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Abstract1

The ability to (re)establish basic community infrastructure and governmental func-2

tions, such as medical and communication systems, after the occurrence of a natural3

disaster rests on a continuous supply of electricity. Traditional energy-generation4

systems consisting of power plants, transmission lines, and distribution feeders are5

becoming more vulnerable, given the increasing magnitude and frequency of climate-6

related natural disasters. We investigate the role that fuel cells, along with other7

distributed energy resources, play in post-disaster recovery efforts. We present a mixed-8

integer, non-linear optimization model that takes load and power-technology data as9

inputs and determines a cost-minimizing design and dispatch strategy while consid-10

ering operational constraints. The model fails to achieve gaps of less than 15%, on11

average, after two hours for realistic instances encompassing five technologies and a12

year-long time horizon at hourly fidelity. Therefore, we devise a multi-phase method-13

ology to expedite solutions, resulting in run times to obtain the best solution in fewer14

than two minutes; after two hours, we provide proof of near-optimality, i.e., gaps15

averaging 5%. Solutions obtained from this methodology yield, on average, an 8%16

decrease in objective function value and utilize fuel cells three times more often than17

solutions obtained with a straight-forward implementation employing a commercial18

solver.19
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1 Introduction and background21

Climate-related events that contribute to power disruptions are becoming more22

widespread. In 2021, the U.S. encountered 20 separate billion-dollar weather- and23

climate-related disasters, almost all of which impacted the ability to deliver reli-24

able electricity to communities. The U.S. Department of Energy defines reliability25

as the ability of the system or its components to withstand instability, uncontrolled26

events, cascading failures, and/or unanticipated loss of system components. The Fed-27

eral Energy Regulatory Commission defines resilience as “the capacity to anticipate,28

adapt to, and rapidly recover from disruptive incidents.”29

An independent group of scientists and communicators who research climate30

change reports a 67% increase in major power outages between the first and sec-31

ond decades of the 2000 s (Climate Central 2020); Fig. 1 reflects the costs associated32

with increased climate-related disasters. The average annual cost over the five-year33

period between 2017 and 2021 constituted $148.4 billion, a new record (Smith 2021).34

The Department of Energy (2018) estimates that power outages cost the U.S. economy35

$150 billion per year and disruptions to power infrastructure are more attributable to36

climate-related events than to any others (Fig. 2). To protect large-scale infrastructure,37

utilities often deploy power safety shutoff measures which, without backup power38

generation, threaten the safety and well-being of residents. Thus, having a policy that39

provides reliable, affordable electricity in post-disaster recovery efforts will become40

more pressing, especially because the number of natural disasters is expected to rise41

(Schoennagel et al. 2017; Chapin et al. 2008).42

The nature and severity of natural disasters may require residents either to shelter-43

in-place or to evacuate. Examples of the latter include hurricanes and large-scale fires44

during which the deployment of rescue and response teams to the impacted area is45

a higher priority than maintaining persistent power (Kocatepe et al. 2019). Wildfires46

are particularly menacing due to their non-predictive nature. Climate-related impacts,47

such as droughts and heatwaves, have increased global wildfire risk (Davies et al.48

Fig. 1 Climate-related disaster

costs by decade (Smith 2021).

See Appendix A for a

description of cost types

included
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Fig. 2 Number of power outages

affecting more than 50,000

customers (U.S. Department of

Energy 2023)

2018; Jolly et al. 2015; Zolan et al. 2021). In 2017, over 71,000 wildfires burned49

10 million acres and more than 12,000 structures (Jenkins 2018). Within the U.S., 2950

million Americans live with the significant potential for extreme wildfires (USAToday51

2018). Fire-related events pose risks to both the power generation and the distribution52

system, which include transmission and distribution lines (Campbell 2012). The area53

impacted by wildfires often encompasses multiple types of power system architec-54

tures in which the effects differ by the level (i.e., electricity delivery and generation)55

of electrical equipment. At low-voltage (i.e., residential) delivery, a fire may cause56

system components to fail; conversely, high-voltage transmission components may be57

more resilient (Donaldson et al. 2020). Some electrical service disruptions are due to58

preventative measures enacted by the utility service to prevent wildfires. For exam-59

ple, in 2019, Pacific Gas and Electric’s planned power shutoffs left an estimated 2.760

million people devoid of electricity, possibly the state’s largest planned blackout ever61

(Newburger 2019).62

In addition to economic implications, there are social implications related to vul-63

nerable populations (e.g., the elderly and those with electricity-dependent health risks)64

such as their inability to evacuate (Greene and Hammerschlag 2000; Molinari et al.65

2017; Palaiologou et al. 2019). In 2017, over 65% of victims in the Northern Cali-66

fornian fire were over the age of 65 (Palaiologou et al. 2019). Regardless of whether67

power outages are caused by fire-related damage to the power system (i.e., generation68

and transmission) or are due to preventative measures, communities depend on energy69

for infrastructure such as hospitals.70

Due to the dependence of many first-world countries on electricity for communica-71

tion, healthcare, and water purification, efforts at the federal level are directed toward72

reducing electrical downtime. Many utilities are investing in distributed generation73

to improve network reliability and resilience with proper consideration of technology74

mix, size, and placement. Abiodun et al. (2022) document how distributed generation75

can enhance power system resilience and improve energy equity. However, conven-76

tional microgrids, which often include technologies such as diesel generators, produce77

unhealthy exhaust, resulting in those with preexisting health conditions suffering con-78

sequences from resulting air pollution exposure. Fuel cells address this concern in79

that they run without emitting fumes, particulates, or carbon monoxide; and, because80
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Fig. 3 A representative microgrid and energy system (Center for Climate and Energy Solutions 2020)

of this, fuel cells can be housed within a building, protecting it from some climate-81

disaster-related risks.82

We develop an optimization model that prescribes an appropriate configuration83

and size of a distributed generation system to provide communities, in an environ-84

mentally sound way, with critical services during an electrical service disruption.85

Figure 3 depicts a traditional microgrid consisting of fossil-fuel powered combined-86

heat-and-power systems, reciprocating engine generators, and solar power combined87

with electrical storage (Center for Climate and Energy Solutions 2020). The micro-88

grid market in the U.S., with 10 gigawatts of installed capacity in 2022, is projected89

to grow by 19% annually through 2027, with disaster mitigation being a primary use90

case (Nilsson 2023).91

While microgrids provide electricity resilience, threats to these types of systems92

include physical destruction to solar panels (through wind, fire, and hail), damage to93

electrical storage systems from extreme temperatures, and harmed fuel delivery sys-94

tems (Mishra et al. 2020). Donaldson et al. (2020) show that the presence of distributed95

roof-top solar and wind turbines has increased the exposure of electricity generation96

equipment to wildfires. The corresponding risk continues to grow as more homes97

(and, subsequently, electrical infrastructure) are built using renewable technologies98

and at the wildland-urban interface. Deliberate consideration of technologies, their99

vulnerabilities, and their construction mitigates these threats. For example, Anderson100

et al. (2023a) show that during a hurricane-induced outage, the inclusion of combined-101

heat-and-power technologies at a wastewater treatment facility increases the overall102

resilience of the system through its ability to burn on-site biofuel. The same benefit103

would not be realized with a traditional microgrid. Beigzadeh et al. (2021) demon-104

strate that fuel cells can deliver on-demand energy sourced from industrial-waste105

biogas, syngas, biofuel, and gasified biomass. The ability to operate with on-site fuel106

yields a microgrid design with solid oxide fuel cells that possess the ability to con-107

tinuously operate even if the fuel supply is disrupted. We incorporate solid oxide fuel108

cell technology into microgrid design to reduce these vulnerabilities and to ensure that109

dependable energy sources exist.110
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2 Literature review111

There is an abundance of literature that addresses microgrid design, microgrid dispatch,112

and power system reliability and resilience. The fundamental gap in our knowledge113

and ability to deploy these technologies stems from a void of techno-economic micro-114

grid optimization models addressing energy resilience and environmentally friendly,115

deployable technologies such as fuel cells. HOMER (Hybrid Optimization Model for116

Electric Renewables), a widely used design and dispatch program, is a simulation117

model that, for a year-long demand profile, uses fixed dispatch strategies and ranks118

resulting solutions based on life-cycle cost (Lambert 2000; Rehman and Al-Hadhrami119

2010). Some models employ prescriptive (optimization) methods; we highlight a120

few examples. A mixed-integer program with wind power, batteries, and generators121

produces results comparable to HOMER’s (Aziz et al. 2022); however, their model122

generates the following solutions sequentially: (1) procurement resulting from running123

the mixed-integer program for a curtailed time horizon; and, (2) dispatch following124

from a data mining algorithm to determine an operations strategy for the entire year125

given procurement from (1).126

A two-phase approach fails to coordinate dispatch decisions and procurement127

strategies. Another techno-economical model, REopt® (Anderson et al. 2017), is a128

cost-minimizing deterministic mixed-integer linear program that yields an optimal129

design and dispatch of distributed energy resources, including gas turbines, renew-130

ables, and energy storage systems, to meet a set of predefined electrical, thermal, and131

cooling loads. While this model determines design and dispatch concurrently, it does132

not include solid oxide fuel cells, nor does it consider the non-linearities associated133

with thermal storage.134

Pruitt et al. (2014) develop a nonconvex, mixed-integer, nonlinear program to pre-135

scribe the design and dispatch of a distributed generation system of combined heat136

and power using solid oxide fuel cells for commercial buildings for a time horizon of137

one year at hourly fidelity. This model does not incorporate utility-related outages and138

omits technologies such as gas-turbine combined-heat-and-power systems and backup139

diesel generators; solutions to instances with time horizons that extend beyond a month140

are cost-minimizing only when all power is sourced exclusively from the grid. Some141

authors explore similar frameworks and reduce complexity by shortening the time142

horizon (Morais et al. 2010) or by using identical daily demands (Bernal-Agustín143

et al. 2006). Other optimization models that incorporate solid oxide fuel cells as part144

of their system either: (1) omit the design or detailed dispatch component (Qazi et al.145

2018; Sorrentino et al. 2019), and/or (2) use heuristics, rather than exact techniques,146

to determine a solution (Vigneysh and Kumarappan 2016; Deng et al. 2011). Arefifar147

et al. (2013) optimize microgrid design under considerations of reliability and sup-148

ply security. Shokoohi et al. (2018) examine controls in smart grids in line with Lin149

et al. (2018), who review various strategies in the implementation of power system150

resilience. To lessen the health impacts and damages associated with, for example,151

wildfires, Pacific Gas and Electric (California’s largest public utility) has proposed152

to deploy decentralized generation such as solar panels and diesel generators (Pacific153

Gas and Electric 2021). Similarly, Scioletti et al. (2017) examine such a microgrid154

including batteries, and Goodall et al. (2019) extend this system to capture battery155
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fade. However, these applications miss an opportunity to utilize emerging, clean tech-156

nologies, such as solid oxide fuel cells, to support critical entities such as hospitals157

and community centers.158

Our research contributes to the literature by creating cost-minimizing, distributed159

generation solutions, including solid oxide fuel cells, while considering utility-service160

disruptions attributable to a natural disaster-induced outage. Specifically, our focus is161

disasters that result in a significant portion of the population remaining in place and162

relying on energy for sustainment and recovery. Our optimization framework considers163

how fuel cells, combined with other distributed generation, can reduce electrical outage164

time post-wildfire and support community rebuilding. We first describe individual165

components and then present a mathematical formulation of the entire system. The166

resulting output is a cost-minimizing system that prescribes the size of the solid oxide167

fuel cells, as well as conventional, renewable, and co-generational technologies, to168

provide planners with viable resilience solutions. We embellish a design and dispatch169

optimization model through enhancements that include: (1) additional generational170

technologies, (2) new procurement costs, (3) modifications to the electrical storage171

systems, and (4) technology-specific modeling assumptions. We expand knowledge172

and capabilities in the disaster-response-and-recovery literature by creating a tool that173

can analyze and evaluate the value of different technology mixes (i.e., solar and storage,174

fuel cells, and gas-turbine generators) for a microgrid. Our model accounts for on-175

site heating loads to demonstrate the co-generational contributions of the technology176

mix. We capture the temporal and seasonal nature of energy demand, and create177

a cost-benefit framework for the responsible civic organization. We investigate the178

specific contribution that solid oxide fuel cells make in delivering energy services179

due to their co-generational capability and ability to be sourced by a variety of fuel180

types, including bio-waste (Baldinelli et al. 2021). We provide decision-makers with181

solutions that would allow electric utilities to respond to disasters (i.e., wildfires and182

earthquakes) that have a high probability of causing blackouts.183

3 Modeling the energy system184

Our optimization model, (P ′), extended from Pruitt et al. (2014), investigates how185

microgrids bring reliability and resilience to communities post-disaster (Fig. 4). We186

incorporate a grid-related outage and additional co-generational technologies. We con-187

sider a simulated set of electrical loads, of various quantities, for a distribution feeder.188

The installed microgrid is co-located at a building site with a thermal load. We incorpo-189

rate characteristics of the technologies, such as efficiencies and start-up requirements.190

We utilize basic utility rate structures that include both energy and peak demand191

charges. The objective minimizes total cost, consisting of the capital, operations and192

maintenance (O&M), and operational costs of the acquired technologies, as well as193

the existing costs resulting from demand met by the utility and on-site hot-thermal194

energy system, typically, a boiler. We include an emissions penalty in the objective195

function. Design variables associated with fuel cells are general integers to assist with196

modeling the hourly operation of the system. We relax integrality on all other procure-197

ment variables. We assume that all design decisions are made at the beginning of the198
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Fig. 4 Distributed energy system modified from Pruitt et al. (2014). Note: CHP: combined heat and power,

BESS: battery electric storage system, TESS: thermal energy storage system, PV: photovoltaic

time horizon. The model includes both linear and non-linear constraints. We present199

the full mathematical formulation (P ′) in Sect. 3.1.200

We utilize capital and lower-case letters to distinguish variables and parameters,201

respectively. We use script capital letters to distinguish sets, subsets, and indexed sets.202

Additionally, notation with check and hat decorations describes flows in and out of an203

entity, respectively. Variables X , Y , and Z represent continuous, integer, and binary204

quantities, respectively.205

3.1 Mathematical formulation206

Sets

K Technology cost segments

J Power producing technologies

M Months of year

T Time steps

Subsets and indexed sets

J S ⊆ J Solid oxide fuel cell technologies

J CHP ⊆ J Combined heat and power technologies

J R ⊆ J Renewable technologies

J B ⊆ J Heat-only producing technologies

J E ⊆ J Electrical producing technologies

Tm ⊆ T Time steps in month m

T g ⊆ T Time steps when the utility is available

Time and demand parameters

� Demand time steps [hours]

dh
t Heating load in time step t [kW]

d
p
t Electric load in time step t [kW]
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Cost and emission parameters

κ j Annualized variable capital cost of technology j [$/unit]

κa
jk

Annualized fixed installation cost of technology j in size segment k [$]

κb Annualized variable capital cost of electric battery [$/kWh]

κw Annualized variable capital cost of water storage [$/gal]

com
j

Operation and maintenance cost of technology j [$/kWh]

c
p
t Utility energy cost (including emissions penalty) in time step t [$/kWh]

cs
t Utility energy purchase price in time step t [$/kWh]

c
g
t Utility gas cost (including emissions penalty) in time step t [$/kWh]

Power generation and storage parameters

b̄ jk Maximum power rating of technology j in cost segment k [kW]

ηe
j

Maximum electricity efficiency for technology j [fraction]

ηe
j

Minimum electricity efficiency for technology j [fraction]

ηb Maximum electricity efficiency for technology electrical storage [fraction]

k̂ j Power rating of technology j [kW/unit]

f b
j

y-intercept for fuel of technology j [unitless]

f m
j

Fuel burn slope of technology j [unitless]

f
p
j t

Production factor of technology j in time step t [fraction]

µ j Maximum turn-down of technology j [fraction]

ψ j Amount of fuel needed to start up technology j [kWh/unit]

s Minimum capacity of electrical storage system [fraction]

s Maximum capacity of electrical storage system [fraction]

σ j Start-up time for each technology j to reach maximum turn-down (µ j ) [hours]

Heat generation and storage parameters

α Ambient heat loss for water [fraction]

ε Arbitrary temperature for which there is no thermal loss [◦C]

ηh
j

Thermal efficiency for technology j [fraction]

γ j Exhaust gas output for technology j [kg/kWh]

he Specific heat of exhaust [kWh/(kg ◦C)]

hw Specific heat of water [kWh/(gal ◦C)]

ν Maximum water storage capacity [gal]

ν Minimum water storage capacity [gal]

τ̂ j Average exhaust temperature from hot-thermal-producing technology j [◦C]

τ̌ Average return water temperature to water storage tank [◦C]

τ Maximum allowed temperature of water in the system [◦C]

τ Minimum allowed temperature of water in the system [◦C]
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Continuous variables

Xw Volume of water storage tank [gal]

Xba Amount of electrical storage procured [kWh]

X̂u
t Power purchased from the utility in time step t [kW]

X̌u
t Power sold to the utility in time step t [kW]

X̄u
m Peak power purchased from the utility in month m [kW]

X
p
j t

Power produced by each technology j in time step t [kW]

X̌b
t Power into electrical storage system in time step t [kW]

X̂b
t Power out of electrical storage system in time step t [kW]

Xbsc
t State of charge of electrical storage system in time step t [kWh]

Xef
j t

Electric efficiency of each technology j in time step t [fraction]

X f
j t

Fuel consumed by technology j in time step t [kW]

X̌fl
j t

Flow rate of fluid into thermal storage from technology j in time step t [kg/hour]

X̂fl
t Flow rate of water out of thermal storage in time step t [gal/hour]

X t
t Temperature of water in storage in time step t [◦C]

Integer variables

Y a
j

Number of each technology j procured [units]

Y
op
j t

Number of each technology j operating in time step t [units]

Y to
j t

Increased number of each technology j operating from t − 1 to t [units]

Binary variables

Zak
jk

1 if generating technology j in segment k is procured, 0 otherwise [binary]

Zw 1 if additional water storage capacity is procured, 0 otherwise [binary]

Ž t
t 1 if water storage tank is above (τ̌ + ε) in time step t , 0 otherwise [binary]

Ẑ t
t 1 if water storage tank is above (τ̂boiler) in time step t , 0 otherwise [binary]

Objective function (See Sect. 3.2.1)207

(P ′) minimize κb Xba +
∑

j∈J ,k∈K

κa
jk Z ak

jk +
∑

j∈J

κ j Y
a
j + κw(Xw − ν)

︸ ︷︷ ︸

Capital Costs

208

+�
∑

j∈J E,t∈T

com
j X

p
j t

︸ ︷︷ ︸

O&M Costs

+
∑

j∈J S,t∈T

c
g
t (ψ j Y

to
j t + �X f

j t )

︸ ︷︷ ︸

Fuel Costs

209

+�
∑

t∈T

c
p
t X̂u

t +
∑

m∈M

cd
m X̄u

m

︸ ︷︷ ︸

Grid Purchase

−�
∑

t∈T

cs
t X̌u

t

︸ ︷︷ ︸

Grid Sales

210

+�
∑

j∈J B,t∈T

(ηh
j c

om
j + c

g
t )X f

j t

︸ ︷︷ ︸

Existing Boiler Cost

(1)211
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Load balancing (See Sect. 3.2.2)212

(η̄b X̂b
t − X̌b

t ) +
∑

j∈J E

X
p
j t + (X̂u

t − X̌u
t ) = d

p
t ∀t ∈ T g (2a)213

(η̄b X̂b
t − X̌b

t ) +
∑

j∈J E

X
p
j t = d

p
t ∀t ∈ T \ T g (2b)214

hw(τ̂ j − τ̌ )X̂fl
t

[(

1 −

[

1 −
τ̂ j − τ

X t
t − τ

]

Ẑ t
t

)−1]

= dh
t ∀ j ∈ J B, t ∈ T (2c)215

Utility operations (See Sect. 3.2.3)216

X̄u
m ≥ X̂u

t ∀m ∈ M, t ∈ Tm (3a)217

∑

t∈Tm

X̌u
t ≤

∑

t∈Tm

X̂u
t ∀m ∈ M (3b)218

Power capacity (See Sect. 3.2.4)219

X
p
j t ≤ f

p
j t k̂ j Y

a
j ∀ j ∈ J R, t ∈ T (4a)220

µ j k̂ j Y
op
j t ≤ X

p
j t ≤ k̂ j Y

op
j ∀ j ∈ J E \ J R, t ∈ T (4b)221

Y
op
j t ≤ Y a

j ∀ j ∈ J S, t ∈ T (4c)222

k̂ j Y
a
j ≤ b̄ jk Z ak

jk ∀ j ∈ J , k ∈ K (4d)223

∑

k∈K

Z ak
jk ≤ 1 ∀ j ∈ J (4e)224

Electricity efficiency (See Sect. 3.2.5)225

X ef
j t =

( η̄e
j − µ jη

e
j

1 − µ j

)

−

( η̄e
j − ηe

j

k̂ j (1 − µ j )

)(
X

p
j t

Y
op
j t

)

∀ j ∈ J S, t ∈ T (5)226

Fuel consumption (See Sect. 3.2.6)227

X f
j t =

X
p
j t

X ef
j t

∀ j ∈ J S, t ∈ T (6a)228

X f
j t = f b

j k̂ j Y
op
j + f m

j X
p
j t ∀ j = J E \ (J S ∪ J R), t ∈ T (6b)229

X f
j t =

hw X̂fl
t (τ̂ j − X t

t )(1 − Ẑ t
t )

ηh
j

∀t ∈ T , j ∈ J B (6c)230

Start-up (See Sect. 3.2.7)231

Y
op
j,t+σ j

− Y
op
j t ≤ Y to

j,t+σ j
∀ j ∈ J S, t ∈ T : t < |T | − σ j (7)232
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Power storage (See Sect. 3.2.8)233

Xbsc
t+1 − Xbsc

t = �(η̄b X̌b
t − X̂b

t ) ∀t ∈ T : t < |T | (8a)234

s Xba ≤ Xbsc
t ≤ s̄ Xba ∀t ∈ T (8b)235

Xbsc
1 = Xbsc

|T | (8c)236

Heat capacity (See Sect. 3.2.9)237

X̌fl
j t ≤ γ j X f

j t j ∈ J CHP, t ∈ T (9)238

Heat storage (See Sect. 3.2.10)239

X t
t+1 − (1 − α Ž t

t )X t
t240

=

∑

j∈J CHP

(�ηh
j h

e X̌fl
j t (τ̂ j − X t

t )) − �hw X̂fl
t (X t

t − τ̌ )

hw Xw
∀t ∈ T : t < |T | (10a)241

X t
t − τ̌ ≤ (τ̄ − τ̌ )Zw ∀t ∈ T (10b)242

ε Ž t
t ≤ X t

t − τ̌ ≤ ε + (τ̄ − τ̌ − ε)Ž t
t ∀t ∈ T (10c)243

(τ̌ − τ̂ j )(1 − Ẑ t
t ) ≤ X t

t − τ̂ j ≤ (τ̄ − τ̂ j )Ẑ t
t ∀t ∈ T , j ∈ J B (10d)244

ν ≤ Xw ≤ ν̄ (10e)245

Zw ≤
∑

j∈J CHP

Y a
j ≤

⌈
maxt∈T {dP

t }

min j∈J CHP{k̂ j }

⌉

Zw (10f)246

Non-negativity and integrality247

Xw, Xba ≥ 0 (11a)248

X f
j t , X

p
j t , X ef

j t , X̌fl
j t ≥ 0 ∀ j ∈ J , t ∈ T (11b)249

X̄u
m ≥ 0 ∀m ∈ M (11c)250

X̂u
t , X̌u

t , X̌b
t , X̂b

t , Xbsc
t , X̂fl

t , X t
t ≥ 0 ∀t ∈ T (11d)251

Y a
j ≥ 0, integer ∀ j ∈ J (11e)252

Y
op
j t , Y to

j t ≥ 0, integer ∀ j ∈ J , t ∈ T (11f)253

Zw binary (11g)254

Ž t
t , Ẑ t

t binary t ∈ T (11h)255

Z ak
jk binary j ∈ J , k ∈ K (11i)256

3.2 Discussion of formulation257

We describe, in detail, the objective function and constraint set.258
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3.2.1 Objective function259

The objective function minimizes costs associated with fixed and variable procure-260

ment, operation and maintenance, power generation, and the net utility charge.261

Procurement includes both size-dependent capital cost (variable) and installation262

(fixed), which may incorporate the construction of tailored equipment housing units263

and the emplacement of piping and cables. The fixed cost segments are increasing264

and therefore convex, precluding binary logic to ensure placement in the appropriate265

cost segment. Binary variable Z ak
jk enforces the piecewise-linear installation cost. The266

way in which load is met is influenced by the fuel cost and grid purchase terms in the267

objective function and controlled through various constraints in set (6).268

We use a standard annualized cost computation, which includes the use of a capital269

recovery factor (Lambert 2000):270

κ j =
i(1 + i)N j

(1 + i)N j − 1
κ̄ j ∀ j ∈ J (12)271

where i is the annualized real discount rate, N j is the expected lifetime, in years, of272

technology j and κ̄ j is the net present capital cost of technology j . Although expression273

(12) only includes the technologies in set J , this formula is extended to the electrical274

storage system as well.275

3.2.2 Load balancing276

Constraint (3.1) balances electrical load with the sum of: the amount of net power277

deployed from the storage system, the power dispatched from all electrical power278

systems, and the net power purchased from the utility. We relax, from equality, this279

constraint by ensuring that the net power produced by the microgrid and purchased280

from the utility meets or exceeds the electrical load. We introduce a gas turbine genera-281

tor with and without combined-heat-and-power capabilities to the set T e, in addition to282

fuel cells and photovoltaic panels. Constraint (2b) restricts the grid interaction during283

utility service disruptions, requiring all loads to be met with the microgrid. We enforce284

constraint (2c) through a set of bi- and tri-linear terms in which the on-site heating load285

is met through a mixture of hot and cold water. If the water temperature in the tank is286

above τ̂Boil, then thermal demand is met through the product of variable water flow out287

of the tank and the temperature gradient above the delivery temperature. Otherwise,288

the flow out becomes fixed and is determined by equation (13). As the temperature of289

the water in the storage tank increases, the flow of water out decreases; and, therefore,290

the fuel needed to power the boiler decreases (Pruitt et al. 2014).291

X̂fl
t =

dh
t

hw(τ̂Boil − τ̌ )
∀t ∈ T (13)292
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3.2.3 Utility operations293

Constraint (3a) is the linearization of equation (14), which captures the peak power294

purchased in month m. Constraint (3b) restricts energy arbitrage and enforces net295

metering, typical for grid-connected systems.296

X̄u
m = max

{t∈Tm }
X̂u

t ∀m ∈ M (14)297

3.2.4 Power capacity298

Constraint (4a) restricts the power output of renewable technology j to be less than299

or equal to the product of the capacity of the procured system and the production300

factor in hour t . Constraint (4b) ensures that the power output of non-renewable,301

electric-producing technology j is between the minimum required turn-down and the302

maximum amount of available power in hour t . The former level forces the fuel cell to303

produce sufficient power at its minimum required temperature. Constraint (4c) restricts304

the number of operational fuel cells to be no more than the number acquired. Con-305

straint (4d) dictates that the chosen power rating is assigned to the correct installation306

cost segment. Constraint (4e) limits the selection to at most one segment.307

3.2.5 Electrical efficiency308

We model electrical efficiency as a decreasing function of the average output of the309

operational fuel cells through constraint (5). In this case, as the power output increases,310

the electrical efficiency of the system decreases. We assume that all fuel cells of type311

j operate identically. The tradeoff, however, is the inclusion of additional bi-linear312

terms that include the product of a continuous variable and a general integer variable.313

The variable efficiency is bounded between η
j

and η̄ j for fuel cell technology j (Pruitt314

et al. 2014).315

3.2.6 Fuel consumption316

Constraint (6a) ensures that the amount of fuel consumed by fuel cell type j in time317

period t is equal to the quotient of the total power produced and the average variable318

efficiency; this constraint creates |J S| · |T | additional bi-linear terms. We implement319

constraint (6b) to compute the fuel needed to produce X
p
j t kW of power for both320

the standard electrical and combined-heat-and-power generators. We use the linear321

formulation consisting of the sum of the marginal contribution of fuel per kW ( f m
j X

p
j t )322

and the product of the y-intercept ( f b
j ) and the capacity of fuel cells operating in a323

given hour (k̂ j Y
op
j t ). We implement constraint (6c) to calculate the fuel used to power324

the boiler as the quotient of the amount of thermal energy dispatched and the boiler325

efficiency. If the water temperature is above the delivery temperature, then no fuel is326

consumed (Pruitt et al. 2014).327
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3.2.7 Start-up328

The coarseness of our chosen time fidelity precludes the necessity of power-ramping329

constraints; that is, fuel cell operation can fluctuate between the maximum power330

rating and minimum turn-down within a single time step. However, when activated,331

solid oxide fuel cells must reach a designated temperature prior to producing power.332

The parameter σ j dictates the number of time steps to reach operational temperature333

from ambient. Therefore, we include constraint (7) to ensure that if the number of334

fuel cells in operation in time period t + σ j is greater than the number of fuel cells335

operational in time period t , then Y to
j t assumes the value of the difference; otherwise,336

its value is 0. This models the number of fuel cells required to turn on in time period337

t and ensures that we capture the amount of time and fuel necessary to bring the fuel338

cell from ambient to operational temperature prior to dispatching power.339

3.2.8 Power storage340

Constraint (8a) requires that the difference in states of charge between time steps t341

and t +1 equal the net energy dispatched from the storage system in time period t . We342

incorporate a constant electrical efficiency loss for charging the battery. Constraint (8b)343

dictates that the battery’s state of charge is restricted to between the minimum and max-344

imum allowable limit of the procurement variable. Constraint (8c) requires equality345

of the electrical storage system’s beginning and ending state of charge.346

3.2.9 Heat capacity347

In our system, fuel cells with combined-heat-and-power capabilities provide the added348

benefit of utilizing the thermal exhaust produced by the fuel cell to heat water in the349

storage tank. Constraint (9) dictates that the amount of exhaust flow is a function of350

the fuel consumed by the co-generational fuel cell. We utilize an inequality to allow351

for curtailment of the thermal energy in time periods in which the inclusion of the352

exhaust would force the water temperature to exceed its allowable limit. The added353

co-generational benefit does not apply to diesel-powered generation.354

3.2.10 Heat storage355

Constraint (10a) governs the temperature differential between time periods. We (i)356

account for a constant heat loss due to thermal conduction; (ii) add the thermal energy357

provided by the exhaust heat from the various combined-heat-and-power systems; and,358

(iii) subtract the thermal energy dispatched to meet the heating load. Constraint (10b)359

limits the temperature to τ̄ if a storage tank is required and to τ̌ otherwise. Con-360

straint (10c) dictates that if the water temperature is arbitrarily close (ε) to the return361

water temperature (τ̌ ), we do not apply the heat loss due to thermal conduction362

(described in constraint (10a)). Constraint (10d) governs the binary variable Ẑ t
t used to363

determine if the water temperature is above or below the delivery temperature (τ̂Boil).364

Constraint (10f) serves two purposes: (1) it requires the procurement of additional365
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water storage system capacity if a combined-heat-and-power system is procured; and,366

(2) it limits the number of acquired combined-heat-and-power systems to the maxi-367

mum power demand. Constraint (10e) bounds the capacity of the water storage system368

(Pruitt et al. 2014).369

4 Solutionmethodology370

The formulation (P ′) is a mixed-integer nonlinear program that includes continuous,371

binary, and integer variables, as well as constraints with non-linear terms. We measure372

performance of our problem instances via solution time and optimality gap, the latter373

of which provides the relative difference between the best integer solution found to374

the original, nonlinear model and the lower bound derived from convex relaxations375

of the original, nonconvex problem. State-of-the-art global optimizers yield gaps of376

greater than 10% after more than two hours of solution time. Therefore, we present,377

in this section, our methods to expedite solutions to realistic instances of (P ′).378

Standard approaches include: (1) scaling to reduce the magnitude between the379

largest and smallest values for each data set; (2) conversion of tri-linear to bi-linear380

terms and the introduction of auxiliary variables and constraints to create exact381

linearizations of the product of binary and continuous variables; and, (3) a bound382

tightening procedure (Pruitt et al. 2014). Through scaling, we reduce the number of383

orders of magnitude in the data by four. We use standard techniques (Balas 1965) to384

create exact linearizations of eligible non-linear terms, i.e., nonlinear terms involving385

the product of at least one discrete variable in which said linearization yields favor-386

able results (see Table 1). By executing the bound-tightening algorithm, we reduce the387

difference between the upper and lower bounds by more than 50% for select variables.388

The full formulation of (P ′), after the linearizations reflected in Table 1, has a size389

reflected in Table 2 and includes 5|T | + 2|J S| · |T | bi-linear terms. We refer to the390

Table 1 Type and quantity of non-linear terms in the constraint set and how they are modified after per-

forming standard linearization techniques (Balas 1965)

Type Term Quantity Constraint Transformation

Bi-linear

Ẑ t
t X t

t |T | (2c) Linear

Ẑ t
t X̂fl

t |T | (6c)

Y
op
j t

Xef
j t

|J S| · |T | (5)† No change

Xef
j t

X f
j t

|J S| · |T | (6a)

X̂fl
t X t

t |T | (2c), (6c), (10a)

Xw X t
t |T | (2c)

X̌fl
t X t

t |T | (2c)

Tri-linear Ẑ t
t X̂fl

t X t
t |T | (6c) Bi-linear

Ž t
t Xw X t

t |T | (2c)

†: The case of the product of a continuous and an integer (vice binary) variable requires additional model

elements for its linearization, and testing yields unfavorable results
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Table 2 Size of (P ′) in terms of set cardinality

Model component Characteristic Number

Variables Continuous |T | · (8 + 3|J |) + |M| + 2

Integer |T | · (|J | + 1)

Binary 2|T | + |J | · |K| + 1

Constraints Linear 6|T | · (1 + |J |) + |J | · (1 + |K|) + |M|

Non-linear |T | · (|J | + 1)

Table 3 Constraint numbers with associated quantities required to transform (P ′) into (P�)

Model Energy type Constraints Quantity

(P ′) Electric (5), (6a) 2|J | · |T |

Thermal (2c), (6c), (9), (10a)–(10e) |T |(6 + |J |)

(P�) Electric (15a)–(15g) |J | · |T |(5|S| + 1)

Thermal (16a)–(16c) 3|T |

The constraints in each of the rows corresponding to a particular model are mutually exclusive

method of solving (P ′) using techniques (1)–(3), outlined in the prior paragraph, as391

method (Mb), the baseline method. While the implementation of (Mb) yields opti-392

mality gap improvements of approximately 2%, on average, after a two-hour solve393

time, we are still unable to generate solutions with less than a 10% gap.394

Ultimately, complications arise in two sets of constraints: (1) those ensuring that395

the thermal energy produced through the co-generational technologies and the boiler396

is sufficient to heat the water in the storage system and meet the hot thermal load (see397

Table 3: row (P ′)-Thermal); and, (2) those governing the fuel consumption and the398

efficiency associated with the solid oxide fuel cells (see Table 3: row (P�)-Electric).399

Therefore, we present an enhanced, three-phase solution methodology (Me), depicted400

in Fig. 5.401

Fig. 5 Three-phase methodology to generate feasible solutions to (P ′) with improved solutions and opti-

mality gaps. Note: SOFC—solid oxide fuel cell
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4.1 Linear reformulation (Phase 1)402

Phase 1 modifies (P ′) by creating linear approximations for constraints in the “no403

change” and “bi-linear” rows found in Table 1. We refer to this reformulation as (P�).404

Figure 6 depicts a fuel consumption curve, representing a 10kW fuel cell system used405

in the model (P ′), and a linear approximation of that curve. The solid, red curve results406

from the combination of constraints (5) and (6a), while the dashed, blue line is a piece-407

wise linear approximation. Without loss of generality, Fig. 6 shows two segments, but408

the approximation could be made with an arbitrary number of s segments. However,409

more segments, though potentially providing a more accurate approximation, create410

additional integer variables and can slow model solve time.411

The linear approximation creates a conservative characterization of the system412

in that the resulting solution is an over-estimation of fuel consumption, resulting413

in a higher cost of fuel per unit energy produced for the solid oxide fuel cell than414

when employing the non-linear fuel curve used in (P ′). The increased amount of fuel415

consumed for a commensurate amount of power results in a larger contribution of416

thermal energy to the heating load. Therefore, the approximation overestimates the417

total cost, and employing it results in a restriction of our original model (P ′).418

Fig. 6 Comparison of piece-wise linear and non-linear fuel consumption of a representative solid oxide

fuel cell with two segments
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Notation required in model (P�):

Notation Description Units

S Linear approximation segments

bf
js

y-intercept for linearization of fuel curve for technology j in segment s [gal]

mf
js

Marginal fuel consumption of technology j for segment s [gal/kW]

� js Lower bound of power output of technology j in segment s [kW]

u js Lower bound of power output of technology j in segment s [kW]

Z
op
jst

1 if technology j is operating in segment s, in time period t and 0 otherwise [binary]

X
ps
jst

Amount of power dispatched from technology j in segment s in time period t [kW]

419

Fuel cell constraints present in (P�):420

X f
j t ≥ mf

js X
ps
jst + bf

jsY
op
j t − M(1 − Z

op
jst ) ∀ j ∈ J S, s ∈ S, t ∈ T (15a)421

X
ps
jst ≥ l jsY

op
j t − M(1 − Z

op
jst ) ∀ j ∈ J S, s ∈ S, t ∈ T (15b)422

X
ps
jst ≤ u jsY

op
j t + M(1 − Z

op
jst ) ∀ j ∈ J S, s ∈ S, t ∈ T (15c)423

X
ps
jst ≤ M Z

op
jst ∀ j ∈ J S, s ∈ S, t ∈ T (15d)424

X
p
j t ≤

∑

s∈S

X
ps
jst ∀ j ∈ J S, t ∈ T (15e)425

∑

s∈S

Z
op
jst ≤ 1 ∀ j ∈ J S, t ∈ T (15f)426

Z
op
jst ≤ Y

op
j t ∀ j ∈ J S, s ∈ S, t ∈ T (15g)427

Instead of non-linear fuel consumption as a function of the variable efficiency and428

power output, (P�) represents fuel consumption as a linear function of power output429

and a fixed fuel intercept. Constraint (15a) governs the fuel consumed by the solid430

oxide fuel cell and is a linear combination of the power produced and an appropriately431

selected intercept if the fuel cell is operating in segment s, and 0 otherwise. Con-432

straints (15b)–(15d) require that the power produced by technology j in time period433

t is restricted between the appropriate lower and upper bounds of segment s. We use434

constraint (15e) to consolidate power from all segments. Constraint (15f) limits the435

power output to at most one segment, and constraint (15g) restricts the binary variable436

to 0 if there are no operational fuel cells. We replace constraints (5) and (6a) with437

constraints (15a)–(15g).438

The other sources of non-linearities reside in the thermal load balance constraint (2c)439

and in the water tank temperature constraint (10a). We devise a way to linearly440

approximate these constraints such that they represent the thermal load as a con-441

vex combination of energy from the boiler and exhaust heat produced by the solid442

oxide fuel cell (16a). The associated notation and model modifications follow (see443

constraints (16a)–(16c)).444
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Linear thermal storage notation:

Notation Description Units

ν̃ Incremental increase of water storage tank size [gal]

Xhts
t Amount of heat sent to storage in time period t [kWh]

Xhfs
t Amount of heat dispatched from storage in time period t [kWh]

445

Linear thermal energy constraints:446

∑

j∈J CHP

γ jη j h
eτ̂ j X f

j t +
∑

j∈J B

η j X f
j t + (Xhfs

t − Xhts
t ) ≥ dh

t t ∈ T (16a)447

X tsc
t = (1 − α)X tsc

t−1 + Xhts
t − Xhfs

t t ∈ T (16b)448

X tsc
t ≤ Xw t ∈ T (16c)449

To account for thermal storage, we add variables Xhts
t and Xhfs

t which model the450

heat to and from, respectively, the thermal storage system. Constraint (16a) ensures451

that the heating load is met through a linear combination of thermal energy from the452

co-generational solid oxide fuel cell, thermal energy generated by the boiler, and ther-453

mal energy from the storage system. We account for energy lost in storage through454

a parameter α. Constraint (16b) balances the thermal energy in storage, and con-455

straint (16c) restricts the energy in storage to the capacity of the system. We replace456

the constraints found in row (P ′) of Table 3 with the constraints in rows labeled (P�)457

to create a mixed-integer linear model.458

4.2 Transform solution (Phase 2)459

We solve the linear program (P�) utilizing state-of-the-art software and obtain a solu-460

tion to which we refer as 
X . Utilizing the heuristic described in Algorithm 1, we obtain461

from 
X solution 
X∗, which is feasible for (P ′). We first initialize the variable values462

according to 
X from (P�). We then compute the solid oxide fuel cell efficiency and463

fuel consumption in each time period using the power produced by the associated464

technology. We then determine the variable values, such as exhaust flow from the fuel465

cell and water temperature, corresponding to the thermal load and thermal storage con-466

straints. We establish a starting temperature and related binary variables Ẑ t
t and Ž t

t .467

With this information and the amount of exhaust (X̂fl
j t ) from combined heat and power468

technology j , we compute the remaining variable values. For those associated with469

thermal storage, we include a condition to handle a solution resulting in a temperature470

that exceeds τ̄ . In those instances, we increase the volume of the hot water storage471

tank by ν̃ and re-compute the variable values. Lastly, we update variable bounds using472

information obtained by the solution ( 
X ). If combined-heat-and-power technologies473

are not a component in the fixed design, the computation of variables related to thermal474

load becomes explicit, as shown by Function 2 found in Algorithm 1.475
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Algorithm 1 Induce feasibility in (P ′) from a solution to (P�).

Comments (�) reflect which restored constraint is made feasible.

Require: 
X∗ ← 
X
for j ∈ J S, t ∈ T do

Xef*
j t

←

(
η̄e

j
−µ j η

e
j

1−µ j

)

−

(
η̄e

j
−ηe

j

k̂ j (1−µ j )

)(
X

p∗
j t

Y
op∗
j t

)

if Y
op*
j t

> 0 η otherwise


 Constraint (5)

X f*
j t

←
X

p*
j t

Xef*
j t

if Y
op*
j t

> 0 0 otherwise 
 Constraint (6a)

end for

for j ∈ (J S ∩ J CHP), t ∈ T do

X̌fl*
j t

← γ j X f*
j t


 Constraint (9)

end for

if
∑

j∈J CHP Y a
j

> 0 then

X t*
1 ←

τ̄+τ̂ j

2 
 Set the initial temperature to the mid-point

Xw* ← ν 
 Constraint (10e)

X∗ ←Thermal( 
X∗)

while max{X t
t } > τ̄ do 
 Constraint (10b)

Xw* ← Xw* + ν̃

ν̄ ← ν̄ + ν̃ if Xw* > ν̄ 
 Constraint (10e)

X∗ ← Thermal( 
X∗)

end while

else

X∗ ←No CHP( 
X∗)

end if

Function 1 - Creates feasibility for thermal energy constraints with combined-heat-and-power

function Thermal( 
X∗)

for t ∈ T do

Ž t*
t ← 1 if X t*

t ≥ τ̌ + ε 0 otherwise 
 Constraint (10c)

Ẑ t*
t ← 1 if X t*

t ≥ τ̂ 0 otherwise 
 Constraint (10d)

X̂fl*
t ←

(

1 −

[

1 −
τ̂ j −τ

X t*
t −τ

]

Ẑ t*
t

)

dh
t

hw(τ̂ j −τ̌ )

 Constraint (2c)

X f*
j t

←
hw X̂fl*

t (τ̂ j −X t*
t )(1−Ẑ t*

t )

ηh
j

j = Boiler 
 Constraint (6c)

X t*
t+1 ← (1 − α Ž t*

t )X t*
t +

�
∑

j∈J CHP ηh
j
he X̌fl*

j t
(τ̂ j −X t*

t )−�hw X̂fl*
t (X t*

t −τ̌ )

(hw Xw*)

 Constraint (10a)

end for

return 
X∗

end function
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Function 2 - Creates feasibility for thermal energy constraints without combined-heat-and-power

function No CHP( 
X∗)

X t*
t ← τ̌ ∀t ∈ T 
 Constraints (10a), (10b)

for t ∈ T do

Ž t*
t ← 0 
 Constraint (10c)

Ẑ t*
t ← 0 
 Constraint (10d)

X̂fl*
t ←

dh
t

hw(τ̂ j −τ̌ )

 Constraint (2c)

X f*
j t

←
hw(τ̂ j −τ̌ )X̂fl*

t

ηh
j

j = Boiler 
 Constraint (6c)

end for

return 
X∗

end function

4.3 Return of the original formulation (P ′) (Phase 3)476

We reconstitute (P ′) by performing replacements of constraints in Table 3 consistent477

with transforming (P�) into (P ′). We use the solution obtained in Phase 2 as a feasible478

starting point for (P ′). The solution to this problem provides an improvement over479

our initial feasible solution and, as a second-order effect, tightens the lower bound. To480

ensure that the resulting solution is feasible for (P ′), we assume that we have access to481

sufficient fuel for the boiler and to solid oxide fuel cells; we also assume that we can482

procure an appropriately sized hot water tank, which is necessary to maintain the water483

temperature within the allowable limits. The variables we update through Algorithm 1484

are only found in the constraints we reinstate during Phase 3; through proper ordering485

of variable determination, we ensure feasibility. The remaining constraints, which are486

feasible for (P�), remain feasible with respect to (P ′).487

5 Inputs and results488

We solve (P ′) utilizing the process described in Sect. 4. This section describes the489

input data, provides the performance of the model in terms of solution quality and490

run time, and analyzes one such solution. Model (P ′) consists of a variety of inputs,491

including technology-specific data, electrical production factors, and electrical and492

heating loads.493

5.1 General inputs494

Table 4 provides parameter values for technologies other than fuel cells (Anderson495

et al. 2023b). (Sect. 5.2 describes inputs related to solid oxide fuel cells.)496

We obtain all 16 distinct hourly electric load profiles for a representative year com-497

piled by the National Renewable Energy Lab from the Open Energy Data Initiative498

website (https://openei.org/datasets/files/968/pub/individual_files/). This dataset was499

developed by the National Renewable Energy Lab’s Distributed Energy Systems Inte-500
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Table 4 Technology input values (not including solid oxide fuel cells)

Technology Capital cost O&M Lifetime (years)

Photovoltaic $1,592/kW $17/ (kW year) 20

Lithium Ion Battery $775/kWh – 10

Generator $500/kW 10/(kW year) 20

CHP System $500/kW 0.019/kWh 20

CHP combined heat and power

The lithium-ion battery has a two-hour power rating

Fig. 7 R1-12.47-2 Taxonomy Feeder. Magenta represents the slack bus (the power source of the distribution

network), while dark red depicts the loads that require power. Green links are transformers; orange links

are switches; and gray links and nodes are triplex lines and connections, respectively

gration group as part of a study on high penetrations of distributed solar photovoltaics501

(Schneider et al. 2008). Table 10 in Appendix B provides details. We choose to high-502

light a moderate suburban community combined with a light rural area (R1-1247-2)503

to show how a microgrid consisting of solid oxide fuel cells can add resilience to504

communities at risk of fire-related utility service disruptions. Figure 7 is a snapshot of505

case R1-1247-2 (Cohen 2013).506

Figure 8 depicts the load profile R1-1247-2. The oval in the figure shows the time507

period in which the natural disaster occurs and the corresponding unavailability of util-508

ity services. The dark blue color (outlined by the oval) shows that, for this particular509

instance, we reduce the demand to a predetermined “critical load” during the ser-510

vice disruption. We generate heating loads from the EnergyPlus® simulation software511

hosted by the National Renewable Energy Lab using a combination of five building512

types: hospital, hotel, apartment, large office, and supermarket. Figure 9 depicts a heat513

map of the thermal load at hourly fidelity. For the photovoltaic production factors f
p
j t ,514

we use data obtained from the PVWatts Tool (Dobos 2014) given in Fig. 10. We anno-515
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Fig. 8 Electric load profile for distribution feeder R1-1247-2, given by the network graph in Fig. 7, shown

with a utility service disruption

Fig. 9 Hot thermal load profile derived from the EnergyPlus® simulation software, representing a collection

of building types, including a hospital, hotel, apartment, large office, and supermarket

Fig. 10 Estimated electricity production of a grid-connected roof- or ground-mounted photovoltaic system

installed in Richmond, CA. The arrow shows the approximate timeframe of the modeled utility service

disruption
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tate the time of year during which the utility outage occurs to highlight the amount of516

solar irradiance available. The installed photovoltaic capacity for a resilience model517

is influenced by the outage time period selected.518

5.2 Solid oxide fuel cell inputs519

The U.S. Energy Information Administration (2020); Battelle Memorial Institute520

(2017a, b), and Whiston et al. (2021) offer costs associated with equipment, instal-521

lation, stack, heat recovery, and inverters. We conduct analysis using system sizes522

from 10 to 250 kW. Cost values in this range are similar though minor differences523

exist between the 10–25 kW range (Battelle Memorial Institute 2017a) and the 100–524

250 kW range (Battelle Memorial Institute 2017b). A drawback of high-temperature525

solid oxide fuel cells is the cost associated with the stacks whose replacement is neces-526

sary, in part, due to the stress of operating at high temperatures (Whiston et al. 2021).527

Specifically, over time, the high-temperature gradients degrade the system. We there-528

fore consider a conservative start-up (from ambient temperature) time of three hours529

(Ellamla et al. 2015) which assumes a heating rate of approximately 5°C per minute530

(Milcarek et al. 2018); in this way, we emphasize system reliability over fast start up.531

We incorporate fixed operations and maintenance (O&M) costs, including the cost of532

replacing the stack, reformer, and inverter after five years. System lifetime is assumed533

to be 10–20 years, depending on the source. Stack lifetime is assumed to be five years534

(Battelle Memorial Institute 2017a; 2017b, U.S. Energy Information Administration535

2020, and Whiston et al. 2021).536

Costs are separated into three categories (high, medium, and low). The high-537

capital-cost case assumes elevated equipment price and sales markup. Additionally, we538

consider variations by decade which are attributable to the assumption that an inverse539

relationship exists between production and price. We include a cost with sales markup540

for combined-heat-and-power heat recovery equipment and assume a 5% discount541

rate. See Appendix C for a more detailed description of the economic data.542

We also update the efficiency parameters (η̄ j and η
j
) and start-up time (σ j ). To543

determine parameter values of interest, we vary them and solve the model to establish544

that, other than costs, the efficiency parameters and start-up time impact fuel cell545

Table 5 Values used for power-only and combined-heat-and-power solid oxide fuel cells

Parameter Description Value

j =CHP j =Power

ηe
j

Maximum electricity efficiency 54% 54%

ηe
j

Minimum electricity efficiency 60% 60%

σ j Start-up time for each technology j to reach µ j 3 h 3 h

µ j Maximum turn-down 20% 20%

κ̄ j Capital cost $3,360/kW $2,800/kW

com
j

O&M cost $0.024/kWh $0.020/kWh
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operational behavior the most. Beigzadeh et al. (2021) report electrical efficiencies of546

solid oxide fuel cells between 57 and 72%, depending on the type of fuel used; the lower547

value corresponds to gasified biomass and the higher to natural gas. Additionally, we548

confirm, through discussion with commercial partners, that deployed systems realize549

electrical efficiencies of around 60%. We use conservative values to account for both550

lifecycle system degradation and the utilization of biofuel. However, an end-user of551

our framework could choose to modify these values as the technology continues to552

mature. Table 5 reflects parameter values that differ from Pruitt et al. (2014).553

5.3 Model inputs from solution-expeditingmethodologies554

Figure 11 shows how the bound tightening procedure (Pruitt et al. 2014) produces555

desired reductions in variable bounds for those variables appearing in bi-linear terms.556

These reductions allow the spatial branch-and-bound algorithm to find better solutions557

and tighten the bound on the optimal objective function value more easily.558

We compare the size of models (P ′) and (P�), for the inputs used, in Table 6.559

Model (P ′) contains over 275,000 constraints, of which 52,000 involve non-linear560

terms. The reduced size and complexity of (P�) relative to (P ′) affords us with the561

ability to generate good solutions quickly, with which we can then initialize the original562

monolith.563

Fig. 11 Improvement from bound-tightening procedure for the auxiliary, bi-linear term X̂fl
j t

· X t
t reduces

the magnitude between the upper and lower bound by 57%, as an example

Table 6 Average size and

structure of models (P ′) and

(P�). The (P�) column shows

the percent increase or decrease

in size relative to (P ′)

Category Type (P ′) (P�) %

Variables Total 232,034 -15

Continuous 179,478 -20

Discrete 52,556 0

Constraints Total 275, 897 0

Linear 223,339 24

Non-linear 52,558 -100
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5.4 Solution quality564

Solving (P ′) using (Me) yields solutions, on average, five times faster than solv-565

ing (P ′) using (Mb). Table 7 shows results for a one-year time horizon. In general,566

(Me) generates an 8% improvement in the objective function value and over a 50%567

improvement in the optimality gap after a two-hour solve time limit. In only one of568

the 16 instances did (Mb) return the first solution faster; however, even in this case,569

the solution obtained by (Me) is superior.570

Table 7 Comparison of solutions solving (P ′) with and without the solution obtained from (P�)

Case Objective function value Optimality gap Time to first

decrease ($) reduction (%) solution (Seconds)

(Mb) (Me) % � (Mb) (Me) % � (Mb) (Me) �

R1-1247-2 1,012,986 931,014 8 15 7 50 178 56 122

R1-1247-3 745,548 692,023 7 14 7 48 253 56 197

R1-1247-4 2,164,754 1,906,774 12 18 7 62 377 73 304

R1-2500-1 1,556,543 1,412,495 9 16 7 54 503 63 440

R2-1247-1 4,483,279 4,112,745 8 13 5 61 845 63 782

R2-1247-2 3,269,277 2,971,911 9 15 6 58 298 60 238

R2-2500-1 7,825,518 7,379,453 6 10 4 57 748 68 680

R3-1247-2 4,085,636 3,790,034 7 13 6 54 1042 63 979

R4-1247-2 1,744,135 1,589,823 9 15 7 53 288 47 241

R4-2500-1 1,914,215 1,742,076 9 15 7 55 295 75 220

R5-1247-1 6,076,208 5,414,754 11 15 5 68 471 69 402

R5-1247-2 4,500,123 4,165,739 7 13 6 56 911 73 838

R5-1247-4 4,470,154 4,017,051 10 15 5 64 232 69 163

R5-1247-5 4,165,565 3,835,660 8 13 5 58 313 181 132

R5-2500-1 7,932,270 7,272,899 8 12 4 66 240 356 (116)

R5-3500-1 5,425,448 5,078,233 6 11 5 56 425 75 350

Average across all cases 8 14 6 58 464 90 373

Objective function values and optimality gap after two hours of run time, and time until the first feasible

solution is obtained. �: Reduction between methods (Mb) and (Me)

5.5 Solution implications571

To assess the financial benefits of distributed generation, we compare the solution572

with no distributed generation to that with an installed microgrid capable of servic-573

ing a critical load during a utility service disruption. In order to create an equitable574

comparison, we omit the energy cost during the service disruption. Table 8 depicts the575

resulting values for all 16 load profiles, along with the fraction of demanded power576

serviced from the utility in the presence of a microgrid. In all cases, the cost to meet577

the demanded electrical load with distributed generation is less than that associated578

with the “No Microgrid” solution. Along with cost savings of 8.3%, on average, across579
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Table 8 Solution comparison between purchasing all electricity from the utility versus installing a microgrid

that is capable of meeting a 48-hour outage occurring during the highest electrical demand period

Case Annualized lifecycle cost ($) � Grid

No microgrid Microgrid (%) Utilization (%)

R1-1247-2 1,007,933 929,337 −8.5 12.4

R1-1247-3 731,736 690,028 −6.0 6.5

R1-1247-4 2,115,108 1,903,575 −11.1 13.1

R1-2500-1 1,545,364 1,408,578 −9.7 8.1

R2-1247-1 4,419,348 4,101,889 −7.7 10.8

R2-1247-2 3,239,292 2,969,497 −9.1 15.2

R2-2500-1 7,916,373 7,366,441 −7.5 15.2

R3-1247-2 4,058,615 3,775,831 −7.5 8.9

R4-1247-2 1,731,984 1,587,963 −9.1 24.0

R4-2500-1 1,910,583 1,740,579 −9.8 20.3

R5-1247-1 5,832,474 5,402,292 −8.0 13.8

R5-1247-2 4,503,345 4,154,198 −8.4 7.4

R5-1247-4 4,343,550 4,009,787 −8.3 16.6

R5-1247-5 4,136,660 3,831,042 −8.0 21.5

R5-2500-1 7,763,028 7,263,047 −6.9 19.7

R5-3500-1 5,448,520 5,071,643 −7.4 20.3

Table 9 Percent of total power

consumed during the year by

each type of installed technology

in the microgrid

Case Dispatched power (%)

CHP SOFC Power SOFC PV Utility

R1-1247-2 88 0 0 12

R1-1247-3 89 0 5 6

R1-1247-4 86 0 1 13

R1-2500-1 84 0 8 8

R2-1247-1 47 35 8 10

R2-1247-2 65 20 0 15

R2-2500-1 25 57 3 15

R3-1247-2 51 36 4 9

R4-1247-2 76 0 0 24

R4-2500-1 80 0 0 20

R5-1247-1 35 51 1 13

R5-1247-2 45 45 3 7

R5-1247-4 48 36 0 16

R5-1247-5 51 28 0 21

R5-2500-1 26 55 0 19

R5-3500-1 38 42 0 20

Average 59 25 2 14

No solution includes the diesel generator. CHP combined heat and

power, SOFC solid oxide fuel cell, PV photovoltaics
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Fig. 12 Power output by technology type from a combination of microgrid and utility. Dashed lines show

the start and end of the utility service disruption. Omitted from the plots are electrical storage operations;

while they are part of the configuration, they are not utilized during the depicted time frame. Grid sales are

present directly proceeding the outage but are difficult to discern

the 16 cases, the customer also benefits from added reliability and resilience by being580

able to service the electrical load during power disruptions to the utility.581

Table 9 reflects the dispatched amount of each technology as a percentage of the582

total power consumed throughout the year. All remaining power is met by the utility.583

For almost all 16 cases, the co-generational fuel cell dominates the other technologies584

in dispatched power, providing approximately 58% of demanded annual power, with585

an additional 25% coming from the power-only fuel cell. Additionally, because this586

is a hybrid system of solid oxide fuel cells, photovoltaics, and electrical storage, the587

diesel generator is not consistently relied on to provide power. This mix of installed588

technologies also enhances system reliability in that there is not a single point of failure.589

An additional benefit of the installed microgrid is sustaining possible disruptions in590

fuel supply. Solid oxide fuel cells have the ability to utilize bio-fuels and, therefore, if591

strategically located at a site that produces bio-waste, the fuel cell would have access to592

low-cost fuel that is sourced on-site. This type of setup would reduce the dependency593

on utility-provided fuel sources while increasing the overall resilience and reliability594

of the system.595

Figure 12 compares, for two representative instances (R1-1247-2 and R1-1247-596

4—highlighted in gray in Table 8), solutions returned by (Mb) and (Me). These two597

instances differ by electric demand, in which the former services a smaller critical load598

during the outage than the latter. The area between the two dashed red lines represents599

the grid outage. We require the model to service the fully demanded electric and heating600

load during the disruption. Plots (a) and (c) show the solution returned by (Mb), in601

which the solver is unable to leverage the benefit of a combined-heat-and-power solid602
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oxide fuel cell, resulting in larger objective function values (shown in Table 7). Instead,603

the solution installs an oversized photovoltaic system and a backup diesel generator.604

While this is an acceptable alternative to adding resilience to the system, the solution605

favors traditional methods. Plots (b) and (d) reflect solutions obtained by (Me) which606

correspond to comparatively smaller objective function values while leveraging co-607

generational technologies. Additionally, the solutions returned by (Me) do not result608

in curtailed power during the outage.609

6 Conclusion610

This work demonstrates an optimization-based framework for creating solutions that611

enhance community resilience during outages by increasing the reliability of the elec-612

trical infrastructure. We present a mixed-integer, non-linear optimization model that613

incorporates many distributed energy resource technologies. Our model (P ′) is a614

member of a class of problems (mixed-integer nonlinear programs) that often present615

challenges for commercial optimization solvers. Therefore, we create a methodology616

capable of quickly generating solutions with better objective function values.617

The framework presented affords civic and governmental organizations the ability618

to develop alternate solutions to meet their electric power needs during a utility service619

disruption and to provide critical services in post-disaster recovery. Additionally, we620

show the benefit of incorporating solid oxide fuel cells into a microgrid design, due,621

in part, to its minimal emissions, dependable power supply, and ability to consume622

multiple fuel types.623

Acknowledgements This work is a collaborative effort between the Colorado School of Mines, Carnegie624

Mellon University, Bentley University, and industry partners, in particular, Martin Hering from Robert625

Bosch LLC. We acknowledge contributions from Dr. Amritanshu Pandey of the University of Vermont626

and Arnav Gautam from Carnegie Mellon University for their assistance in modeling and representing627

the distribution network. We thank Leonardo Aragon and Ty Gonzalez of the Colorado School of Mines628

for their data collection efforts. And, we are grateful for the technical expertise of Dr. Jack Brouwer of629

the University of California-Irvine regarding the fuel cells. The project is funded by the National Science630

Foundation grant number 2053856.631

Appendix A: Disaster cost components632

More than one dozen public and private sector data sources help capture the total,633

direct costs (both insured and uninsured) of the weather and climate events. These costs634

include physical damage to residential, commercial, and municipal buildings; material635

assets (content) within buildings; time element losses such as business interruption or636

loss of living quarters; damage to vehicles and boats; public assets including roads,637

bridges, levees; electrical infrastructure and offshore energy platforms; agricultural638

assets including crops, livestock, and commercial timber; and wildfire suppression639

costs, among others. However, these disaster costs do not take into account losses to640

natural capital or environmental degradation; mental or physical healthcare-related641

costs, the value of a statistical life; or supply chain, contingent business interruption642

costs. Therefore, our estimates should be considered conservative with respect to what643
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is truly lost, but cannot be completely measured due to a lack of consistently available644

data (Smith 2021).645

Appendix B: Taxonomy feeders646

See Table 10.647

Table 10 Summary of distribution feeders used to create electrical load profile

Feeder Community description Annual electrical demand (kWh)

R1-1247-2 Moderate suburban and light rural 4,905,544

R1-1247-3 Small urban center 2,589,839

R1-1247-4 Heavy suburban 14,586,540

R1-2500-1 Light rural 9,577,933

R2-1247-1 Light urban 34,316,316

R2-1247-2 Moderate suburban 24,148,877

R2-2500-1 Moderate urban 64,973,641

R3-1247-2 Moderate urban 31,760,229

R4-1247-2 Light suburban and moderate urban 11,047,930

R4-2500-1 Light rural 12,409,270

R5-1247-1 Heavy suburban and moderate urban 47,010,268

R5-1247-2 Moderate suburban and heavy urban 35,584,108

R5-1247-4 Moderate suburban and urban 33,908,450

R5-1247-5 Moderate suburban and light urban 31,886,294

R5-2500-1 Heavy suburban and moderate urban 63,259,096

R5-3500-1 Moderate suburban and light urban 43,247,521

Data obtained from the Open Energy Data Initiative https://openei.org/datasets/files/968/pub/

individual_files/ and sourced from work by Schneider et al. (2008)

Appendix C: Additional solid oxide fuel cell costs648

Assumptions649

• U.S. Energy Information Administration (2020) estimates “owner costs” though650

the applicability of those to this context is unclear: “typically include development651

costs, preliminary feasibility and engineering studies, environmental studies and652

permitting, legal fees, project management (including third-party management),653

insurance costs, infrastructure interconnection costs (e.g., gas, electricity), and654

owner’s contingency.”655

• O&M costs from U.S. Energy Information Administration (2020) are orders of656

magnitude different from Battelle Memorial Institute (2017a) as the former esti-657

mates are much more inclusive.658

• High capital cost case assumes high equipment costs and a high sales markup.659
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Table 11 Projected costs of solid oxide fuel cells

Scenario 2020 2030 2040 2050

Production (units/yr) 100–500 500–1 k 1–10 k 10–50 k

Capital cost ($/kW) High 17,245 7221 5068 4967

Medium 5425 4318 3007 2712

Low 2384 1946 1902 1813

Equipment cost ($/kW) High 16,000 6000 3896 3,818

Medium 4800 3818 2557 2312

Low 1984 1546 1502 1413

CHP equipment cost ($/kW) High* 934 795 731 692

Medium 471 462 453 444

Low 167 162 157 148

Installation cost ($/kW) High 1245 1221 1172 1149

Medium 625 500 450 400

Low* 400 400 400 400

FOM ($/kW/yr) High 318 318 318 318

Medium 217 156 147 133

Low 167 138 129 116

VOM ($/kWh) High 0.092 0.090 0.088 0.086

Medium 0.047 0.046 0.045 0.044

Low 0.002 0.002 0.002 0.002

LCOEi j ($/kWh) High 0.405 0.244 0.207 0.204

Medium 0.160 0.134 0.111 0.103

Low 0.060 0.050 0.048 0.045

*Represents cost values for systems of projected size of 50 kW or less. CHP combined heat and power,

FOM Fixed operations and maintenance cost, VOM variable operations and maintenance cost

• Costs over time are based on the assumption that production volumes increase,660

reducing the costs of production.661

• Equipment cost includes the cost of heat recovery equipment for combined heat662

and power and sales markup.663

• Costs assume a 5% discount rate, but given current economic conditions, a higher664

value may be more appropriate and would increase the low and medium case fixed665

O&M.666

• With all sources pooled together, there was agreement that production volume667

matters for costs, but not system size (except at very small system sizes, 1 kW and668

5 kW, which we do not consider in the model).669

• The levelized cost of energy (LCOE) estimates only factor in the electricity deliv-670

ered, not the heat energy, assuming a 5% discount rate, a 10-year system lifetime,671

a 5-year stack and inverter replacement, and a capacity factor of 93%.672

Based on these assumptions, we estimate fuel cell costs and report them in Table 11.673
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Fig. 13 Projected levelized cost of energy for power-only solid oxide fuel cells. Projections extend to 2050

based on the values found in Table 11

LCOEN j is the levelized cost of energy for technology j , at a life expectancy of N ,674

where AEP is the annual electricity production, and is computed as:675

LCOEi j =
κ j

i(1+i)
N j

(1+i)
N j −1

+ FOM

AEP
+ VOM676

Figure 13 shows the projected costs over time for each category: high, medium,677

and low. The purple circle shows the value we use for our modeling efforts.678
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