span–related

CpGs does not change with age inmammalian
tissues (Fig. 5B and fig. S20). The same can be
seen from EWASs of life span restricted to ani-
mals of a given age group (e.g., only very young
animals; fig. S20D). The EWASs of life span in
all animals (irrespective of age) is highly corre-
lated (r > 0.7), with the analogous EWASs re-
stricted to animals that are young,middle-aged,
or old.
EWASs of life span showed good consis-

tency with the eigengene-based analysis in the
mammaliancomethylationnetwork.Asexpected,
the following previously discussed life span–
related modules were enriched with CpGs im-
plicated by our EWAS of life span:midnightblue
(hypergeometric test P = 2.2 × 10−47; 67/249
overlapped CpGs), greenyellow (hypergeometric
P = 2.1 × 10−36; 70/398 overlapped CpGs), tan
(hypergeometric P = 6.7 × 10−23; 52/365 over-
lapped CpGs), and green (hypergeometric P =
5.0 × 10−18; 104/1542 overlapped CpGs).
In total, 1006 genes had a differentialmethyl-

ation association with life span (union of cog-
nate genes resulting from the marginal model
analysis for life span and LifespanAdjWeight).
The gene expression levels of 16 of these genes
exhibited a highly significant repeated-measures
correlation with chronological age (rmCorr
P value < 10−50) in different human tissues
(Fig. 5C). The cognate genes next to the top
500 positively life span–related CpGs play a
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Fig. 4. The effects of different pro-aging and anti-aging interventions on
selected DNAm modules. Six DNAm modules respond to life span–related
intervention experiments and are associated with the life expectancy of the mouse
models. By contrast, the mammalian maximum life span modules do not correspond
directly to the benefits or stress triggered by the intervention in the murine
samples. (A) Changes in the intervention modules in the liver parallel smaller size
and longer life expectancy of growth hormone receptor mouse models (GHRKO).
Sample size: GHRKO, n = 11 (n = 5 female, n = 6 male); wild type, n = 18 (n = 9 male,
n = 9 female). Age range was 6 to 8months. (B) Caloric restriction (CR) DNAmmodule
signature predicts longer life span in this treated group (age = 18 months; sex =
male; CR, n = 59; control, n = 36). (C) High-fat diet accelerates aging in five modules
including the purple (RelativeAge+) module. High-fat diet, n = 133 (n = 125 females,

n = 8males); control (ad libitum feeding), n = 212 (n = 10 male, n = 202 female). Age
range was 3 to 32 months. (D and E) Examining the effects of in vivo partial
reprogramming on intervention modules. (D) Schematic view of the partial
programming experiment in 4F mice (39). A systemic Yamanaka factors
expression (Oct4, Sox2, Klf4, and Myc) was periodically induced by adding
doxycycline to the drinking water for 2 days per week. Partial programming was
done at three different durations. Sample size: control (C57BL/6+dox), n = 7;
1 month (1m) 4F, n = 3; 7 months (7m) 4F, n = 5; 10 months (10m) 4F. All tissues
except skin, n = 3; skin, n = 2. (E) scatter plots of the linear changes of the
intervention modules in the skin and kidney of mice treated with different durations
(dosages) of Yamanaka factors. Intervention modules indicate a dose-dependent
rejuvenation of skin and kidney by this partial programming regimen.
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critical role in animal organ morphogenesis
[marginal model life span GREAT enrichment
false discovery rate (FDR) = 3 × 10–4 and
LifespanAdjWeight FDR = 3.3 × 10−7; Fig. 5D]
and in increased rib number in mice (FDR =
1 × 10−21; Fig. 5D), and implicates the HOXL
subclass homeobox genes (FDR = 0.004 and
LifespanAdjWeight FDR = 1.3 × 10−15) in ab-
normal survival in mice (FDR < 4 × 10−4).

Upstream regulators of maximum life span
We used ingenuity pathway analysis (40) to
identify potential upstream regulators of the
genes cognate to the top 500 positively and top
500 negatively life span–related CpGs. The top-
ranked candidate regulators of both gene lists
included SOX2-OCT4-NANOG pluripotency
factors (FDR = 5.7 × 10−4 life span negative,
FDR = 5.7 × 10−4 life span positive), which

play critical roles in cellular reprogramming.
We performed a control analysis that ruled
out potential confounding by sequence con-
servation (fig. S25). Upstream regulators also
included several candidates related to devel-
opment: sonic hedgehog (SHH), life span–
negative FDR = 1.3 × 10−4; POU4F2, life span–
negative FDR = 3.3 × 10−7 and ASCL1, life
span–negative FDR = 1.6 × 10−3 (Fig. 5E). These
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Fig. 5. EWAS of mammalian log-transformed maximum life span. (A) CpG-
specific association with maximum life span across n = 333 eutherian species. For
EWAS, the mean methylation values of each CpG (per species) were regressed on log
maximum life span. The right portion of the panel reports EWAS results after
adjustment for average adult weight. Genome annotation indicates human hg19.
Blue dotted line indicates Bonferroni-corrected two-sided P value < 1.8 × 10−6. The
point colors indicate the corresponding modules. The bar plot indicates the top
enriched (hypergeometric test, eutherian probes as background) modules for the
top 1000 (500 negative CpGs, nominal P < 1.1 × 10−11, FDR = 1 × 10−10; 500 negative
and positive CpGs, nominal P < 1.5 × 10−21, FDR = 7.5 × 10−20) significant CpGs
for different EWASs. (B) Venn diagram of the overlaps between top hits from EWAS
of maximum life span and meta-analysis of age [meta-analysis results are from
(7); for additional analysis, see fig. S20]. (C) Venn diagram of the overlaps between
the genes adjacent to the EWAS results and top age-related mRNA changes in
human tissues (P < 1 × 10–50). (D) Gene set enrichment analysis of the genes
proximal to CpGs associated with mammalian maximum life span. We only report

enrichment terms that are significant after adjustment for multiple comparisons
(hypergeometric FDR < 0.01) and contain at least five significant genes. The
top three significant terms per column (EWAS) and enrichment database are
shown. (E) Ingenuity potential upstream regulator analysis (40) of the differentially
methylated genes related to mammalian maximum life span. Only significant
(FDR < 0.05) regulators are represented in the bar plot. (F) Venn diagram of three
gene lists. Gene list 1 is the top 646 genes adjacent to 1000 life span–related CpGs
(500positive and 500negative). Gene lists 2 and 3 are based onCpGs that are differentially
methylated (nominal Wald test P < 0.005, up to 500 positive and 500 negatively related
CpGs) after OSKM overexpression in murine kidney (583 genes) and skin (686
genes) (39). We observed significant overlap between the gene lists (nominal
Fisher’s exact P = 9.9 × 10−30 for skin and life span; P = 4.5 × 10−25 for kidney
and life span). (G) Transcriptional factor motif enrichment analysis of life span
modules and life span–related CpGs. The enrichment results for LifespanAdjWeight.
negative were not significant. The overlap is assessed by a hypergeometric test for
the CpGs within the motifs based on the human hg19 genome.
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findings suggest that expression of life span–
related genes might be regulated to some ex-
tent by pluripotency factors. This prompted us
to investigate whether expression of any of the
life span–related genes identified above are
altered by transient expression of pluripotency
inducing factors (Yamanaka factors OSKM) in
a mouse model (39). Indeed, this analysis re-
vealed that transient expression of OSKM al-
tered the expression of 190 of 647 life span–
related genes in skin and 162 life span–related
genes in the kidney (nominal Fisher’s exact
P = 9.9 × 10−30 for skin and life span; P = 4.5 ×
10−25 for kidney and life span; Fig. 5F and
fig. S32). Genomic positions that are known
to be bound by pluripotency factors in at least
one human or murine cell type according to
chromatin immunoprecipitation sequencing
(ChIP-seq) data from the Encyclopedia of DNA
Elements (ENCODE) consortium are located
near CpGs that are associated with maximum
species life spans: NANOG-binding sites are
enriched for CpGs that are positively corre-
latedwith life span (FDR= 0.002) and to CpGs
underlying the midnightblue module (FDR =
0.0006), which has high methylation levels in
long-lived species (Fig. 5G). OCT4 (POU5F1)
(FDR = 0.02), and cMYC (FDR = 0.003) bind-
ing sites are enriched with CpGs in the green-
yellow module, which has low methylation
levels in long-lived species (Fig. 5G). The ChIP-
seq binding location analysis also implicates
other noteworthy factors such as POLII, CTCF,
RAD21, YY1, and TAF1, which show the strong-
est enrichment for negatively life span–related
CpGs (Fig. 5G).
Given the role of CTCF in regulating the

three-dimensional organization of the genome,
we conducted an enrichment analysis of topo-
logically associating domain (TAD) boundaries
and loop boundaries identified in both human
and mouse cell lines (fig. S26). We found that
both TAD and loop boundaries demonstrated
significant enrichment of negatively life span–
related CpGs (FDR = 3 × 10−4) for TAD bound-
aries and (FDR=6.7 × 10−4) for loopboundaries
in various cell lines such as olfactory receptor
cells and the human fibroblasts IMR90 and
HFFc6 (fig. S26).

CpGs linked to life span in various taxonomic
orders and tissues

To pinpoint CpGs associated with log maxi-
mum life span independently of phylogenetic
order or tissue type, we conducted a meta-
analysis of EWAS findings from 25 distinct
strata comprising phylogenetic order and tis-
sue type. Using a nonparametricmeta-analysis
approach (rankPvalue), we assessed the EWAS
of life span (meta.lifespan) in these strata to
identify CpGs unconfounded by tissue type or
phylogenetic order (table S24). Our meta.life-
span results demonstrated significant overlap
with the previously mentioned EWASs of life

span in all eutherian species (hypergeometric
P = 1 × 10−175; Fig. 6A). By contrast, none of the
meta.lifespan CpGs overlapped with EWASs
of age, which further supports the idea that
methylation of life span–related CpGs does not
changewith age inmammalian tissues. The top
four CpGs from the meta.lifespan analysis are
depicted in Fig. 6B, showing significant posi-
tive correlations for CpGs near LOXL1 and
ZSCAN29 (exons) and negative correlations for
those near RAB29 (exon) and GATA3 (down-
stream), with log maximum life span across
various taxonomic orders and tissue types.
Similar to our above-mentioned results, CpGs
implicated by our meta.lifespan analysis (FDR
< 0.05) overlap significantly (FDR < 0.01) with
genes involved in organ morphogenesis, RNA
biosynthesis, increased rib number in mice,
Wnt signaling (Fig. 6C), and genes altered by
transient expression of pluripotency-inducing
factors in mouse models (nominal Fisher’s ex-
act P < 10−5 for skin andmeta.lifespan; P < 10−11

for kidney and meta.lifespan; Fig. 6D).

Chromatin state analysis

Our large-scale mammalian DNAm data con-
firm that CpGs located in promoter regions
(–2000 to 2000 bp of TSS regions) have low
methylation levels (mean = 15%; Fig. 7A). By
contrast, those in gene bodies and distal regions
are highly methylated (mean = ~70%; Fig. 7A).
CpGs having a high or low mean methylation
level tend to have positive or negative correla-
tion test Z statistics for life span, respectively
(Fig. 7, A and B). We find that CpGs with low
methylation levels in long-lived species are lo-
cated close to the TSS of genes andnear binding
sites of PRC1 (P = 6.4 × 10−11; Fig. 7C) and PRC2
(P = 2 × 10−6). To test the hypothesis that long-
lived species exhibit high or low methylation
levels in chromosomal regions that are expected
to have high or low methylation patterns, re-
spectively, we used chromatin states that were
identified and annotated based on >1000 epi-
genetic datasets encompassing a diverse range
of human cell and tissue types (41).
The negatively life span–related CpGs are en-

riched with a constitutive TSS chromatin state
(TSS1, P = 2.5 × 10−12) and promoter flanking
states (PromF4, P = 5.6 × 10−10; PromF5, P =
2.0 × 10−9; PromF2, P = 3.0 × 10−4; Fig. 7C).
The CpGs with high methylation levels in

blood samples of long-lived species are en-
riched in gene body–associated states (notably
transcribed and exon state TxEx1, P = 7.5 ×
10−8 and highly transcribed state TxEx4 P =
1.7 × 10−6; Fig. 7D). A detailed description of
the chromatin state enrichment for EWASs
of maximum life span is provided in the sup-
plementary text and tables S21 and S22.
A biclustering analysis between chromatin

annotations and comethylation modules based
on fold enrichments (Fig. 8 and tables S21 and
S22) revealed that the 55 mammalian comet-

hylation modules fall into three large group-
ings (referred to as meta-modules). The bar plot
to the left of Fig. 8 shows different mean
methylation levels of the CpGs underlying
the three meta-modules: mean methylation =
0.23, 0.66, and 0.77 for meta-modules 1, 2,
and 3, respectively.
Meta-module 1 contains several chromatin

states that are associated with Polycomb repres-
sion, including strong polycomb-repressed state
ReprPC1 and bivalent promoters (BivProm1-2).
Further,meta-module 1 contains chromatin states
related to TSSs (TSS1 and TSS2) and several
flankingpromoters (PromF2, PromF3, PromF4,
and PromF5). TSS1, PromF4, and PromF5 (as-
sociated with negatively life span–related CpGs)
were previously associated among universal
chromatin states with the strongest enrich-
ments for CpG islands (71 to 101 fold) (41). The
color band under Fig. 8 reveals that six mod-
ules underlyingmeta-module 1 are sensitive to
murine life span interventions. Meta-module
1 is enriched with CpGs that have lowmethyl-
ation levels in long-lived species (overlap with
EWASs of life span, tan and greenyellow mod-
ules; Fig. 8).
Meta-module 2 can be considered as a par-

tially methylated module (mean methylation
0.66) and is enriched with several enhancer
states, late replicating domains [partially methyl-
ated domains, commonPMD (42)], and solo
CpGs [WCGW (42)]. Meta-module 2 also con-
tains the module most related with life span
(midnightblue) and the human mortality risk
module (magenta). These two modules over-
lap with the CpGs that are positively related
to life span. Three out of four average weight-
related modules are also located in meta-
module 2.

Discussion

In this study, we present an analysis of a cross-
species DNAm dataset obtained from a mam-
malian array platform. This platform specifi-
cally focuses on highly conserved regions of
DNA,making it a valuable resource for studying
methylation patterns across mammalian spe-
cies (5). The successful construction of mam-
malian phyloepigenetic trees suggests that the
divergence of DNAm profiles is closely aligned
with genetic changes throughout evolution.
Sensitivity assessments reveal that the observed
phyloepigenetic associations are not caused by
technical issues associated with our measure-
ment platform. Instead, the phyloepigenetic
signalmay stem from sources such as upstream
regulators, transcription factors, or DNA se-
quence variations in distant regions.
The conserved CpGs exhibiting the stron-

gest phylogenetic signals are situated in inter-
genic regions, whereas promoter regions do not
display such signals. Previous studies reported
a rapid evolutionary rate of enhancers as a
shared feature among mammalian genomes,
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Fig. 6. CpGs linked to life span in various taxonomic orders and tissues. Using
the nonparametric rankPvalue method (33), we combined 25 EWAS of life span results
from various taxonomic order or tissue type strata, calculating the significance of a
CpG’s consistently high (or low) rank based on the 25 EWASs of log maximum life span
(meta.lifespan and underlying EWAS results can be found in table S24 and data S19).
(A) The overlap of top 1000 (500 per direction) meta.lifespan CpGs with EWAS of
life span in all eutherians (nominal Fisher’s exact P = 1 × 10−175). (B) Scatter plots
illustrating the top meta.lifespan CpGs categorized into different tissue-phylogenetic
order strata. Each panel displays only the strata that exhibit significant relationships.
Each dot represents a species colored by taxonomic order. Each row corresponds
to a different selection of tissue type. “bval” denotes the beta value, measuring

DNAm at a CpG site, with 0 indicating no methylation and 1 indicating full methylation.
(C) Gene set enrichment analysis of the genes proximal to CpGs associated with
mammalian maximum life span. We only report enrichment terms that are
significant after adjustment for multiple comparisons (hypergeometric FDR <
0.01) and contain at least five significant genes. The top three significant terms per
column (EWAS) and enrichment database are shown. (D) Venn diagram of three
gene lists. Gene list 1 (the bottom circle) is the top 407 genes adjacent to 1000
meta.lifespan CpGs (500 positive and 500 negative). Gene lists 2 and 3 (the
top circles) are based on CpGs that are differentially methylated (nominal Wald
test P < 0.005, up to 500 positive and 500 negatively related CpGs) after OSKM
overexpression in murine kidney (583 genes) and skin (686 genes) (39).
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Fig. 7. Chromatin state analysis and distance to the TSS for the life span–
related CpGs. (A) Illustrated plot presenting mean methylation across
species (displayed on the left y axis) and EWAS of maximum life span Z statistics
(shown on the right y axis), all plotted against the distances to the closest
TSS (represented on the x axis). (B) Mean methylation across species (y axis)
plotted against EWAS Z statistics for log maximum life span in different genomic
regions (intergenic, promoter, and gene body). Additional EWAS results after

adjustment for phylogenetic relationships can be found in figs. S17 to S20,
and corresponding enrichment results can be found in figs. S22 to S24.
Pearson correlation coefficients and P values are reported in different panels.
(C and D) Chromatin annotation enrichment analysis of the top 500 negatively
life span–related CpGs (C) and the top 500 positively life span–related CpGs
(D). The columns in each panel correspond to EWAS results for log-transformed
maximum life span across (i) all tissues combined (Lifespan.All), (ii) blood
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Fig. 8. Mammalian methylation
meta-modules based on chromatin
states and external genome
annotations. The heatmap shows the
enrichments between (1) mammalian
comethylation modules and significant
life span–related EWAS CpG groups
(x axis) and (2) chromatin states
or other genomic annotation (y axis).
Cell shading corresponds to log-
transformed fold enrichment values
(observed CpG count divided by
expected count). Hypergeometric tests
were used to evaluate the enrichment
significance in each cell. *Nominal
P < 0.001 (FDR < 0.10). Only
chromatin states and external genome
annotations with at least one
significant enrichment (FDR < 0.10)
are shown. The chromatin states
are based on a human-based universal
chromatin annotation of human
cell and tissue types (41). Other
genomic annotations include the com-
monPMD, solo CpGs (WCGW), HMD
annotations, and neither (CpGs
outside these annotations) which are
from (42). In addition, PRC1 and PRC2
binding sites are defined from the
ChIP-seq data of PRC1 and PRC2
from ENCODE (45). The row
and column hierarchical clustering
trees (average linkage) are based on
a dissimilarity measure (1 minus the
pairwise Pearson correlation between
log-transformed fold enrichment
values). The left barplot indicates the
mean methylation levels of the CpGs in
each state for all eutherian samples
in our data. We used the 14,705 eutherian
CpGs as the background for enrichment
of the comethylation modules. By
contrast, 28,318 CpGs (high-quality
probes in humans and mice) were used
as a background for enrichment of
significant life span–related EWAS CpG
groups with chromatin states and
genome annotations. Each EWAS CpG
group includes up to 500 most signifi-
cant CpGs per direction (positively
or negatively related with life span), as
detailed in the caption of Fig. 5.

samples only (Lifespan.Blood), and (iii) skin samples only (Lifespan.Skin), (iv) meta
analysis of lifespan in different tissues (meta.lifespan), and the corresponding
results after adjustment for average adult weight (LifespanAdjWeight). The last
column reports enrichment with respect to the RelativeAge+ module (purple).
We used the same significance thresholds as in Fig. 5. Cell shading corresponds
to fold enrichment between comethylation modules and each chromatin state.
Numeric values correspond to the P value of such enrichments based on the

hypergeometric test, and only cell values with significant P < 0.001 (equivalent to
FDR < 0.02) are shown. The chromatin states are learned based on epigenetic
datasets profiling chromatin mark signals in different human cell and tissue types,
resulting in a genome annotation shared across cell types (41). The common
partially methylated domains (commonPMD), solo CpGs (WCGW), and highly
methylated domain (HMD) annotations are from (42). PRC1 and PRC2 binding sites
are obtained from the ChIP-seq datasets of PCR1 and PCR2 from ENCODE (45).
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but promoters demonstrate either full or par-
tial conservation across species (2).
We found that 30 of the resulting 55 mod-

ules identified from an unsupervised machine
learning method were readily associated with
species traits (taxonomic order, maximum life
span, and average adult weight) or individual
traits (chronological age, tissue, and sex). We
expect that many of the remaining 25modules
will be associatedwith biological characteristics
about which we currently have no information.
As a case in point, although the yellowmodule
was not associated with any of our primary
tested traits, it did show association with re-
sponse to a murine circadian rhythm disrup-
tion study (light pollution during the night;
fig. S7B). The upstream regulator analysis of
the EWAS of life span identified the pluripo-
tency transcription factors OCT4, SOX2, and
NANOG. We showed that the transient over-
expression of OSKM in murine tissues affects
the methylation levels of CpGs near genes im-
plicated by our EWAS of maximum life span
(Fig. 5E). We speculate that the enhanced ac-
tivity of the pluripotency network in long-lived
species results in more efficient tissue repair
and maintenance, ensuring a longer life span.
Both the EWAS and eigengene-based analy-

ses identified methylation signatures of max-
imum life span presumably established at
birth.Most of thesewere independent of aging
and interventions that affect murinemortality
risk. Several CpGs that are more highly methyl-
ated in long-lived species are located nearHOXL
subclass homeoboxes and other genes that play
a role inmorphogenesis anddevelopment. Some
of these life span–related CpGs are located next
to genes that are also implicated in our analysis
of upstream regulators (e.g.,ASCL1 and SMAD6).
CpGs with methylation levels that are in-

versely related to life span are enriched in
TSS1- and promoter flanking (PromF4 and
PromF5)–associated chromatin states. Genes
located in chromatin state TSS1 are constitu-
tively active and enriched for nucleic acid
metabolic processes (41). This could imply that
long-lived species either evolved selective
mechanisms tomaintain lowmethylation levels
near TSSs or may have adaptations that pro-
mote the high expression of essential genes.
This high expression may indirectly prompt
more active DNA demethylation mechanisms.

Methods summary

TheMammalian Methylation Consortium gen-
erated cytosine methylation data from n =
15,456 DNA samples derived from 70 tissue
types of 348mammalian species (331 euther-
ians, 15 marsupials, two monotremes) using
a custom-designed mammalian methylation
array that targets CpGs at conserved loci in
mammals (5). DNAmdata were used for phylo-
epigenetic tree development using 1-cor dis-
similarity applied to mean methylation values

per species. The choice of the correlation-
based dissimilarity matrix is justified in the
supplementary materials and methods.
For unsupervised analysis, we formedWGCNA

networks based on two sets of CpG probes in
our data. The first network was generated
from 14,705 conserved CpGs in 10,927 sam-
ples of 167 eutherian species. The preservation
of this network was evaluated in an indepen-
dent dataset comprising 3692 samples from
29 tissues of 228mammalian species (164 new
species; 64 overlapped with the training set).
The second network was a subset of 7956 con-
served CpGs in 11,105 samples from 167 euthe-
rian and nine marsupial species. In addition,
we developed seven consensus comethylation
networks to remove the confounding effects of
species and tissue type. Consensus WGCNA
can be interpreted as a meta-analysis across
networks in different species and tissue types
(33, 43).
For the eutherian network (Net1), module

eigengenes (MEs) were defined as singular
vectors (corresponding to the highest singular
value) from the singular value decomposition
of the scaled CpGs that underlie the respective
module. The eigengenes in the eutherian net-
work (Net1) explained a range of 24 to 63%
(average 43%) of the variance in the methyla-
tion data in the training set, replication set,
and all data in each module (table S3). For a
given module, we defined the measure of mod-
ule membership (kME) as the Pearson correla-
tion between the module eigengene and the
CpGs. The association of module eigengenes
was examined for different traits using indi-
vidual regression models.
EWAS of life span was done in 28,318 CpGs

that apply to mice and humans according to
calibration and titration data (correlationwith
calibration exceeds 0.8) andmappability infor-
mation as described in (5). Because the distrib-
ution of maximum life span and other life
history traits were highly skewed, we imposed
a log transformation on these phenotypes
before conducting EWAS. Our tissue type–
specific EWAS was conducted in tissues with
enough species (N > 25) available. For our var-
ious EWAS of log-transformed maximum life
span,we adopted anominal significance thresh-
old of 1.8 × 10−6 (0.01/28,318) based on the
conservative Bonferroni adjustment.We report
an FDR in our enrichment studies to adjust for
multiple comparisons.
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Editor’s summary
DNA methylation installs a methyl group to cytosine, placing an epigenetic mark that regulates gene expression.
Comparative epigenomics combines epigenetic signatures with phylogenetic relationships to understand species
characteristics. Haghani et al. evaluated methylation levels in highly conserved DNA sequences, profiling ~15,000
samples across 348 mammalian species (see the Perspective by de Mendoza). Phylogenetic trees suggest that the
divergence of DNA methylation profiles closely mirrors genetic evolution. Species with longer maximum life spans have
developed tidier methylation patterns within the genome, characterized by unique peaks and troughs of methylation.
Methylation patterns associated with maximum life spans generally differ from those connected to age or interventions
that affect mortality risk in mice. These data provide a rich resource of information for fields including evolutionary
biology and longevity research. —Di Jiang
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