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We study the cyclic cellular automaton (CCA) and the Greenberg—
Hastings model (GHM) with x > 3 colors and contact threshold 6 > 2 on
the infinite (d + 1)-regular tree, T;. When the initial state has the uniform
product distribution, we show that these dynamical systems exhibit at least
two distinct phases. For sufficiently large d, we show that if (60 — 1) <
d — O(y/dk1n(d)), then every vertex almost surely changes its color in-
finitely often, while if k6 > d + O(x+/dIn(d)), then every vertex almost
surely changes its color only finitely many times. Roughly, this implies that
as d — oo, there is a phase transition where x0/d = 1. For the GHM dynam-
ics, in the scenario where every vertex changes color finitely many times, we
moreover give an exponential tail bound for the distribution of the time of the
last color change at a given vertex.

1. Introduction. The cyclic cellular automaton (CCA) and the Greenberg-Hastings
model (GHM) are discrete models for excitable dynamical systems, which have been studied
extensively on the integer lattices Z¢, where they are known to exhibit a wide range of inter-
esting behavior. Following the recent work of [14], we study the CCA (&;)tecz., and GHM
(74 )tez-, dynamics on the infinite (d + 1)-regular tree, Ty, with k > 3 colors and contact
threshold 6 > 2.

Formally, given an initial assignment of colors to the vertices of a graph G = (V, E),
£ €{0,1,...,k— 1}V, the CCA dynamics are determined by the rule

&)+1 modk if[{u~v:&(u)=&(@w)+1 modk}| >0,
& (v) otherwise,

i1(v) =

for all v € V, where u ~ v means that (u,v) € E, and |S| denotes cardinality of a set S.
In other words, if a vertex has at least 6 neighbors that have color exactly one greater than
it on the color wheel, then it is “painted" by the larger color at the next time step. Another
common metaphor used in CCA is the predator-prey relationship. Every color is an animal,
and every animal has exactly one predator and exactly one prey. In this way, a prey will be
“eaten” (and consequently, replaced) by its predator if there are at least 6 adjacent predators.
This model was proposed by Bramson and Griffeath as the deterministic counterpart of the
cyclic particle system [2].

The GHM dynamics were proposed by Greenberg and Hastings as a model for excitable
media [15], and we accordingly refer to the sets of colors {0}, {1}, and {2,...,x — 1} as
resting, excited, and refractory states. Given an initial configuration vo € {0,1,...,x — 1}V,
the GHM dynamics are determined by the rule

Y (v)+1 modk, ify(v)>1lor{u~v:vy(u)=1}>46,
0 otherwise

Yi(v) =
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for all v € V. That is, vertices at rest become excited if they have at least 6 excited neighbors,
otherwise they remain at rest. Once excited, a vertex enters a refractory period, which lasts
Kk — 2 steps before the vertex returns to the resting state. In this paper we only considered
initial configurations drawn from the uniform product measure, but some work has been
done for k = 3 and @ = 1 on Z% for d > 2 with regards to more general translation invariant
product measures [6].

These seemingly simple local update rules lead to a range of complex phenomena, includ-
ing spiral nucleation, periodicity, traveling waves and spatial clustering. In the present study,
we focus on two distinct phenomena. We say that the CCA dynamics (&;)ez., fixates (on G)
iff there exists a configuration &, € {0,1,...,x — 1}V such that limy_,o0 & (v) = £x0 (v) for
all v € V. Likewise, we say that the GHM dynamics (V¢)tez., fixates iff lim;_, oo v:(v) =0
for all v € V. Note that fixation does not imply that the limiting configuration is reached in
finite time, but it does imply that each vertex changes color only finitely many times. We
say that the vertex v € V fluctuates for either the CCA or GHM dynamics iff it changes its
color infinitely many times, and we say that the (CCA or GHM) dynamics fluctuates iff every
vertex fluctuates.

We assume that our graph G is the infinite, undirected (d + 1)-regular tree Ty, and we
abuse notation by referring to both the graph and its vertex set by 7Ty. We assume that &g
and v are chosen randomly, and have the uniform product distribution on {0, ...,x — 1},
which we denote by P =P, ;. We use the term almost surely to mean [P-almost surely. Our
main results are the following two theorems.

THEOREM 1.1. Assume k>3 and 6 > 2 and d > 3. If k <0— 3\/dln(d)> > d, then

CCA and GHM fixate on Ty almost surely. Moreover, for the GHM dynamics, (), if T is the
last time the root vertex is in the excited state, then for n > 0

P(r>n) < (;)n

THEOREM 1.2. Assume k >3 and 0 > 2 and d > 4. If k(0 — 1) < d — /6dkIn(d), then
the CCA and GHM dynamics fluctuate on T,; almost surely, and lim &, and li_>m Ynw €XiSt
n—oo n oo

almost surely.

For Theorem 1.1, d > 3 is sufficiently large for the estimates in our proofs to hold, but
when d = 3, for instance, we need 6 > 6 for the left side of the condition to be non-negative.
When 6 > d, fixation is trivial to prove for all x > 3, so the condition in Theorem 1.1 is only
nontrivial when there exist values of 6§ for which 3v/dInd < 6 < d, which requires d > 31
(and also 6 > 31). For smaller values of # and d, we prove the following sufficient conditions
for fixation.

THEOREM 1.3. Ifd>60>3and k >3 and k(0 — 2) > 9ed1+ﬁ, then the CCA dynam-
ics, (&), fixates on Ty almost surely. If d > 0 = 2 and k > 12d3, then the CCA dynamics
fixates on T,y almost surely.

It is clear from our proof that the condition in Theorem 1.3 also guarantees fixation for
GHM, but for GHM dynamics we can use a simple first-moment argument to give the fol-
lowing improved sufficient condition for fixation.
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THEOREM 1.4. Assume d>0>2and k> 3. If k> ¢ (%) 1/ ), then the GHM
dynamics, (), fixates on Ty almost surely. Moreover, if T is the last time the root vertex is in
the excited state, for n > k we have

d+1
P(r>n) < 2( _g ) exp [_gnﬂeﬂ] ‘

Also, for 0 = 2 and 0 = 3 and some small values of d, the GHM dynamics fixates on Ty
almost surely for all k greater than or equal to the values given in the table below.

| d [2345[6][7]8[9]
0 =2|13|5|7|8|10|11|12|14
0=3|3|3]1314|5|5|6|7

For 0 = d > 2, the GHM dynamics fixates almost surely for all k > 3.

For the condition in Theorem 1.2 to be satisfied, since x > 3 and 6 > 2, we at least need
d > 3 + v/18d1Ind, which requires d > 87. We do not know whether fluctuation occurs for
much smaller values of d, such as those in the table above. The estimates used to prove
Theorem 1.2 have not been optimized, but we do not think this will lead to a significant
improvement.

The study of CCA and GHM on infinite trees was initiated recently by Gravner, Lyu and
the second author [14], who showed fluctuation and computed the fluctuation rate when 6 = 1
and x = 3. Previously, these models had been studied extensively on the integer lattices Z¢.
For d =1 and 6 = 1, Fisch found that the CCA almost surely fixates for every « > 5, and
almost surely fluctuates for x < 4 [7]. This result confirmed that the CCA exhibits the same
phase transition as was proved earlier by Bramson and Griffeath [2] for the cyclic particle
systems on Z, wherein vertices update their colors asynchronously. Fisch [8] later proved
that the 3-color CCA “clusters” on Z, meaning that any fixed pair of sites will have the same
color with probability tending to 1 as t — oco. In fact, using random walk coupling arguments,
he proved the stronger result that the probability of two sites having different colors at time
tis1 — G(tfl/ 2). Durrett and Steif [6] proved the analogous result for the 3-color GHM on
Z., showing that the probability of a site having color 1 at time ¢ decays like @(t_l/ 2). Fisch
and Gravner [9] later extended this result to the x-color GHM on Z for x > 4. Lyu and the
second author [17] generalized the random walk coupling argument to accommodate spatially
correlated initial colorings, which allowed them to recover these results for the 3-color CCA
and GHM, and prove an analogous result for the 3-color “firefly” cellular automaton model
that was introduced by Lyu [16]. Non-uniform initial distributions were considered by de
Menibus and Le Borgne [3], who prove that in the limiting distribution for 3-color CCA on
Z, the probability of color ¢ is equal to the initial probability of its prey, color ¢ — 1. Foxall and
Lyu [13] showed that the 3- and 4-color cyclic particle systems cluster on Z, and highlight
computing the clustering rate as an open problem.

On Z? with 6 = 1, Fisch, Gravner and Griffeath proved that the CCA [10] and GHM [12]
fluctuate for all x > 3 by analyzing the emergence of stable period objects (SPOs), which
are local configurations that exhibit temporally periodic behavior regardless of the colors of
vertices outside of the region. The existence of SPOs plays an important role in both CCA
and GHM on Z¢ with d > 2. Indeed, for neighborhoods of large radius p in Z?2, by proving
existence of SPOs and using percolation arguments, Fisch, Gravner and Griffeath [11, 12],
Durrett [4] and Durrett and Griffeath [5] prove that the CCA and GHM on 72 exhibit distinct
qualitative phases depending on the asymptotic value of 2. In particular, they show that if ¢
is sufficiently small, then SPOs exist, which drive fluctuation and local x-periodicity, and if

’;—f is sufficiently large, then the dynamics fixate in bounded time. In two dimensions, a vertex
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with ¢P-ball neighborhood of radius p has degree ~ c,p?, so our results on T} are consistent
with these long-range two-dimensional findings. In fact, as a consequence of Theorems 1.1
and 1.2, we obtain a sharp transition in the following sense.

COROLLARY 1.5.  Assume that as d — oo either 6/v/dInd — oo or k % — 0. Then
the following hold.

0
a) If lidm inf % > 1, then for all large enough d, CCA and GHM fixate on T almost surely.
—r 00

0
b) If limsup % < 1, then for all large enough d, CCA and GHM fluctuate on T; almost

d—o0
surely.

PROOF. Fixation is assured by Theorem 1.1 for large d if %9 — 3K % > 1. This is
clearly satisfied if liminf, %9 >1and K % — 0. Rearranging, fixation is assured for large

d if

>1

- )

/19 1 3\/ dind
d 0
which is satisfied if liminf, %9 > 1 and Ll@lnd — 0. The verifications for fluctuation are
similar. ]

On trees, finite SPOs for CCA and GHM appear to be topologically prohibited [14]. In-
stead, to prove Theorem 1.2 we identify infinite SPOs by adapting percolation methods of
Balogh, Peres and Pete [1] who study bootstrap percolation on 7. A key idea of theirs that
we use is the definition of a k-fort.

DEFINITION 1.6. For a graph G = (V, E') and a set of vertices H C V, let degy(v) =
{w € H : (w,v) € E}| be the number of neighbors of v that lie in H. Let k > 0. We call
S CV ak-fortiff S is connected and each v € S has degy\ g(v) < k.

For bootstrap percolation with occupation threshold 6, a vacant (6§ — 1)-fort is stable,
and existence or nonexistence of these structures determines whether full occupation can
occur. Unlike bootstrap percolation, however, the CCA and GHM are non-monotone cellular
automata, and there is no inherent monotonicity in d or . Nonetheless, the analog of a SPO
for CCA or GHM on Ty is a “rainbow” colored #-ary subtree (see Definition 3.1), and we
can use a more quantitative adaptation of the methods from [1] to show that percolation of
these structures leads to fluctuation. To prove Theorem 1.1, we rely on similar methods, with
some careful modifications, to identify (§ — 2)-forts of stable vertices, which cause the rest
of T} to fixate.

2. Proof of Fixation. We designate a root vertex p € Ty. For a pair of neighboring ver-
tices in Ty, we call the one that is closer to p the parent and the one that is farther from p the
child, and for any vertex in T we refer to its neighbors farther from p as its children, and
its neighbor closer to p as its parent. Throughout our proofs, we will assume addition and
subtraction of colors (£ and -y) are taken modulo «.

We begin with the definition of a rigid set, which we state for CCA (&), though it applies
also for GHM ().
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DEFINITION 2.1.  Let T be arooted tree and & € {0, ...,x—1}7. We say a set of vertices
S C T is rigid (for &) iff for any pair of neighboring vertices p,v € S such that p is the
parent of v, we have £y(v) — &o(p) # 1. Furthermore, we say a non-root vertex is rigid if the
set containing it and its parent is rigid.

Rigid k-forts play an important role in fixation due to the following observation.

LEMMA 2.2.

i) For CCA: If S C Ty is a rigid (0 — 2)-fort for &, then (§:(v))i>0 is a constant sequence
foreveryv e S.

il) For GHM: If S C T} is a rigid (0 — 2)-fort for ~yo, then y(v) # 1 forallt > 1 and v € S,
and so y(v) =0 forallt >k — 1 and v € S.

PROOF. We first show (&:(v))¢>0 is constant for every v € S. For a contradiction, suppose
t > 1 is the smallest such that there exists v € S with &(v) # &—_1(v). Then v must have at
least 6 neighbors w such that {1 (w) — &—1(v) = 1. Since v has at most (6 — 2) neighbors
outside of S, and at most one of its neighbors within S can be its parent, it must have at least
one child w € S such that {o(w) — &o(v) = &§—1(w) — &—1(v) = 1. This contradicts S being
rigid in &g.

We now show that 44 (v) # 1 for all £ > 1 and all v € S. We prove this by induction on
t. Let v € S. For 71 (v) =1 to occur, we must have yo(v) = 0 and v must have at least ¢
neighbors w such that 7(w) = 1. Since v has at most (§ — 2) neighbors outside of S, and
at most one of its neighbors within S can be its parent, it must have at least one child w € S
such that yo(w) = yo(w) — vo(v) = 1, which contradicts S being rigid in ~y. Therefore,
~1(v) # 1 for all v € S. Now suppose v;(v) # 1 for all v € S. Then every vertex of .S has at
most (6 — 2) neighbors outside of S, and so has at most (6 — 2) neighbors that can be in state
1 at time ¢. This implies .41 (v) # 1 for all v € S, which completes the induction. It follows
that y.(v) = 0 for all t > x — 1 and v € S since non-zeros initially in .S will reset to 0 in at
most x — 1 steps, and Os must stay 0 since no new 1s ever emerge in .S. O

Now the strategy of our proof is as follows. First, we show that an infinite rooted d-ary
tree contains a rigid (6 — 2)-fort that includes the root with large probability. Second, we use
this to show that all infinite non-backtracking paths from the root of T,; will intersect a rigid
(0 — 2)-fort almost surely, resulting in a finite, potentially non-fixated, connected subtree
containing the root. Last, we show that (&;) fixates over any such subtree. The first two steps
follow arguments similar to what was done in [1], though we make more explicit estimates to
obtain quantitative results. Also, it is crucial for our asymptotic results that we identify rigid
(0 — 2)-forts, rather than “strongly” rigid (6 — 1)-forts (see Definition 4.1), as suggested by
the proof of [1], otherwise Corollary 1.5 part (a) would require liminf d/(x6) > 2, and we
would not see the sharp transition.

We will use a well known Chernoff bound, which we include here for reference.

LEMMA 2.3. Let X be a binomially distributed random variable with mean . Then for
any 6 € [0,1],
JQM

PIX<(1-0)u)<e =.

We obtain the following binomial probability bounds, which will be applied in our proof
of fixation.



LEMMA 24. Ford>3, if & (9 — 3, /dln(d)) > d, then

2.1 P (Binom (d, (1 —d?) (1 —1/k)) <d— 60 +1) g%
and
(2.2) P (Binom (d—1,(1—d ™) (1 —1/k)) <d—0+?2) g%.

PROOF. Assume first that d > 3 and & (0 - &/M) > d. We will only prove (2.1)
since the proof of (2.2) is nearly identical. Since (6 — 3) > k (9 — SM) >d, we
have
dl—Z)(1-1)—(d—0+1)

d(1—z)(1-3%)
Applying Lemma 2.3 with this value of § gives
d* - P(Binom (d, (1 —d ?) (1 —1/k)) <d —6+1)

[ d(1—d2)(1—1/k) — (1 —0/d+1/d))?
<exp - 20— d2)(1—1/n) +21n(d)]

0=

<exp | =1 —d )1 = 1/m) — (1= 8/d+ 1)) + 21n(d)]

o 1 1 1 1)\°2
d_d2_n_d+ml2> *21““”]

(
<exp |- (9_1_1_1)2+2ln<d>].

=exp |—

By our assumption, we have % — % > 34/ —;~ and for d > 3 we have L4 lc In(d)

Hence,

d* - P(Binom (d, (1 —d™?) (1 — 1/k)) <d —6+1)

2
< exp —g (2 hl(d)) +21In(d)

d

=1.

Thus for d > 3, we have (2.1) as desired, and (2.2) follows in a similar manner, where d > 3
is again sufficient. O

With these tools in hand, we move on to the first step in our proof. We define the rooted
d-ary tree T4 to be the infinite tree with root node p such that every vertex has degree d + 1
except for the root, which has degree d. That is, every vertex of 7Ty has d children. We let &
be a uniform random coloring of the vertices in 7.
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LEMMA 2.5. Let E be the event that & does not contain a rigid (0 — 2)-fort that includes
the root of Tq. For d > 3, if k (0 - 3\/dln(d)) > d, then P(E) < 4.

PROOEF. Given the color of the root p € T4, we may think of the rigid subtree containing
1

the root as a Galton-Watson tree with offspring distribution Binom(d, 1 — -). The success
probability in the offspring distribution is 1 — % because for the subtree being constructed to
remain rigid, each child must only avoid the color that is one greater than the parent’s color.
The root p is in a rigid (@ — 2)-fort if and only if p has at least (d — 6 + 2) rigid children
and, in the forest obtained by removing p from 7y, at least (d — 6 + 2) of these must be
contained in a rigid (6 — 2)-fort. The maximal disjoint trees obtained by removing p from 7y
are copies of 74, and since F° is independent of the color of the root in 73, we have that each
child of p is independently both rigid and in a rigid (6§ — 2)-fort of 75 \ {p} with probability

(1-1)(1 —P(E)). It follows that P(E) is a fixed point of the function
Bi(z) :=PBinom(d,(1 —z)(1-1/k))<d—0+1),

for z € [0,1] (see Figure 1). Since the Binomial cdf is decreasing in its success probability,
B () is a monotonically increasing function on [0, 1] with B1(0) > 0 and By (1) = 1. While
x =1 is a fixed point, we will show that P(E) is the smallest fixed point of B;(z) in [0, 1].

Let y,, be the probability that p is not in a rigid (¢ — 2)-fort in 7; truncated at distance n,
then yo =0, Yn+1 > yn and y,+1 = Bi(yy). Clearly we have limy,, <P(E), and we claim
that lim y,, = P(E). Observe that if p is in a rigid (§ — 2)-fort in 7T truncated at distance
n for every n > 0, then by considering successive subsequences, we can identify an infinite
rigid (6 — 2)-fort in 7; that contains p as follows. First include a set of d — 6 + 1 vertices at
distance 1 from p that appear together in truncated (6 — 2)-forts for infinitely many values
of n, and form a subsequence n/,lC from these values of n. Now proceed by induction: given
the subsequence nZ‘_l, include a set of vertices at distance m from p that appear together
in truncated (6§ — 2)-forts for infinitely many values of nkmfl, and from these values form
the subsequence nj'. The set of vertices that are eventually included form an infinite rigid
(0 — 2)-fort in T4, and this implies lim(1 — y,,) < P(E€), so we have equality.

By Kleene’s fixed-point theorem, P(E) is the smallest fixed point of B; (x). Furthermore,
if there exists o € (0,1) such that By (zg) < xo, then P(E) < 2. By (2.1) in Lemma 2.4,
we have By (d2) < d =2, so P(E) < d~? as desired. O

LEMMA 2.6. Suppose k (9 — 34/ dln(d)) > d > 3. Then with probability 1 every infinite

non-backtracking path in Ty starting at p will intersect a rigid (6 — 2)-fort. Moreover, if Ey,
is the event that there exists a non-backtracking path of length n starting at p that does not
intersect a rigid (0 — 2)-fort, then

P(E,) <d ™.

PROOF. By Lemma 2.5, if E is the event that an infinite rooted d-ary tree does not contain
a rigid (6 — 2)-fort beginning at the root in the initial configuration, then P(E) < & for
sufficiently large d. Now let E’ be the event that in an infinite rooted tree with d — 1 children
at the root and d children everywhere else, there does not exist a rigid subtree S that contains
the root, (d — 6 + 3) children of the root and (d — 6 + 2) children of every other vertex in S.
Note that such a rigid subtree exists if and only if the root of this tree has at least (d — 6 + 3)
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Fig 1: The values of the smallest fixed point of B; as x and d vary for § = 3 (left) and 8 = 5
(right). The smallest fixed point of By determines the probability that a rigid (6 — 2)-fort does
not contain the root of a d-ary tree. This probability is equal to 1 on the yellow regions, and is
strictly less than 1 on the green-blue regions. For fixed d and 6, once x exceeds the threshold
value where the smallest fixed point drops below 1, the smallest fixed point of B; quickly
approaches 0. The threshold for x appears to be nonlinear in d, at least for these small values
of 6 and d.

rigid children and, in the forest obtained by removing the root, at least (d — 6 + 3) of these
must be contained in rigid (6 — 2)-forts. Therefore, we have

P(E') =P (Binom (d — 1, (1 — P(E)) (1 — 1/k)) <d — 0+ 2)

. _ 1
<P (Binom (d—1,(1-d %) (1-1/k)) <d—0+2) < o
The first inequality follows from Lemma 2.5 and the fact that the Binomial cdf is decreasing
in its success probability. The second inequality follows from (2.2) in Lemma 2.4.
Let (v¢)j be a non-backtracking path in T}; of length n such that vy = p, and define the

events
Fy, :={vy is in arigid (0 — 2)-fort disjoint from {v,: £ # k}}

for k =0,...,n. For fixed n, note that Fy, ..., F), are independent. Additionally, P(F}) >
1-P(E') fork=1,...,n—1and P(Fy) = P(F,) >1—P(E). So we have

P((vg)g does not intersect a rigid (6 — 2)-fort)

n n 1 n+1
<P (ﬂ Fk> =11 - P(F) <P(E)PE)" < <ﬁ> .

k=0 k=0
Let E,, be the event that at least one such path of length n does not intersect a rigid (6 — 2)-

fort. Then
1 n+1 1 n
P(E,) < nd* - | = <[ =
astasne (3)7 < (2)

gOIP’(En) < g} (%)n < .

Thus by the Borel-Cantelli lemma, all infinite non-backtracking paths will intersect a rigid
(0 — 2)-fort almost surely. O

and so
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The last ingredient before the proofs that CCA and GHM fixate is that (&;) and () fixate
on finite trees.

LEMMA 2.7.  Suppose 0 > 2 and let T be a finite, rooted tree.

i) If deg(v) < k(0 — 1) for all v € T, then (&) fixates on T for all initial colorings & €
{0,...,k —1}7.

ii) If T has depth n, then for every initial coloring vy € {0,...,x —1}1 and every v € T we
have y(v) # 1 forallt >n+ 1, and v,(v) =0 forall t > n + k.

PROOF. For CCA (&), we prove (i) by induction on the depth of the tree. If the tree has
depth n = 0, and consists of just a single node, then clearly (&) fixates at time 0. Suppose
now that (&;) fixates for all £, on every tree with depth n — 1 satisfying the degree condition,
and let T" be a tree with depth n satisfying the degree condition. Observe that it suffices to
show that all vertices in 7" at depth at least n — 1 fixate by some step V. Indeed, let 7" be
the depth-(n — 1) rooted subtree of 7" with only the depth-n vertices of T removed, and let
(&;) be the CCA dynamics on 7" with £)(v) = {n(v) for v € T”. Then since the vertices at
depth n — 1 in T' do not change colors after time N, we have & (v) = &4 n(v) forall ¢ >0
and v € T". Since (&) fixates on 7" by the induction hypothesis, we have that (&;) fixates on
T'. It remains to show that vertices at depth at least n — 1 fixate.

Let v € T be a vertex at depth n — 1 from the root. Since 6 > 2, all leaves of T" never
change color, and this includes all vertices at depth n from the root, and in particular all
children of v. Suppose for the sake of contradiction that v fluctuates. For each color c €
{0,...,k — 1}, let A(c) = {u:wisachild of v and {,(u) = c}. If n = 1, for fluctuation to
occur we must have |A(c)| > 6 for every ¢, and deg(v) = > |A(c)| > kO > k(6 — 1), which
gives a contradiction. If n > 2, for v to fluctuate we must have |A(c)| > 6 — 1 for every
¢, and deg(v) — 1 = ZZ;& |A(c)| > k(6 — 1), so deg(v) > k(0 — 1). This again gives a
contradiction, so v must fixate in (&;).

For GHM, to prove (ii) we claim that if 7" has depth n, then at time ¢ € [0,n + 1], no
vertices at depth at least n — ¢ + 1 are excited (color 1) at time ¢. It follows that at time n + 1,
there are no excited vertices in 7', so y; = 0 for all ¢ > n + k. We prove the claim by induction
on t. Clearly there are no vertices at depth at least n 4 1, so the claim holds for ¢ = 0. Suppose
there are no excited vertices at depth at least n — ¢ + 1 at time ¢ € [0, n], and consider a vertex
v € T at depth at least n — t. Then v has at most one excited neighbor at time ¢, and therefore
cannot be excited at time ¢ + 1. This completes the induction and the proof. O

We can now complete the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. We start by proving fixation for CCA. It suffices to show that
p fixates almost surely. Let A = {v € T}; : v is in arigid (6 — 2)-fort} and let C), be the con-
nected component containing p in 7 \ A. Lemma 2.6 implies C,, is finite almost surely. Let
T be the induced subtree on the vertices C, U 9C,,, where 9C, C A is the set of vertices
outside C), with one neighbor in C),, and we take 0C,, = {p} if C,, = (. By Lemma 2.2, the
vertices in C), never change color, which implies the dynamics on 1" (with the initial color-
ing inherited from T}, but ignoring vertices outside 7") are the same as the dynamics on Ty

within C, U dC,,. Since (9 - 3\/dln(d)) >d, we have k(f — 1) > d+ 1, and Lemma 2.7
implies that (&;) fixates on 7" which contains p. This completes the proof for CCA.
Now we prove fixation and the exponential tail bound for GHM. Let 7 = sup{t > 0 :

Y(p) =1}, and let A, C,,, 9C, and T be as above. Let E,, be the event that there exists a
non-backtracking path of length n starting at p that does not intersect a rigid (6 — 2)-fort, so
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that Lemma 2.6 implies P(E,,) < d~". Observe that T" has depth at least n + 1 if and only if
E,, occurs. By Lemma 2.2, we have y;(v) # 1 for all ¢ > 1 and v € 9C),, and this property is
maintained even if all vertices of T;; outside C), U 9C), are initially removed. Therefore, the
dynamics in 7" and T}; are the same on C,, U 9C,. Lemma 2.7 implies that for n > 0,

P(r >n+1) <P(T has depth atleast n + 1) =P(E,) <d™ ",

which completes the proof. O

3. Proof of Fluctuation. We prove fluctuation on 7 using similar percolation argu-
ments, except now “rainbow” subtrees take the place of rigid k-forts. We state the definition
for CCA, but it applies in the same way to GHM.

DEFINITION 3.1. Let 7 be an infinite tree and & € {0,...,x — 1}7. We call a rooted
subtree R C T" a rainbow subtree of 1" (for &) iff for each v € R and each child w € R of v
we have {o(w) = &o(v) + 1.

The following simple observation justifies the definition.

LEMMA 3.2. If R is an infinite 0-ary rainbow subtree of Ty for & (resp. o), then
&r1(v) =& (v) + 1 (resp. yi41(v) = (v) + 1) forallt > 0 and v € R.

We will show that an infinite d-ary tree has an infinite §-ary rainbow subtree that contains
the root with large probability, then use this to show that almost surely every infinite non-
backtracking path in T} intersects an infinite -ary rainbow subtree. We will then show that
finite trees with leaves that increment their colors at every step must fluctuate and eventually
be x-periodic. Finally, we will put these pieces together to complete the proof of fluctuation.

LEMMA 3.3. Letd>2, 0> 2 and k > 3. Suppose E is the event that an infinite rooted
d-ary tree does not contain an infinite 0-ary rainbow subtree that contains the root in the

initial coloring. If k(6 — 1) < d — \/6dr In(d), then P(E) < .

PROOF. Let E be the event that an infinite rooted d-ary tree 74 does not contain a rain-
bow subtree in the initial coloring, whose root coincides with the root of 7;. Note that E' is
independent of the color of the root. Let p be the root of this d-ary tree. Given the color of p,
we have a #-ary rainbow subtree rooted at p if and only if at least § children of p have color
&o(p) + 1 and each is the root of a (disjoint) rainbow subtree. For each child of p, this occurs
independently with probability (1 — P(E))(2). It follows that P(E) is a fixed point of the
function

By (z) =P(Binom(d, (1 —z)/k) <6 —1)

on [0, 1] (see Figure 2). Since the Binomial cdf is decreasing in its success probability, Ba(z)
is an increasing function on [0,1] with B2(0) > 0 and By(1) = 1. While z =1 is a fixed
point, we will show that P(E) is the smallest fixed point of By in [0, 1].

Let y, be the probability that there is no finite (perfect) f-ary rainbow subtree of 7; that
contains p and has depth n. Then yo = 0 and y,+1 > y,, and y,+1 = Ba(y,) and y,, —
P(FE) as n — co. By Kleene’s fixed-point theorem, P(F) is the smallest fixed point of Bs.
Furthermore, if there exists zo € (0,1) such that Ba(zg) < zo, then P(E) < z¢. To bound
Bs(z) we use Lemma 2.3 with

d(l—z)—k(0—-1)

0= d(1— )
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We have § > 0 whenever

(3.1) x < W.

Since k(0 — 1) < d — /6dr1n(d), = satisfies (3.1) when z < %g(d). Let 79 :=d 2 and
note that d—2 < A/ %‘?(d) forall d > 2 and x > 3, so

xy " Ba(wo) = x5 " - P(Binom(d, (1 — x0)/k) <6 — 1)

[4(1—20)— (0 - 1)
S R )
[ —x0) — k(0 — 1))
= exp _— (1 QdZ)(l—C(C?)) D) —ln(aso)]
[ [d— k(0 —1) — dxo]
(62) S _ln(%)]
[ [\/Gdnln(d)—d_lr
<exp | — + 21In(d)
2dk
— exp | ~3In(d) [1 Y \/6d3/~cln(d)] g 21n(d)}

<1
1 .
for d > 2 and x > 3. Thus, P(E) < 5 as desired. O
Smallest Fixed Point of B3(x), =2 Smallest Fixed Point of B;(x), =10

1000 1000
i 140

1 0.100 120 0.100
1 100

- =

S aod S &

g 0.001 g 0.001
£ 1 5 &
40 40
1 20

1 0.000 3 0.000

200 400 500 800 1000 200 400 600 800 1000
Values of d Values of d

Fig 2: The value of the smallest fixed point of By for § = 2 (left) and # = 10 (right) as a
function of x and d. This fixed point is equal to the probability that an infinite #-ary rainbow
subtree does not appear at the root of an infinite d-ary tree. The threshold value of x, below
which this probability is smaller than 1, appears to be almost linear in d for small 6.

LEMMA 34. If0>2 k>3,d>4and k(0 —1) <d— /6drIn(d), then almost surely
every infinite non-backtracking path from the root in Ty will intersect an infinite 0-ary rain-
bow subtree.
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PROOF. By Lemma 3.3, if E is the event that an infinite rooted d-ary tree does not contain
a rainbow subtree beginning at the root in the initial configuration, then P(E) < % for k,d
and 6 satisfying the conditions of the lemma. Now let £’ be the event that an infinite rooted
tree with d — 1 children at the root and d children of every other vertex does not contain an
infinite #-ary rainbow subtree that shares the same root in the initial coloring. Then,

P(E') = P(Binom(d — 1, (1 — P(E))/k) <0 — 1)
2
d-12=2

for d > 4. In the first inequality we use Lemma 3.3 and the fact that the Binomial cdf is
decreasing in its success probability. The second inequality follows from (3.2) after replacing
dbyd—1.

Let (vg)( be a non-backtracking path in Ty of length n such that vy = p, and let

< P(Binom(d —1,(1 — (d—1)"?)/k) <0 —1) <

F}, = {v is the root of an infinite f-ary rainbow subtree disjoint from {v,: ¢ # k}}

for k = 0,...,n. Note that for a given path, Fp,...,F;,, are independent. Additionally,
P(Fy) >1—P(E') forall k € [1,n — 1] and P(F},) > 1 — P(E) for k = 0, n. Therefore,

P((vg)g does not intersect an infinite #-ary rainbow subtree)

n n ) ) 92 n+1
<P (ﬂ Fk> =[[1-P(F) <P(E)’P(E)" < <d2> .
k=0

k=0

Let F,, be the event that there exists a non-backtracking path of length n from p that does not
intersect an infinite #-ary rainbow subtree, then

P(Ey) < (d+1)d" - <d22>”“ . <(21>"

gP(En) < g% (j)n < 00.

Thus by the Borel-Cantelli lemma, all infinite non-backtracking paths from p will intersect
an infinite #-ary rainbow subtree almost surely. O

and so

We now prove Theorem 1.2.

PROOF OF THEOREM 1.2. We give the proof for CCA, (&;), and the proof for GHM, (7;),
is identical. Let

A= {U GTdtﬂNEZZD, &.H(v) :&(U) +1Vt> N},

be the set of vertices that eventually change their state at every time-step. To prove Theo-
rem 1.2, it is equivalent to show A = T, almost surely, for which it suffices to show that
p € A almost surely. Let C,, be the connected component containing the root p in T} \ A,
where C, = 0 iff p € A. Let R C Ty be the set of all vertices that are contained in infinite 6-
ary rainbow subtrees. Lemma 3.2 implies R C A. By Lemma 3.4, the connected component
containing p in T \ R is finite almost surely, so C\, C Ty \ A C T, \ R is also finite almost
surely.

Suppose for the sake of contradiction that C), # ). Let v be a leaf in C),, which exists
since C), is finite. Since all d children of v in T}; are in A, there exists N > 0 such that the
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children of v all change colors at every time-step after time V. Since x < d/(0 — 1), by
the pigeonhole principle, at each time ¢ there exists a set of at least # children of v that all
share the same color. Call one such set of vertices S;. For each ¢ > N, since the children of
v increment their colors at every step we can choose S; = Sy =: S. Since v € C, C T\ A,
the collection of times at which v does not change colors is infinite, so after time N the color
of the vertices in S will eventually catch up to the color of v. That is, there exists N/ > N
such that Env(¢) =&y (v) + 1 for all ¢ € S. Since |S| > 6, we have {41 (v) = En/(v) + 1,
and since N’ > N, we have {n41(c) = Eni(¢) + 1 = Env(v) + 2. By induction, we have
§r41(v) =& (v) + 1 forall t > N’, so v € A, but this contradicts v € C,,. Therefore, C, = ()
almost surely. O

4. Fixation for smaller 6.

Fixation for CCA. We begin with the definition of a strongly rigid set, which replaces the
role of a rigid set for smaller 6.

DEFINITION4.1.  Let T be arooted tree and &y € {0, ..., x—1}T. We say a set of vertices
S C T is strongly rigid iff for any pair of neighboring vertices u,v € S we have {,(v) —
&o(u) # 1. Furthermore, we say a non-root vertex is strongly rigid if the set containing it and
its parent is strongly rigid.

For large values of 0, we seek rigid (6 — 2)-forts to guarantee fixation, but for smaller
values of ¢ and larger &, it is more likely that we will find strongly rigid (6 — 1)-forts in the
initial configuration, which also guarantee fixation, as stated in the next lemma. The proof of
Lemma 4.2 is nearly the same as the proof of Lemma 2.2, so we omit it.

LEMMA 4.2.

i) For CCA: If S C T, is a strongly rigid (6 — 1)-fort for &y, then (§:(v))e>0 is a constant
sequence for every v € S.

il) For GHM: If S C T} is a strongly rigid (0 — 1)-fort for ~y, then vi(v) # 1 for all t > 1
andv € S, and so v (v) =0forallt> Kk —1andv € S.

Instead of a Chernoff bound, for smaller 8 we use the following binomial bound.

LEMMA 4.3. Let X be a binomially distributed random variable with mean . Then for
any k > 1,

P(X > k) < (%)k

PROOF. Suppose X counts the number of successes in n independent trials with success
probability p, so u = np. The expected number of size-k subsets of the n trials such that all
k trials are successes is (Z) p¥, and Stirling’s approximation gives k! > (k/e)¥, so Markov’s
inequality gives

PIX > k) < <n>pk§n""pk§ (np)* _ (%)k
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LEMMA 44. Ifd>0>3andp= éd*((’*l)/(eﬂ) and k(0 —2) > 9ed' "7 then

4.1) P (Binom (d, (1 —p) (1 —2x71)) <d—0) <p,
and
(4.2) P (Binom (d—1,(1—p) (1 —2&7")) <d—0+1) §3271'

Ifd>2andq= %d*‘l and k > 12d3, then

(4.3) P (Binom (d, (1 —¢q) (1 -2&71)) <d—2) <gq,
and
(4.4) P (Binom (d — 1,(1— ¢) (1—2x~1)) <d —2) 337112,

PROOF. Rewriting the left side of (4.1) in terms of the complementary binomial distribu-
tion then applying Lemma 4.3, we have
P (Binom (d, (1 —p) (1 —2&7')) <d —0)
=P (Binom (d,1 — (1 —p) (1 —2x7")) > 0)
<P (Binom (d,p + 2/$_1) > 0)

(4.5) f;<ap+znwe>9

0

_ (edp N 2ed\?

RN kO )
We verify that this is less than p by showing each summand within the parentheses is smaller
than %pl/e. Since 6 > 3, we have

edp 1 1 1 1 BRI

6~ 30d/02 =2 (3¢)1/8 go-0/pE-2] 2P

which bounds the first summand. For the second summand, we have
2ed 2ed 2ed 1 1 1 1
— = < 1 S a . = —=
KO ~ k(0 —2) T gegitis 2 (3e)1/0 dO-1/6(6-2)] 2

which completes the verification that the right side of (4.5) is at most p, and the proof of (4.1).
The proof of (4.3) is similar.
To prove (4.2), we proceed in the same way as in (4.5) to obtain

edp 2ed =2
) )

1/0
M

p

-2 wf—2

where we have bounded d — 1 above by d. We will bound from above each summand within
the parentheses on the right side of (4.6) by %dil/ (#=2) which yields (4.2), since (2/3)?~2 <
2/3 for 6 > 3. For the first summand, we have

(4.6) P (Binom (d—1,(1—p)(1—-2x7"))<d—0+1) < (

edp 1 /(06— 1 10—
— d-1(0-2) < — 4-1/(6-2)
0—2 3(0-2) -3 ’
and for the second summand we have
2ed 2ed

1 —1/00-2)
< -
R0—2) = <34

9ed'tiz 3

)
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which completes the proof of (4.2).
The inequality (4.4) follows from a simple first-moment calculation. O

The analogues to Lemmas 2.5 and 2.6 are stated below, and we omit their proofs in the
case d > 0 > 3 because they are nearly identical to their counterparts, but with Lemma 4.4
used in place of Lemma 2.4. For d > 6 = 2 we sketch the required modification. Recall that
74 denotes the infinite, full d-ary tree, and £ is a uniform random coloring of the vertices in

To.

LEMMA 4.5. Let E be the event that £ does not contain a strongly rigid (6 — 1)-fort that
includes the root of Tq. If d > 0 > 3 and p = éd—((’—l)/(‘?—?) and k(0 —2) > 9ed' "7z, then
P(E)<p.Ifd>0=2and q= 3d"* and > 12d3, then P(E) < q.

LEMMA 4.6. Ifd>60>3and k(6 —2) > 9ed! T 73 or ifd>0=2and k> 12d3, then
with probability 1 every infinite non-backtracking path in Ty starting at p will intersect a
strongly rigid (6 — 1)-fort.

PROOF. The proof for d > 6 > 3 is similar to that of Lemma 2.6. When d > 6 = 2, we
must modify the the proof of Lemma 2.6 as follows. Let F be the event in Lemma 4.5. In an
infinite rooted tree with d — 1 children at the root and d children everywhere else, we let E’
be the event that there does not exist a strongly rigid (d — 1)-ary subtree .S that contains the
root. Then

1
P(E") =P (Binom (d — 1,(1 —P(E)) (1 -2/k)) <d—2) < 32
by Lemmas 4.4 and 4.5.

Let (vs)j be a non-backtracking path in T}; of length n such that vy = p, and define the

events

Fy, := {v9i—1 and vy, are in a strongly rigid 1-fort disjoint from {v, : £ ¢ {2k — 1,2k} }}
for k=1,...,|n/2]. For fixed n, note that Fi,..., F|,/) are independent. Additionally,
P(Fy) > (1—2)1 -P(E"*>1—2 —2P(E') for k =1,...,|n/2], since Fy occurs if
vok—1 and vy, are the roots of strongly rigid (d — 1)-ary subtrees within the forest obtained

by removing the edges along the path (vy) and the edge {vor_1,vox } is strongly rigid. So we
have

P((vg)g does not intersect a strongly rigid 1-fort)

[n/2] [n/2] 5 1n/2) o\ (o2
cl = /
<P ﬂ Fi | = H [1—P(Fk)]§<ﬁ+2]P’(E)> §<6d2> ‘
k=1 k=1
Let E,, be the event that at least one such path of length n does not intersect a rigid 1-fort.
Then
5\ D/ \/3 n—1
< "o =5 < 2
P(E,) <(d+1)d <6d2> <@+1)d |4/
and so

iIP’(En) < i(d+ 1)d <\/§> < 0.

Thus by the Borel-Cantelli lemma, all infinite non-backtracking paths will intersect a strongly
rigid 1-fort almost surely. O
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PROOF OF THEOREM 1.3. The proof is identical to the proof of Theorem 1.1, but with
Lemmas 4.2, 4.5 and 4.6 replacing Lemmas 2.2, 2.5 and 2.6. O

Fixation for GHM. The method of the last section also yields fixation for GHM in the
specified region of parameter space, but we now give a simple argument that yields a larger
fixation region, at least for fixed # and larger d. The first step is the following lemma, which
gives a necessary condition for the root p € Ty to be excited at time ¢.

LEMMA 4.7. Letd>0>2and k > 3. For every t > 1, if y(p) = 1, then there exists a
0-ary subtree S C Ty rooted at p such that

* yo(v) =1 forallv e S at distance t from p,

* v(v) =0 forall v € S at distance t — 1 from p, and

o forme{l,...,k — 2}, we have yo(v) € {0,k — 1,...,k —m} forall v € S at distance
t—1—m from p,

where the set of vertices at a negative distance from p is empty.

PROOF. Given 7 and t > 1 such that v;(p) = 1, we will construct S up to level ¢, and
confirm that it satisfies the following stronger conditions. For each 0 < s <¢ we have

* Y—s(v) =1forall v € S at distance s from p,

* v—s(v) =0forall v € S at distance s — 1 from p, and

e forme{l,...,k — 2}, we have 3,_5(v) € {0,k — 1,k — 2,...,k —m} forallv € S at
distance s — 1 — m from p.

We start by including p in .S, and note that S will satisfy the conditions above for s =
0, which reduce to v:(p) = 1. For s = 1, since y:(p) = 1, it must be that p has at least
0 neighbors that are in state 1 at time ¢ — 1, and p must be in state 0 at time ¢t — 1. We
therefore include in S the first 6 of these neighbors according to some (arbitrary) ordering
on the vertices of Ty. Also, this confirms that S' satisfies the conditions above for s = 1 and
s = 0. Now we argue inductively, assuming we have constructed S up to level 1 < r <,
and the conditions above are satisfied for all s < r. For each v € S at distance r from p, we
have v;_,(v) =1 and its parent w € .S, which is at distance » — 1 > 0 from p has y;_, = 0.
Therefore, v must have at least 6 children in T} that are in state 1 at time ¢ — (r + 1), and
we include the first 6 of these in .S for each such v. Moreover, we must have v;_ (1) (v) =
0. This verifies S satisfies the first two conditions for s = r + 1. For the third condition,
note that for each u € S at distance r — 1 —m > 0 from p, we have v;_(_p,) (u) =0 by
the induction hypothesis. If it were the case that v, (u) € {1,2,...,k —m — 1}, then we
would have v;_ () (v) € {1 +m,2+m,...,x — 1}, and in particular, v;,_(, _,)(u) # 0, a
contradiction. This confirms the third condition. The construction of .S beyond level ¢ can be
done arbitrarily, so this completes the proof. O

We next need a bound on the number of f-ary subtrees of depth ¢ in 7.

LEMMA 4.8. Let d > 6 > 2. The number of full 8-ary subtrees of depth t > 1 that are

rooted at p in Ty is
d+1\ (d\ "
0 0 '
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PROOF. Let M; denote the number of full f-ary subtrees of depth ¢ > 1 rooted at p. There

are (‘“9'1) ways to choose the children of p in a #-ary subtree, so M; = (dgl). For each non-

leaf, non-root vertex in the subtree, there are (g) ways to choose its children, and there are 6°

vertices in the subtree at depth s. Therefore, for s > 1,

d\”
Ms+1:Ms<9> .

0+92+_._+9t—1
M, = d+1\ (d 7
0 0

which is equal to the claimed formula. O

It follows that

PROOF OF THEOREM 1.4. For t > k, by the union bound and Lemmas 4.7 and 4.8, we
have
4.7

== (N6 Q) Q) ()

. s ped gt—r+1
<<d+1) <de)0 /(6=1) 96"=2 30 ...(,4_1)]
—\ 0

0 k(0%=1)/(6—1)
since (g) < (de/6)?. We bound the product in the numerator by

{29“—330“-4 SN 1)} T {2"“_33"“_4 (k= 1)}

S ﬁ kl/@’“
k=2

= 1
= exp ngln(k)]
Lk=2

<1k
e[S
Lk=2

201
B

1/6~—1

4.8)

=exp

< 63/4.

Therefore, from (4.7), we have that for ¢t > x,

peeo) =1 = ("5 )

gt—r+1

de\ /01 7 g3/ /0D d+1\ _gons
de e < e
0 z f
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14+1/(6%—1)

whenever x > e (%) and 0 > 2 and s > 3. It follows that for ¢t > &,

d+1 _ps—rt1
}P’(ys(p):lforsomeSZt)§< 0 >Ze

s>t

d+1 _pt—r+1 —3
(e

s>0

1 t—r+1
§2<d—g >6_9 i

This gives the claimed tail bound on 7, and implies fixation.
When 6 = 2,3, we use the bounds (g) <d*/2 or (g) < d3/6 in (4.7) (instead of (g) <

3/4 (%)1-&-1/(2”—1)

(de/6)?), and repeat the same argument to get fixation for x > e when
) 141/(37—1)

0 = 2, and for x > /24 (.i when 6 = 3. In the case § = 3, we used the penul-

V6
timate line of (4.8) to obtain the exponent 292(3:%)2 = %. It is now straightforward to verify

the bounds on x which guarantee fixation for d given in the table. Moreover, when d = 6, we
have (g) =1, and it is easy to check from the first inequality in (4.7) that fixation occurs for
all k. O

5. Open questions. We suggest a few directions for further research into CCA and GHM
on trees. The first natural question is what happens for the small values of «,d and 6 not
covered by our theorems.

QUESTION 5.1.  Does fluctuation or fixation occur for GHM (or CCA) when d =3, 6 =2
and k= 3,4? What about d =4, 0 =2 and xk <6?

A second question is whether there are other possibilities besides fluctuation or fixation.

QUESTION 5.2. For GHM or CCA, do there exist values of d > 0 > 2 and k > 3 such
that

P(the state of p changes infinitely often) € (0,1)7
In our proof of fluctuation, we in fact show that every vertex is eventually periodic with
period . However, when 6 =1 and x = 3, [14] show that the asymptotic rate of fluctuation

is less than one for many infinite trees.

QUESTION 5.3. Do there exist d > 0 > 2 and x > 3 such that fluctuation occurs almost
surely, but with positive probability p is not eventually k-periodic?

Finally, one could investigate all of these questions for non-uniform initial coloring distri-
butions or on non-regular trees.
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