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Fig. 1. For each group of shapes, we show (left) the source and target shape in shape interpolation, (middle) linear interpolation without latent space design, and
(right) linear interpolation with latent space design. 20 interpolated shapes are shown. Linear interpolation with latent shape design preserves rigid part
structures better.

We study how to optimize the latent space of neural shape generators that
map latent codes to 3D deformable shapes. The key focus is to look at a
deformable shape generator from a differential geometry perspective. We
define a Riemannian metric based on as-rigid-as-possible and as-conformal-
as-possible deformation energies. Under this metric, we study two desired
properties of the latent space: 1) straight-line interpolations in latent codes
follow geodesic curves; 2) latent codes disentangle pose and shape variations at
different scales. Strictly enforcing the geometric interpolation property,
however, only applies if the metric matrix is a constant. We show how
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to achieve this property approximately by enforcing that geodesic inter-
polations are axis-aligned, i.e., interpolations along coordinate axis follow
geodesic curves. In addition, we introduce a novel approach that decouples
pose and shape variations via generalized eigendecomposition. We also study
eficient regularization terms for learning deformable shape generators, e.g.,
that promote smooth interpolations. Experimental results on benchmark
datasets show that our approach leads to interpretable latent codes, im-
proves the generalizability of synthetic shapes, and enhances performance
in geodesic interpolation and geodesic shooting.

CCS Concepts: • Computing methodologies → Regularization; Shape
analysis; • Mathematics of computing → Mesh generation.

Additional Key Words and Phrases: generative model, Riemannian geometry
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1     INTRODUCTION
Thanks to advances in neural 3D geometric representations, there
is growing interest in learning parametric neural shape generators
that map latent codes to 3D shapes in some ambient space [Atzmon
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et al. 2021; Huang et al. 2021; Litany et al. 2018; Muralikrishnan et al.
2022; Rakotosaona and Ovsjanikov 2020; Tan et al. 2018; Tretschk
et al. 2020; Verma et al. 2018]. Most existing approaches generalize
from their 2D counterparts, where the primary goal is to align the
distribution of training shapes with that of synthetic shapes under
suitable 3D shape representations. One fundamental difference be-
tween 2D images and 3D shapes is that a 3D shape space possesses
rich geometric structures. Take deformable shapes, for example (e.g.,
humans and animals); the underlying deformations exhibit salient
articulation structures. Merely performing distribution alignments
typically incurs implicit regularizations (e.g., the magnitudes of net-
work weights are minimized) that do not preserve such geometric
structures, c.f. [Huang et al. 2021]. In this paper, we study deformable
shape generators from a differential geometry perspective, i.e., a
shape generator is a sub-manifold parameterized by the latent code.
This view opens the door to developing novel techniques to make
the latent space interpretable, improving the generalizability of syn-
thetic shapes and enforcing geometric properties when performing
shape interpolations and shape extrapolations.

Our approach, named GeoLatent, builds on a Riemannian metric
of deformable shape generators derived from as-rigid-as-possible
(ARAP) and as-conformal-as-possible (ACAP) deformation energies.
Under this metric, we study two desired properties of the latent
space: 1) straight-line interpolations in the latent space follow geo-
desic curves; 2) latent codes disentangle pose and shape variations.
Strictly enforcing the geodesic interpolation property results in a
very stiff constraint, i.e., the metric matrix is a constant. In light of
the pose-shape disentanglement property, GeoLatent enforces geo-
metric interpolation approximately so that it is satisfied along the
axes of the latent space. GeoLatent then employs a novel generalized
eigendecomposition formulation of the metric matrix to achieve
pose-shape disentanglement. Compared to prior work [Aumentado-
Armstrong et al. 2019; Cosmo et al. 2020; Mu et al. 2021; Zhou et
al. 2020a] that performs hard pose-shape disentanglement, this
new formulation is more flexible, e.g., it achieves progressive pose-
shape disentanglement. We introduce how to enforce these two
properties by developing suitable regularization terms.

Using this Riemannian metric, GeoLatent also incorporates shape
regularization terms to promote that interpolated shapes are smooth
and preserve local rigidity and conformality. Compared to merely
minimizing the metric matrix [Huang et al. 2021], GeoLatent mini-
mizes both the metric matrix and its gradients. This approach pre-
vents large metric gradients from concentrating on the training
instances. It leads to noticeable improvements in synthetic shapes
in the presence of large and complex deformations.

GeoLatent can be combined with most generative models such
as generative adversarial network (GAN) [Arjovsky et al. 2017;
Goodfellow et al. 2020], variational auto-encoder (VAE) [Bouritsas
et al. 2019; Litany et al. 2018; Ranjan et al. 2018; Tan et al. 2018], and
auto decoder (AD) [Huang et al. 2021; Park et al. 2019; Zadeh et al.
2019], as well as any distance metrics for measuring the distances
between training shapes and synthetic shapes. For simplicity, we
study GeoLatent using AD.

We have evaluated the performance of GeoLatent on various
deformable shape collections, such as humans and animals. Experi-
mental results show that the latent space of GeoLatent is superior

to existing approaches in visualizing shape variabilities, shape inter-
polations, and shape extrapolations. The resulting shape generator
also exhibits better generalizability than baseline approaches. The
effectiveness of GeoLatent is demonstrated in two applications, i.e.,
geodesic shape interpolation and geodesic shooting, in which the
latent space of GeoLatent offers simpler solutions than alternative
approaches.

In summary, GeoLatent presents the following contributions:

• A differential geometry view of deformable shape generators
using a metric based on as-rigid-as-possible and as-conformal-
as-possible deformation priors.

• Latent space design that combines axis-aligned geodesic inter-
polation and multi-scale pose-shape disentanglement based
on the Riemannian metric.

• Shape regularization terms enhance the generalizability of
synthetic shapes by minimizing the metric and its gradients
under suitable norms.

• Applications in geodesic shape interpolation and geodesic
shooting.

2     RELATED WORKS
We discuss relevant works in five categories, i.e., deformable shape
generators (Section 2.1), regularizations for shape generators (Sec-
tion 2.2), pose-shape disentanglement in deformable shape genera-
tors (Section 2.3), deformation models (Section 2.4), and differential
geometry in generative modeling (Section 2.5).

2.1     Deformable Shape Generators
Most existing works on deformable shape generators focus on ar-
chitecture design under different 3D representations. Several early
approaches [Kolotouros et al. 2019; Litany et al. 2018; Rakotosaona
and Ovsjanikov 2020; Tan et al. 2018; Tretschk et al. 2020; Verma
et al. 2018] define variational auto-encoders on meshes. A common
strategy is to treat triangular meshes as graphs and define convolu-
tion and deconvolution operations to synthesize triangular meshes
(c.f. [Atzmon et al. 2022; Bouritsas et al. 2019; Chen and Kim 2021;
Litany et al. 2018; Tretschk et al. 2020; Verma et al. 2018; Yuan et al.
2020]). In [Atzmon et al. 2022], the authors utilized the Frame Av-
eraging framework for equivariant shape space learning. However,
the method requires skinning weights to achieve good performance,
which are usually unavailable for general shape collections. Several
other approaches studied (deformable) shape generation under the
point cloud representation, including PointFlow [Yang et al. 2019],
LGF [Cai et al. 2020], and DPM [Luo and Hu 2021].

In contrast to these approaches, GeoLatent focuses on principles
for designing the latent space. The goals include making the latent
space interpretable and reducing the size of the training data by
enforcing geometric regularizations. GeoLatent can be applied to
deformable shape generators under any shape representation.

2.2     Regularizations for Shape Generators
Regularization losses have been explored in prior work for genera-
tive models. In [Peebles et al. 2020], Peebles et al. studied a Hessian
regularization term for learning generative image models. A spectral
regularization loss is introduced in [Aumentado-Armstrong et al.
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2019] for 3D generative modeling. Several papers [Balashova et al.
2018; Kanazawa et al. 2018; Wang et al. 2018; Wu et al. 2018] studied
geometric regularizations for image-based reconstruction.

Several recent papers studied enforcing geometric regularization
to improve 3D shape generation quality. In [Cosmo et al. 2020], the
authors studied a distance matrix-based representation under a VAE
generative model and proposed to regularize the shape generator
so that linear interpolations in the latent space between shape pairs
are consistent with linear interpolations between corresponding
distance matrices. This approach, however, does not model poten-
tially large variations in a shape collection. Another limitation is
the distance matrix representation, which is not ideal for model-
ing articulated deformations. Both issues are addressed in ARA-
PReg [Huang et al. 2021], which is based on regularizing the tangent
space of the shape manifold defined by the mesh generator under
an as-rigid-as-possible deformation model. In GenCorres [Yang et al.
2023], the authors studied geometric regularizations of deformable
shape generators under an implicit representation for inter-shape
correspondence computation. GeoLatent innovates in optimizing
the latent space of the shape generator. Moreover, both ARAPReg
and GenCorres define regularization losses on the metric matrix.
In contrast, we study high-order regularizations based on metric
gradients.

2.3     Pose-Shape Disentanglement
Motivated from style-content separation in latent spaces of image-
based generative models [Karras et al. 2019; Nguyen-Phuoc et al.
2019; Zhang et al. 2018], many 3D generation approaches have
considered similar latent space separations. For man-made shapes,
several recent papers [Li et al. 2017; Mo et al. 2019; Yang et al. 2022]
studied how to divide latent codes into part latent codes and ge-
ometry latent codes. However, these approaches typically require
part-labels as inputs. For deformable generative models, several
papers [Aumentado-Armstrong et al. 2021, 2019; Cosmo et al. 2020;
Foti et al. 2023; Levinson et al. 2019; Mu et al. 2021; Tatro et al. 2020;
Zhou et al. 2020a] examined pose and shape disentanglement. In
particular, [Zhou et al. 2020a] introduced an unsupervised approach
to decouple pose and shape variables. The idea is to separate intrin-
sics and extrinsics using corresponding meshes known only to have
the same shape but different pose and apply an ARAP geometric
prior to perform disentanglement. [Foti et al. 2023] introduced a
spectral technique to decouple latent codes that reflect local shape
attributes. Finally, [Aumentado-Armstrong et al. 2021] learned a
generative representation that factorizes the latent deformation
space into shape and pose, without supervision.

GeoLatent takes a different approach that uses generalized eigen-
vectors to achieve pose-shape disentanglement. The generalized
eigenvalue problem is driven by the ARAP and ACAP deformation
energies, where pose variations have small values and shape varia-
tions have large values. In this way, GeoLatent achieves multi-scale
disentanglement, which is more general than pose-shape disentan-
glement. GeoLatent also does not require pose/identity labels.

2.4     Deformation Models
Isometric deformation models, which preserve the edge lengths
of a mesh, are among the early deformation models for non-rigid
geometry [Bronstein et al. 2009]. One issue of these models is that
they are not suitable for large non-rigid deformations and do not
model deformations that exhibit piece-wise structures well, which
are popular in organic shapes. To handle piece-wise structures, more
recent deformation models enforce that the transformations within
local surface patches can be approximated well by afine transfor-
mations [Sumner et al. 2007], rigid transformations [Sorkine and
Alexa 2007; Wand et al. 2007; Xu et al. 2007], and similarity
trans-formations [Yoshiyasu et al. 2014], which are termed as-
afine-as possible (AAAP), as-rigid-as-possible (ARAP), and as-
conformal-as-possible (ACAP) deformation models, respectively.
These defor-mation models also root in rich literature in computer
graphics on mesh parameterization [Bouaziz et al. 2012; Crane et
al. 2011; Liu and Jacobson 2021; Vaxman et al. 2015].

Prior work has explored all these models to regularize neural
shape spaces. Many approaches [Habermann et al. 2020; Li et al.
2020; Zhou et al. 2020a] enforce ARAP losses between a base shape
and synthetic shapes. They are not ideal for shape collections that
possess significant inter-shape variations. GeoLatent is relevant to
ARAPReg [Huang et al. 2021] and GenCorres [Yang et al. 2023],
which enforce ARAP and ACAP losses among neighboring syn-
thetic shapes. However, GeoLatent focuses on using the Riemannian
metrics of ARAP and ACAP losses to design the latent space of a
deformable shape generator. In principle, GeoLatent can incorporate
any deformation model among neighboring synthetic shapes.

2.5     Differential Geometry of Generative Models
Several papers modeled image generative models as sub-manifolds [Ar-
vanitidis et al. 2018; Chen et al. 2018; Kalatzis et al. 2020; Kühnel
et al. 2018; Wang and Ponce 2021]. A central topic is geodesic curve
computation. [Chen et al. 2018; Shao et al. 2018] studied optimizing
a curve in the latent space so that the induced curve in the ambient
space follows a geodesic curve based on a metric associated with
the ambient space. [Shao et al. 2018] also studied other operations,
such as parallel translation and geodesic shooting. [Arvanitidis
et al. 2018; Yang et al. 2018] extended geodesic interpolations from
deterministic generative models to stochastic generative models.
[Stolberg-Larsen and Sommer 2022] studied geodesic computation
under the setting of multi-chart generative models, emphasizing the
smoothness of geodesic paths across chart boundaries. However,
these approaches build on pulling back the Euclidean metric of the
ambient space. Several methods used other means to define the
Riemannian metric. For example, [Roy and Hauberg 2022] pulled
back the Wasserstein metric tensor on the decoder distributions to
the latent space. Exact geodesic computation involves computing
the Hessian of the generator, which is computationally expensive.
[Chen et al. 2019] studied an approximate approach based on sam-
pling the latent space. Moreover, several approaches [Arvanitidis
et al. 2021; Petzka et al. 2022] studied defining a metric of the ambi-
ent space to induce the metric of the latent space. However, their
primary goal is to drive geodesic interpolations to follow interesting
regions of the ambient space.
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Fig. 2. (a) GeoLatent learns a generative model to fit a shape collection using (b-c) latent space regularizations and (d) shape space regularizations. (b)
Linear interpolation in the latent space corresponds to geodesic interpolation in the shape space. (c) Enforcing eigenvectors to be axis-aligned converts local
pose-shape disentanglement into global pose-shape disentanglement. Yellow and green arrow indicate pose and shape direction, respectively. (d) Minimization of
the elements and the norm of the gradients of the Riemannian metric improves generalizability of the generator.

In contrast, the metric of GeoLatent is derived from 3D deformable
models. Moreover, GeoLatent focuses on achieving desired geodesic
interpolation and pose-shape disentanglement properties.

3     PROBLEM STATEMENT AND APPROACH OVERVIEW
We begin with a problem statement in Section 3.1. We then present
an overview of the proposed GeoLatent in Section 3.2.

3.1     Problem Statement
The input to GeoLatent is a collection of 3D shapes S = {�1, · · · ,�� }
that are samples from an underlying deformable shape space. Our
goal is to train a mesh generator g� : Z  → R3� that maps a latent
code z � Z  = R� to a triangular mesh of� vertices with pre-defined
topology. Here � denotes the network parameters.

As our primary goal is to examine latent space design, we focus
on the correspondence-based setting [Atzmon et al. 2022; Bouritsas
et al. 2019; Huang et al. 2021; Muralikrishnan et al. 2022; Ranjan et
al. 2018; Zhou et al. 2020b], where we assume �� are consistently
meshed with � vertices. Our goal is to optimize a latent code z� of
each shape �� and the network parameters � to achieve five goals:

(1) The geometric shape of g� (z�) aligns with that of ��;
(2) The empirical distribution of the latent codes {z�} aligns with

a prior latent distribution, e.g., the Gaussian N�.
(3) Linear interpolations in the latent space follow approximate

geodesic curves under a suitable deformation metric.
(4) Axes of the latent space disentangle deformations at different

scales, ranging from pose variations to shape variations.
(5) Interpolations in the latent space are smooth.

3.2     Overview of GeoLatent
As illustrated in Figure 2, GeoLatent optimizes the generator g� by
minimizing a total loss that combines a data loss and two regular-
ization losses:

min �AD (g�, S) + �latent�latent (�) + �shape�shape(�) (1)

The data loss is an auto-decoder (AD) loss that optimizes the de-
coder g� to fit the training shapes S .  The details are explained in
Section 7. �latent (�) is a regularization term prioritizing that the
latent space satisfies the desired properties of approximate geodesic
interpolation and pose-shape disentanglement.�shape (�) regularizes
the generated shapes of g� .

We organize the remainder of this paper as follows. GeoLatent
builds on a Riemannian metric on g� , which will be discussed in Sec-
tion 4. In Section 5, we study desired properties of the latent space
under this metric, which are our key contributions. We then intro-
duce how to model �latent (�) and �shape (�) in Section 6. Section 7
discusses the training procedure. Section 8 and Section 9 present
the experimental results and applications, respectively. Finally, we
conclude this paper in Section 10.

4     A RIEMANNIAN METRIC
We aim at defining a Riemannian metric for a deformable mesh
generator g� (z) : Z  := R� → R3� that maps a latent code z to
vertex positions of a triangular mesh M  = ( V ,  E ) with� vertices. A
well-known Riemannian framework for deformable shape analysis
is Sobolev metric developed by Bauer and co-authors [Bauer et al.
2021, 2011; Hartman et al. 2023; Su et al. 2020], which roots in early
work [Mennucci et al. 2008; Michor and Mumford 2005, 2007]. While
Sobolev metrics are well grounded in theory, they are intrinsic
metrics which are not ideal to encode articulated deformations.
Such deformations are extrinsic in nature and extremely popular in
real deforming objects. In contrast, our formulation largely follows
ARAPReg [Huang et al. 2021] and GenCorres [Yang et al. 2023],
which are extrinsic deformation models. In particular, we make the
definition of the Riemannian metric explicit, which is the foundation
of GeoLatent.

Specifically, we define the Riemannian metric based on measuring
the distortion between a synthetic shape g� (z) and its perturbation g�

(z +�v), where v � R� is the unit direction of perturbation and � is an
infinitesimal value. The distortion then induces a metric in the
tangent space at z. To this end, we consider two deformation models.
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The first deformation model, termed the as-rigid-as possible (ARAP)
model [Huang et al. 2021], measures the cumulative deviations
between the displacements g� (z + �v) −  g� (z), � � N  in the 1-ring

neighbor N  of each vertex g� from a rotation. In the infinitesimal
regime, we parameterize the rotation as �3 + c�×, c� � R3 , leading

to

�arap(z, v) = 
∑�

min 
∑� 

�
 
�3 + c� ×  

 
g� (z) −  g� (z)

�=1 ��N

−  g� (z + �v) −  g� (z + �v) �2 (2)

The following proposition, due to [Huang et al. 2021, 2009], spec-
ifies that �arap(z, v) is a quadratic form in g� (z + �v) −  g� (z).

Proposition 1. ([Huang et al. 2021, 2009]) We have
�arap(z, v) = 

 
g� (z + �v) −  g� (z)� �arap(z)

 
g� (z + �v) −  g� (z)

where

�arap (z) = � � �3 −  �arap (z)�arap(z)
−1
�arap (z)

�

where� � R�×� is the unnormalized graph Laplacian matrix of g� (z);
��rap(z) � R3�×3� and ��rap(z) � R3�×3� are�×� sparse block and
diagonal block matrices whose blocks are given by

� ˝  
e� 

′  (z)× � =

� �arap,�� (z) =       
� � 

e�� (z)×               �
� N

� 0 otherwise

�arap,�� (z) = �e��′ (z)�2�3 −  e��′ (z)e��′

(z)� �′�N

where e��′ (z) = g� (z) −  g�′ (z).

This ARAP model is effective when the absolute scales of the
input shapes remain similar. However, typical deformable shape
collections present great scale variations, e.g., tall people vs short
people and fat people vs thin people. To address this issue, we
introduce the second deformation model, termed the as-conformal-
as possible (ACAP) [Yang et al. 2023] model. Specifically, ACAP
measures the cumulative deviations between the displacements
g� (z + �v) −  g� (z), � � N  in the 1-ring neighbor N  of each vertex

g� from a similarity transformation. Similar to (2), we parameterize
the similarity transformation by �3 + ���3 + c�×, leading to

∑� ∑�
�acap(z, v) = 

�=1 
c�,�� 

��N 
� �3 + ���3 + c� ×      g� (z) −  g� (z)

−  g� (z + �v) −  g� (z + �v) �2 (3)

Similar to �arap(z, v), �acap(z, v) is also a quadratic form in g� (z +
�v) −  g� (z).

Proposition 2. ([Yang et al. 2023]) We have
�acap(z, v) = 

 
g� (z + �v) −  g� (z)� �acap(z)

 
g� (z + �v) −  g� (z)

where

�acap(z) = � � �3 −  �acap(z)�acap (z)
−1
�acap(z)

�

where ��cap(z) � R3�×4� and ��cap(z) � R4�×4� are � ×  � sparse
block and diagonal block matrices whose blocks are given by

�     
′

˝       
e��′ (z)×, −e��′ (z) � =

� �acap,�� (z) = e�� (z)×, −e�� (z)                 � �
N

0 otherwise

�acap,�� (z) = 
∑� 

�e��′ (z)�2�4 −  
  (e��′ (z)e��′ (z)� 0

�′�N

When � → 0, we have g� (z + �v) −  g� (z) = � �g� 
(z)v. In this

case,

�arap(z, v) = �2v� �g� 
(z)

� 

�arap(z) 
�g� 

(z)v (4)

�

�acap(z, v) = �2v�       
�z 

(z) �acap(z) 
�z 

(z) v (5)

Combing (4) and (5), we arrive at the following definition.

D e f i n i t i o n  1. Denote � (z) = (1 −  �)�arap(z) + ��acap (z) ,
where 0 ≤  � ≤  1 is a tradeoff parameter between ARAP and ACAP
deformations. We define the Riemannian metric of a deformation shape
generator g� (z) as

� � �
� (z) := 

�z 
(z) � (z) 

�z 
(z) (6)

Numerically, we compute �g� 
(z) using finite difference, i.e.,

�z 
(z) = 

� 
g� (z + �e1) −  g� (z), · · · , g� (z + �e�) −  g� (z)

     
(7)

where e� is the canonical basis of R�. Note that according to (7), the
metric matrix �� (z) is a function on the vertex coordinates of the
generator g� (z), allowing for eficient computation.

Note that unlike most Riemannian metrics of generative models
which are pull-back metrics of the Euclidean metric of the ambient
space [Arvanitidis et al. 2018; Chen et al. 2018; Kalatzis et al. 2020;
Wang and Ponce 2021], �� (z) can be understood as the pull-back
metric of a metric that measures deformations in the ambient space.

5     LATENT SPACE DESIGN
This section studies desired properties of the latent space guided
by the metric �� (z). The desired properties fall into two categories,
i.e., geodesic interpolation and pose-shape disentanglement, which
we examine in Section 5.1 and Section 5.2, respectively.

5.1     Geodesic Interpolation
We begin with introducing the Christoffel symbols induced from
�� (z), which are used to characterize geodesic curves.

D e f i n i t i o n  2. The induced Christoffel symbols from �� (z) are
given by ��,�,� � [�] := {1, · · · ,�},

Γ�,� (z) = 
2 

�

=

1
(�� (z)−1)�� 

 � 

�� 

(z) 
+ 
��

��
 (z) 

−  
��

�� 

(z) 
. (8)

where (�� (z)−1)�� is the ��-th entry of the inverse of �� (z).
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(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

Fig. 3. Comparisons between linear interpolations and geodesic interpolations using the pre-trained ARAPReg model [Huang et al. 2021]. Under large
deformations, (bottom) geodesic interpolations are more meaningful than (top) linear interpolations, where geometric features such as fingers are highly
distorted in the interpolated shapes. (a, e) Source and target shape. (b-d) Sampled interpolated shapes. (f) 10 interpolated shapes are shown.

It is easy to check that Γ�,� (z) = Γ�,� (z).
In the context of a shape space, a popular scheme for shape in-

terpolation is that the interpolated shapes follow a geodesic curve,
c.f., [Kilian et al. 2007]. For neural generative models, linear interpo-
lations between latent codes are the most widely used. Therefore, a
desirable property of the latent space is that the straight line inter-
polation �� (z1 +�(z2 − z1)),� � [0, 1] between any two latent codes
z1 and z2 follows a geodesic curve with respect to �� (z) (See Fig-
ure 3). The following theorem states that the geodesic interpolation
property is satisfied iff the metric matrix is a constant.

Theorem 1. The straight line interpolation��
 (z1 +�(z2−z1)),� �

[0, 1] between any two latent codes z1 and z2 follows a geodesic curve,
i.e., there exists a reparameterization �(� ) so that the interpolation
is a geodesic in �′ , iff the metric matrix �� (z) is a constant.

Proof. The proof, which is non-trivial, is deferred to Section A.
□

Therefore, we relax the desired geodesic interpolation property.
Theorem 1 indicates that if we ensure that geodesic interpolations
are satisfied within each 2D sub-spaces formed by e� �e�, then �� (z)
is still a constant. Thus, we propose to constrain that the geodesic
interpolation property is satisfied along each axis g� (z +�e�) at each
latent code z, relaxing 2D sub-spaces to 1D sub-spaces.

As we will discuss later, the motivation of enforcing axis-aligned
geodesic interpolation is two-fold. First, geodesic interpolation is
still satisfied approximately. Second, it enables the formulation of
pose-shape disentanglement locally, which induces global pose-
shape-disentanglement.

Def in i t ion 3. A metric �� (z) satisfies the axis-aligned geodesic
interpolation property iff for each � � [�] and every z, there exists a
parameterization �(�′), so that g� (z + �(�′)e�) is geodesic in �′ .

The following proposition characterizes a necessary and suficient
condition on axis-aligned geodesic interpolation property.

Proposition 3. The axis-aligned geodesic interpolation property
is satisfied iff

Γ�,� (z) = 0,                                        �� ≠  � � [�]              (9)

���� (z) = 2��� (z)Γ�,� (z)                          �� � [�]

(10)

Proof. See Appendix B. □

The following proposition specifies that axis-aligned geodesic
interpolation can be achieved locally via re-parameterization.

Proposition 4. Given a shape generator g� (z) and a latent code
z0, there exists a reparameterization z(z′) : R� → R� where z(0) = z0
and a radius�, such that axis-aligned geodesic interpolation is satisfied
under z ′  in the ball �� (0) = {z′|�z′� ≤  �}.

Proof. See Appendix C. □

Note that the parameterization described in Prop. 4 is differ-
ent from the geodesic parameterization (via exponential map) (pp
141)[Petersen 2006] on Riemannian manifolds. In fact, the coordi-
nate differences along each axis may not be identical to the length
along the corresponding geodesic curve. When � = 2 and the �� (z)
is the pull-back metric from �3, the parameterization is the so-called
geodesic web [Pottmann et al. 2010; Vekhter et al. 2019].

Even though axis-aligned geodesic interpolation only constrains
that geodesics follow the axes, geodesic interpolation between two
arbitrary points is satisfied approximately (See Figure 9). This prop-
erty is essential because linear interpolations, which are easy to
compute, are geometrically meaningful because they roughly follow
geodesic curves. On the other hand, axis-aligned geodesic interpo-
lation allows some flexibility in the shape generator compared to
exact geodesic interpolations.

5.2     Pose-Shape Disentanglement
Besides geodesic interpolation, another desired property is that
different axes of the latent space disentangle shape variations and
pose variations. As studied in prior works [Aumentado-Armstrong
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(a) (b) (c) (d)

Fig. 4. Extrapolations using ARAPReg [Huang et al. 2021] along the maximum eigenvector (green) and minimum eigenvector (yellow) from the base shape
(blue). Extrapolations under generalized eigenvectors of �� (z) with respect to �� (z) (a, c) provide better pose-shape disentanglement than under normal
eigenvectors of �� (z) (b, d).

et al. 2019; Mu et al. 2021; Zhou et al. 2020a], a traditional definition
of pose-shape disentanglement is that one can decompose the latent
space Z  = Zshape � Zpose , so that at any latent code z0, g� (z0 + v)
varies the pose(shape) of g� (z0) if v � Zpose (Zshape ) . An issue of
this approach is that without pose and shape labels (which are hard
to obtain), the boundary between pose and shape variations is fuzzy.

GeoLatent achieves pose-shape disentanglement using a simple
scoring function of a tangent direction v � R� at z:

�z (v) := 
v� �

�
(z)v 

, �� (z) = 
�z 

(z)
� 

(�3� −  ��� ) 
�z 

(z), (11)

where � � R3�×6 collects an orthonormal basis of the rigid body
motion space, i.e.,

� g� (z)×
›  . . fi = ��

« �3 g� (z)× ‹

is the QR decomposition. When the norm of v is small, the numerator
of (11) measures the distortion of the deformation specified by v. The
denominator of (11) measures the magnitude of the corresponding
vertex displacements, in which the rigid component is factored out.

It is easy to check that v corresponds to a pose variation if �z (v)
is small. In this case, the distortions from rotations and similarity
transformations among the 1-ring neighborhoods within each shape
part are small, while the absolute displacements are large. In contrast,
v corresponds to a shape variation if �z (v) is large. In this case,
distortions from rotations and similarity transformations among
the 1-ring neighborhoods are large in the interior regions of shape
parts, while vertex displacements are local. The nice thing of using
�z (v) is that it offers multi-scale disentanglement rather than the
binary disentanglement in prior work.

Figure 4 illustrates generalized eigenvectors u� that satisfy�� (z)u�
=

���� (z)u�. We can see that these eigenvectors nicely disentangle
pose and shape variations. Note that generalized eigenvectors, which
consider magnitudes of the shape variations, provide better disen-
tanglement than the eigenvectors of �� (z).

D e f i n i t i o n  4. We say a shape generator g� (z) possesses pose-
shape disentanglement if the canonical axes e� are generalized eigen-
vectors, i.e., there exist �� so that

�� (z)e� = ���� (z)e�. (12)

While (12) only constrains multi-scale pose-shape disentangle-
ment locally, combing axis-aligned geodesic interpolation general-
izes multi-scale pose-shape disentanglement globally (See Figure 5).

Note that unlike axis-aligned geodesic interpolation that may be
achieved by reparameterization without changing the generated
shapes g� (z), not all shape generators can achieve both axis-aligned
geodesic interpolation and pose-shape disentanglement. Therefore,
enforcing both properties also provide regularizations on the under-
lying shape generator.

6     REGULARIZATION TERMS
This section studies regularization terms on the generator g� (z). We
begin with regularization terms that enforce the desired properties
of the latent space in Section 6.1. We then study regularization terms
on the shape space defined by g� (z) in Section 6.2. These shape
space regularization terms determine the best shape generator that
satisfies the latent space properties.

6.1     Latent Space Regularization Terms
Given a prior distribution of the latent space, e.g., the Gaussian
distribution N�, we define the latent space regularization term as

�latent (�) = �z�N� �latent (z,�) (13)

where �latent (z,�) measures deviations of (9), (10), and (12).
One challenge of enforcing (9) and (10) is that each Γ�� is the

sum of � terms, making it dificult to optimize. To address this issue,
we use a suficient condition on (9) and (10) that only involves the
gradients of �� (z).

Proposition 5. (9) and (10) are satisfied if

2 
���

� (z) =  
�
��� (z), ��, � � [�]. (14)
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(a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

Fig. 5. Comparison of enforcing local disentanglement and global disentanglement. (Top) Merely enforcing local disentanglement described in (12) does not
generalize well under large latent code perturbations. (Bottom) Global disentanglement is achieved by enforcing both (12) and axis-aligned geodesic
interpolation. The shapes (a) and (c) are generated by perturbing the latent codes of the shape (b) along the direction in the latent space that corresponds to the
smallest generalized eigenvalue. Shape (a), (b), and (c) are aligned in the same coordinate system for better comparison (d). Please check the orientation
differences from (a) to (b) and from (b) to (c) in the regions of hands.

Proof. Note that 6.2     Shape Space Regularization Terms

Γ� = 
�

=

1
(�� (z)

−1
)�� 

 
2 
���

� −   
��� 

.

So if (14) holds, then Γ� = 0,��,� � [�]. Also        �� (z) = 0 if (14)
holds. Therefore, both (9) and (10) hold.                                              □

We proceed to enforce pose-shape disentanglement. The chal-
lenge of enforcing (12) is that they involve unknown variables ��.
We address this issue by enforcing an equivalent set of constraints:

��� (z)���
 (z) = ���

 (z)�� (z), ��, �,� � [�] (15)

With this setup, we define �latent (z,�) by enforcing (14) and (15)
in the least square sense:

∑� ∑�      ��� �

�latent (z,�) = 2 (z) − (z)
�=1 �=1

+ �ps 
∑�  

��� (z)��� (z) −  ��� (z)�� (z)2 (16)
�=1

where �ps is the trade-off parameter in front of the pose-shape
disentanglement term.

We use finite difference to compute the elements of the metric
matrix and its derivatives in (12):

�� (z) =
�2 (g� (z + �e�) −  g� (z))� �

� 
(z)(g� (z + �e�) −  g� (z))

��
�� (z) =

�3 (g� (z + �e�) −  g� (z))�  �
� 

(z + �e�) −  �
� 

(z)

(g� (z + �e�) −  g� (z)) (17)

Merely constraining the latent space does not explicitly regular-
ize the shape space defined by the shape generative model g� (z).
Besides desired properties of the latent space, we also want to reg-
ularize synthetic shapes, so that they offer smooth interpolations
between input shapes. To this end, we propose to minimize regular-
ization terms that are defined on g� (z).

One approach is to minimize the elements of �� (z). However,
merely doing so may adversely compete against fitting the generator
to the training shapes. Another issue is that it will force large gradi-
ents of �� (z) to concentrate at the training shapes. This could be
understood through the effects of merely minimizing the elasticity
term in the active contour model [Kass et al. 1988], which leads to
piece-wise linear interpolations.

A popular approach to address this issue is to combine the mini-
mization of the Riemannian curvature tensor, c.f. [Kass et al. 1988].
which distributes the norms of the gradients of �� (z). However, in
high-dimensions, the curvature tensor is of dimension �4, which is
intractable. We address this issue by minimizing the gradients of
�� (z), which also minimizes the Levi-Civita connection. The differ-
ence between the gradients of �� (z) and the Riemannian curvature
tensor is that the Riemannian curvature tensor is parameterization-
free while the gradients of �� (z) are not. For example, the gradients
of �� (z) are scaled by � if we uniformly scale the parameter domain
by 1 . However, this issue is addressed in AD, where the distribution
of latent codes is forced to match N  .

Another consequence of minimizing the gradients of �� (z) is that
it prioritizes that �� (z) is a constant matrix locally, promoting the
geodesic interpolation property.

Following the discussion trial, we define the shape space regu-
larization term as

where � is a hyperparameter.
Figure 5 shows that the first term in (16) is critical for achieving

global multi-scale pose-shape disentanglement.

 ∑� ∑� ∑� ���
�shape (�) = �z�N� (��� (z)) + �� (z) (18)

�=1 �=1                                  �=1
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Fig. 6. Qualitative shape generation results of ARAPReg [Huang et al. 2021] and GeoLatent. We visualize the reconstruction errors of (a) sampled testing
meshes. (b) ARAPReg. (c) GeoLatent. (d) Error bar for (top) Human and (bottom) Animal.

where �� is a hyperparameter. We again apply the finite-difference
approach described in (17) to compute the elements of �� (z) and
their gradients.

The total regularization term combines �latent defined in (13) and
�shape (18). Regarding the trade-off parameters, we set �ps = 0.01,
�� = 0.01, �latent = 1, and �shape = 0.1 in our experiments.

7     LEARNING GENERATIVE MODELS
This section describes the technical details to learning the generative
model g� (z) from a shape collection S .  Following [Huang et al.
2021; Litany et al. 2018; Rakotosaona and Ovsjanikov 2020; Tan et al.
2018; Tretschk et al. 2020; Verma et al. 2018], we assume the input
shapes are consistently meshed as the generator model g� (z). With
{s��, 1 ≤  � ≤  �} we denote the mesh vertices of ��. In this case, we
then define the data loss of each training shape �� as

∑� ∑�
�AD (g , S ) = �g� (z�) −  s�� � + KL( {z�}, N�) . (19)

�=1 �=1

where KL( {z�}, N�) measures the KL-divergence between the em-
pirical distribution {z�} of latent codes and N�.

Network training amounts to solve

min�AD (g�, S) + �latent�latent (�) + �shape�shape (�) (20)

To solve (20), similar to [Huang et al. 2021], we first drop �latent (�)
and �shape (�) in (20) to initialize �. This step becomes the stan-
dard procedure of learning an AD for meshes. After that, we acti-
vate �latent (�) and �shape (�) and refine �. Network training
employs ADAM [Kingma and Ba 2015].

8     EXPERIMENTAL RESULTS
This section presents an experimental evaluation of GeoLatent. We
begin with the experimental setup in Section 8.1. We then analyze
the shape generation quality in Section 8.2. Section 8.3 performs a
user study to evaluate the latent space design. Finally, Section 8.4
presents an ablation study on GeoLatent.

8.1     Experimental Setup
8.1.1     Datasets. We have tested our approach on two datasets, i.e.,
Human and Animal. The Human category is DFAUST [Bogo et al.
2017]. We use the registered SMPL model from the original DFAUST

dataset. Since there is low variety between the adjacent shapes, we
subsample 2000 meshes from the original dataset. Animal category
has one dataset of 400 shapes [Huang et al. 2021], which is generated
from SMAL [Zufi  et al. 2017].

8.1.2     Evaluation protocols. We evaluate GeoLatent in two ways.
Evaluations combine the reconstruction errors (RE) on testing shapes
that do not participate in learning the shape generators and the
Frechet inception distance (FID) score [Heusel et al. 2017] that is
widely used in evaluating image generative models. The original
definition of FID employs the second-to-last layer of a pre-trained
image classifier inception v3 [Heusel et al. 2017]. To this end, we
pre-train a mesh auto-encoder with graph neural network. The en-
coder inputs a generated mesh and outputs the meaningful latent
representation. The encoder combines a feature extraction tower
with four convolution layers and two fully connected linear layers.
After training, we then use the output of the feature extraction
tower to calculate the FID score.

Second, we evaluate GeoLatent through user studies to assess
the effects of axis-aligned geodesic interpolation and multi-scale
pose-shape disentanglement in shape exploration.

8.2     Analysis of Shape Generation
For baseline comparisons, we choose five state-of-the-art mesh-
based generative models. The first three baseline techniques, i.e.,
3DMM [Bouritsas et al. 2019], COMA [Ranjan et al. 2018], and Mesh-
Conv [Zhou et al. 2020b], focus on network architecture design. The
remaining two baseline approaches, i.e., FrameAVE [Atzmon et al.
2022] and ARAPReg [Huang et al. 2021] focus on novel training ap-
proaches. We re-implement FrameAVE without using the skinning
weight matrix for fair comparison. Note that the network architec-
ture of GeoLatent follows that of ARAPReg, while the training loss
is fundamentally different.

Table 1 and Table 2 present the quantitative results of GeoLatent
and the baseline approaches with respect to reconstruction errors
and FID scores. Figure 6 presents qualitative comparisons between
GeoLatent and ARAPReg.

Quantitatively, GeoLatent outperforms all baseline approaches.
In terms of RE, GeoLatent outperforms the top-performing baseline
ARAPReg by 14.3% and 10.5% on Human and Animal, respectively.
Regarding FID, GeoLatent outperforms ARAPReg by 7.0% and 4.3%
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COMA 12.5% 27.7% X

GeoL ARAP COMA
GeoL X 86.1% 91.6%
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Trial 1. Evaluations of shape generation quality using mean reconstruction errors (mm). No-AIGC: without
axis-aligned geodesic interpolation. No-PS-Dis: without pose-shape disentanglement. No-SSR: without shape
space regularization.

3DMM COMA MeshConv FrameAVE ARAPReg GeoLatent No-AIGC No-PS-Dis. No-SSR.

Human
Animal

26.39
17.78

20.06
14.52

18.24
8.01

15.75
12.45

14.13
6.68

12.11
5.98

13.49
6.42

12.38
6.12

13.72
6.37

Table 2. Evaluations of shape generation
quality using FID (Frechet inception dis-
tance).

COMA ARAPReg GeoLatent

Human
Animal

8.41
13.59

8.02
13.24

7.46
12.67

(a) (b) (c) (d)

Fig. 7. Qualitative evaluation of latent space design. GeoL: GeoLatent. ARAP: ARAPReg [Huang et al. 2021], COMA: [Ranjan et al. 2018]. (a-b) Evaluations on
shape interpolation. (c-d) Evaluations on consistency of shape extrapolations for shape exploration. In (a), left is from ARAPReg and right is from GeoLatent. In
(c), top is from ARAPReg and bottom is from GeoLatent. In (b) and (d), each element (e.g, row GeoL and column ARAP), shows the percentage that the
corresponding row (e.g., GeoL) wins the corresponding column (e.g., ARAP).

on Human and Animal, respectively. This shows the effectiveness
of GeoLatent.

Qualitatively, the improvements of GeoLatent from baseline ap-
proaches are around places where the underlying deformations
are large, such as joint regions between different bones and torso
regions in which deformations are highly non-isometric.

We can understand the improvements of GeoLatent from base-
line approaches in three aspects. The first aspect is minimizing the
metrics and the metric gradients, which reduces the curvature of
the manifold. The second is axis-aligned geodesic interpolation and
pose-shape disentanglement, which also impose regularizations on
the shape generator. The third aspect is the combination of ARAP
and ACAP deformation models. This approach is suitable for large
inter-shape deformations.

8.3     Analysis of Latent Space Design
In this section, we present a user study on GeoLatent to assess the
goals of latent space design. The study consists of two components.

The first component concerns shape interpolations in the latent
space for shape morphing. Specifically, for each pair of shapes and
each shape generative model, we use linear interpolation (the most
straightforward approach) to generate a morphing sequence that
transforms one shape into another. We then visualize the interpo-
lations and ask users to compare between two methods visually.
We compare GeoLatent with two top-performing baselines: ARA-
PReg and COMA. In total, we tested 200 randomly sampled shape
pairs. For each pair of methods on each shape pair, we asked three
users with experience in shape modeling but without knowledge of
deep generative models to judge which shape interpolation is more
meaningful, e.g., smooth and feature-preserving, which are desired
goals of shape morphing. Figure 7(a) shows a sampled shape pair
and the interpolation results of two methods.

Figure 7(b) shows the relative ratings among GeoLatent and the
baseline techniques. We can see that GeoLatent strongly domi-
nates the other baseline approaches, with 82.1% better than the
top-performing baseline. These results show the importance of en-
forcing that shape interpolations follow geodesic curves (under
ARAP and ACAP metrics) and optimizing the latent space so that
linear interpolations are approximately geodesic curves.

The second component concerns pose-shape disentanglement.
We ask the user to explore the underlying shape space, given a shape
as a starting point. Again, we compare GeoLatent with ARAPReg
and COMA. For fair comparisons, for each baseline, we solve a
generalized eigendecomposition problem for each shape to obtain
the corresponding eigenvectors and provide the users with the
corresponding directions for exploration. We asked users to compare
how consistent the deformed shapes under different magnitudes are
and how natural the displacements are (See Figure 7(c) and Figure 8).

Figure 7(d) collects the statistics on 100 shapes. We can see that
GeoLatent offers much more consistent extrapolations than baseline
approaches, i.e., by 86.1% to the top-performing baseline. This is
attributed to the axis-aligned geodesic interpolation property, which
prioritizes that extrapolations are consistent. Moreover, GeoLatent
is also superior to baseline approaches in terms of the naturalness
of the synthetic shapes. We can understand this from the fact that

GeoLatent employs shape regularization terms.

8.4     Ablation Study
Finally, we present an ablation study on GeoLatent. Table 1 describes
the quantitative results.

8.4.1     Without axis-aligned geodesic interpolation. Without the axis-
aligned geodesic interpolation term, the RE values increase by 11.4%
and 7.4% on Human and Animal, respectively. These results show

ACM Trans. Graph., Vol. 42, No. 6, Article 240. Publication date: December 2023.



GeoLatent: A Geometric Approach to Latent Space Design for Deformable Shape Generators     •     240:11

(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

Fig. 8. Evaluations on consistency of shape extrapolations for shape exploration. Each row shows (a, b, d, e) the shape extrapolations along one eigenvector
direction from (c) the base shape. The first three rows correspond to the smallest three eigenvalues. The last three rows correspond to the largest three
eigenvalues. (f) Ten extrapolated shapes are shown. (Left) ARAPReg [Huang et al. 2021]. (Right) GeoLatent.

that this regularization objective not only optimizes the latent space
but also offers implicit regularizations on the shape space.

8.4.2     Without pose-shape disentanglement. Without the pose-shape
disentanglement term, the RE values increase by 2.2% and 2.3% on
Human and Animal, respectively. These results show that similar
to axis-aligned geodesic interpolation, pose-shape disentanglement
also has some effects on regularizing the shape space. However,
the regularization effects are less effective than the axis-aligned
geodesic interpolation since the regularization term mainly aims to
enhance the interpretability of the latent space.

8.4.3     Without shape space regularization. Without the shape space
regularization term, the RE values increase by 13.3% and 6.5% on
Human and Animal, respectively. These results show that minimiz-
ing the metrics and the metric gradients can prevent large metric
values and promote metric smoothness, which helps to preserve
geometric features and is critical for better generalization.

9     APPLICATIONS
We present two applications of GeoLatent in geodesic interpolation
(Section 9.1) and geodesic shooting (Section 9.2).

ACM Trans. Graph., Vol. 42, No. 6, Article 240. Publication date: December 2023.



 

∑�

2

� �  

 �

2 2

�

 v z −z
1        0

∑�

2

� �  

z

�z

�z

240:12     •     Haitao Yang, Bo Sun, Liyan Chen, Amy Pavel, and Qixing Huang
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Fig. 9. (d) Geodesic interpolations between (a) two shapes that minimize (21), starting from linear interpolations in the latent space. We can see that (c)
GeoLatent offers better solutions than (b) without GeoLatent.

9.1     Geodesic Interpolation
The first application is in geodesic interpolation. To this end, we
generalize the formulation in [Shao et al. 2018] to the case of having a
Riemannian metric of the latent space. Specifically, given a starting
latent code z� and a target latent code z�, our goal is to compute a
series of intermediate codes z�, 0 ≤  � ≤  � where z0 = z� and z� = z� to
minimize the following energy potential:

�−1

� ( {z�}) := g� (z�+1) −  g� (z�)     ��+ 1     g� (z�+1) −  g� (z�) ,
�=0

��+ 1 :=
�
�  

g� (z�)
 
+ �

�  
g� (z�+1)

 
. (21)

Starting from linear interpolation z� = z� + �  (z� −  z�), 0 ≤  � ≤  �,
we apply gradient descent to minimize � ( {z�}). Note that, we do
not use the eficient solution in ([Shao et al. 2018]) that leverages
the encoder, as our goal here is to compute an accurate discrete
geodesic.

Figure 9 compares the final geodesic curve of using the linear
interpolation when dropping our proposed regularization terms
and the linear interpolation derived from GeoLatent. We can see
that GeoLatent leads to interpolations that are very close to the
optimized geodesic curve. In contrast, without our proposed regu-
larization terms, the linear interpolations present various geometric
distortions. The benefit of GeoLatent comes from avoiding costly
geodesic curve optimization during testing time.

9.2     Geodesic Shooting
The second application is in geodesic shooting (GS), where the
goal is to perform shape extrapolation in the tangent direction v
� R� at a given shape �root = g� (zroot) for a user specified
length �0. Specifically, GS aims to compute a series of latent codes
z0 = zroot, · · · , z�, so that 1) �v� = �z

1−
z

0 
�

 , 2) g� (z�), 0 ≤  � ≤
�
form a discrete geodesic curve, and 3) its length

�
−

1 √�
�({z�}) = g� (z�+1) −  g� (z�)     ��+ 1     g� (z�+1) −  g�

(z�) �=0

is equal to �0.

We set z1 = zroot + �v and compute z�,� ≥  2 in order
until �({z�}) ≥  �0. At each iteration �, we compute z�+1 so that

z� = argmin(z� −  z�−1)� �� (z�) (z� −  z�−1)
�

+ (z� −  z�+1)� �� (z�) (z� −  z�+1)

This leads to the following quadratic system on z�+1:

0 =2�� (z�) (2z� −  z�−1 −  z�+1) + (z� −  z�−1)� ��� 
(z�)

(z� −  z�−1) + (z� −  z�+1)� ��� 
(z�) (z� −  z�+1) (22)

Starting from z�+1 = 2z� −  z�−1, we apply Newton’s method to
solve (22).

We compare our approach with that of ([Shao et al. 2018]). For
each approach, we fix z� and apply the approach in Section 9.1 to
check how close the geodesic shooting result is to the discrete
geodesic curve between zroot and z�.

Figure 10 shows the geodesic shooting results. We can see that
our results are superior compared to that of ([Shao et al. 2018]).

10     CONCLUSIONS, LIMITATIONS, AND FUTURE WORK
In this paper, we have introduced a differential geometry frame-
work to deformable shape generators. The resulting approach called
GeoLatent builds on a Riemannian metric on a deformable shape
generator. We show how to enforce two desired properties of the
latent space, i.e., axis-aligned geodesic interpolation and pose-shape
disentanglement, as well as regularization terms that enforce smooth
shape interpolations. Experimental results show that GeoLatent im-
proves the interpretability of the latent space and the generalization
behavior of the trained shape generator. The effectiveness of GeoLa-
tent is demonstrated in two applications, i.e., geodesic interpolation
and geodesic shooting.

One limitation of GeoLatent is that it does not utilize curvature-
based regularizations used in the original active contour model. This
is because the dimension of the curvature tensor is �(�4), which is
not tractable for large �. One way to address this issue is to make
the metric matrix sparse. However, the open question is whether

ACM Trans. Graph., Vol. 42, No. 6, Article 240. Publication date: December 2023.



GeoLatent: A Geometric Approach to Latent Space Design for Deformable Shape Generators     •     240:13

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

Fig. 10. Geodesic shooting results from shape (a). Compared to (top) [Shao et al. 2018], the extrapolated shapes (b, c, d, e) generated by (bottom) our approach
are less distorted and more reasonable.

there exists a shape generator that fits the training data well and
has a sparse metric matrix.

Another limitation of GeoLatent is that it requires pre-defined
inter-shape correspondences as inputs. One potential approach to
address this issue is to employ implicit deformable shape generators,
e.g., SALD [Atzmon and Lipman 2021] and GenCorres [Yang et al.
2023]. In particular, GenCorres converts an implicit shape generator
into an explicit generator locally, allowing us to define a Riemannian
metric and apply the regularization terms of GeoLatent. The major
issues are addressing the computational challenge of GenCorres
in solving dense linear systems and developing an implicit shape
representation that targets deformable shapes. We leave the exten-
sion of GeoLatent to implicit deformable shape generators as future
work.

There are ample future research opportunities. So far, we have
studied latent space design for deformable objects. A natural ques-
tion is how to extend the idea to handle man-made shapes, e.g.,
by developing a suitable deformation model for man-made shapes.
Another direction is to explore other deformable shape collections,
such as faces and bones. We would also like to equip different axes
of the latent space with semantic attributes, e.g., by developing a
dictionary learning formulation in which a sparse set of axes of the
latent space can describe each semantic variation.
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A     PROOF OF THEOREM 1
The proof combines the following two lemmas.

Lemma 2. If linear interpolations follow geodesic curves, then the
Christoffel symbols satisfy the following constraints:

Γ�,� (z) = 0, �� ≠  �, � ≠  � � [�] (23)

2Γ �
,� (z) = Γ�

,� (z), �� ≠  � � [�] (24)

where [�] = {1, · · · ,�}.

Lemma 3. When (23) and (24) are satisfied, then �� (z) is a constant
matrix.

A.1     Proof of Lemma 2
Consider the interpolation between z and z + v as g� (z(�)) where
z(�) = z + �(�)v. It is under arc-length parameterization if

( 
��

 
(�))2v� �� (z(�))v = 1. (25)

Under the arc-length parameterization, g� (z(�)) is a geodesic iff

�2�
 
�� +     

∑�     
Γ�,� (z(�))���� ( 

�� 
(�))2 = 0. (26)

1≤�,�≤�

Computing the derivatives of (25) with respect to �, we have

2( 
�2� 

(�))v� �� (z(�))v + ( 
�� 

(�))2v� ⟨
��� 

(z(�)), v⟩v = 0 (27)

Combing (27) and (25), we have

�2� 
(�) = −

2 
( 
�� 

(�))4v� ⟨ 
�z 

(z(�)), v⟩v (28)

Substituting (28) into (26), we have

1 
( 
�� 

(�))2  
v� ⟨

��� 
(z(�)), v⟩v�� =  

∑�     
Γ�,� (z(�))����

(29) 1≤�,�≤�
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Combing (25) and (29), we have

 
v� ⟨

��� 
(z(�)), v⟩v�� =2

      ∑�     
Γ�,� (z(�))����

1≤�,�≤�

· v� �� (z(�))v . (30)

We first show that (30) is true when (23) and (24) are satisfied. In
this case, we have

Γ�,� (z(�))���� = Γ�,� (z(�))�� + 2

Γ�,����
� 1≤�,�≤�                                                                              �≠�

= (Γ�,���)�� (31)
1≤� ≤�

Substituting (31) into (30), we need to show that �z, v,

∑� ���� (z)������ = 2
∑�

Γ�,� (z)���
(z)������ 1≤�,�,�≤�                                             1≤�,�,�≤�

or equivalently

 
��

 � (z) = 2Γ�,� (z)��� (z), �� � [�] (32)

 
�
��� (z) + 2 

���
� (z) = 2Γ�

 
�

 � (z)��� (z) + 4Γ�
,� (z)��� (z),

�� ≠  � � [�] (33)
�

��
�� (z) +  

��
� (z) + 

��
� (z) = 2 Γ�

,� (z)��� (z) + Γ�
 
�

 � (z)���

(z)

+ Γ�,� (z)��� (z), �� ≠  �,� ≠  �, � ≠  � � [�] (34)

By the definition of Γ�,�, we have

∑�
��

� (z(�))Γ�,� (z(�)) = 
2 

  
��� 

(z(�)) + 
���

� (z(�)) −  
���

�

(z(�))
 
(35)

Substituting (23) and (24) into (35) and setting � = �, we have
�

���
 (z(�))Γ�,� (z(�)) =  

��
 � (z(�)) −  

2 
 
���

� (z(�)) (36)

When setting � = �, we have that (32) is satisfied. When setting � ≠
�, we have

�
 
��� 

(z(�)) + 
���

� (z(�)) −  
���

� (z(�))

=2 ���
 (z(�))Γ �

,� (z(�)) + ���
 (z(�))Γ �

,� (z(�))

=���
 (z(�))Γ�,� (z(�)) + ���

 (z(�))Γ�,� (z(�)) (37)

Setting � = �, we have

Now suppose (30) is true. Let v = e�. When � ≠  �, we have

Γ�,� (z(�)) = 0. (39)

Now fix � ≠  �. Let �� = 0,�� ≠  �,� ≠  �. Then (30) leads to

 
��� 

(z(�))�3 + 
�
�� � (z(�))�3 + 

  
��� 

(z(�)) + 2 
���

�

(z(�))�2�� + 
  
���

� (z(�)) + 2 
���

� (z(�))���� ��

=2 Γ�,� (z(�))�2 + Γ�,� (z(�))�2 + 2Γ�,� (z(�))����

· 
 
��� (z(�))�2 + �� � (z(�))�2 + 2��� (z(�))���� (40)

Setting � ≠  �,� ≠  � in (40), we have

Γ�,� (z(�))�� + Γ�,� (z(�))�� + 2Γ�,� (z(�))���� = 0. (41)

As (41) is true for any �� and ��, we have Γ�,� = 0, which means (23)
is satisfied. Setting � = � in (40) and comparing the coeficients in
front of �4 and ���3, we have

 
��

 � (z(�)) = 2Γ�,� (z(�))��� (z(�)) (42)

��� � (z(�)) = 4Γ�,� (z(�))��� (z(�)) + 4Γ�,� (z(�))�� � (z(�))

= 4Γ�,� (z(�))�� � (z(�)) (43)

Combing (42) and (43), we have that (24) is satisfied, which ends the
proof.                                                                                                          □

A.2     Proof of Lemma 3
For simplicity, we denote

�� (z(�)) = ���, ��� = (�� (z(�))
−1

)��, Γ�,� (z(�)) = Γ� .

Note that

�=1 

��� Γ�� = 
2 

 

��
� + 

���     
−  

�
��� . (44)

Since Γ � = 0 when � ≠  � ≠  � and 2Γ � = Γ� when � ≠  �. We
have
�� ≠  �, (44) leads to

��� Γ�
 
� + ��� Γ� = 

��
� + 

���     
−  

��
�� . (45)

When � = �, (46) leads to
��� Γ� = 

2 
2 
��

� −  
��

�� . (46)

Let � = �, we have

Γ� = 
2
�−1 · 

��
 � . (47)

Substituting (47) to (46), we have when � ≠  �,

 
�
��� (z(�)) = ��� (z(�))Γ�

 
�

 � (z(�)) + ��� (z(�))Γ�
,� (z(�))

(38)

Setting � = � in (36) and combine (38), we obtain (33).
Switching �, �,� in (37) and add the three resulting equations,

we obtain (34). This ends the proof of (30).



���−1 − ���
�

���
�

���� ��

�

��� 
 
2 
���     

−  
�
���  = ��� · 

��� 
.

(4

8) Substituting (47) to (45), we have when � ≠  �,

����� �     ���
� + ������

1 
���     

= 2
  
���     

+ 
���     

−  
�
��� .

(49)
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Let� = � and� = �

in (49), we obtain the following two constraints ����� �     ���
� +

������
1 
���     

= 2 
���                               

(50)

����� �     �
�� � + �� ����

1 
���     

= 2 
���

� (51)

Combing (48) and (50), we have

��� ��
� � 

=
 
�� � 

 
3 
��� 

−  2 
���

� 
. (52)

Similarly, we have the following inequality when combing (48) and
(51):

�� � ���     
= ��� 

 
3 
���

� −  2 
���

� . (53)

The following Lemma, which will be proved in Section A.3, shows
that by combing (49), (52) and (53) we have

�
��� = 

��
� 0, ��,� � [�]. (54)

Lemma 4. Suppose three 2D functions � (�,�),�(�,�),�(�,�) sat-
isfy the following partial differential equations:

As sin(0�) = 0, we assume

��,0 = �0,� = ��,0 = �0,� = 0, �0 ≤  �,�, � � {� ,�,�}. (62)

In addition, we assume

�0,0 ≠  0, �� � {� ,�,�}. (63)

Otherwise, we can always shift � , �, and � by the same constants,
so that (63) is true.

The derivatives of (61) are given by

+∞      ∑�
(�,�) = � −  sin(��) ��,� cos(��) + ��,� sin(��)

�=0     �=0

+ cos(��) ��,� cos(��) + ��,� sin(��) , ��{� ,�,�} (64)

�
�(�,�) 

= 
∑� 

� 
∑�  

−  sin(��)
 
��,� cos(��) + ��,� sin(��)

 �=0

�=0

+ cos(��) ��,� cos(��) + ��,� sin(��) , ��{� ,�,�} (65)

� 
�� 

= � (2
�� 

−  
�
� 

),

� 
�
� 

= �(2
�
� 
−  

�� 
),

� 
�� 

= � 
 
3
�� 

−  2
�
�

 
,

� 
�
� 

= �
 
3 
�
� 
−  2

�� 
.

Then � , � and � are constant functions.

Substituting (54) into (48), we have

��
� + 

��
� −  

�
��� = 0, ��, �,� �

[�].
It follows that

��
� = 0, �, �,� � [�].

(55) Our goal is to show that

(56)                                         
��,� ≠  0,      iff     ,� = 1,� = � = 0.                       (66)

To this end, we use (61),(64), and (65) to express each constraint
(57) from (55) to (58). Consider representing them in the general form

�(�,�) = 0 where
(58) �(�,�) =      

∑� ∑�
�8�1+4�

,
+2�3+�4  (1 −  �

1
)

cos(��) �,�,� ,� 0≤�1,�2,�3,�4 ≤1

+ �1 sin(��) (1 −  �2) cos(�′�) + �2 sin(�′�) (1 −  �3) cos(��)

(59)
+ 
�

3 sin(�
�
)
 
(1 −

 �
4) cos(

�

′�) +
 �

4 sin(
�

′�)
 

. (67)

The following proposition characterizes a necessary and suficient
condition on �(�,�) = 0.

Proposition 6. Suppose �(�,�) admits the expression of (67). If
□ �(�,�) = 0. Then ��,�,�′,�′,

A.3     Proof of Lemma 4
Our goal is to prove that � , �, and � are constant functions within a
small arbitrary domain Ω � [0, 2�] ×  [0, 2�] (We can always shift Ω,
so that it resides in [0, 2�] ×  [0, 2�]). Without losing generality, we
can assume that � , �, and � are real-value periodic functions on
[0, 2�] ×  [0, , 2�], i.e., ��,� � N

�(� + 2��,� + 2��) = �(�,�), � � {� ,�,�}. (60)

Otherwise, we can fix the values of � , �, and � in Ω, and extend
them smoothly inside [0, 2�] ×  [0, 2�] so that they are periodic.

Under the assumption of (60), 2D Fourier series give rise to the
following decomposition

��,�,
�
′,
�
′ + ��′,�,�,

�
′ + ��,

�
′,
�
′,� + ��′,

�
′,�,� = 0 (68)

where

(�1,�2,�3,�4) � {(1, 1, 1, 1), (2, 2, 3, 3), (3, 3, 2, 2), (4, 4, 4, 4),

(5, 9, 5, 9), (6, 10, 7, 11), (7, 11, 6, 10), (8, 12, 8, 12), (9, 5, 9, 5),

(10, 6, 11, 7), (11, 7, 10, 6), (12, 8, 12, 8), (13, 13, 13, 13),

(14, 14, 15, 15), (15, 15, 14, 14), (16, 16, 16, 16)}

Proof. See Section A.3.1. □
∑� ∑�

�(�,�) = cos(��) ��,� cos(��) + ��,� sin(��)
�=0 �=0

+ sin(��) ��,� cos(��) + ��,� sin(��) , �� � {� ,�,�} (61)
to 

Let ��,�,�′,�′ , 1 ≤  � ≤  16 be the coeficients in (67) with respect

� 
�� 

= � (2
�� 

−  
�
� 

).
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1,�

1,4�−
3 � ′ �′� �� �
1,4�−
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1,4�−
1

′ ′� � �� � �
� 1 � 4 � 1

1,4
�

� 2
�′

� � 2

1 3 1     3

�,�,� ,�

�� �� ��

2,4�−
3 � � � �� �
2,4�−
2 � � �� � �
2,4�−
1
2,4
�

� � �� � �

�
� �

�� �
3,�

���� �� 

3,4�−
3 �
3,4�−
2

�′

� 4
�

�

�� 1
�

� 4

3,4�−
1 � � �

1 4 1

3,4
� �′� � � � �

�,�,� ,�

�� �� ��

4,4�−
3

� 2

4,4�−
2

�
�

�� 1
�

� �
4 1

4,4�−
1 �� � � � �′

4,4
� � � � �� �′

� �

�

�

1 ′ ′ 2
�,�,� ,� �,�,� ,�

16
�

�

∫ ∫
�

�
�∫

−�

∫

−� ′        ′

16

�=0

�

�

�
�
�

� �

�

� �

�

�

−�      −� ′        ′

16

�=0

�

�

�
�
�

� �

�
′ ′

∫ ∫
�

�
�

�
�
�

2

�
�

�
′

�

� �

�,�,� ,�

�′

0,�
′

�,0,0,0

�,1

′� ,� 1 3

1 3 1      3

1       3
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Then the coeficients ��,�,
�
′,�′ , 1 ≤  � ≤  16 are given by �1 ≤  � ≤  4

��,�,
�
′,
�
′ = �′�� 

,�� 3 ,�′ +�′��
,�� 2 ,�′ −  2�′��

,��
3
′,�′ (69)

��,�,
�
′,
�
′ = �′�� 

,�� 4 ,�′ −�
′��

,�� 1 ,�′ −  2�′��
,��

4
′,�′ (70)

��,�,
�
′,
�
′ = −�′��,���′,�′ +�′��,���′,�′ + 2�′��,���′,�′ (71)

��,�,
�
′,
�
′ = −�′��,���′,�′ −�

′��,�� 3 ,�′ + 2�′��,���′,�′ (72)

Similarly, let �2,�      
′        ′ , 1 ≤  � ≤  16 be the coeficients in (67) with

respect to

� 
�
� 

= �(2
�
� 
−  

��
). Then we have

��,�,
�
′,
�
′ = �′�� 

,��
2
′,�′ + �′�� 

,��
3
′,�′ −  2�′�� 

,��
2
′,�′ (73)

��,�,
�
′,
�
′ = −�′�� 

,��
1
′,�′ + �′�� 

,��
4
′,�′ + 2�′�� 

,��
1
′,�′     (74) ��,�,

�
′,
�
′

= �′�� 
,��

4
′,�′ −  �′�� 

,��
1
′,�′ −  2�′�� 

,��
4
′,�′        (75) ��,�,

�
′,
�
′ =

−�′��,��
3
′,�′ −  �′��,��

2
′,�′ + 2�′��,��

3
′,�′ (76)

to 
Let ��,�,�′,�′ , 1 ≤  � ≤  16 be the coeficients in (67) with respect

� 
�� 

= � 3
�� 

−  2
�
�

. Then we have

��,�,
�
′,
�
′ = �′�� 

,�� 3 ,�′ + 2�′��,��
2
′,�′ −  3�′��,��

3
′,�′ (77)

��,�,
�
′,
�
′ = �′��,���′,�′ −  2�′��,���′,�′ −  3�′��,���′,�′ (78)

��,�,
�
′,
�
′ = −�′�� 

,���′,�′ + 2�′��
,���′,�′ + 3�′��

,���′,�′     (79) ��,�,
�
′,
�
′

= −�′�� 
,�� 2 ,�′ −  2�′��

,��
3
′,�′ + 3�′��

,��
2
′,�′     (80)

Finally, let �4,�      
′        ′ , 1 ≤  � ≤  16 be the coeficients in (67) with

respect to
� 
�� 

=
 
�

 
3

 
�� 

−  2
�� 

.

Then we have

��,�,
�
′,
�
′ = �′��,��

2
′,�′ + 2�′��,��

3
′,�′ −  3�′��,���′,�′        (81) ��,�,

�
′,
�
′ =

−�′��,���′,�′ + 2�′�� 
,���′,�′ + 3�′�� 

,���′,�′ (82) ��,�,
�
′,
�
′ =

−�′��
,��

4
′,�′ −  2�′�� 

,��
1
′,�′ −  3�′�� 

,�� 4
,�′ (83) ��,�,

�
′,
�
′ =

−�′��
,��

3
′,�′ −  2�′�� 

,��
2
′,�′ + 3�′�� 

,�� 3 ,�′ (84)

In the following, we describe of the roadmap of proving (66) using
(69)-(84).

Proposition 7. First of all, ��,� ≥  1,

��,0 = �0,� = 0, �1 ≤  � ≤  4, 1 ≤  �,�, � � {� ,�,�}. (85)

Proposition 9. Finally, ��,� ≥  1,

��,� = 0, �1 ≤  � ≤  4, 1 ≤  �,�, � � {� ,�,�}. (87)

Proof. See Section A.3.4 □

A.3.1     Proof of Prop. 6. We first prove that 16 Fourier basis are or-
thogonal. Then if �(�,�) is zero, it means the coeficient before each
basis is zero. We denote the basis functions as ��,�,�′,

�
′ (�,�),� =

1, ..., 16. Here � ′        ′  = ���(��)���(��)���(� �)���(� �), � ′        ′  =
���(��)���(��)���(�′�)���(�′�), .... �(�,�) can be written as

∑� ∑�
�(�,�) = ��,�,�′,�′ ��,�,�′,�′ (�,�) (88)

�,�,�′,�′ �=0

Multiply a basis function on both side and take the integral over the
period:

� �

−�      −� 
�(�,�)���,��,�′ ,

�
′ (�,�)�� �� = (89)

� � ∑� ∑�
��,�,�′,�′ ��,�,�′,�′ (�,�)�� ,� ,

�
′ ,
�
′ (�,�)�� ��

�,�,� ,�
(90)

We want to show ���,��,�′ ,
�
′ is zero. It’s easy to show that if �

≠  �, or � ≠  ��, or � ≠  ��, or �′ ≠  �′ , or �′ ≠  �′

∫  � ∫  � ∑� ∑�
��,�,�′,�′ ��,�,�′,�′ (�,�)�� ,� ,

�
′ ,
�
′ (�,�)�� �� = 0

�,�,� ,�
(91)

So ∫  � ∫  �

−�      −� 
�(�,�)���,��,��,�� 

(�,�)�� �� (92)

� �

= 
−�      −� 

���,��,�′ ,
�
′ (���,��,

�
′ ,
�
′ (�,�)) �� ��         (93) =

1
���,��,�′ ,��                                                                                                                 

(94)

We have �(�,�) = 0, so ���,��,�′ ,
�
′ = 0.

Next we gather all different coeficients before ��
′        ′  (�,�).

This difference is caused by the different arrangement of (�,�,�′,�′).
By observation, we obtain (76).

□

A.3.2     Proof of Prop. 7. We only prove ��,0 = 0 as the proof of
��

′        
= 0 is essentially similar. Note that ��,� = 0. Therefore,

according to (68), we have

�0
,
0

,�,0 = 0, 1 ≤  �, 1 ≤  � ≤  4. (95)

Proof. See Section A.3.2

Proposition 8. Second, ��,� ≥  1,

�0,
0

,�,� = 0, �1 ≤  �′,� ≤  4, 1 ≤  �,�.

Proof. See Section A.3.3

□ Substituting (95) into (69), (73), (77), and (81), we have

��0,0��,0 = 2��0,0��,0

(86) ��0,0��,0 = 0

��0,0��,0 = 3�0.0��,0

□ ��0,0��,0 = 0
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0,0 �,0 �,0 �,0

1 4 1 1 4 1

1 4 1

1 2 1      3 1     2

1       3 1 2 1       3

1 2 1     3 1      2

1      3 1       2 1 3
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1 2 1     2

1 2

1 2 1      2

1       2
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1     1
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1 4 1
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�,1
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1       2 1 3 1       2
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1

2
�

1
3

2�
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2
1

2�1 2�
2 3

1

�1
2

�
1 2 1      3 1 3

1

�1 �
1       3 1 2 1 3 2

1      2 1
1

2 1 3

1 3 1

�
1

�
3 1       2

1 1
1

�� 2�1 1 0, �
2 3

1       3

1

1 1      1
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� �
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1      1 1

2 23 3

2 3

GeoLatent: A Geometric Approach to Latent Space Design for Deformable Shape Generators     •     240:19

As �1     ≠  0,�� � {� ,�,�}, we have �3     
 = �3     

 = � 3    
 =

0. Similarly, we have

�0
,
0

,�,0 = 0, 1 ≤  �, 1 ≤  � ≤  4.

Substituting (96) into (69), (73), (77), and (81), we have

��0,0�1,0 =

2��0,0�1,0 ��0,0�1,0 =

0 ��0,0�1,0 =

3��0.0�1,0 ��0,0�1,0 =

0

As �1     ≠  0,�� � {� ,�,�}, we have �2     
 = �2     

 = � 2    
 =

0. Moreover, (68) leads to

�0
,
0

,�,0 + �0
,
0

,�,0 = 0, 1 ≤  �, 1 ≤  � ≤  4.

Substituting (97) into (69), (73), (77), and (81), we have

Substituting (105) and (104) into (102) and (101), respectively, we
obtain

(96) ��0,0
�
�,� + 

��0
,
0�

0,
0

 ��,� = 2��0.0��,� (106)
0,0

��0,0��,� + 
��

0
,0�0,0 ��,� = 2��0,0��,� (107)

0,0

which lead to

��,� = 
2�0,0 ��,� −  

��0,0�0,0 ��,� (108)
0,0 0,0

��,� = 
�

0
,
0

�
0

,0 −�0
,
0

2 

��,� + 
��

0
,0 ��,� (109)

00 0,0

(97)      
Moreover, subst

i
tuting ��,4 = 0 into (72), (76), (80), and (84),

we arrive at

��0,0 (��,0 −  ��,0) = 2��0,0 (�1,0

−��,0) 2��0,0 (��,0 −��,0) = 0

��0,0 (��,0 −  ��,0) = 3��0.0 (��,0 −��,0)

2��0,0 (��,0 −��,0) = 0

As ��,
0

}. 
0,�0

,0 ≠  0,�� � {� ,�,�}, we have ��,0 = ��,0 = 0,��

� □

A.3.3     Proof of Prop. 8. When ��       = �� = 0,�1 ≤  � ≤  4, � �
{� ,�,�}, applying (69)-(84) we have

��,�,
0

,0 = �0
,�,�,0 = ��,

0
,
0

,� = 0,�1 ≤  � ≤  4, 1 ≤  �′ ≤  16, 1 ≤  �,�.

Using (68), we have

�0,
0

,�,� = 0,�1 ≤  � ≤  4, ≤  1 ≤  �′ ≤  16.                  (99)

□

A.3.4     Proof of Prop. 9. We only show ��,� = ��,� = 0,�� � {�
,�,�} as the proof of ��,� = ��,� = 0 is very similar. Note that �0,

0
,�,�

= 0. Applying (69), (73), (77), and (81), we arrive at

��0,0��,� +��0,0��,� = 2��0,0��,�                          (100)

��0,0��,� + ��0,0��,� = 2��0,0��,�                        (101)

��0,0��,� + 2��0,0��,� = 3��0.0��,�                          (102)

��0,0��,� + 2��0,0��,� = 3��0,0��,�                         (103)

From (100) and (101), we have

��,� = 
�0,0 ��,� + 

� 
��,� (104)

0,0

�

�,� = 
�0

,0 ��,� + 
� 

�

�,� (105)
0,0

��0,0��,� +��0,0��,� = 2��0,0��,�                          (110)

��0,0��,� + ��0,0��,� = 2��0,0��,�                        (111)

��0,0��,� + 2��0,0��,� = 3��0,0��,�                          (112)

��0,0��,� + 2��0,0��,� = 3��0,0��,�                         (113)

Substituting (104) and (105) into (110)-(113), we arrive at

��0,0��,� +��0,0��,� = ��0,0
 �0,0 ��,� + 

� 
��,� (114)

0,0

��0,0��,� + ��0,0��,� = ��0,0
 �0,0 ��,� + 

� 
��,� (115)

0,0

3��0,0��,� = 
 
��0,0 + 

�2�0,0 ��,� +��0,0��,�      (116)

3��0,0��,� = 
 
��0,0 + 

�2�0,0 ��,� + ��0,0��,�     (117)

Substituting (108) and (109) into (114)-(117), we arrive at

�0,0
 
��0,0 + 

�2�
0

,0 −  
�
Δ0,0 ��,� = 

 
2�� 10

2 −  
�2 

Δ0,0��,� (118) 0,0

0,0

2

��

0,0��,� = 

�

�0,0 + 
�2 (3�0

,0
2 −  �0

,0�
0

,0) 
�

�,� (119)
0,0

�2�0
,0 (3�0

,0
2 −  �0

,0�
0

,0) � 5�0,0�
0

,0 +�0
,0

2

2��0,0
2                                          

 
2�0,0

�,�

= �0,0� 
�

0
,0 −  

�

2 
��,� (120)

0,0

 
5��0,0 −  

�2 
�0,0��,� = 

 
� + 

3�2 �
0

,0�0,0 ��,� (121)
0,0

where Δ0,0 = �0
,0�

0
,0 −  �0

,0
2. It is clear that (118)-(121) are true iff

��,� = ��,� = 0, which means ��,� = ��,� = 0 according to (108) and
(109), and ��,� = ��,� = 0 according to (104) and (105).



ACM Trans. Graph., Vol. 42, No. 6, Article 240. Publication date: December 2023.



 �z
′
�

1

1

1 �

�1 1
ˆ�+

1
�

′ ′

1
′ ′

� ˆ
′

240:20     •     Haitao Yang, Bo Sun, Liyan Chen, Amy Pavel, and Qixing Huang

B     PROOF OF PROP. 3
Axis-aligned geodesic interpolation property is satisfied iff (30) is
satisfied for v = e�. When� ≠  �, �� = 0. In this case, (30) is equivalent
to (9). When � = �, �� = 1. In this case, (30) is equivalent to (10).     □

C      PROOF OF PROP. 4
Given initial tangent directions v�,� � [�] at z0 that form a basis
of R�, we construct a mapping z ′  → z in a local neighborhood
of 0, so that 1) 0 → z0, 2) ��

   = v�, and 3) axes of z ′  follow ge-
odesic curve. To this end, we define z(z′) recursively. To begin
with, we define z(�′ , 0, · · · , 0), so that it follows the geodesic curve
passing thorough z0 with tangent direction v1 and �′ specifies the

displacement along this geodesic curve. Suppose we have defined
z(�′ , · · · ,�′ , 0, · · · , 0). We first parallel translate v�+1 along geo-
desic segments z(�′ , · · · , 0, , · · · , 0) to z(�′ , · · · ,�′, 0, · · · , 0) where

1 ≤  � ≤  �. Let v        be the result of this parallel transport.
We

then define z(�1, · · · ,�′ ,��+
1

, · · · , 0) by shooting a geodesic curve
at z(� , · · · ,� , 0, · · · , 0) in the direction of v�+1 and traverse this
curve by��+1. It is clear that, by definition, different axes of z′ follow
geodesic curves. In addition, such a mapping is unique in a local
neighborhood of z0 because of properties of parallel transport and
the fact that geodesic curves between two points are unique with a
small local neighborhood of a point on a Riemannian manifold.

□
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