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Abstract

The ability to (re)establish basic community infrastructure and governmental func-
tions, such as medical and communication systems, after the occurrence of a natural
disaster rests on a continuous supply of electricity. Traditional energy-generation
systems consisting of power plants, transmission lines, and distribution feeders are
becoming more vulnerable, given the increasing magnitude and frequency of climate-
related natural disasters. We investigate the role that fuel cells, along with other
distributed energy resources, play in post-disaster recovery efforts. We present a mixed-
integer, non-linear optimization model that takes load and power-technology data as
inputs and determines a cost-minimizing design and dispatch strategy while consid-
ering operational constraints. The model fails to achieve gaps of less than 15%, on
average, after two hours for realistic instances encompassing five technologies and a
year-long time horizon at hourly fidelity. Therefore, we devise a multi-phase method-
ology to expedite solutions, resulting in run times to obtain the best solution in fewer
than two minutes; after two hours, we provide proof of near-optimality, i.e., gaps
averaging 5%. Solutions obtained from this methodology yield, on average, an 8%
decrease in objective function value and utilize fuel cells three times more often than
solutions obtained with a straight-forward implementation employing a commercial
solver.
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1 Introduction and background

Climate-related events that contribute to power disruptions are becoming more
widespread. In 2021, the U.S. encountered 20 separate billion-dollar weather- and
climate-related disasters, almost all of which impacted the ability to deliver reli-
able electricity to communities. The U.S. Department of Energy defines reliability
as the ability of the system or its components to withstand instability, uncontrolled
events, cascading failures, and/or unanticipated loss of system components. The Fed-
eral Energy Regulatory Commission defines resilience as “the capacity to anticipate,
adapt to, and rapidly recover from disruptive incidents.”

An independent group of scientists and communicators who research climate
change reports a 67% increase in major power outages between the first and sec-
ond decades of the 2000s (Climate Central 2020); Fig. 1 reflects the costs associated
with increased climate-related disasters. The average annual cost over the five-year
period between 2017 and 2021 constituted $148.4 billion, a new record (Smith 2021).
The Department of Energy (2018) estimates that power outages cost the U.S. economy
$150 billion per year and disruptions to power infrastructure are more attributable to
climate-related events than to any others (Fig. 2). To protect large-scale infrastructure,
utilities often deploy power safety shutoff measures which, without backup power
generation, threaten the safety and well-being of residents. Thus, having a policy that
provides reliable, affordable electricity in post-disaster recovery efforts will become
more pressing, especially because the number of natural disasters is expected to rise
(Schoennagel et al. 2017; Chapin et al. 2008).

The nature and severity of natural disasters may require residents either to shelter-
in-place or to evacuate. Examples of the latter include hurricanes and large-scale fires
during which the deployment of rescue and response teams to the impacted area is
a higher priority than maintaining persistent power (Kocatepe et al. 2019). Wildfires
are particularly menacing due to their non-predictive nature. Climate-related impacts,
such as droughts and heatwaves, have increased global wildfire risk (Davies et al.

Fig. 1 Climate-related disaster 900
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2018; Jolly et al. 2015; Zolan et al. 2021). In 2017, over 71,000 wildfires burned
10 million acres and more than 12,000 structures (Jenkins 2018). Within the U.S., 29
million Americans live with the significant potential for extreme wildfires (USAToday
2018). Fire-related events pose risks to both the power generation and the distribution
system, which include transmission and distribution lines (Campbell 2012). The area
impacted by wildfires often encompasses multiple types of power system architec-
tures in which the effects differ by the level (i.e., electricity delivery and generation)
of electrical equipment. At low-voltage (i.e., residential) delivery, a fire may cause
system components to fail; conversely, high-voltage transmission components may be
more resilient (Donaldson et al. 2020). Some electrical service disruptions are due to
preventative measures enacted by the utility service to prevent wildfires. For exam-
ple, in 2019, Pacific Gas and Electric’s planned power shutoffs left an estimated 2.7
million people devoid of electricity, possibly the state’s largest planned blackout ever
(Newburger 2019).

In addition to economic implications, there are social implications related to vul-
nerable populations (e.g., the elderly and those with electricity-dependent health risks)
such as their inability to evacuate (Greene and Hammerschlag 2000; Molinari et al.
2017; Palaiologou et al. 2019). In 2017, over 65% of victims in the Northern Cali-
fornian fire were over the age of 65 (Palaiologou et al. 2019). Regardless of whether
power outages are caused by fire-related damage to the power system (i.e., generation
and transmission) or are due to preventative measures, communities depend on energy
for infrastructure such as hospitals.

Due to the dependence of many first-world countries on electricity for communica-
tion, healthcare, and water purification, efforts at the federal level are directed toward
reducing electrical downtime. Many utilities are investing in distributed generation
to improve network reliability and resilience with proper consideration of technology
mix, size, and placement. Abiodun et al. (2022) document how distributed generation
can enhance power system resilience and improve energy equity. However, conven-
tional microgrids, which often include technologies such as diesel generators, produce
unhealthy exhaust, resulting in those with preexisting health conditions suffering con-
sequences from resulting air pollution exposure. Fuel cells address this concern in
that they run without emitting fumes, particulates, or carbon monoxide; and, because
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Fig.3 A representative microgrid and energy system (Center for Climate and Energy Solutions 2020)

of this, fuel cells can be housed within a building, protecting it from some climate-
disaster-related risks.

We develop an optimization model that prescribes an appropriate configuration
and size of a distributed generation system to provide communities, in an environ-
mentally sound way, with critical services during an electrical service disruption.
Figure 3 depicts a traditional microgrid consisting of fossil-fuel powered combined-
heat-and-power systems, reciprocating engine generators, and solar power combined
with electrical storage (Center for Climate and Energy Solutions 2020). The micro-
grid market in the U.S., with 10 gigawatts of installed capacity in 2022, is projected
to grow by 19% annually through 2027, with disaster mitigation being a primary use
case (Nilsson 2023).

While microgrids provide electricity resilience, threats to these types of systems
include physical destruction to solar panels (through wind, fire, and hail), damage to
electrical storage systems from extreme temperatures, and harmed fuel delivery sys-
tems (Mishra et al. 2020). Donaldson et al. (2020) show that the presence of distributed
roof-top solar and wind turbines has increased the exposure of electricity generation
equipment to wildfires. The corresponding risk continues to grow as more homes
(and, subsequently, electrical infrastructure) are built using renewable technologies
and at the wildland-urban interface. Deliberate consideration of technologies, their
vulnerabilities, and their construction mitigates these threats. For example, Anderson
et al. (2023a) show that during a hurricane-induced outage, the inclusion of combined-
heat-and-power technologies at a wastewater treatment facility increases the overall
resilience of the system through its ability to burn on-site biofuel. The same benefit
would not be realized with a traditional microgrid. Beigzadeh et al. (2021) demon-
strate that fuel cells can deliver on-demand energy sourced from industrial-waste
biogas, syngas, biofuel, and gasified biomass. The ability to operate with on-site fuel
yields a microgrid design with solid oxide fuel cells that possess the ability to con-
tinuously operate even if the fuel supply is disrupted. We incorporate solid oxide fuel
cell technology into microgrid design to reduce these vulnerabilities and to ensure that
dependable energy sources exist.
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2 Literature review

There is an abundance of literature that addresses microgrid design, microgrid dispatch,
and power system reliability and resilience. The fundamental gap in our knowledge
and ability to deploy these technologies stems from a void of techno-economic micro-
grid optimization models addressing energy resilience and environmentally friendly,
deployable technologies such as fuel cells. HOMER (Hybrid Optimization Model for
Electric Renewables), a widely used design and dispatch program, is a simulation
model that, for a year-long demand profile, uses fixed dispatch strategies and ranks
resulting solutions based on life-cycle cost (Lambert 2000; Rehman and Al-Hadhrami
2010). Some models employ prescriptive (optimization) methods; we highlight a
few examples. A mixed-integer program with wind power, batteries, and generators
produces results comparable to HOMER’s (Aziz et al. 2022); however, their model
generates the following solutions sequentially: (1) procurement resulting from running
the mixed-integer program for a curtailed time horizon; and, (2) dispatch following
from a data mining algorithm to determine an operations strategy for the entire year
given procurement from (1).

A two-phase approach fails to coordinate dispatch decisions and procurement
strategies. Another techno-economical model, REopt® (Anderson et al. 2017), is a
cost-minimizing deterministic mixed-integer linear program that yields an optimal
design and dispatch of distributed energy resources, including gas turbines, renew-
ables, and energy storage systems, to meet a set of predefined electrical, thermal, and
cooling loads. While this model determines design and dispatch concurrently, it does
not include solid oxide fuel cells, nor does it consider the non-linearities associated
with thermal storage.

Pruitt et al. (2014) develop a nonconvex, mixed-integer, nonlinear program to pre-
scribe the design and dispatch of a distributed generation system of combined heat
and power using solid oxide fuel cells for commercial buildings for a time horizon of
one year at hourly fidelity. This model does not incorporate utility-related outages and
omits technologies such as gas-turbine combined-heat-and-power systems and backup
diesel generators; solutions to instances with time horizons that extend beyond a month
are cost-minimizing only when all power is sourced exclusively from the grid. Some
authors explore similar frameworks and reduce complexity by shortening the time
horizon (Morais et al. 2010) or by using identical daily demands (Bernal-Agustin
et al. 2006). Other optimization models that incorporate solid oxide fuel cells as part
of their system either: (1) omit the design or detailed dispatch component (Qazi et al.
2018; Sorrentino et al. 2019), and/or (2) use heuristics, rather than exact techniques,
to determine a solution (Vigneysh and Kumarappan 2016; Deng et al. 2011). Arefifar
et al. (2013) optimize microgrid design under considerations of reliability and sup-
ply security. Shokoohi et al. (2018) examine controls in smart grids in line with Lin
et al. (2018), who review various strategies in the implementation of power system
resilience. To lessen the health impacts and damages associated with, for example,
wildfires, Pacific Gas and Electric (California’s largest public utility) has proposed
to deploy decentralized generation such as solar panels and diesel generators (Pacific
Gas and Electric 2021). Similarly, Scioletti et al. (2017) examine such a microgrid
including batteries, and Goodall et al. (2019) extend this system to capture battery
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fade. However, these applications miss an opportunity to utilize emerging, clean tech-
nologies, such as solid oxide fuel cells, to support critical entities such as hospitals
and community centers.

Our research contributes to the literature by creating cost-minimizing, distributed
generation solutions, including solid oxide fuel cells, while considering utility-service
disruptions attributable to a natural disaster-induced outage. Specifically, our focus is
disasters that result in a significant portion of the population remaining in place and
relying on energy for sustainment and recovery. Our optimization framework considers
how fuel cells, combined with other distributed generation, can reduce electrical outage
time post-wildfire and support community rebuilding. We first describe individual
components and then present a mathematical formulation of the entire system. The
resulting output is a cost-minimizing system that prescribes the size of the solid oxide
fuel cells, as well as conventional, renewable, and co-generational technologies, to
provide planners with viable resilience solutions. We embellish a design and dispatch
optimization model through enhancements that include: (1) additional generational
technologies, (2) new procurement costs, (3) modifications to the electrical storage
systems, and (4) technology-specific modeling assumptions. We expand knowledge
and capabilities in the disaster-response-and-recovery literature by creating a tool that
can analyze and evaluate the value of different technology mixes (i.e., solar and storage,
fuel cells, and gas-turbine generators) for a microgrid. Our model accounts for on-
site heating loads to demonstrate the co-generational contributions of the technology
mix. We capture the temporal and seasonal nature of energy demand, and create
a cost-benefit framework for the responsible civic organization. We investigate the
specific contribution that solid oxide fuel cells make in delivering energy services
due to their co-generational capability and ability to be sourced by a variety of fuel
types, including bio-waste (Baldinelli et al. 2021). We provide decision-makers with
solutions that would allow electric utilities to respond to disasters (i.e., wildfires and
earthquakes) that have a high probability of causing blackouts.

3 Modeling the energy system

Our optimization model, (P’), extended from Pruitt et al. (2014), investigates how
microgrids bring reliability and resilience to communities post-disaster (Fig.4). We
incorporate a grid-related outage and additional co-generational technologies. We con-
sider a simulated set of electrical loads, of various quantities, for a distribution feeder.
The installed microgrid is co-located at a building site with a thermal load. We incorpo-
rate characteristics of the technologies, such as efficiencies and start-up requirements.
We utilize basic utility rate structures that include both energy and peak demand
charges. The objective minimizes total cost, consisting of the capital, operations and
maintenance (O&M), and operational costs of the acquired technologies, as well as
the existing costs resulting from demand met by the utility and on-site hot-thermal
energy system, typically, a boiler. We include an emissions penalty in the objective
function. Design variables associated with fuel cells are general integers to assist with
modeling the hourly operation of the system. We relax integrality on all other procure-
ment variables. We assume that all design decisions are made at the beginning of the
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Fig.4 Distributed energy system modified from Pruitt et al. (2014). Note: CHP: combined heat and power,
BESS: battery electric storage system, TESS: thermal energy storage system, PV: photovoltaic

time horizon. The model includes both linear and non-linear constraints. We present
the full mathematical formulation (P’) in Sect. 3.1.

We utilize capital and lower-case letters to distinguish variables and parameters,
respectively. We use script capital letters to distinguish sets, subsets, and indexed sets.
Additionally, notation with check and hat decorations describes flows in and out of an
entity, respectively. Variables X, Y, and Z represent continuous, integer, and binary

quantities, respectively.

3.1 Mathematical formulation

Sets
K

J

M

T

Subsets and indexed sets
JScJg

JCHP 7

JRcyg

JBcyg

JEcg

Tn ST

78 CT

Time and demand parameters
A

dp

df

Technology cost segments
Power producing technologies
Months of year

Time steps

Solid oxide fuel cell technologies
Combined heat and power technologies
Renewable technologies

Heat-only producing technologies
Electrical producing technologies
Time steps in month m

Time steps when the utility is available

Demand time steps
Heating load in time step ¢

Electric load in time step ¢

[hours]
(kW]
[kW]
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Cost and emission parameters

Kj

a
Kjk

Annualized variable capital cost of technology j

Annualized fixed installation cost of technology j in size segment k
Annualized variable capital cost of electric battery

Annualized variable capital cost of water storage

Operation and maintenance cost of technology j

Utility energy cost (including emissions penalty) in time step ¢
Utility energy purchase price in time step 7

Utility gas cost (including emissions penalty) in time step ¢

Power generation and storage parameters

bk
!
mj
€
a;
ﬁb
kj
b
fj
fm

J

Maximum power rating of technology j in cost segment k

Maximum electricity efficiency for technology j
Minimum electricity efficiency for technology j

Maximum electricity efficiency for technology electrical storage
Power rating of technology j

y-intercept for fuel of technology j

Fuel burn slope of technology j

Production factor of technology j in time step ¢

Maximum turn-down of technology j

Amount of fuel needed to start up technology j

Minimum capacity of electrical storage system

Maximum capacity of electrical storage system

Start-up time for each technology j to reach maximum turn-down (u ;)

Heat generation and storage parameters

o Ambient heat loss for water

€ Arbitrary temperature for which there is no thermal loss
r]l} Thermal efficiency for technology j

Vj Exhaust gas output for technology j

h® Specific heat of exhaust

hv Specific heat of water

v Maximum water storage capacity

v Minimum water storage capacity

T Average exhaust temperature from hot-thermal-producing technology j
7 Average return water temperature to water storage tank
T Maximum allowed temperature of water in the system
T Minimum allowed temperature of water in the system
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[$/unit]
[$]
[$/kWh]
[$/gal]
[$/kWh]
[$/kWh]
[$/kWh]
[$/kWh]

(kW]
[fraction]

[fraction]

[fraction]
[kW /unit]
[unitless]
[unitless]
[fraction]
[fraction]
[kWh/unit]
[fraction]
[fraction]

[hours]

[fraction]

[°C]

[fraction]
[kg/kWh]
[kWh/(kg °C)]
[kWh/(gal °C)]
[gall

[gal]

[°C]

[°C]

[°C]

[°C]
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Continuous variables

XW
Xba

Volume of water storage tank

Amount of electrical storage procured

Power purchased from the utility in time step ¢
Power sold to the utility in time step ¢

Peak power purchased from the utility in month m

Power produced by each technology j in time step ¢

Power into electrical storage system in time step ¢

Power out of electrical storage system in time step ¢

State of charge of electrical storage system in time step ¢

Electric efficiency of each technology j in time step ¢

Fuel consumed by technology j in time step ¢

Flow rate of fluid into thermal storage from technology j in time step ¢

Flow rate of water out of thermal storage in time step ¢

Temperature of water in storage in time step ¢

Integer variables

ya
J
op

v
to

v

Number of each technology j procured
Number of each technology j operating in time step ¢

Increased number of each technology j operating from ¢ — 1 to ¢

Binary variables

k
Zj?k
ZW
Z
2]

1 if generating technology j in segment k is procured, 0 otherwise
1 if additional water storage capacity is procured, 0 otherwise
1 if water storage tank is above (T + ¢€) in time step 7, 0 otherwise

1 if water storage tank is above (Tpojjer) in time step 7, 0 otherwise

Objective function (See Sect.3.2.1)

(P)) minimize

[gal]
[kWh]
[kW]
[kW]
[kW]
[kW]
[kW]
kW]
[kWh]
[fraction]
[kW]
[kg/hour]
[gal/hour]
[°C]

[units]
[units]

[units]

[binary]
[binary]
[binary]
[binary]

wcb X0 4 Z K?kZ}-akk + Z K Y5+ (XY —v)

jeTJ.kek jed
Capital Costs
om y P g f
+A Y SN+ Y YR+ AX)
jeJEteT jeJs.teT
O&M Costs Fuel Costs
FAY LRI+ Y g Xn —AY X!
teT meM teT
Grid Purchase Grid Sales
h g\ yf
+A DY @+ X, (1)
jeJB.teT
Existing Boiler Cost
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a2 Load balancing (See Sect.3.2.2)

@R - XD+ Y X0+ Xy - X =d) VieTE (2a)
jeJE
@R - XD+ Y X2 =df VieT\T® (2b)
jeJE
A 2=t A\ !
25 ¥ (%) — f)Xfl[(l - [1 - }é _;}z}) ] =d" VieJBteT (2¢)

¢ Utility operations (See Sect.3.2.3)

~

217 X;ln > X? VYme M,t €T, (3a)
2ie Y XP <) X! YmeM (3b)
teTy teTy

zns  Power capacity (See Sect.3.2.4)

20 x5, 5fj1’,1€jyf VieJRreT (4a)

uikiy? < X0 <ky® vje JE\NgRteT (4b)

- Yy < Y3 ViedSteT (4c)

2 kijy* <bpzlf VjeJ.kek (4d)

Y Z% <1 VjeJ (4e)
kel

»s  Electricity efficiency (See Sect.3.2.5)

n5 — wjn 5 =nS xP
226 le;z <;>—(AJ—_1)<—(§;> VjejS,IET (5)
L=n, kj(l=pp)/\Y;
27 Fuel consumption (See Sect. 3.2.6)
xP
228 Xﬁ't = X‘{'; Vje JS1t eT (6a)
jt
X5 = Rl 4 XD V= TR\ U, e T (6b)
XN — xH( — 2!
f = (0 = X0 ) VieT,jeJ® (6¢)
jt h
j
a  Start-up (See Sect.3.2.7)
m Y e, ~ Y <Y, Vi€ Tt eT it <|T|~o; (7
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Power storage (See Sect.3.2.8)

X% — XD = AGPXP — XD) VieT:t <|T|

sx% < xPC <5x vieT
bsc __ ybsc
X = X|T|

Heat capacity (See Sect.3.2.9)
)V(?, < ijﬁ-t jeTMreT
Heat storage (See Sect.3.2.10)
Xig — (1 —aZpX;

ZCHP(An*]!heS(?,(fj —XH) — AnVXT(xt - 1)
jeJ

(8a)
(8b)
(8c)

(C))

= VieT :t<|T| (10a)

nv XY
Xi—t<@-9)2Z" VieT
Z'<X'—F<et(@-F—oZ VieT
F—tp—2ZH<X' -2, <@-%)2' VieT, jeJ®?
v=X"<ib

A Z yj}f ’Vmaxte—T{dfPi}—‘ZW

jecme min ;¢ yene {kj}
Non-negativity and integrality

X%, x% >0

x5, X0, xS, X5,
)_(;11 >0 Vme M
XY, X8 X0 X0 xPe XM xt>0 vieT
Y# > 0,integer Vj e J

YiP Y9 =0, integer VjeJ,1€T

Z" binary

Z}, Z; binary t e 7

Z;’-lfcbinary jeJd, kek

>0 VjeJ,teT

3.2 Discussion of formulation

We describe, in detail, the objective function and constraint set.
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(10f)

(11a)
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(11f)
(11g)
(11h)
(11i)
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3.2.1 Objective function

The objective function minimizes costs associated with fixed and variable procure-
ment, operation and maintenance, power generation, and the net utility charge.
Procurement includes both size-dependent capital cost (variable) and installation
(fixed), which may incorporate the construction of tailored equipment housing units
and the emplacement of piping and cables. The fixed cost segments are increasing
and therefore convex, precluding binary logic to ensure placement in the appropriate
cost segment. Binary variable Z;‘lli enforces the piecewise-linear installation cost. The
way in which load is met is influenced by the fuel cost and grid purchase terms in the
objective function and controlled through various constraints in set (6).

We use a standard annualized cost computation, which includes the use of a capital
recovery factor (Lambert 2000):

i1+ .
= & Vje 12
G aron e e (12

where i is the annualized real discount rate, N; is the expected lifetime, in years, of
technology j and k ; is the net present capital cost of technology j. Although expression
(12) only includes the technologies in set 7, this formula is extended to the electrical
storage system as well.

3.2.2 Load balancing

Constraint (3.1) balances electrical load with the sum of: the amount of net power
deployed from the storage system, the power dispatched from all electrical power
systems, and the net power purchased from the utility. We relax, from equality, this
constraint by ensuring that the net power produced by the microgrid and purchased
from the utility meets or exceeds the electrical load. We introduce a gas turbine genera-
tor with and without combined-heat-and-power capabilities to the set 7 ¢, in addition to
fuel cells and photovoltaic panels. Constraint (2b) restricts the grid interaction during
utility service disruptions, requiring all loads to be met with the microgrid. We enforce
constraint (2¢) through a set of bi- and tri-linear terms in which the on-site heating load
is met through a mixture of hot and cold water. If the water temperature in the tank is
above 7y, then thermal demand is met through the product of variable water flow out
of the tank and the temperature gradient above the delivery temperature. Otherwise,
the flow out becomes fixed and is determined by equation (13). As the temperature of
the water in the storage tank increases, the flow of water out decreases; and, therefore,
the fuel needed to power the boiler decreases (Pruitt et al. 2014).

df

h¥ (T — T)
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3.2.3 Utility operations

Constraint (3a) is the linearization of equation (14), which captures the peak power
purchased in month m. Constraint (3b) restricts energy arbitrage and enforces net
metering, typical for grid-connected systems.

X" = max X' VmeM (14)
{teTm}

3.2.4 Power capacity

Constraint (4a) restricts the power output of renewable technology j to be less than
or equal to the product of the capacity of the procured system and the production
factor in hour 7. Constraint (4b) ensures that the power output of non-renewable,
electric-producing technology j is between the minimum required turn-down and the
maximum amount of available power in hour 7. The former level forces the fuel cell to
produce sufficient power at its minimum required temperature. Constraint (4c) restricts
the number of operational fuel cells to be no more than the number acquired. Con-
straint (4d) dictates that the chosen power rating is assigned to the correct installation
cost segment. Constraint (4e) limits the selection to at most one segment.

3.2.5 Electrical efficiency

We model electrical efficiency as a decreasing function of the average output of the
operational fuel cells through constraint (5). In this case, as the power output increases,
the electrical efficiency of the system decreases. We assume that all fuel cells of type
J operate identically. The tradeoff, however, is the inclusion of additional bi-linear
terms that include the product of a continuous variable and a general integer variable.
The variable efficiency is bounded between n; and 7 ; for fuel cell technology j (Pruitt

et al. 2014).

3.2.6 Fuel consumption

Constraint (6a) ensures that the amount of fuel consumed by fuel cell type j in time
period ¢ is equal to the quotient of the total power produced and the average variable
efficiency; this constraint creates | 7°| - | 7| additional bi-linear terms. We implement
constraint (6b) to compute the fuel needed to produce X ?[ kW of power for both
the standard electrical and combined-heat-and-power generators. We use the linear
formulation consisting of the sum of the marginal contribution of fuel per kW ( f ]T“ X ?t)

and the product of the y-intercept (f }’) and the capacity of fuel cells operating in a

given hour (l;,- Y;)tp ). We implement constraint (6¢) to calculate the fuel used to power
the boiler as the quotient of the amount of thermal energy dispatched and the boiler
efficiency. If the water temperature is above the delivery temperature, then no fuel is
consumed (Pruitt et al. 2014).
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3.2.7 Start-up

The coarseness of our chosen time fidelity precludes the necessity of power-ramping
constraints; that is, fuel cell operation can fluctuate between the maximum power
rating and minimum turn-down within a single time step. However, when activated,
solid oxide fuel cells must reach a designated temperature prior to producing power.
The parameter o; dictates the number of time steps to reach operational temperature
from ambient. Therefore, we include constraint (7) to ensure that if the number of
fuel cells in operation in time period ¢ + o is greater than the number of fuel cells
operational in time period ¢, then Yj‘? assumes the value of the difference; otherwise,
its value is 0. This models the number of fuel cells required to turn on in time period
t and ensures that we capture the amount of time and fuel necessary to bring the fuel
cell from ambient to operational temperature prior to dispatching power.

3.2.8 Power storage

Constraint (8a) requires that the difference in states of charge between time steps ¢
and ¢ + 1 equal the net energy dispatched from the storage system in time period . We
incorporate a constant electrical efficiency loss for charging the battery. Constraint (8b)
dictates that the battery’s state of charge is restricted to between the minimum and max-
imum allowable limit of the procurement variable. Constraint (8c) requires equality
of the electrical storage system’s beginning and ending state of charge.

3.2.9 Heat capacity

In our system, fuel cells with combined-heat-and-power capabilities provide the added
benefit of utilizing the thermal exhaust produced by the fuel cell to heat water in the
storage tank. Constraint (9) dictates that the amount of exhaust flow is a function of
the fuel consumed by the co-generational fuel cell. We utilize an inequality to allow
for curtailment of the thermal energy in time periods in which the inclusion of the
exhaust would force the water temperature to exceed its allowable limit. The added
co-generational benefit does not apply to diesel-powered generation.

3.2.10 Heat storage

Constraint (10a) governs the temperature differential between time periods. We (i)
account for a constant heat loss due to thermal conduction; (ii) add the thermal energy
provided by the exhaust heat from the various combined-heat-and-power systems; and,
(iii) subtract the thermal energy dispatched to meet the heating load. Constraint (10b)
limits the temperature to 7 if a storage tank is required and to T otherwise. Con-
straint (10c) dictates that if the water temperature is arbitrarily close (¢€) to the return
water temperature (%), we do not apply the heat loss due to thermal conduction
(described in constraint (10a)). Constraint (10d) governs the binary variable 2} used to
determine if the water temperature is above or below the delivery temperature (Zg,;).
Constraint (10f) serves two purposes: (1) it requires the procurement of additional
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Optimizing microgrid deployment for community resilience

water storage system capacity if a combined-heat-and-power system is procured; and,
(2) it limits the number of acquired combined-heat-and-power systems to the maxi-
mum power demand. Constraint (10e) bounds the capacity of the water storage system
(Pruitt et al. 2014).

4 Solution methodology

The formulation (P’) is a mixed-integer nonlinear program that includes continuous,
binary, and integer variables, as well as constraints with non-linear terms. We measure
performance of our problem instances via solution time and optimality gap, the latter
of which provides the relative difference between the best integer solution found to
the original, nonlinear model and the lower bound derived from convex relaxations
of the original, nonconvex problem. State-of-the-art global optimizers yield gaps of
greater than 10% after more than two hours of solution time. Therefore, we present,
in this section, our methods to expedite solutions to realistic instances of (P’).
Standard approaches include: (1) scaling to reduce the magnitude between the
largest and smallest values for each data set; (2) conversion of tri-linear to bi-linear
terms and the introduction of auxiliary variables and constraints to create exact
linearizations of the product of binary and continuous variables; and, (3) a bound
tightening procedure (Pruitt et al. 2014). Through scaling, we reduce the number of
orders of magnitude in the data by four. We use standard techniques (Balas 1965) to
create exact linearizations of eligible non-linear terms, i.e., nonlinear terms involving
the product of at least one discrete variable in which said linearization yields favor-
able results (see Table 1). By executing the bound-tightening algorithm, we reduce the
difference between the upper and lower bounds by more than 50% for select variables.
The full formulation of (P’), after the linearizations reflected in Table 1, has a size
reflected in Table 2 and includes 5|7 | + 2|75 - |7 | bi-linear terms. We refer to the

Table 1 Type and quantity of non-linear terms in the constraint set and how they are modified after per-
forming standard linearization techniques (Balas 1965)

Type Term Quantity Constraint Transformation
Zix} |T] (2¢) Linear
Zix} IT| (60)
YiP XSl |75 171 o) No change
Bi-linear X;ﬁX?t 178117 (6a)
X1 Xj IT| (20). (6¢). (10a)
XX 7] 20)
X7x} IT| 20)
Tri-linear Ztxfixt [T (6¢) Bi-linear
ZiX"X| IT| @)

+: The case of the product of a continuous and an infeger (vice binary) variable requires additional model
elements for its linearization, and testing yields unfavorable results
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Table 2 Size of (P’) in terms of set cardinality

Model component Characteristic Number

Variables Continuous [T]-@®+3|TD+ IM|+2
Integer I71-(J1+ D
Binary 2T+ 1T K+ 1

Constraints Linear 617]-(L+1TN)+I1TI- A+ K]+ M|
Non-linear [71-(T1+ 1)

Table 3 Constraint numbers with associated quantities required to transform (P’) into (’PZ)

Model Energy type Constraints Quantity

P Electric (5), (6a) 217117
Thermal (2¢), (6¢), (9), (102)—(10e) [T16+1TD

(PYH Electric (152)~(15g) IT1-1T16IS] + 1)
Thermal (16a)—(16c) 317

The constraints in each of the rows corresponding to a particular model are mutually exclusive

method of solving (P’) using techniques (1)—(3), outlined in the prior paragraph, as
method (M?), the baseline method. While the implementation of (M?) yields opti-
mality gap improvements of approximately 2%, on average, after a two-hour solve
time, we are still unable to generate solutions with less than a 10% gap.

Ultimately, complications arise in two sets of constraints: (1) those ensuring that
the thermal energy produced through the co-generational technologies and the boiler
is sufficient to heat the water in the storage system and meet the hot thermal load (see
Table 3: row (P’)-Thermal); and, (2) those governing the fuel consumption and the
efficiency associated with the solid oxide fuel cells (see Table 3: row (PY-Electric).
Therefore, we present an enhanced, three-phase solution methodology (M¢), depicted
in Fig.5.

Inputs Outputs A

[ e Solution Methodology e e

[ Load profiles ] { Hourly dispatch ]

[ Technology-specific values ] [ ;:g‘::;‘;:izx; ])
‘ f Solve (P")

Reinstate (P")
Non-linear SOFC fuel
consumption

Linear Reformulation (P?) Transform Solution

[ Linear SOFC fuel consumption ]

—

Obtain X from solving (P?) }

Create feasible to
< -
[ Linear heating load ] soliition (P [ Non-linear heating load ]
See Section 4.1 See Algorithm 1 See Section 4.3

\ Phase 1 Phase 2 Phase 3 /

Pass’
feasible

solution,
X*to (P")

[ Linear thermal storage ] [ Non-linear thermal storage ]

Fig. 5 Three-phase methodology to generate feasible solutions to (P’) with improved solutions and opti-
mality gaps. Note: SOFC—solid oxide fuel cell
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4.1 Linear reformulation (Phase 1)

Phase 1 modifies (P’) by creating linear approximations for constraints in the “no
change” and “bi-linear” rows found in Table 1. We refer to this reformulation as (P*).
Figure 6 depicts a fuel consumption curve, representing a 10kW fuel cell system used
in the model (P’), and a linear approximation of that curve. The solid, red curve results
from the combination of constraints (5) and (6a), while the dashed, blue line is a piece-
wise linear approximation. Without loss of generality, Fig. 6 shows two segments, but
the approximation could be made with an arbitrary number of s segments. However,
more segments, though potentially providing a more accurate approximation, create
additional integer variables and can slow model solve time.

The linear approximation creates a conservative characterization of the system
in that the resulting solution is an over-estimation of fuel consumption, resulting
in a higher cost of fuel per unit energy produced for the solid oxide fuel cell than
when employing the non-linear fuel curve used in (P’). The increased amount of fuel
consumed for a commensurate amount of power results in a larger contribution of
thermal energy to the heating load. Therefore, the approximation overestimates the
total cost, and employing it results in a restriction of our original model (P’).

251 Fuel Curve
= Non-linear

20 === Linear
Approximation

Fuel Consumption (Gallons)

6 8 10
Production (kW)

(¥
> A

Fig. 6 Comparison of piece-wise linear and non-linear fuel consumption of a representative solid oxide
fuel cell with two segments
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Notation required in model (P¢):

Notation ~ Description Units

S Linear approximation segments

b;x y-intercept for linearization of fuel curve for technology j in segment s [gal]

Mis Marginal fuel consumption of technology j for segment s [gal/kW]

Ls Lower bound of power output of technology j in segment s [kW]

Ujg Lower bound of power output of technology j in segment s [kW]

ZQEI 1 if technology j is operating in segment s, in time period ¢ and O otherwise [binary]
S . .. . . b

X st Amount of power dispatched from technology j in segment s in time period t  [kW]

Fuel cell constraints present in (P°):

Xi, = mh X" bl =M= Z%) VieJSseS teT (15a)

jst
XJPZ,EI YOP M(l— m) ViedS seS teT (15b)
X0 <SupYP M1 -2Z%) VjedsseS1eT (15¢)
X?;ISMZ]E[ Vjej ,SGS,IET (15d)
Xp <2stz VieJS5teT (15e)
seS
Yozl <1 VjeJdSteT (15f)
seS
Z?ZSY;T VieJS seSteT (152)

Instead of non-linear fuel consumption as a function of the variable efficiency and
power output, (P%) represents fuel consumption as a linear function of power output
and a fixed fuel intercept. Constraint (15a) governs the fuel consumed by the solid
oxide fuel cell and is a linear combination of the power produced and an appropriately
selected intercept if the fuel cell is operating in segment s, and O otherwise. Con-
straints (15b)—(15d) require that the power produced by technology j in time period
t is restricted between the appropriate lower and upper bounds of segment s. We use
constraint (15e) to consolidate power from all segments. Constraint (15f) limits the
power output to at most one segment, and constraint (15g) restricts the binary variable
to O if there are no operational fuel cells. We replace constraints (5) and (6a) with
constraints (15a)—(15g).

The other sources of non-linearities reside in the thermal load balance constraint (2c)
and in the water tank temperature constraint (10a). We devise a way to linearly
approximate these constraints such that they represent the thermal load as a con-
vex combination of energy from the boiler and exhaust heat produced by the solid
oxide fuel cell (16a). The associated notation and model modifications follow (see
constraints (16a)—(16c)).
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Linear thermal storage notation:

Notation Description Units
v Incremental increase of water storage tank size [gal]
X ;“S Amount of heat sent to storage in time period ¢ [kWh]
X }‘fs Amount of heat dispatched from storage in time period ¢ [kWh]

Linear thermal energy constraints:

SO oyimih X5+ Y X+ (S = X[ =dp e T (16a)

jeJchp jeJ®B
X8 = (1 —a) X", 4 xMts — xhfs ;e 7 (16b)
Xpe<XxV teT (16c)

To account for thermal storage, we add variables X;"S and X }“fs which model the
heat to and from, respectively, the thermal storage system. Constraint (16a) ensures
that the heating load is met through a linear combination of thermal energy from the
co-generational solid oxide fuel cell, thermal energy generated by the boiler, and ther-
mal energy from the storage system. We account for energy lost in storage through
a parameter «. Constraint (16b) balances the thermal energy in storage, and con-
straint (16¢) restricts the energy in storage to the capacity of the system. We replace
the constraints found in row (P’) of Table 3 with the constraints in rows labeled (P?)
to create a mixed-integer linear model.

4.2 Transform solution (Phase 2)

We solve the linear program (PY) utilizing state-of-the-art software and obtain a solu-
tion to which we refer as X. Utilizing the heuristic described in Algorithm 1, we obtain
from X solutlon X *, which is feasible for (P). We first initialize the variable values
according to X from (P%). We then compute the solid oxide fuel cell efficiency and
fuel consumption in each time period using the power produced by the associated
technology. We then determine the variable values, such as exhaust flow from the fuel
cell and water temperature, corresponding to the thermal load and thermal storage con-
straints. We establish a starting temperature and related binary variables 2} and Z}
With this information and the amount of exhaust (}A( ﬂ,) from combined heat and power
technology j, we compute the remaining variable values. For those associated with
thermal storage, we include a condition to handle a solution resulting in a temperature
that exceeds 7. In those instances, we increase the volume of the hot water storage
tank by v and re-compute the variable values. Lastly, we update variable bounds using
information obtained by the solution (X). If combined-heat-and-power technologies
are not a component in the fixed design, the computation of variables related to thermal
load becomes explicit, as shown by Function 2 found in Algorithm 1.
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Algorithm 1 Induce feasibility in (?’) from a solution to (P*).
Comments (>>) reflect which restored constraint is made feasible.

Require: X* < X
for j eJS,teTdo

~e e —e_ e p*
. 76— jnS 7% —nS xP *
X;«,g* <« ( Jl_ﬂff1> _ (k (J] 1j ))(YOJP’* if Y;’f >0 15 otherwise
J J=ip) )\, -

> Constraint (5)

p* .
Xf; «~ Xij* if Y;F‘ >0 0 otherwise > Constraint (6a)
J
end for
for j € (75N JMP) 1 € T do
X?; <y XT; > Constraint (9)
end for

if ZjEjCHP Y;} > 0 then
X ‘1* <« TJ;Tj > Set the initial temperature to the mid-point
X wE _ > Constraint (10e)
X* < THERMAL(X™)
while max{X}} > 7 do > Constraint (10b)
XV XV 4
Viv+b o if X‘:’* > > Constraint (10e)
X* <« THERMAL(X*)
end while
else
X* «<No CHP(X*)
end if

Function 1 - Creates feasibility for thermal energy constraints with combined-heat-and-power

function THERMAL(}? *)
forr € 7 do

ZU 1 it X" >%4e 0otherwise & Constraint (10c)
725 1 itxt >t 0 otherwise > Constraint (10d)
oA f_]' —T e dth .
X, <« <1 — |:1 — X}*_£i|Z, )hw(fj—%) > Constraint (2c)
RY R —x -2t ) .
X?: <« @ - =2 ) j = Boiler > Constraint (6¢)
i
J
. . AY . cnp nhE XT3 —x ) — ARY X (x5
o o ok Jgj J jt t t t
X < —aZ)x + )
> Constraint (10a)
end for
return X*

end function
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Optimizing microgrid deployment for community resilience

Function 2 - Creates feasibility for thermal energy constraints without combined-heat-and-power
function No CHP(X*)

X}* «— 1 VieT > Constraints (10a), (10b)
forr € 7 do
Z;* <0 > Constraint (10c)
2;* <0 > Constraint (10d)
~ s h
P (jf;ff) > Constraint (2c)
N W (-1 X
X;ﬁ G hr) L j = Boiler > Constraint (6¢)
J
end forﬁ
return X*

end function

4.3 Return of the original formulation (P’) (Phase 3)

We reconstitute (P’) by performing replacements of constraints in Table 3 consistent
with transforming () into (P’). We use the solution obtained in Phase 2 as a feasible
starting point for (P’). The solution to this problem provides an improvement over
our initial feasible solution and, as a second-order effect, tightens the lower bound. To
ensure that the resulting solution is feasible for (P’), we assume that we have access to
sufficient fuel for the boiler and to solid oxide fuel cells; we also assume that we can
procure an appropriately sized hot water tank, which is necessary to maintain the water
temperature within the allowable limits. The variables we update through Algorithm 1
are only found in the constraints we reinstate during Phase 3; through proper ordering
of variable determination, we ensure feasibility. The remaining constraints, which are
feasible for (P?), remain feasible with respect to (P').

5 Inputs and results

We solve (P’) utilizing the process described in Sect.4. This section describes the
input data, provides the performance of the model in terms of solution quality and
run time, and analyzes one such solution. Model (P’) consists of a variety of inputs,
including technology-specific data, electrical production factors, and electrical and
heating loads.

5.1 General inputs

Table 4 provides parameter values for technologies other than fuel cells (Anderson
et al. 2023b). (Sect. 5.2 describes inputs related to solid oxide fuel cells.)

We obtain all 16 distinct hourly electric load profiles for a representative year com-
piled by the National Renewable Energy Lab from the Open Energy Data Initiative
website (https://openei.org/datasets/files/968/pub/individual_files/). This dataset was
developed by the National Renewable Energy Lab’s Distributed Energy Systems Inte-
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Table 4 Technology input values (not including solid oxide fuel cells)

Technology Capital cost O0&M Lifetime (years)
Photovoltaic $1,592/kW $17/ (kW year) 20
Lithium Ion Battery $775/kWh - 10
Generator $500/kW 10/(kW year) 20
CHP System $500/kW 0.019/kWh 20

CHP combined heat and power
The lithium-ion battery has a two-hour power rating

0
3 Wl

W \¢ Y
NI 8 O
3 -

o e
2 AR

~

Fig.7 R1-12.47-2 Taxonomy Feeder. Magenta represents the slack bus (the power source of the distribution
network), while dark red depicts the loads that require power. Green links are transformers; orange links
are switches; and gray links and nodes are triplex lines and connections, respectively

gration group as part of a study on high penetrations of distributed solar photovoltaics
(Schneider et al. 2008). Table 10 in Appendix B provides details. We choose to high-
light a moderate suburban community combined with a light rural area (R1-1247-2)
to show how a microgrid consisting of solid oxide fuel cells can add resilience to
communities at risk of fire-related utility service disruptions. Figure 7 is a snapshot of
case R1-1247-2 (Cohen 2013).

Figure 8 depicts the load profile R1-1247-2. The oval in the figure shows the time
period in which the natural disaster occurs and the corresponding unavailability of util-
ity services. The dark blue color (outlined by the oval) shows that, for this particular
instance, we reduce the demand to a predetermined “critical load” during the ser-
vice disruption. We generate heating loads from the EnergyPlus® simulation software
hosted by the National Renewable Energy Lab using a combination of five building
types: hospital, hotel, apartment, large office, and supermarket. Figure 9 depicts a heat
map of the thermal load at hourly fidelity. For the photovoltaic production factors jpt,
we use data obtained from the PVWatts Tool (Dobos 2014) given in Fig. 10. We anno-
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Electrical
0 Load (kW)
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Fig. 8 Electric load profile for distribution feeder R1-1247-2, given by the network graph in Fig. 7, shown

with a utility service disruption
Thermal
Load (kW)

R A e 1 R

1000

Hour of Day

500

Jan.  Feb. Mar.  Apr. May  Jun. Jul. Aug.  Sep. Oct.  Nov.  Dec.

Day of Year

Fig.9 Hot thermal load profile derived from the EnergyPlus® simulation software, representing a collection

of building types, including a hospital, hotel, apartment, large office, and supermarket
PV Production

Factor
0.8

Utility Outage 0.7
6
0.6

o

| ['M Kl ":Inkl Mﬁl '“l"mllll'lﬂl | 2:

0.1

Hour of Day
I~

May  Jun. Jul. Aug.  Sep. Oct.  Nov.  Dec.
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Fig. 10 Estimated electricity production of a grid-connected roof- or ground-mounted photovoltaic system
installed in Richmond, CA. The arrow shows the approximate timeframe of the modeled utility service

disruption
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tate the time of year during which the utility outage occurs to highlight the amount of
solar irradiance available. The installed photovoltaic capacity for a resilience model
is influenced by the outage time period selected.

5.2 Solid oxide fuel cell inputs

The U.S. Energy Information Administration (2020); Battelle Memorial Institute
(2017a,b), and Whiston et al. (2021) offer costs associated with equipment, instal-
lation, stack, heat recovery, and inverters. We conduct analysis using system sizes
from 10 to 250kW. Cost values in this range are similar though minor differences
exist between the 10-25kW range (Battelle Memorial Institute 2017a) and the 100-
250kW range (Battelle Memorial Institute 2017b). A drawback of high-temperature
solid oxide fuel cells is the cost associated with the stacks whose replacement is neces-
sary, in part, due to the stress of operating at high temperatures (Whiston et al. 2021).
Specifically, over time, the high-temperature gradients degrade the system. We there-
fore consider a conservative start-up (from ambient temperature) time of three hours
(Ellamla et al. 2015) which assumes a heating rate of approximately 5°C per minute
(Milcarek et al. 2018); in this way, we emphasize system reliability over fast start up.
We incorporate fixed operations and maintenance (O&M) costs, including the cost of
replacing the stack, reformer, and inverter after five years. System lifetime is assumed
to be 10-20 years, depending on the source. Stack lifetime is assumed to be five years
(Battelle Memorial Institute 2017a; 2017b, U.S. Energy Information Administration
2020, and Whiston et al. 2021).

Costs are separated into three categories (high, medium, and low). The high-
capital-cost case assumes elevated equipment price and sales markup. Additionally, we
consider variations by decade which are attributable to the assumption that an inverse
relationship exists between production and price. We include a cost with sales markup
for combined-heat-and-power heat recovery equipment and assume a 5% discount
rate. See Appendix C for a more detailed description of the economic data.

We also update the efficiency parameters (7; and Qj) and start-up time (o;). To
determine parameter values of interest, we vary them and solve the model to establish
that, other than costs, the efficiency parameters and start-up time impact fuel cell

Table 5 Values used for power-only and combined-heat-and-power solid oxide fuel cells

Parameter Description Value

j =CHP Jj =Power
ﬁ? Maximum electricity efficiency 54% 54%
ﬁj‘ Minimum electricity efficiency 60% 60%
oj Start-up time for each technology j to reach u ; 3h 3h
Wy Maximum turn-down 20% 20%
Kj Capital cost $3,360/kW $2,800/kW
c?m O&M cost $0.024/kWh $0.020/kWh
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operational behavior the most. Beigzadeh et al. (2021) report electrical efficiencies of
solid oxide fuel cells between 57 and 72%, depending on the type of fuel used; the lower
value corresponds to gasified biomass and the higher to natural gas. Additionally, we
confirm, through discussion with commercial partners, that deployed systems realize
electrical efficiencies of around 60%. We use conservative values to account for both
lifecycle system degradation and the utilization of biofuel. However, an end-user of
our framework could choose to modify these values as the technology continues to
mature. Table 5 reflects parameter values that differ from Pruitt et al. (2014).

5.3 Model inputs from solution-expediting methodologies

Figure 11 shows how the bound tightening procedure (Pruitt et al. 2014) produces
desired reductions in variable bounds for those variables appearing in bi-linear terms.
These reductions allow the spatial branch-and-bound algorithm to find better solutions
and tighten the bound on the optimal objective function value more easily.

We compare the size of models (P) and (P*), for the inputs used, in Table 6.
Model (P’) contains over 275,000 constraints, of which 52,000 involve non-linear
terms. The reduced size and complexity of (P?) relative to (P’) affords us with the
ability to generate good solutions quickly, with which we can then initialize the original
monolith.

0
18 — Original Upper

= = Tight Upper
— Original Lower

= = Tight Lower

X xt (Gallons - C”)

00:00 12:00 00:00 12:00 00:00
Jul 18, 2020 Jul 19, 2020 Jul 20, 2020

Fig. 11 Improvement from bound-tightening procedure for the auxiliary, bi-linear term X ?t . X} reduces
the magnitude between the upper and lower bound by 57%, as an example

ot of models (Phang Caegoy Type @ Gk

(P®). The (P°) column shows vy iap e Total 232,034 15
the percent increase or decrease

in size relative to (P’) Continuous 179,478 -20
Discrete 52,556 0
Constraints Total 275, 897 0
Linear 223,339 24
Non-linear 52,558 -100
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5.4 Solution quality

Solving (P’) using (M¢) yields solutions, on average, five times faster than solv-
ing (P’) using (M?). Table 7 shows results for a one-year time horizon. In general,
(M?) generates an 8% improvement in the objective function value and over a 50%
improvement in the optimality gap after a two-hour solve time limit. In only one of
the 16 instances did (Mb) return the first solution faster; however, even in this case,
the solution obtained by (M¢) is superior.

Table 7 Comparison of solutions solving (P’) with and without the solution obtained from (’F'Z)

Case Objective function value Optimality gap Time to first
decrease ($) reduction (%) solution (Seconds)
™) (M) %A M) (M) %A (M) ™) A

R1-1247-2 1,012,986 931,014 8 15 7 50 178 56 122
R1-1247-3 745,548 692,023 7 14 7 48 253 56 197
R1-1247-4 2,164,754 1,906,774 12 18 7 62 377 73 304
R1-2500-1 1,556,543 1,412,495 9 16 7 54 503 63 440
R2-1247-1 4,483,279 4,112,745 8 13 5 61 845 63 782
R2-1247-2 3,269,277 2,971,911 9 15 6 58 298 60 238
R2-2500-1 7,825,518 7,379,453 6 10 4 57 748 68 680
R3-1247-2 4,085,636 3,790,034 7 13 6 54 1042 63 979
R4-1247-2 1,744,135 1,589,823 9 15 7 53 288 47 241
R4-2500-1 1,914,215 1,742,076 9 15 7 55 295 75 220
R5-1247-1 6,076,208 5414754 11 15 5 68 471 69 402
R5-1247-2 4,500,123 4,165,739 7 13 6 56 911 73 838
R5-1247-4 4,470,154 4,017,051 10 15 5 64 232 69 163
R5-1247-5 4,165,565 3,835,660 8 13 5 58 313 181 132
R5-2500-1 7,932,270 7,272,899 8 12 4 66 240 356 (116)
R5-3500-1 5,425,448 5,078,233 6 11 5 56 425 75 350
Average across all cases 8 14 6 58 464 90 373

Objective function values and optimality gap after two hours of run time, and time until the first feasible
solution is obtained. A: Reduction between methods (Mb ) and (M¢€)

5.5 Solution implications

To assess the financial benefits of distributed generation, we compare the solution
with no distributed generation to that with an installed microgrid capable of servic-
ing a critical load during a utility service disruption. In order to create an equitable
comparison, we omit the energy cost during the service disruption. Table 8§ depicts the
resulting values for all 16 load profiles, along with the fraction of demanded power
serviced from the utility in the presence of a microgrid. In all cases, the cost to meet
the demanded electrical load with distributed generation is less than that associated
with the “No Microgrid” solution. Along with cost savings of 8.3%, on average, across
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Table8 Solution comparison between purchasing all electricity from the utility versus installing a microgrid

that is capable of meeting a 48-hour outage occurring during the highest electrical demand period

Case Annualized lifecycle cost ($) A Grid
No microgrid Microgrid (%) Utilization (%)
R1-1247-2 1,007,933 929,337 -85 124
R1-1247-3 731,736 690,028 —6.0 6.5
R1-1247-4 2,115,108 1,903,575 —11.1 13.1
R1-2500-1 1,545,364 1,408,578 -9.7 8.1
R2-1247-1 4,419,348 4,101,889 =7.7 10.8
R2-1247-2 3,239,292 2,969,497 —9.1 15.2
R2-2500-1 7,916,373 7,366,441 -1.5 15.2
R3-1247-2 4,058,615 3,775,831 -71.5 8.9
R4-1247-2 1,731,984 1,587,963 -9.1 24.0
R4-2500-1 1,910,583 1,740,579 -9.8 20.3
R5-1247-1 5,832,474 5,402,292 —8.0 13.8
R5-1247-2 4,503,345 4,154,198 —8.4 7.4
R5-1247-4 4,343,550 4,009,787 —83 16.6
R5-1247-5 4,136,660 3,831,042 —8.0 21.5
R5-2500-1 7,763,028 7,263,047 —6.9 19.7
R5-3500-1 5,448,520 5,071,643 —7.4 20.3
Dipuched pover ()
each type of installed technology CHP SOFC Power SOFC PV Utility
in the microgrid
R1-1247-2 88 0 0 12
R1-1247-3 89 0 5 6
R1-1247-4 86 0 1 13
R1-2500-1 84 0 8 8
R2-1247-1 47 35 8 10
R2-1247-2 65 20 0 15
R2-2500-1 25 57 3 15
R3-1247-2 51 36 4 9
R4-1247-2 76 0 0 24
R4-2500-1 80 0 0 20
R5-1247-1 35 51 1 13
R5-1247-2 45 45 3 7
R5-1247-4 48 36 0 16
R5-1247-5 51 28 0 21
R5-2500-1 26 55 0 19
R5-3500-1 38 42 0 20
Average 59 25 2 14

No solution includes the diesel generator. CHP combined heat and

power, SOFC solid oxide fuel cell, PV photovoltaics
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Case: R1-1247-2

(b) (1)
Sources

Load

Grid Sales
Gnid Purchase
Generator

Energy (kWh)

o N i

1 1 1
Jul17 Jul 18 Jul 19 Jul 20 Jul 21 Jul17 Jul18 Jul 19 Jul 20 Tul21
2020 2020

Case: R1-1247-4

Sources

— Load
Grid Sales
Gnid Purchase
Generator

1000

Energy (kWh)

1 1
Jul17 Jul18 Jul 19 Jul 20 Jul21 Jul17 Jul18 Jul 19 Jul 20 Jul21
2020 2020

Fig. 12 Power output by technology type from a combination of microgrid and utility. Dashed lines show
the start and end of the utility service disruption. Omitted from the plots are electrical storage operations;
while they are part of the configuration, they are not utilized during the depicted time frame. Grid sales are
present directly proceeding the outage but are difficult to discern

the 16 cases, the customer also benefits from added reliability and resilience by being
able to service the electrical load during power disruptions to the utility.

Table 9 reflects the dispatched amount of each technology as a percentage of the
total power consumed throughout the year. All remaining power is met by the utility.
For almost all 16 cases, the co-generational fuel cell dominates the other technologies
in dispatched power, providing approximately 58% of demanded annual power, with
an additional 25% coming from the power-only fuel cell. Additionally, because this
is a hybrid system of solid oxide fuel cells, photovoltaics, and electrical storage, the
diesel generator is not consistently relied on to provide power. This mix of installed
technologies also enhances system reliability in that there is not a single point of failure.
An additional benefit of the installed microgrid is sustaining possible disruptions in
fuel supply. Solid oxide fuel cells have the ability to utilize bio-fuels and, therefore, if
strategically located at a site that produces bio-waste, the fuel cell would have access to
low-cost fuel that is sourced on-site. This type of setup would reduce the dependency
on utility-provided fuel sources while increasing the overall resilience and reliability
of the system.

Figure 12 compares, for two representative instances (R1-1247-2 and R1-1247-
4—highlighted in gray in Table 8), solutions returned by (Mb ) and (M¢). These two
instances differ by electric demand, in which the former services a smaller critical load
during the outage than the latter. The area between the two dashed red lines represents
the grid outage. We require the model to service the fully demanded electric and heating
load during the disruption. Plots (a) and (c) show the solution returned by (Mb ), in
which the solver is unable to leverage the benefit of a combined-heat-and-power solid

@ Springer

Journal: 11081 Article No.: 9844 [ | TYPESET [_|DISK [_]LE [__]CP Disp.:2023/10/21 Pages: 35 Layout: Small-Ex




603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624
625
626
627
628
629
630
631

632

633

634

635

636

637

638

639

640

641

642

643

Optimizing microgrid deployment for community resilience

oxide fuel cell, resulting in larger objective function values (shown in Table 7). Instead,
the solution installs an oversized photovoltaic system and a backup diesel generator.
While this is an acceptable alternative to adding resilience to the system, the solution
favors traditional methods. Plots (b) and (d) reflect solutions obtained by (M¢) which
correspond to comparatively smaller objective function values while leveraging co-
generational technologies. Additionally, the solutions returned by (M¢) do not result
in curtailed power during the outage.

6 Conclusion

This work demonstrates an optimization-based framework for creating solutions that
enhance community resilience during outages by increasing the reliability of the elec-
trical infrastructure. We present a mixed-integer, non-linear optimization model that
incorporates many distributed energy resource technologies. Our model (P’) is a
member of a class of problems (mixed-integer nonlinear programs) that often present
challenges for commercial optimization solvers. Therefore, we create a methodology
capable of quickly generating solutions with better objective function values.

The framework presented affords civic and governmental organizations the ability
to develop alternate solutions to meet their electric power needs during a utility service
disruption and to provide critical services in post-disaster recovery. Additionally, we
show the benefit of incorporating solid oxide fuel cells into a microgrid design, due,
in part, to its minimal emissions, dependable power supply, and ability to consume
multiple fuel types.
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Appendix A: Disaster cost components

More than one dozen public and private sector data sources help capture the total,
direct costs (both insured and uninsured) of the weather and climate events. These costs
include physical damage to residential, commercial, and municipal buildings; material
assets (content) within buildings; time element losses such as business interruption or
loss of living quarters; damage to vehicles and boats; public assets including roads,
bridges, levees; electrical infrastructure and offshore energy platforms; agricultural
assets including crops, livestock, and commercial timber; and wildfire suppression
costs, among others. However, these disaster costs do not take into account losses to
natural capital or environmental degradation; mental or physical healthcare-related
costs, the value of a statistical life; or supply chain, contingent business interruption
costs. Therefore, our estimates should be considered conservative with respect to what
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eas 1 truly lost, but cannot be completely measured due to a lack of consistently available
ess data (Smith 2021).

« Appendix B: Taxonomy feeders

e7  See Table 10.

Table 10 Summary of distribution feeders used to create electrical load profile

Feeder Community description Annual electrical demand (kWh)
R1-1247-2 Moderate suburban and light rural 4,905,544
R1-1247-3 Small urban center 2,589,839
R1-1247-4 Heavy suburban 14,586,540
R1-2500-1 Light rural 9,577,933
R2-1247-1 Light urban 34,316,316
R2-1247-2 Moderate suburban 24,148,877
R2-2500-1 Moderate urban 64,973,641
R3-1247-2 Moderate urban 31,760,229
R4-1247-2 Light suburban and moderate urban 11,047,930
R4-2500-1 Light rural 12,409,270
R5-1247-1 Heavy suburban and moderate urban 47,010,268
R5-1247-2 Moderate suburban and heavy urban 35,584,108
R5-1247-4 Moderate suburban and urban 33,908,450
R5-1247-5 Moderate suburban and light urban 31,886,294
R5-2500-1 Heavy suburban and moderate urban 63,259,096
R5-3500-1 Moderate suburban and light urban 43,247,521

Data obtained from the Open Energy Data Initiative https://openei.org/datasets/files/968/pub/
individual_files/ and sourced from work by Schneider et al. (2008)

« Appendix C: Additional solid oxide fuel cell costs

s Assumptions

eo o U.S. Energy Information Administration (2020) estimates “owner costs” though

651 the applicability of those to this context is unclear: “typically include development
652 costs, preliminary feasibility and engineering studies, environmental studies and
653 permitting, legal fees, project management (including third-party management),
654 insurance costs, infrastructure interconnection costs (e.g., gas, electricity), and
655 owner’s contingency.”

ess o O&M costs from U.S. Energy Information Administration (2020) are orders of
657 magnitude different from Battelle Memorial Institute (2017a) as the former esti-
658 mates are much more inclusive.

es o High capital cost case assumes high equipment costs and a high sales markup.
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Table 11 Projected costs of solid oxide fuel cells

Scenario 2020 2030 2040 2050
Production (units/yr) 100-500 500-1 k 1-10k 10-50 k
Capital cost ($/kW) High 17,245 7221 5068 4967
Medium 5425 4318 3007 2712
Low 2384 1946 1902 1813
Equipment cost ($/kW) High 16,000 6000 3896 3,818
Medium 4800 3818 2557 2312
Low 1984 1546 1502 1413
CHP equipment cost ($/kW) High* 934 795 731 692
Medium 471 462 453 444
Low 167 162 157 148
Installation cost ($/kW) High 1245 1221 1172 1149
Medium 625 500 450 400
Low#* 400 400 400 400
FOM ($/kW/yr) High 318 318 318 318
Medium 217 156 147 133
Low 167 138 129 116
VOM ($/kWh) High 0.092 0.090 0.088 0.086
Medium 0.047 0.046 0.045 0.044
Low 0.002 0.002 0.002 0.002
LCOE;; ($/kWh) High 0.405 0.244 0.207 0.204
Medium 0.160 0.134 0.111 0.103
Low 0.060 0.050 0.048 0.045

*Represents cost values for systems of projected size of 50 kW or less. CHP combined heat and power,
FOM Fixed operations and maintenance cost, VOM variable operations and maintenance cost

e Costs over time are based on the assumption that production volumes increase,

reducing the costs of production.

e Equipment cost includes the cost of heat recovery equipment for combined heat

and power and sales markup.

e Costs assume a 5% discount rate, but given current economic conditions, a higher

value may be more appropriate and would increase the low and medium case fixed
O&M.

e With all sources pooled together, there was agreement that production volume

matters for costs, but not system size (except at very small system sizes, 1 kW and
5 kW, which we do not consider in the model).

e The levelized cost of energy (LCOE) estimates only factor in the electricity deliv-

ered, not the heat energy, assuming a 5% discount rate, a 10-year system lifetime,
a 5-year stack and inverter replacement, and a capacity factor of 93%.

Based on these assumptions, we estimate fuel cell costs and report them in Table 11.
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Solid Oxide Fuel Cell Projected Levelized Cost of Energy
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Fig. 13 Projected levelized cost of energy for power-only solid oxide fuel cells. Projections extend to 2050
based on the values found in Table 11

LCOE; is the levelized cost of energy for technology j, at a life expectancy of N,
where AEP is the annual electricity production, and is computed as:

. N
Kj —(i(l.—;zlv)i'_/l + FOM
LCOE;; = —* N + VOM

Figure 13 shows the projected costs over time for each category: high, medium,
and low. The purple circle shows the value we use for our modeling efforts.

References

Abiodun K, Gautam A, Newman A, Nock D, Pandey A (2022) The role of microgrids in advancing energy
equity through access and resilience. In: Tutorials in operations research: emerging and impactful
topics in operations, pp 175-190

Anderson KH, Cutler DS, Olis DR, Elgqvist EM, Li X, Laws ND, DiOrio NA, Walker HA (2017) REopt:
a platform for energy system integration and optimization. Technical Report NREL/TP-7A40-70022,
National Renewable Energy Lab. (NREL), Golden. https://doi.org/10.2172/1395453. https://www.
osti.gov/biblio/1395453

Anderson K, Grymes J, Warren A, Newman A (2023a) North Carolina water utility builds resilience with
distributed energy resources. INFORMS J Appl Anal 53:247-265

Anderson K, Olis D, Becker B, Parkhill L, Laws N, Li X, Mishra S, Jeffery A, Elgqvist E, Krah K, Cutler
D, Zolan A, Muerdter N, Eger R, Walker A, Hampel C, Tomberlin G, Farthing A (2023b) The REopt
Web Tool User Manual. Technical report, National Renewable Energy Laboratory

Arefifar SA, Yasser ARM, El-Fouly TH (2013) Optimum microgrid design for enhancing reliability and
supply-security. IEEE Trans Smart Grid 4(3):1567-1575. https://doi.org/10.1109/TSG.2013.2259854

Aziz AS, Tajuddin MEN, Hussain MK, Adzman MR, Ghazali NH, Ramli MAM, Zidane TEK (2022) A
new optimization strategy for wind/diesel/battery hybrid energy system. Energy 239:122458. https://
doi.org/10.1016/j.energy.2021.122458

Balas E (1965) An additive algorithm for solving linear programs with zero-one variables. Oper Res
13(4):517-546. https://doi.org/10.1287/opre.13.4.517

Baldinelli A, Barelli L, Bidini G, Cinti G (2021) Micro-cogeneration based on solid oxide fuel cells: Market
opportunities in the agriculture/livestock sector. Int J Hydrog Energy 46(16):10036—10048. https://
doi.org/10.1016/j.ijhydene.2020.04.226

@ Springer

Journal: 11081 Article No.: 9844 [ | TYPESET [_|DISK [_]LE [__]CP Disp.:2023/10/21 Pages: 35 Layout: Small-Ex




702
703
704
705
706
707
708
709
710
m
712
713
714
715
716
77
718
719
720
721
722
723
724
725
726
727
728
729
730

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758

Optimizing microgrid deployment for community resilience

Battelle Memorial Institute (2017a) Manufacturing cost analysis of 1, 5, 10 and 25 kW fuel cell systems
for primary power and combined heat and power applications. Technical report, Battelle Memorial
Institute

Battelle Memorial Institute (2017b) Manufacturing cost analysis of 100 and 250 kW fuel cell systems
for primary power and combined heat and power applications. Technical report, Battelle Memorial
Institute

Beigzadeh M, Pourfayaz F, Ghazvini M, Ahmadi MH (2021) Energy and exergy analyses of solid oxide
fuel cell-gas turbine hybrid systems fed by different renewable biofuels: a comparative study. J Clean
Prod 280:124383. https://doi.org/10.1016/j.jclepro.2020.124383

Bernal-Agustin JL, Dufo-Lépez R, Rivas-Ascaso DM (2006) Design of isolated hybrid systems minimizing
costs and pollutant emissions. Renew Energy 31(14):2227-2244. https://doi.org/10.1016/j.renene.
2005.11.002

Campbell RJ (2012) Weather-related power outages and electric system resiliency. Congr Res J

Center for Climate and Energy Solutions (2020) https://www.c2es.org/content/microgrids/

Chapin FS, Trainor SF, Huntington O, Lovecraft AL, Zavaleta E, Natcher DC, McGuire AD, Nelson JL,
Ray L, Calef M, Fresco N, Huntington H, Rupp TS, DeWilde L, Naylor RL (2008) Increasing wildfire
in Alaska’s boreal forest: pathways to potential solutions of a wicked problem. BioScience 58(6):531—
540. https://doi.org/10.1641/B580609

Climate Central (2020) https://www.climatecentral.org/climate-matters/power-outages

Cohen MA (2013). http://emac.berkeley.edu/gridlabd/taxonomy_graphs/

Davies IP, Haugo RD, Robertson JC, Levin PS (2018) The unequal vulnerability of communities of color
to wildfire. PLoS ONE 13(11):0205825. https://doi.org/10.1371/journal.pone.0205825

Deng Q, Gao X, Zhou H, Hu W (2011) System modeling and optimization of microgrid using genetic
algorithm. In: 2011 2nd international conference on intelligent control and information processing,
vol 1, pp 540-544. https://doi.org/10.1109/ICICIP.2011.6008303

Department of Energy (2018) Department of Energy Report Explores U.S. Advanced Small Modular
Reactors to Boost Grid Resiliency. https://www.energy.gov/ne/articles/department-energy-report-
explores-us-advanced-small-modular-reactors-boost- grid

Dobos A (2014) PVWatts version 5 manual. Technical Report NREL/TP-6A20-62641, 1158421.
National Renewable Energy Lab. https://doi.org/10.2172/1158421. http://www.osti.gov/servlets/purl/
1158421/

Donaldson DL, Alvarez-Alvarado MS, Jayaweera D (2020) Power system resiliency during wildfires under
increasing penetration of electric vehicles. In: 2020 International conference on probabilistic methods
applied to power systems (PMAPS), pp 1-6. https://doi.org/10.1109/PMAPS47429.2020.9183683

Ellamla HR, Staffell I, Bujlo P, Pollet BG, Pasupathi S (2015) Current status of fuel cell based combined
heat and power systems for residential sector. J Power Sources 293:312-328. https://doi.org/10.1016/
j.jpowsour.2015.05.050

Goodall G, Scioletti M, Zolan A, Suthar B, Newman A, Kohl P (2019) Optimal design and dispatch of a
hybrid microgrid system capturing battery fade. Optim Eng 20:179-213

Greene N, Hammerschlag R (2000) Small and clean is beautiful: exploring the emissions of distributed
generation and pollution prevention policies. Electr J 13(5):50-60. https://doi.org/10.1016/S1040-
6190(00)00118-4

Jenkins T (2018) Impacts of the 2017 wildfires in the United States. https://www.govinfo.gov/committee/
house- transportation?path=/browsecommittee/chamber/house/committee/transportation

Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, Williamson GJ, Bowman DMJS (2015)
Climate-induced variations in global wildfire danger from 1979 to 2013. Nat Commun 6(11):7537.
https://doi.org/10.1038/ncomms8537

Kocatepe A, Ulak MB, Kakareko G, Ozguven EE, Jung S, Arghandeh R (2019) Measuring the accessibility
of critical facilities in the presence of hurricane-related roadway closures and an approach for predicting
future roadway disruptions. Nat Hazards 95:615-635

Lambert T (2000) HOMER® Energy modeling software, version 00. Technical report, National Renewable
Energy Lab. (NREL), Golden. https://www.osti.gov/biblio/1231441

Lin Y, Bie Z, Qiu A (2018) A review of key strategies in realizing power system resilience. Glob Energy
Interconnect 1(1):70-78

Milcarek RJ, Garrett MJ, Welles TS, Ahn J (2018) Performance investigation of a micro-tubular flame-
assisted fuel cell stack with 3000 rapid thermal cycles. J Power Sources 394:86-93. https://doi.org/
10.1016/j.jpowsour.2018.05.060

@ Springer

Journal: 11081 Article No.: 9844 [ | TYPESET [_|DISK [_]LE [__]CP Disp.:2023/10/21 Pages: 35 Layout: Small-Ex




759
760
761
762
763
764
765
766
767
768
769
770
7m
772
773
774
775
776
777
778
779
780

782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813

J. Grymes et al.

Mishra S, Anderson K, Miller B, Boyer K, Warren A (2020) Microgrid resilience: a holistic approach for
assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies. Appl
Energy 264:114726. https://doi.org/10.1016/j.apenergy.2020.114726

Molinari NA, Chen B, Krishna N, Morris T (2017) Who’s at risk when the power goes out? The at-home
electricity-dependent population in the United States

Morais H, Kédar P, Faria P, Vale ZA, Khodr HM (2010) Optimal scheduling of a renewable micro-grid in
an isolated load area using mixed-integer linear programming. Renew Energy 35(1):151-156. https://
doi.org/10.1016/j.renene.2009.02.031

Newburger E (2019) More than 2 million people expected to lose power in PG&E blackout as
California wildfires rage. https://www.cnbc.com/2019/10/26/pge-will-shut-off-power-to-940000-
customers-in-northern-california-to-reduce-wildfire-risk.html

Nilsson H (2023) https://www.utilitydive.com/news/us-microgrid-market- wood-mackenzie/642341/

Pacific Gas and Electric (2021) Backup power. https://www.pge.com/en_US/safety/electrical-safety/
electric- generator-safety/electric- generator-safety.page

Palaiologou P, Ager AA, Nielsen-Pincus M, Evers CR, Day MA (2019) Social vulnerability to large wildfires
in the western USA. Landsc Urban Plan 189:99-116. https://doi.org/10.1016/j.landurbplan.2019.04.
006

Pruitt KA, Leyffer S, Newman AM, Braun RJ (2014) A mixed-integer nonlinear program for the optimal
design and dispatch of distributed generation systems. Optim Eng 15(1):167-197. https://doi.org/10.
1007/s11081-013-9226-6

Qazi SH, Mustafa MW, Sultana U, Mirjat NH, Soomro SA, Rasheed N (2018) Regulation of voltage
and frequency in solid oxide fuel cell-based autonomous microgrids using the whales optimisation
algorithm. Energies 11(55):1318. https://doi.org/10.3390/en11051318

Rehman S, Al-Hadhrami LM (2010) Study of a solar PV-diesel-battery hybrid power system for a remotely
located population near Rafha, Saudi Arabia. Energy 35(12):4986-4995. https://doi.org/10.1016/j.
energy.2010.08.025

Schneider KP, Chen Y, Chassin DP, Pratt RG, Engel DW, Thompson SE (2008) Modern grid initiative dis-
tribution taxonomy final report. Technical Report PNNL-18035, 1040684, Pacific Northwest National
Lab. https://doi.org/10.2172/1040684. http://www.osti.gov/servlets/purl/ 1040684/

Schoennagel T, Balch JK, Brenkert-Smith H, Dennison PE, Harvey BJ, Krawchuk MA, Mietkiewicz N,
Morgan P, Moritz MA, Rasker R, Turner MG, Whitlock C (2017) Adapt to more wildfire in western
North American forests as climate changes. Proc Natl Acad Sci 114(18):4582-4590. https://doi.org/
10.1073/pnas.1617464114

Scioletti MS, Newman AM, Goodman JK, Zolan AJ, Leyffer S (2017) Optimal design and dispatch of a
system of diesel generators, photovoltaics and batteries for remote locations. Optim Eng 18:755-792

Shokoohi S, Golshannavaz S, Khezri R, Bevrani H (2018) Intelligent secondary control in smart microgrids:
an on-line approach for islanded operations. Optim Eng 19:917-936

Smith AB (2021) 2021 U.S. billion-dollar weather and climate disasters. http://www.climate.gov/news-
features/blogs/beyond-data/2021-us-billion-dollar- weather-and- climate-disasters-historical

Sorrentino M, Adamo A, Nappi G (2019) Optimal sizing of an rSOC-based renewable microgrid. Energy
Procedia 159:237-242. https://doi.org/10.1016/j.egypro.2018.12.063

U.S. Department of Energy (2023) U.S. Department of Energy, Form OE-417. https://www.oe.netl.doe.
gov/OE417_annual_summary.aspx

U.S. Energy Information Administration (2020) Distributed generation, battery storage, and combined heat
and power system characteristics and costs in the buildings and industrial sectors. Technical report,
U.S. Energy Information Administration

USAToday (2018) Natural disasters: California Camp Fire was world’s costliest in 2018. https://www.
usatoday.com/story/news/2019/01/08/natural-disasters-camp-fire- worlds- costliest- catastrophe-
2018/2504865002/

Vigneysh T, Kumarappan N (2016) Autonomous operation and control of photovoltaic/solid oxide fuel
cell/battery energy storage based microgrid using fuzzy logic controller. Int J Hydrog Energy
41(3):1877-1891. https://doi.org/10.1016/].ijhydene.2015.11.022

Whiston MM, Lima Azevedo IM, Litster S, Samaras C, Whitefoot KS, Whitacre JF (2021) Paths to market
for stationary solid oxide fuel cells: expert elicitation and a cost of electricity model. Appl Energy
304:117641. https://doi.org/10.1016/j.apenergy.2021.117641

@ Springer

Journal: 11081 Article No.: 9844 [ | TYPESET [_|DISK [_]LE [__]CP Disp.:2023/10/21 Pages: 35 Layout: Small-Ex




814
815
816

817
818

Optimizing microgrid deployment for community resilience

Zolan AlJ, Scioletti MS, Morton DP, Newman AM (2021) Decomposing loosely coupled mixed-integer
programs for optimal microgrid design. INFORMS J Comput 33(4):1300-1319. https://doi.org/10.
1287/ijoc.2020.0955

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

Journal: 11081 Article No.: 9844 [ | TYPESET [_|DISK [_]LE [__]CP Disp.:2023/10/21 Pages: 35 Layout: Small-Ex




	Optimizing microgrid deployment for community resilience
	Abstract
	1 Introduction and background
	2 Literature review
	3 Modeling the energy system
	3.1 Mathematical formulation
	3.2 Discussion of formulation
	3.2.1 Objective function
	3.2.2 Load balancing
	3.2.3 Utility operations
	3.2.4 Power capacity
	3.2.5 Electrical efficiency
	3.2.6 Fuel consumption
	3.2.7 Start-up
	3.2.8 Power storage
	3.2.9 Heat capacity
	3.2.10 Heat storage


	4 Solution methodology
	4.1 Linear reformulation (Phase 1)
	4.2 Transform solution (Phase 2)
	4.3 Return of the original formulation (mathcalP') (Phase 3)

	5 Inputs and results
	5.1 General inputs
	5.2 Solid oxide fuel cell inputs
	5.3 Model inputs from solution-expediting methodologies
	5.4 Solution quality
	5.5 Solution implications

	6 Conclusion
	Acknowledgements
	Appendix A: Disaster cost components
	Appendix B: Taxonomy feeders
	Appendix C: Additional solid oxide fuel cell costs
	References


