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ARTICLE INFO ABSTRACT
Keywords: Characterizing the functional properties of plant acyl-ACP thioesterases (TEs), a key enzyme class used in the
Thioesterase production of renewable oleochemicals in microbial hosts, experimentally, can be an expensive and time con-
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suming process since it requires manual screening of thousands of candidates in a database. Using amino acid
sequence to computationally predict an enzyme’s function might accelerate this process; however obtaining the
necessary amount of information on previously characterized enzymes and their respective sequences required
by standard Machine Learning (ML) based approaches to accurately infer sequence-function relationships can
be prohibitive, especially with a low-throughput testing cycle. Experimental noise, unbalanced dataset where
high sequence similarity does not always imply identical functional properties will further prevent robust pre-
diction performance. Herein we present a ML method, Ensemble method for enZyme Classification
(EnZymClass), that is specifically designed to address these issues. We used EnZymClass to classify TEs into
short, long and mixed free fatty acid substrate specificity categories. While general guidelines for inferring sub-
strate specificity have been proposed before, prediction of chain-length preference from primary sequence has
remained elusive for plant acyl-ACP TEs. By applying EnZymClass to a subset of TEs in the ThYme database, we
identified two medium chain TEs, ClFatB3 and CwFatB2, with previously uncharacterized activity in E. coli
fatty acid production hosts.

EnZymClass can be readily applied to other protein classification challenges and is available at: https://
github.com/deeprob/ThioesteraseEnzymeSpecificity.

1. Introduction

Machine Learning (ML) models are effective tools for narrowing
the vast search space in complex biological problems. These tools
are apt in protein engineering and bioprospecting applications, as test-
ing every possible residue substitution, or even every available homo-
log, is experimentally infeasible (Greenhalgh et al., 2018; Yang et al.,
2019). However, the efficacy of a ML model is dependent on the avail-
ability of an appropriately sized and balanced training dataset, with
the requirement for known inputs scaling with the complexity and
number of features needed to describe the data. Thus, a common bar-
rier to utilizing data science for facilitation of experimental efforts is
the compilation of a comprehensive dataset to train a predictive and
accurate ML model. The development of a predictive model which
can be trained with dataset sizes on the order of what is available to
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experimentalists, namely less than 1,000 training instances, would
serve to facilitate a protein discovery and engineering pipeline for
development of biocatalysts, biologic pharmaceuticals, and membrane
transporters with a desired function. In this study, we apply ML to the
discovery of substrate-specific enzymes within the broader family of
acyl-acyl carrier protein (ACP) thioesterases (TEs) with a training data-
set of less than 120 characterized sequences in the academic and
patent literature. We then use the ML model to identify acyl-ACP
TEs whose sequences indicate medium-chain specificity. Finally, we
complement the results from our search by incorporating activity-
enhancing modifications into the sequences of the newly identified
TEs.

ML approaches which have been demonstrated to infer protein
function and enzyme substrate specificity (Amin et al.,, 2013;
Khurana et al., 2010) from primary sequence fall under two categories:
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generative and discriminative (Leslie et al., 2002). Recent results sug-
gest that discriminative approaches are superior both in accuracy and
computational efficiency of solving the protein classification problem
(Leslie et al., 2004). Support Vector Machines (SVM) are among the
most widely used discriminative learning algorithms for biological
sequence classification and have been experimentally proven to
achieve up to 10% higher classification accuracy than generative
approaches when applied to biologically relevant problems
(Deshpande and Karypis, 2002). While effective, SVM classifiers are
highly influenced by the feature extraction technique employed to
encode the protein sequences (Saigo et al., 2004). Proper selection
of a feature extraction method is integral to model performance, espe-
cially when available training data is limited.

Feature extraction of protein sequences generates a discrete numer-
ical representation of a protein to create feature vectors that are corre-
lated with the attribute of the protein which will be predicted by the
model. To train an SVM, several feature extraction techniques for pro-
tein sequences have been implemented. These techniques include
kernel-based methods (Leslie et al., 2002), physicochemical encoding
of protein sequences (Ding and Dubchak, 2001), N-gram representa-
tions (Jurafsky and Martin, 2016), and Position-Specific Scoring Matri-
ces (Nanni et al.,, 2013). However selection of a specific feature
extraction technique may result in a model which loses generalizability
across the entire protein classification domain. Recognizing this limita-
tion, Nanni et al. suggested the use of an ensemb]e of classifiers to attain
consistently superior performance over individual feature extraction
techniques across the entire protein classification domain (Nanni
etal., 2014). This strategy has proven effective in multiple protein clas-
sification studies (Camoglu et al., 2005; Whalen and Pandey, 2013).

We set out to demonstrate the utility of an ensemble of discrimina-
tive ML classification algorithms to broadly predict the presence or
absence of a useful protein characteristic from primary sequence infor-
mation. We selected the detection of medium-chain-length specificity
of acyl-ACP TEs as our classification problem due to 1) the relatively
small number of experimentally characterized medium chain acyl-
ACP TE sequences, 2) the importance of TEs in medium-chain fatty
acid synthesis, and 3) the absence of any existing computational tool
for this task.

Medium-chain oleochemicals, defined as eight to twelve-carbon
free fatty acids and derivatives, are target molecules for synthetic biol-
ogists due to limited or challenged accessibility from conventional
agricultural or petrochemical routes (S. Kim et al., 2015; Lennen and
Pfleger, 2012; Rigouin et al., 2018; Sarria et al., 2017). While these
chain lengths have traditionally been sourced from tropical crops,
the eight, ten, and twelve-carbon products are not major constituents
of the oil (Rupilius and Ahmad, 2007). Processes have been estab-
lished to create higher value oleochemical derivatives, such as fatty
alcohols, directly from petrochemical building blocks. However, these
processes yield a distribution of alcohols, and thus do not provide a
highly selective route to the medium-chain products (Noweck and
Ridder, 1988).

Expression of medium-chain specific acyl-ACP TE is the primary
strategy for enabling development of biological platforms to high-
value oleochemical derivatives. This approach has facilitated enrich-
ment of product distributions for medium-chain chemical species in bac-
teria, yeast, and plant systems (Xu et al., 2016). The most specific fatty
acid and fatty alcohol distributions have been demonstrated in E. coli,
with over 90% of product belonging to the Cg species (Hernandez
Lozada et al., 2018, 2020). Indeed, the expression of various acyl-ACP
TEs, either homologs from nature or variants thereof, has enabled con-
trol over the chain-length distribution in E. coli (Grisewood et al., 2017;
Hernandez Lozada et al., 2018) (Fig. 1). Of these studies, acyl-ACP TEs
from select plant species have been shown to have greater native speci-
ficity toward the medium-chain substrates when compared to bacterial
homologs (Sarria et al., 2018). While medium-chain-producing plants
are well-catalogued (Ohlrogge et al., 2018), the bioprospecting process
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to identify novel TEs requires identification of an organism overlooked
in the patent literature as well as the isolation of the desired gene from a
cDNA library. Thus, the identification of the gene responsible for the
medium-chain activity requires further characterization such as in vivo
production experiments in a genetically tractable host or in vitro activity
assays (H.J. Kim et al., 2015). This combination of the prolonged testing
cycle, the relative rarity of the medium-chain TE, and the high value of
medium-chain oleochemical derivatives has resulted in a broadly pro-
tected intellectual property landscape (Gordon Roessler and Roy,
2015; Pfleger et al., 2020; Pfleger and Lennen, 2013). Therefore, discov-
ery of novel acyl-ACP TEs is desirable to both navigate the current intel-
lectual property landscape in oleochemical biosynthesis and to
elucidate the mechanisms of substrate specificity among this enzyme
class.

To bridge the sequence-to-function mapping gap, the ThYme data-
base was compiled to organize putative and characterized thioester-
active enzymes into various families based on their primary sequence
information (Cantu et al., 2010). As a follow-up study, Jing et al. char-
acterized the in vivo activity of 24 TEs from the TE14 family in the
ThYme database and showed that phylogenetic and sequence identity
analysis alone were not sufficient to distinguish plant TEs substrate
specificity (Jing et al., 2011).

Herein we put forth a ML-based discriminatory approach, termed
EnZymClass (Ensemble method enZyme for Classification), to predict
substrate specificity from primary sequence encoded features for TEs
uncharacterized in an E. coli system. We applied EnZymClass to iden-
tify two medium-chain acyl-ACP TEs among a set of 617 TEs cata-
logued in the ThYme database. We further modified the discovered
gene sequences to improve titer and medium-chain specificity over
wildtype (WT) when expressed in an E. coli production host. This study
provides an exemplar of how even limited datasets can be leveraged
with ML to support bioprospecting efforts and to provide a suitable
starting template enzyme for protein engineering efforts. EnZymClass
can be accessed at: https://github.com/deeprob/
ThioesteraseEnzymeSpecificity.

2. Materials and methods
2.1. Dataset compilation

2.1.1. Training dataset

The training dataset included primary sequences and in vivo E. coli
product distributions for 113 acyl-ACP plant TEs previously recorded
in various reports from scientific and patent literature (Table S10).
Two  additional TEs from  Auxenochlorella  protothecoides
(KFM28838.1) and Prunus sibirica L. (AIX97815.1) were previously
tested for free fatty acid production prior to this study and were used
to supplement the training dataset. Unique acyl-ACP TE transcripts
have been detected in various plant tissue extracts within the same
organism, encoding for TE enzymes with different substrate specifici-
ties (Dehesh et al., 1996). Furthermore, mutagenesis studies which
probed the mechanisms of substrate specificity in the acyl-ACP TE
from Cuphea viscosissima and Umbellularia californica showed that as
few as three point mutations in the binding pocket and the ACP bind-
ing site can shift observed product distributions in E. coli (Jing et al.,
2018; Yuan et al.,, 1995). Therefore, TE homologs from the same
organism and variants of CvFatB2 (AEM72523.1) and UcFatB1
(AAA34215.1) were represented in the training dataset. The character-
ized dataset of 115 plant acyl-ACP TEs is available at https://github.-
com/deeprob/ThioesteraseEnzymeSpecificity/tree/master/data.
Although many bacterial TE sequences have been previously charac-
terized (Jing et al., 2011), the primary reason we restricted the model
to plant TE sequences is the low sequence identity across TEs from the
plant and bacterial kingdoms. Bacterial acyl-ACP TE have lower
sequence identity (<30%) to the plant acyl-ACP TE, while the
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Fig. 1. The acyl-ACP TE plays a key role in fatty acid biosynthesis in E. coli. By intercepting the growing acyl-ACP chains, the TE hydrolyzes the acyl chain from the
ACP and redirects flux to the free fatty acid pool. These free fatty acids can be further derivatized in vivo or ex vivo.

sequence identity among the plant TE homologs ranged from ~45% to
~85%. Due to the higher sequence identity among plant sequences, we
reasoned the model would make more discerning predictions from
whichever amino acid differences may be present among homologs.
We were concerned that the model would not accurately distinguish
between amino acid changes that were divergent due to evolutionary
differences or functional differences if bacterial TE were included in
the training dataset. Furthermore, most medium-chain specific acyl-
ACP TEs do come from the plant kingdom (Jones et al., 1995). Micro-
bial TEs typically have broad specificity, exhibiting activity on both
medium and long-chain substrates, but not showing a strong prefer-
ence unless further engineered. Each TE included in the training set
is presumed to possess the characteristic Hot Dog fold due to the suf-
ficiently high (>25%) sequence identity among all 115 members
(Sander and Schneider, 1991). E. coli was chosen because it remains
the most common and facile method for characterization of heterolo-
gous TEs. The product distribution data was subsequently used to clas-
sify each TE into three discrete categories: 1) the “medium-chain”
category contained TEs which resulted in distributions of at least
50% Cg to C; free fatty acids, 2) the “long-chain” category contained
TEs which produced 50% C;4 to C;g free fatty acids and less than 10%
Cg to Cy, free fatty acids and, 3) the “mixed distribution” category con-
tained TEs which yielded distributions between 10% and 50% Cs to
C,, free fatty acids.

2.1.2. Cross-validation dataset

The dataset of 115 characterized TE sequences was randomly
divided into training and validation set using a 75-25 split. This pro-
cess was simulated 10,000 times yielding different training and valida-
tion dataset at each simulation instance. The validation scores
reported in this study are the mean scores attained by EnZymClass
on 10,000 validation sets.

2.1.3. Test dataset
An independent test set was created by extracting the 617 eukary-
otic sequences from the TE14 family in the ThYme database (Cantu

et al., 2010). Each sequence in TE14 encodes acyl-ACP TEs from bac-
terial or plant origins and possesses the characteristic HotDog fold. The
test dataset was limited to the sequences denoted with origins from
eukaryotic organisms in TE14 to match the training set, which com-
prised of only plant acyl-ACP TEs.

2.2. Feature extraction

In this work, 47 alignment-free feature extraction techniques that
encode primary sequence information of the enzymes into fixed-
length feature vectors were employed. The feature extraction tech-
niques fall under four categories, kernel methods, n-gram methods,
physicochemical encoding methods, and PSSM profile based methods.
TE sequence feature encoding was conducted utilizing source codes
from three open-source python or R-based tools, KeBABS (Palme
et al., 2015), iFeature (Chen et al., 2018), and POSSUM (Wang
et al., 2017). While KeBABS is already an existing R package for kernel
methods, we have developed three PyPI (PyPI, 2020) packages (ifeat-
pro, ngrampro, and pssmpro), for numerical encoding of protein
sequences. A brief description of the 47 feature extraction techniques
divided into their respective categories along with usage and accessi-
bility details of the protein sequence encoding packages is provided
in Text S1. The feature extraction category, name, software package
used to deploy them and literature from which they are adopted are
listed in Table S1.

2.3. EnZymClass: Ensemble method for enZyme classification

2.3.1. Model description

EnZymClass consists of N base learners (one for each feature extrac-
tion technique) which provide their outputs to a meta learner that pre-
dicts the functional attribute of proteins. Although all base learners are
trained using the same principle, the heterogeneity among them is gov-
erned by the different feature extraction techniques used to encode the
set of protein sequences into unique numerical representations. To pre-
vent overfitting, the feature vectors generated through the extraction
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process were decomposed into a lower dimensional representation
using Principal Component Analysis (PCA) and fed as input to a desig-
nated base learner in EnZymClass. The base learner trained on the set
of encoded protein sequences yields the predicted functional attribute
of a given protein sequence as an output. The outputs of the k-best base
learners are passed on to the meta learner that uses a majority voting
scheme to predict protein functional attribute category. The k-best base
learners are selected through cross-validation. EnZymClass pipeline is
presented in Fig. S1. The entire workflow of the study including model
training, validation, and prediction of uncharacterized TE sequences is
illustrated in Fig. S2 and described in Text S2.

2.3.2. Base learner algorithms

EnZymClass supports three base learning algorithms, 1) Support
Vector Machine (SVM), 2) Neural Network (NN) and 3) Gradient
Boosting Trees (GBC). Selection of the appropriate base learner
depends on their cross-validation performance.

2.3.3. The meta learner

The meta learner accepts the outputs of all the base learners as an
input vector, implements a hard majority voting scheme, and returns
the consensus prediction of the label (TE substrate specificity in our
case) as an output. The meta learner output is calculated as follows:

5’\ :mOde{y;vy;v"'vy;}

where y is the output of the meta learner, y; is the output of the base
learner i, k is the number of best performing base learners to consider,
and mode is a function that selects the most frequent value among a set
of values.

2.3.4. Model hyperparameters

EnZymClass has several hyperparameters which can be tuned to
improve model performance. It has a hyperparameter k that denotes
the number of best performing base learners that the meta learner
needs to take into account. Each base learner has a number of hyper-
parameters depending on the learning algorithm used to train them.
The respective learning algorithm-dependent hyperparameters of the
base learners are shown in Table S2. The hyperparameters are learnt
through a 5-fold cross validation scheme.

2.3.5. Model evaluation metrics

The performance of EnZymClass was measured using four classifi-
cation metrics: 1) accuracy score, 2) precision score on the medium
chain TE class, 3) recall score on the medium chain TE class, and 4)
Matthew’s correlation coefficient (MCC). Mathematical formulation
of the four performance metrics is given in Text S3.

2.4. In vivo characterization of plant acyl-ACP TEs

The cloning of acyl-ACP TE homologs and variants and molecular
biology materials are described in Text S5. Each TE construct was sub-
sequently transformed into RLO8ara, an E. coli MG1655 derivative
engineered for free fatty acid accumulation (Lennen et al., 2010). Sin-
gle colonies of the RLO8 transformants were grown overnight at 37 °C
and 250 r.p.m. in 5 mL of LB media supplemented with 100 mg/L of
carbenicillin. All strains and vectors used in this study are in Table S7.

For free fatty acid production trials, shake flasks containing 25 mL
of LB supplemented with 4 g/L of glycerol were inoculated with
275 uL of the stationary phase culture. The cultures were then allowed
to grow at 30 °C and 250 r.p.m. until they reached an OD of 0.2-0.3.
Isopropyl B-D-thiogalactoside (IPTG) was then added to the media to a
final concentration of 20 uM to induce transcription of the TE genes.
After the cultures incubated for 24 h at 30 °C and 250 r.p.m., 2.5 mL
was sampled for derivatization and characterization of the free fatty
acid distribution. For analysis of the free fatty acid distribution present

Current Research in Biotechnology 4 (2022) 1-9

in the supernatant, 10 mL of sample were centrifuged at 4500g for
20 min, and 2.5 mL of the supernatant was collected. The fatty acid
quantification method described by Politz et al. was then followed
with slight modifications (Politz et al., 2016). Namely, the internal
standard solution of odd-chain free fatty acids was prepared by com-
bining heptanoic, nonanoic, undecanoic, tridecanoic acid to a final
concentration of 5 g/L in methanol, and pentadecanoic and heptade-
canoic acid were added to a final concentration of 1 g/L. 100 pL of
the internal standard was added to each 2.5 mL sample. After obtain-
ing the chromatograph, each even-chain free fatty acid was quantified
by normalizing the peak area of its derivatized methyl ester to the
adjacent peaks of the odd-chain methyl esters.

3. Results
3.1. EnZymClass plant acyl-ACP TE substrate specificity prediction

We evaluated the performance of EnZymClass on TE substrate
specificity prediction task using a rigorous validation scheme to fairly
assess model generalizability, robustness, and reproducibility of
results. EnZymClass achieved a mean validation accuracy of 0.8 with
a standard deviation of 0.06, mean precision and recall scores of
0.87 and 0.89 respectively for the medium-chain TEs, the product of
interest, and mean MCC score of 0.68 across 10,000 simulations using
different training and validation sets. The precision (on the medium-
chain category), recall (on the medium-chain category), accuracy,
and MCC score distributions of EnZymClass are shown in Fig. 2.

Among the three categories of TEs, the mixed specificity class
which represented only 17% of all the characterized TEs in our dataset
(Fig. S3) was the worst predicted with much lower precision and recall
scores compared to the medium-chain and long-chain categories
(Table S5). Although EnZymClass offers a mechanism to deal with
class imbalance by allowing the user to provide label priority weights
as base learner input, we opted against assigning such weights to the
minority class. Prioritizing correct classification of the mixed speci-
ficity class of TEs would have de-emphasized classification of
medium-chain TEs, thus impacting its accurate characterization. The
base learners in the ensemble were chosen as SVM classifiers after ana-
lyzing the performance of SVM against two learning algorithms: GBC
and NN. GBC and NN were both outperformed by SVM in terms of
accuracy on separate held-out validation sets (Table S4). SVM has
higher generalizability and can handle high dimensional datasets
(Ben-Hur et al., 2008) which may have resulted in its superior perfor-
mance on our relatively small dataset. Existing efforts to characterize
TEs mostly rely on experimental approaches, which have limited
throughput depending on the activity characterization method. Fur-
thermore, previous studies have demonstrated that phylogenetic anal-
ysis or sequence similarity-based approaches do not always correlate
with TE substrate specificity (Jing et al., 2011, 2018). At present, there
is no available computational platform that can match EnZymClass in
terms of TE substrate specificity characterization.

3.2. Comparison with individual base learners in EnZymClass

The primary purpose of using an ensemble framework in EnZym-
Class was to decrease variance in model prediction resulting from a
small and unbalanced training set. Our results indicate that the ensem-
ble model is more robust, performing better than any individual base
model trained on a specific feature extraction technique. A comparison
of the mean, minimum, and standard deviation scores of three classi-
fication metrics (i.e., mean accuracy, precision and recall score on
medium chain TEs) between EnZymClass and the five top performing
base models is tabulated in Table 1. Detailed analysis of the 47 base
models used in EnZymClass, each trained on a unique feature extrac-
tion technique is provided in Table S3. The results of a two-sided t-
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Fig. 2. Precision (on medium-chain TEs), Recall (on medium-chain TEs), Accuracy, and MCC score distribution of EnZymClass. The black vertical line denotes the
median score of the specific metric. The mean, median, and worst precision scores are 0.87, 0.88, and 0.40, respectively. The mean, median, and worst recall
scores are 0.89, 0.91, and 0.50, respectively. The mean, median, and worst accuracy scores are 0.8, 0.79 and 0.52, respectively. The mean, median, and worst MCC

scores are 0.68, 0.68 and 0.27 respectively.

test that establishes the superiority of EnZymClass over any individual
base learner in terms of accuracy and recall metrics is provided in
Table S6.

3.3. Comparison with similarity-based classification method

We further benchmarked EnZymClass by comparing it to an exist-
ing sequence similarity-based classification method. Sequence
similarity-based methods define a distance function to measure the
similarity between a pair of sequences (Xing et al., 2010). Here, we
calculated the BLASTP (Rédei, 2008) identity scores between a pair
of subject and query sequence to use as the distance function. Hence-
forth, we trained a k-Nearest Neighbors classifier with k decided
through cross-validation on a subset of TE sequences and predicted
the substrate specificity on the remaining validation set. This process
was repeated 10,000 times by varying the training and validation sets
similar to the EnZymClass evaluation scheme. The distribution of the
precision, recall, and accuracy scores for the similarity-based classifi-
cation model along with the box plots comparing those distributions
with similar validation score distributions achieved by EnZymClass
is shown in Fig. 3. The results of a two-sided t-test that establishes
the superiority of EnZymClass over the similarity model across all
three metrics is provided in Table S6.

3.4. Identification of two uncharacterized medium-chain TEs from the
Cuphea genus

EnZymClass predicted three enzyme sequences to encode medium-
chain length specific TEs from the TE14 family in the ThYme database
(Cantu et al., 2010). The TE14 family contained about 2,500 sequences

of prokaryotic and eukaryotic sequences, however, since the training
set consisted of solely eukaryotic sequences from the plant kingdom,
the search was restricted to the subset of 617 sequences with eukary-
otic origin. The in vivo performance of the predicted TEs when
expressed in the E. coli RLO8ara strain is summarized in Fig. 4a and
Table S8. The three TEs, ClFatB3, ClFatB3-2, and CwFatB2 are from
various Cuphea species: the former two from Cuphea lanceolata and
the latter from Cuphea wrightii. ClFatB3 and CwFatB2 showed
medium-chain length activity. ClFatB3-2 yielded a titer and distribu-
tion similar to the catalytically inactivated control, BTE-H204A.
ClFatB3-2 differed from ClFatB3 by one amino acid in the binding
pocket: position 135 in ClFatB3 is a serine while position 135 in
ClFatB3-2 is a proline.

The free fatty acid distributions from the in vivo cultures contained
a significant proportion of hexadecanoic and hexadecenoic acid. We
reasoned that these species were cell membrane constituents which
resulted from derivatization of phospholipids rather than free fatty
acids. To validate this hypothesis, the cultures were centrifuged, and
the supernatant was collected to be analyzed for free fatty acid con-
tent. The results from this processing step shown in Fig. 4b and
Table S9 confirmed that ClFatB3 and CwFatB2 are primarily
medium-chain specific. While ClFatB3-2 did not exhibit medium-
chain specificity, the analysis of the supernatant suggested this was
due to enzyme inactivity. Since ClFatB3-2 only differed from ClFatB3
by a single residue, EnZymClass also classified ClFatB3 as a medium-
chain specific TE. This instance illustrates the limitations of EnZym-
Class applied in this study, as it was tuned to only classify if a TE exhi-
bits medium-chain, long-chain, or mixed substrate specificity. The
addition of another classifier for predicting inactive TE could be in
principle possible provided an inactive TE training dataset.
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Table 1

EnZymClass performs better than any individual base model on varying validation datasets in terms of prediction accuracy and robustness to training set. We illustrate
that phenomenon by comparing its results with that of five best performing base models (judging by their performance on validation datasets). The mean, minimum,
and standard deviation of accuracy, precision, and recall scores achieved by EnZymClass and the five best performing base learners on varying validation datasets are
displayed here.

Model Mean Precision Min Precision Std Precision Mean Recall Min Recall Std Recall Mean Accuracy Min Accuracy Std Accuracy
Name

EnZymClass 0.87 0.40 0.09 0.89 0.5 0.09 0.8 0.52 0.06
Spectrum Kernel 0.87 0.44 0.09 0.85 0.36 0.10 0.77 0.45 0.07

Gappy Kernel 0.87 0.44 0.09 0.86 0.38 0.10 0.77 0.48 0.07
CKSAAP 0.87 0.38 0.09 0.86 0.35 0.10 0.77 0.45 0.07
KSCTriad 0.86 0.33 0.09 0.85 0.33 0.10 0.76 0.41 0.07

Moran 0.87 0.33 0.10 0.85 0.38 0.10 0.76 0.45 0.08

Histograms of Similarity model metric scores and comparison with EnZymClass
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Fig. 3. Precision (on medium-chain TEs), Recall (on medium-chain TEs), and Accuracy score distribution of the similarity model along with the comparisons of
those distributions with EnZymClass through box plots is depicted. The mean precision, recall, and accuracy scores are 0.79, 0.79, and 0.7, respectively. The box
plot comparisons between Similarity model and EnZymClass performance metrics show the EnZymClass metric distributions are skewed towards higher scores
across all metrics, thus asserting the superiority of EnZymClass over similarity-based model.
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Free fatty acid distributions of bulk cell cultures
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Fig. 4. The effect of TE homolog on free fatty acid distribution in a) bulk
cultures and b) supernatants of RLO8ara E. coli cells. The distribution from
cells expressing the California bay laurel TE (BTE) and a catalytically inactive
BTE variant (H204A) are shown as a positive and negative control, respec-
tively. Bar height represents the average titer obtained from biological
triplicates, and error bars represent the standard error of the mean.

3.5. Improving activity of medium-chain acyl-ACP TE identified from ML
predictions

We sought to improve the activity of ClFatB3 and CwFatB2
enzymes by incorporating mutations previously demonstrated to
enhance free fatty acid production. Hernandez-Lozada et al. leveraged
an auxotrophic E. coli strain to screen for mutations productive toward
enhancing activity of an octanoyl-ACP TE from Cuphea palustris, CupTE
(Hernandez Lozada et al., 2018). The three mutations which conferred
the increased activity included a truncation, a mutation near the N-
terminus, and a mutation in the binding pocket (AAs;, N28S, and
165M, respectively). The truncation was first incorporated into all
three TE sequences identified from the model predictions as well as
to the BTE sequence. The effect of this truncation on free fatty acid dis-
tribution is shown in Fig. S4 and in Table S8. The Clustal Omega mul-
tiple sequence alignment used to locate the truncation site is shown in
Fig. S5 (Larkin et al., 2007).

The N-terminal truncation resulted in a 3.3-fold improvement in
Cyo free fatty acid titer. The amino acid substitutions identified in
the active CupTE variant were incorporated into the truncated ClFatB3
sequence by cloning the D10S and I47M residue changes into the
expression vector (see Fig. S5). The effect of these substitutions as sin-
gle point mutations and in combination is shown in Fig. S6. The D10S
point mutation was shown to have the best effect in improving the
overall titer in production cultures; this modification resulted in an
18% improvement in decanoic and decenoic acid titer compared to
the truncated ClFatB3 variant and a 4.2-fold improvement when com-
pared to the WT. This final ClFatB3 variant also resulted in a product
distribution of 70% of the ten-carbon species, excluding membrane
lipid chain-lengths. The efforts in this study could be coupled with sub-
sequent mutagenesis efforts to tailor substrate specificity, ultimately
yielding a highly active and highly specific decanoyl-ACP TE.

EnZymClass was used to successfully identify two TE in the TE14
family in the ThYme database which exhibit medium-chain-length
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activity in E. coli. These enzymes, ClFatB3 and CwFatB2, both origi-
nated from the Cuphea genus and resulted in an in vivo product profile
of decanoic acid and dodecanoic acid, respectively. Since both of these
discoveries originated from a plant genus known to have medium-
length acyl chains in its seed triglycerides, we wanted to ensure that
EnZymClass was not simply returning sequences from Cuphea hosts
and indeed was able to discern between medium and long-chain
acyl-ACP TE homologs. To explore this, we tested ClFatB4, another
TE from Cuphea lanceolata which was in the TE14 ThYme database
family. We also tested CpaFatB1, CpaFatB2A, and CpaFatB3, TEs from
Cuphea paucipetala, to sample other enzymes from the Cuphea genus.
The free fatty acid distribution from these homologs were all mostly
dominated by the longer chemical species, as predicted by EnZym-
Class. This confirmed EnZymClass’ capability to classify substrate
specificity among homologs from the same species (Fig. S7 and
Table S8).

4, Discussion

We presented a computational tool, termed EnZymClass, designed
to address barriers to accurate classification of protein subfunction
from primary sequence information. To test the effectiveness of
EnZymClass, we applied it to a specific protein classification task: cat-
egorization of plant acyl-ACP TEs by substrate specificity. When pro-
vided full-length amino acid sequences of putative acyl-ACP TE from
the plant kingdom, EnZymClass can flag enzymes with the potential
to produce distributions of over 50% of medium-chain free fatty acids
in an E. coli production strain. We used EnZymClass to characterize all
eukaryotic acyl-ACP TEs in the ThYme database (Cantu et al., 2010).
Among the three TEs predicted to be medium-chain specific by
EnZymClass, two were experimentally validated to possess the desired
activity.

To ratchet the activity of the TE discoveries made from EnZym-
Class’ predictions, the ClFatB3 and CwFatB2 genes were modified
according to previous successful TE engineering efforts. Most notably,
the final ClFatB3 variant, ClFatB3_trunc_M1, resulted in a 4.2-fold
overall improvement in Cp, free fatty acid titer compared to the WT
enzyme. We obtained this enhancement by incorporating the corre-
sponding mutations described by Herndndez-Lozada et al. which led
to activity improvement in the acyl-ACP TE from Cuphea palustris.
The rationale for this observed performance boost in the TEs from
Cuphea palustris and Cuphea lanceolata (ClFatB3) but not in Cuphea
wrightii (CwFatB2) remains unknown; these mutations do not occur
inside the binding pocket or on the ACP landing pad, the two most
studied mechanisms for changes in TE activity and specificity (Jing
et al., 2018; Sarria et al., 2018). Nonetheless, since the truncation
did not benefit CwFatB2 the same extent exhibited by ClFatB3, we rea-
soned incorporating the other amino acid substitutions from
Hernandez-Lozada et al. would not be as fruitful as well. Future efforts
will entail the mutagenesis of ClFatB3 for enhanced substrate speci-
ficity to achieve near exclusive selectivity for C;o FFA production in
bacterial hosts. With this work, we demonstrate how ML can be imple-
mented to facilitate an enzyme engineering pipeline.

Previous studies indicated that sequence similarity is not the best
predictor of TE substrate specificity since highly similar sequences
may have different substrate specificity (Jing et al., 2011, 2018). For
example, the TEs from Cuphea viscosissima (NCBI accession numbers
AEM72522.1 and AEM72523.1) share more than 70% sequence iden-
tity but display different substrate specificities. In addition, TEs from
Ulmus americana and Umbellularia californica (NCBI accession numbers
AAB71731 and AAA34215.1) both display medium-chain acyl-ACP
substrate specificity yet share less than 52% sequence similarity. This
underscores the utility of feature extraction techniques from protein
sequences used in EnZymClass, which not only encode similarity
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between homologous sequences but also extract physicochemical, con-
textual, and evolutionary information from protein sequences.

Although we have attained reasonably high accuracy on TE sub-
strate specificity classification task, we acknowledge that EnZymClass
is currently unable to accomplish a deeper level of TE classification
across specific chain lengths (C8, C10, C12, C14, C16, C16:1, C18,
and C18:1 or 8-class classification). It must be noted that the referred
limitation to achieve a higher resolution of TE classification can be lar-
gely ascribed to a lack of characterized TE dataset with enough
instances for each chain length. Furthermore, we recognize that the
use of PCA to reduce feature dimensionality inhibits extraction of
insightful features that contribute towards substrate specificity.
Although PCA helps us to retain model generalizability, we are cur-
rently working on substituting the PCA step with an alternate dimen-
sionality reduction technique which will allow insightful feature
extraction. Additionally, we plan to incorporate embedding based fea-
ture extraction techniques, such as UniRep (Alley et al., 2019), in
future improvements of EnZymClass. However, fine-tuning is essential
for embedding based feature extraction techniques to achieve superior
performance. The dataset used in this work does not have enough
instances to allow fine-tuning for deep learning models. We anticipate
that in the future as larger datasets become available, we will be able
to make use of such methodological enhancements.

EnZymClass can be adapted to other protein classification chal-
lenges ranging from general tasks such as protein structural class pre-
diction or protein-protein interactions to more defined such as TE
substrate specificity prediction or protein glycosylation site prediction
(Chauhan et al., 2012). While general applications such as protein-
protein interactions suffer from dataset imbalance (Yu et al., 2010),
more specific tasks, for instance glycosylation site prediction may
encounter yet another set of difficulties relating to small sized datasets.
Issues related to high dimensionality and correlated feature set are
ubiquitous in the protein classification domain. EnZymClass partially
alleviates protein classification challenges while maintaining the com-
putational efficiency required for swift functional characterization.
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