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ABSTRACT 

 

With the continuous modernization of water plants, the risk of cyber attacks on them potentially 

endangers public health and the economic efficiency of water treatment and distribution. This 

paper signifies the importance of developing improved techniques to support cyber risk 

management for critical water infrastructure, given an evolving threat environment. In particular, 

we propose a method that uniquely combines machine learning, the theory of belief functions, 

operational performance metrics, and dynamic visualization to provide the required granularity for 

attack inference, localization, and impact estimation. We illustrate how the focus on visual 

domain-aware anomaly exploration leads to performance improvement, more precise anomaly 

localization, and effective risk prioritization. Proposed elements of the method can be used 

independently, supporting the exploration of various anomaly detection methods. It thus can 

facilitate the effective management of operational risk by providing rich context information and 

bridging the interpretation gap. 

 

Keywords: operational risk; ICS cybersecurity; visual analytics; anomaly detection; water 

treatment plants 

  



1. INTRODUCTION  

 

The importance of reliability of computer-controlled for water infrastructure is well established 

(Coulbeck and Orr, 1993). The increasing global scarcity of water has led many providers towards 

developing smart water systems. These cyber-physical systems and their networked industrial 

control systems (ICS) face an increased risk of cyber attacks similar to one that was recorded over 

a decade ago in Australia, where around 120k people were put in danger by the water 

contamination due to cyber attack (Slay and Miller 2007). Another partially successful attempt to 

poison water was recently made in the U.S., threatening the health of around 15k individuals 

(Robles Frances and Perlroth Nicole 2021). Cyber attacks also can target water meters to 

manipulate the billing system and cause economic loss (Hassanzadeh et al. 2020). These are not 

isolated incidents but rather examples of numerous conducted attacks. According to DHS, the 

water sector demonstrates the fourth-largest number of incidents in the US (ICS-CERT 2015). 

Therefore, from both economic and public health perspectives, developing improved methods to 

support cyber risk management for critical water infrastructure is an imperative given an evolving 

threat environment.  

 

We approach this imperative from a data-driven cyber incident identification and characterization 

perspective. The detection of cyber attacks against ICS deployed in water facilities is a complex 

task that can rarely be solved using only automatic data mining methods. Numerous methods rely 

on anomaly detection as a technique to discover attacks against ICS (Ahmed et al. 2016). This is 

aligned with a precursor analysis approach to risk management, especially in the context of 

infrastructure systsems (Guo and Haimes, 2016), and involves monitoring and analyzing patterns, 

behavior, and events related to ICS assets to detect potential precursors to cyber attacks. 

Cybersecurity and forensics analysts face several challenges when exploring the massive number 

of records generated by a large number of heterogeneous ICS assets. These challenges include but 

are not limited to the scarcity of attack-related data, spatial-temporal characteristics of the collected 

data, and the interpretability challenges (Ahmed et al. 2020). The latter inevitably hinders the 

transition of anomaly detection methods to operations. 

 

Existing methods in this area include control-theoretic approaches (Bou-Harb et al. 2017; Busby, 

Green and Hutchison 2017), various machine learning algorithms (Elnour et al. 2020; Li et al. 

2019), and visual analytics (Kotenko et al. 2018; Lohfink et al. 2020). The first approach assumes 

the availability of a mathematical model of the system, which is often an impractical assumption. 

On the other hand, machine learning approaches can be scaled efficiently to support a modernized 

system or another ICS, which is a desirable quality in water facilities, where each deployed ICS 

can have its unique characteristics. Further, the values of visual analytics for network monitoring 

and classification, incident and malware forensics have been largely recognized by research and 

operational communities (Fischer et al. 2008; Wagner et al. 2015). 

 

Although these research endeavors provide sound methods for attack detection in ICS realms, they 

rarely offer the essential strategy to attribute assets and quantify the impact, which is a critical 

function towards cyber risk management. Without the ability to evaluate and determine the impact 

of the attack on ICS assets, efforts to transition risk inference methods to operations are hindered.  

 



To address these challenges, we propose a visually supported method that can be integrated into 

attack detection and forensics tools to guide domain experts through a set of tasks to examine a 

detected anomaly. To achieve this, we first employ a deep-learning architecture to fingerprint ICS 

behavioral patterns and detect abnormal behavior. The result from the inference engine is then 

passed to the visual analytics module that models domain-aware analytical reasoning and maps it 

to the appropriate visual techniques, views, and interaction. The expert user can then analyze 

inferred anomaly at a global level, decide whether it represents a false alarm, or look for more 

information at ICS asset level if it is impossible to reach a confident conclusion. Hence, we propose 

increased robustness of incident inference and analysis by including a human decision maker-in-

the-loop through the use of visual analytics. 

 

The rest of this article is organized as follows. In the next section, we briefly review related works 

and in section 3, we discuss the proposed method of analysis and outline the design components. 

In Section 4, we describe the experiment and report the result of applying our method to the data 

collected using a testbed emulating working water treatment system, and present preliminary 

insights regarding the water plant response to cyber attacks. Finally, in Section 5, we highlight the 

contributions of our method and discuss limitations and future work. 

 

2. A BRIEF LITERATURE REVIEW 

 

In this section, we highlight relevant risk management and cyber incident detection methods in 

ICS realms, as well as studies that leverage visual analytics for cybersecurity.  

 

2.1 Risk Management in Water Infrastructure 

Risk management studies related to water infrastructure vary in their focus, from the identification 

of threats to an assessment of their potential consequences. In a survey of the state of cybersecurity 

research in water systems over the past two decades, Tuptuk et al. (2021) found that research has 

predominantly focused on detection models and analyzing the impact of attacks. For instance, 

Davis et al ( 2014 ) developed an analytic framework to estimate the impact of contaminants in 

water distribution systems under varying network conditions. Other studies evaluate various threat 

management strategies (Zechman 2011). Pate`-Cornell et al. (2018) estimated the effectiveness of 

protection measures for critical infrastructure against the full spectrum of attack severity levels. 

While their cases do not include water infrastructure specifically, their example of power 

infrastructure has many relevant parallels to water infrastructure risk management.  Moraitis et al. 

(2020) described an approach to quantify the impact of cyber-physical attacks on water distribution 

networks. Shin et al. (2020) proposed a resilience metric to measure the ability of water systems 

to withstand, adapt and recover from cyber attacks. The urgent need to protect water infrastructure 

is also reflected in the growing recognition by policymakers to strengthen the cybersecurity 

resilience (Kott and Linkov, 2021) of water infrastructure through legislation. For example, in the 

U.S., the America’s Water Infrastructure Act of 2018 and the Internet of Things Cybersecurity 

Improvement Act of 2020, at the federal level, and some legislation at the state level, are focusing 

on strategies for securing water infrastructure (You, 2022). Further, critical systems such as water 

are closely linked to social order and wellbeing. Emerging ideas in systems engineering of complex 

system of systems (Haimes, 2018) and social systems engineering (Scalco and Palmer, 2022) have 

potential to provide cyber and safety assurance as we continue to develop interconnected and 

interdependent infrastructure systems. 



 

2.2 Cyber incident detection in Industrial Control Systems 

A cyber incident renders abnormal behavioral patterns, and numerous inference methods are 

defined as anomaly discovery problems and leverage control-theoretical and machine-learning 

approaches.  
 

The former method converts ICS architecture and process to a mathematical model and exploits it 

for incident identification and investigation. Some notable works include (Bou-Harb et al. 2017; 

Busby, Green and Hutchison 2017; Mo, Weerakkody, and Sinopoli 2015; Pasqualetti, Dörfler, and 

Bullo 2013; Chabukswar, Mo, and Sinopoli 2011; Henry and Haimes, 2009; Khanna and Liu 

2008). Yet, the ICS realm challenges the widespread application of control-theoretic approaches. 

For instance, ICS can have an inconsistent structure, depending on their type, technology, and 

continuous modification and optimization level. Therefore, while rendering superior results, using 

the identical model-based attack detection technique for ICS deployed in different settings seems 

impractical. Moreover, control charts such as Multivariate Cumulated SUMs (Woodall et al. 1985) 

and Multivariate Exponential Weighted Moving Average (Lowry et al. 1992) monitor the mean 

and variance of a time series over time to detect abrupt changes in its statistical behavior. Coupled 

with machine learning, control charts can enable proactive detection and response to cyber threats. 
 

Accordingly, the researchers consider data-driven methods to generalize the underlying system by 

employing deep learning algorithms operating on circulating ICS data. However, due to privacy 

and security issues, empirical data is rarely available. Moreover, these techniques require high 

computational power, while velocity and variety of data require advanced techniques to extract 

valuable insights. For instance, the methods that approach incident detection from data gathered 

by ICS sensors should consider multivariate time series. Prominent works herein include the 

application of Deep Neural Network (DNN) and Support Vector Machine (OSVM) (Inoue et al. 

2017), and Dual Isolation Forest (DIF) (Elnour et al. 2020). Anomaly detection using Generative 

Adversarial Networks (GANs) are employed across infrastructure sectors such as power plant 

(Choi et al. 2020), water treatment (Li et al. 2019.) and distribution (Du et al. 2021), in-vehicle 

network (Seo et al. 2018), to name a few. However, most works omit bridging captured anomalies 

with the ICS assets that significantly contribute to it, while it is an essential function toward cyber 

risk management. 
 

2.3 Visual Analytics 

A most relevant to our work direction of visual analytics in decision support is to visualize anomaly 

and multivariate data over time. A classical design to display anomalous trends in temporal data 

is statistical diagrams such as line charts, and histograms (Laskov et al. 2005). However, multiple 

lines in the same space reduce anomaly visibility; therefore, a glyph-based design has gained more 

popularity due to its practical usage of screen space. For instance, it captures the behavior of 

individual users based on their communication activities over time (Cao et al. 2015); it is used for 

computer network monitoring (Kotenko et al. 2018). Another notable technique - spiral plots - 

demonstrated its promising application for monitoring ICS assets (Lohfink et al. 2020) over time 

and allowing visual analysis of individual assets. Further, dashboards, similar to one proposed in 

(Bakirtzis et al. 2018), promote interactive security analysis to provide different views largely 

centered around the system and its associated attack vector space.  

 



In contrast to available contributions that allow visual analysis of detected attacks at individual 

assets, we offer an effective tool to explore anomalies simultaneously at all system levels: from 

generalized information for the entire system to business process and ICS asset level. The proposed 

model reasons the anomalies by allowing dynamic visual exploration and providing rich context 

information valuable for risk management. 

 

3. DEVELOPMENT OF THE METHOD 

 

This section first contextualizes the challenges of data-driven risk management methods. It then 

derives desired properties for such methods, followed by a detailed design of the proposed method.  
 

3.1. Application Domain and Challenges 

We consider a risk as a triplet 𝑅 = {〈𝑠𝑖, 𝑝𝑖, 𝑖𝑖〉} (Kaplan and Garrick 1981), where 𝑠𝑖 is an 

undesirable scenario identification, 𝑝𝑖 denotes a probability of the scenario, and 𝑖𝑖 is an outcome 

of an adverse scenario. Contextualized in the ICS cybersecurity domain, a set of triplets can be 

identified from past events, simulations, and the detection of ongoing cyber incidents and their 

digital forensics.  
 

3.1.1. Cyber Threat Model 

An analysis of the cyber incidents in critical sectors that combines those that reported in (Hemsley 

and Fisher 2018) and in an open-source literature renders the following observations regarding 

threat scenarios 𝑠𝑖 and outcomes 𝑖𝑖 (Table I). We further confirmed the consistency of our 

observations with a public knowledge base ATT&CK for ICS (Alexander, Belisle, and Steele 

2020). 

 

Table I. Cyber attack scenarios and their outcomes 
Identifier 

 𝑖 
Cyber attack scenario 

𝑠𝑖 

Cyber attack outcome 

𝑖𝑖 

1 An attacker injects false measurements, which 

are dynamically calculated by ICS during 

usual operation process 

An incorrect response of the PLC and lead undesired 

system state 

It can cause the reduced/elevated chemical injection 

and reduce the quality of purified water 

Undesirable state can lead to property damage and 

threaten safety. 

 

2 An attacker can inject false measurements 

without violating the control-flow integrity of 

ICS (evasion) 

All consequences of the scenario 1, without ability to 

detect the attack promptly. 

An operator can make incorrect decision based on 

corrupted data. 

 

3 An attacker sends a direct command to the 

actuator to maliciously manipulate of the 

current state 

Overflow/underflow in the tanks can cause the waste 

of resources. 

Damage of the critical components of ICS. 

Reduced amount of distributed potable water. 

 

4 An adversary can send command messages to 

perform actions outside of their intended 

functionality 

Activated system response outside the conditions and 

boundaries (open water pumps, activate alarms, etc.)  

 

5 An adversary can plant malware to encrypt or 

delete critical data 

Loss of data availability. 

Loss of the ability to perform intended functions.  

Financial loss due to inability to provide resources. 



 

When an attacker has opportunity, capability, and motivation to conduct the attack, the latter can 

be considered probable. ICS nowadays are connected to the network, providing plenty of 

opportunities for the attack to gain remote control over their operations. There is also an abundance 

of capability out there. The tools to accomplish attacks are available on the dark web at large, 

making it possible to gain access to them at little cost (Samtani, Chai, and Chen 2022). Moreover, 

many attacks are conducted by using the access permissions of current or former employees. Some 

incidents aim to demonstrate attacker capabilities; another is an act of retaliation by disgruntled 

employees (Slay and Miller 2007); it can also aim to disrupt another country's critical infrastructure 

(Case 2016). Given the above considerations and the mounting number of attempts to gain control 

over the critical infrastructure, we regard cyber attacks in this area as highly probable and 

concentrate efforts in this work on identifying the incidents 𝑠𝑖 and their impact 𝑖𝑖. 

 

3.1.2 Challenges of Data-driven Approach 

A risk management aims to focus the efforts on the significant threat scenarios and use appropriate 

techniques to convert data into valuable analytics for decision-makers (Bier 2020). As we define 

cyber incident detection as an anomaly inference problem and approach to the solution from a 

data-driven perspective, it is essential to acknowledge the corresponding challenges. Visibility and 

spatio-temporal characteristics of data generated by ICS introduce unique challenges for attack 

detection methods that solely rely on empirical data (S. Wang, Cao, and Yu 2020). Further, 

mapping data anomalies to the actual incident and confirming it is non-trivial due to the inherent 

dependencies between ICS devices (Ahmed, MR, and Mathur 2020). Moreover, given the high 

number of connected components, it is imperative to prioritize the remediation of cyber crises and 

further development by addressing the affected ICS assets first. Besides, we observe a lack of 

techniques to convert the results of anomaly detection methods to narratives that allow decision-

makers to interpret the outcomes (Neshenko 2020). 

 

Data availability. The primary reason for the lack of available data is its intrinsic sensitivity. Any 

leakage of the operational patterns can be used for crafting highly stealthy attacks that can lead to 

catastrophic consequences on operations of critical infrastructure and the human population. 

Another cause of data scarcity is the rarity of reported attacks. 

 

Spatio-temporal data. ICS data contains spatial and temporal attributes with complex correlations. 

For instance, water distribution can show a cyclical pattern in time depending on usage by 

consumers during the day and nighttime. Extracting insightful patterns from spatial datasets 

introduces additional challenges due to the complexity of spatial data types and relationships 

(Rashid 2012). Overlooked relations, however, can lead to inadequate attack detection accuracy 

and localization.  

 

Model scalability. Depending on their type, ICS deployed in various realms can have an 

incomparable structure. For instance, domestic and industrial wastewater treatment requires 

different filtering and disinfecting technology and advanced treatment such as oil separation and 

removing toxic dissolved organic ingredients, to name a few (EPA n.d.). Furthermore, ICS assets 

are prone to continuous modification demanding advanced scalable methods that can be directly 

employed for different systems. 

 



Attack localization. Nonlinear and dynamic nature of water facilities, particularly water plants, 

causes evolving data characteristics at different levels of ICS process. In addition, attack 

techniques constantly evolve to evade detection. In this context, data-driven methods, which 

explore behavioral patterns of a single element of the system, explicitly detect irregular behavior 

of the underlying asset; however, they fail to detect the coordinated incidents that affect whole 

system. At the same time, the techniques that engage multivariate data display a high level of false 

localization. Therefore, a balance between different perspectives to reduce false alarms and 

enhance operating efficiency is paramount need. 

 

Incident investigation. Empowering risk managers to drive consistent investigations and make 

more precise conclusions is one of the crucial considerations for transitioning the research to 

operation and must be noticed (Sommer and Paxson 2010). Unlike traditional rule-based or 

knowledge-based approaches, machine learning algorithms are designed to automatically learn 

from data and make decisions based on this learning. The latter results in highly accurate 

conclusions but can lead to a need for more transparency in decision-making. The proper incident 

investigation curated by the system will reduce dwell time, increase efficiency, and provide 

actionable insights. 

 

3.2 Required Properties 

Well-designed cyber risk management for ICS deployed in water plants should address mentioned 

challenges, support accurate inference and interpretation of the detected threats. We define the 

following required properties to meet this goal. 

 

Property 1: Ability to discover boundaries and dependencies between ICS assets without previous 

knowledge about its process model. 

Property 2: Ability to illustrate the status of the ICS system at each process level and individual 

asset, for the defined period. 

Property 3: Ability to display incident alarms with relevant information, including detection 

results, impact, and data overview. 

Property 4: Ability to display special warnings for the critical (predefined) ICS assets should an 

incident affect them. 

Property 5: Ability to evaluate the potential impact of the disruption and display it as an alarm. 

Property 6: Ability to allow configuration, including the maximum acceptable level of incident 

impact parameters.  

Property 7: Ability to facilitate of dynamic visual data comparison. 

Property 8: Ability to support browsing of relevant raw data. 

 

Table II associates the properties to the corresponding challenges. 

 

Table II. Mapping system properties to challenges 
Challenges Requirements 

Data availability Property 1 

Spatio-temporal data Property 1 

Model scalability Property 1 

Attack localization Property 2, Property 3 

Incident investigation Property 2 – Property 8 

 



3.3 Design of the Method 

As numerous techniques are proposed to improve cyber resilience, including those that focus on 

adaptive response, analytical monitoring, and dynamic representation (Ross et al. 2019), these 

techniques and the imperative need for cyber resilience quantification become a design foundation 

for our approach. 

 

In summary, the proposed approach (Fig. 1) consists of four core segments, which incorporate 

machine learning methods and interactive visualization (together known as visual analytics) to 

infer cyber incidents and their potential effect on directly and indirectly connected components of 

water treatment plants.  

 

 
Fig 1. The proposed method to assist cyber risk inference for water treatment plants 

 

As we define cyber incident inference as an anomaly discovery problem, the first module employs 

deep learning architecture to explore the boundaries and dependencies of the system and estimate 

the anomaly score. A score that exceeds a predefined threshold indicates the potential attack. 

Further, the anomaly localization module derives the exploited assets operating a belief function 

theory and various feature importance algorithms. Subsequently, the module "impact 

quantification" estimates the potential production loss that would indicate the severity of the 

incident impact. The role of cybersecurity and forensics experts is to (i) determine the initial 

parameters of the system and (ii) examine the validity of the output. To support evidence-based 

decision-making, module 4 maps domain-specific analytical strategies and results from the 

inference model to appropriate visual techniques, views, and interactions. We now adopt a granular 

perspective, highlighting the architectural design of each component. 

 

3.3.1. Behavior Fingerprinting and Attack Inference 

To discover boundaries and dependencies between ICS (Property 1) and infer incidents (Property 

2), we employ a generative and discriminative deep learning architecture known as a Generative 

Adversarial Network (GAN), inspired by the architecture proposed in (Donahue, Krähenbühl, and 
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Darrell 2016). The framework utilizes three deep learning networks: discriminator 𝐷, generator 𝐺, 

and encoder 𝐸; each plays a distinct role in the training and continuous working process. 

 

Let 𝑥𝑖 represent the physical measurement of the ICS sensor (or state of the ICS actuator) 𝑖; 𝑥 =
{𝑥1, … 𝑥𝑚} stands for an attribute vector, where 𝑚 is the number of ICS assets (variables). During 

the training phase, network 𝐸 receives attack-free behavioral vector 𝑥 and maps it to latent variable 

space. Simultaneously, the network 𝐺 models the data distribution as a fixed latent synthetic 

attribute vector 𝐺(𝑧) = {𝑥1
′ , … 𝑥𝑚

′ }. The network 𝐷 then receives the tuples (𝑥, 𝐸(𝑥)) and 

(𝐺(𝑧), 𝑧), discriminates them, and assigns the labels 𝑃(𝑦) = {0,1}, where 1 is a label for “real” 

data, and 0 is for “generated” data. To improve the accuracy of generated attribute vector, the error 

is back propagated to the network 𝐺 and the training process repeats. 

 

This architecture offers the salient capability for anomaly detection. First, trained network 𝐷 

distinguishes the normal operational behavior of ICS. The network 𝐷 takes the incoming attribute 

vector and extracts the distribution between fingerprinted behavioral patterns and a latent 

representation of incoming vector 𝐸(𝑥). It then returns the loss L𝐷(𝑥)  calculated based on sigmoid 

cross entropy (Eq.(1)). 

L𝐷(𝑥) = 𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐷(𝑥, 𝐸(𝑥)), 1) (1) 

 

Second, network 𝐺 generates a synthetic attribute vector with the same probability distribution as 

vector 𝑥. The difference between incoming and expected ICS behavioral patterns is calculated as 

a distance (𝑙1-norm) between actual and reconstructed instances and represents a residual loss  

L𝑅(𝑥) (Eq. (2)). 

L𝑅(𝑥) =∥ 𝑥 − 𝐺(𝐸(𝑥)) ∥1 (2) 

 

The significant loss value indicates the large difference between the incoming and expected 

behavioral vectors.  Further, an anomaly score is obtained as a weighted linear combination of 

L𝑅(𝑥) and L𝐷(𝑥) (Eq. (3)). 

𝑎_𝑠𝑜𝑟𝑒 = (1 − 𝛼)L𝑅(𝑥) +  𝛼L𝐷(𝑥) (3) 

where 𝛼 is a weighting parameter indicating the priority of the loss. If 𝑎_𝑠𝑐𝑜𝑟𝑒 ≥ 𝜃, where 𝜃 is 

predefined severity threshold, the detected cyber incident requires attention of cyber operator. 

 

3.3.2 Anomaly Localization  

To mitigate uncertainties in detecting the location of anomalies, this module approaches the 

anomaly detection problem from two distinct perspectives: (i) multivariate and (ii) individual. 

 

Multivariate perspective. Feature importance algorithms can serve as a medium for anomaly 

localization for the methods that solely rely on empirical data (Taormina et al. 2018a). The 

estimations of employed feature importance methods are recorded as 𝑓 = {𝑓1, … 𝑓𝑗}, where 𝑓𝑗 =

{𝑓𝑗
1, . . 𝑓𝑗

𝑚} denotes a vector representing importance of attribute 𝑚 for detected anomaly. 

 

To render better anomaly localization, we combine the independent outcomes produced by each 

method. To achieve the latter, we use a degree of belief (𝑏𝑗) that technique 𝑗 precisely estimated 

the relevance of the ICS assets to the anomaly. To this end, relative support (Yong et al. 2004), 

𝑅𝑆, representing a distance between the methods' estimations, is used to estimate the degree 𝑏𝑗.  



𝑏𝑗 = 𝑅𝑆(𝑓)/ ∑ 𝑅𝑆(𝑓𝑗)

𝑘

𝑗=1

 (4) 

 

𝑅𝑆(𝑓𝑗) = ∑ (1 − 𝑑(𝑓𝑖, 𝑓𝑗))

𝑘

𝑖=1,𝑗≠𝑖

 (5) 

Finally, we record a score 𝑠𝑚  denoting a degree of relevance of the variable 𝑚 to the anomaly.  

𝑠𝑚 = ∑ 𝑏𝑗 ∙ 𝑓𝑚

𝑘

𝑗=1

 (6) 

If 𝑠𝑚 is in the 75th percentile, we declare asset 𝑚 as an asset that is affected by the incident. The 

rationale behind the selection of the 75th percentile is as follows. We aim to determine a threshold 

that enables the identification of sensors under distress and minimizes false negatives. To this end, 

we empirically evaluated various percentile thresholds and found that the 75th percentile provides 

the optimal result. Our determination is critical for identifying affected sensors and can contribute 

to developing reliable systems.  

 

Localization based on individual variable. Inherent dependencies among ICS prevent the precise 

identification of exploited assets. To filter out the potential false positives, we verify the 

abnormalities in the measurements of individual assets. To this end, 𝑧 − 𝑠𝑐𝑜𝑟𝑒 for variables with 

𝑠𝑚 in 75th percentile is calculated. Formally, it is defined as  

𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑚 =
𝑎_𝑠𝑐𝑜𝑟𝑒(𝑥) − 𝜇

𝜎
 (7) 

where 𝜇 is the mean (Eq. (8)) and 𝜎 is a standard deviation of data during the time window (Eq. 

(9)); 𝑁 stands for a number of datapoints in the respective time window. 

𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑛

𝑖=1

 (8) 

 

𝜎 = √
1

𝑁
∑(𝑥𝑖 − 𝜇)2

𝑛

𝑖=1

 (9) 

Datapoints with 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑚 that is beyond three standard deviations of a given data sample is 

classified as abnormal (Aggarwal 2017) and as a potential false positive otherwise.   

 

Final localization. We further obtain a final localization score 𝑙𝑚 for each ICS asset 𝑚 by 

employing weighted linear combination of 𝑠𝑚 and 𝑧 − 𝑠𝑐𝑜𝑟𝑒 (Eq. (10)) .  

𝑙𝑚 = (1 − 𝛼) ∙ 𝑠𝑚 + 𝛼 ∙ 𝑧 − 𝑠𝑐𝑜𝑟𝑒𝑚 (10) 

where 𝛼 is a weighting parameter governing the effect of each perspective on the final localization 

score. A larger score 𝑙𝑚 highlights the variables representing ICS assets, whose measurements 

influence the anomaly score, therefore, portrays the affected assets.  

 

 

 



3.3.3 Impact Quantification    

To quantify the adverse effect of the cyber incident 𝑠𝑖 (Properties 3 and 5), we estimate 

performance loss 𝑃𝑙𝑜𝑠𝑠 as a function of production and quality loss (Wei and Ji 2010), 𝑃𝑟𝑙𝑜𝑠𝑠 and 

𝑄𝑙𝑜𝑠𝑠, respectively.   

 

𝑃𝑙𝑜𝑠𝑠(𝑠𝑖) = 𝑓(𝑃𝑟𝑙𝑜𝑠𝑠, 𝑄𝑙𝑜𝑠𝑠) (11) 

 

Although the attack intentions vary, in this work, we focus on quantification of the threat of 

malicious regulation of water levels in tanks. To enrich the incident investigation and 

characterization for the production loss, we employ the indices suggested in (Taormina et al. 2017.) 

We employ the limited number of metrics to evaluate the feasibility and effectiveness of the 

designed system before comprehensive implementation. 

 

The first index, 𝑇𝑢𝑛𝑑𝑒𝑟 assesses the amount of time during which an attacked asset led to tank 

underflow: 

𝑇𝑢𝑛𝑑𝑒𝑟 = ∑ 𝑙𝑡∆𝑡

𝑇

𝑡=1

 (12) 

where 𝑙𝑡 is an indicator defined as follows. 

 

𝑙𝑡 = {
1 ,                 ℎ𝑡 < 𝑙,
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (13) 

where ℎ𝑡 is a water level of the attacked tank, 𝑙 is lower acceptable water level.  

 

Similar index, 𝑇𝑜𝑣𝑒𝑟, is employed to estimate the amount of time during which an attacked ICS 

asset lead tank overflow: 

𝑇𝑜𝑣𝑒𝑟 = ∑ 𝑙𝑡∆𝑡

𝑇

𝑡=1

 (14) 

where 

𝑙𝑡 = {
1 ,                 ℎ𝑡 > 𝑢,
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (15) 

and 𝑢 is upper acceptable water level. 

Further, 𝑇𝑢𝑛𝑑𝑒𝑟 and 𝑇𝑜𝑣𝑒𝑟 are compared with predefined threshold 𝜃𝑢 and 𝜃𝑜, to assign a 

corresponding level of the severity of the production loss. 

𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑢𝑛𝑑𝑒𝑟 = {
1 ,          𝑇𝑢𝑛𝑑𝑒𝑟 < 𝜃𝑢,
0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (16) 

 

𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦𝑜𝑣𝑒𝑟 = {
1 ,          𝑇𝑜𝑣𝑒𝑟 > 𝜃𝑜 ,
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (17) 

The respective mitigation procedure should be employed for the cases with severity level 1. 

 

3.3.4 Visual Analytics  

The result from the inference and impact quantification modules is passed to the interactive 

visualization module, where the domain expert can analyze inferred anomalies. To achieve this, 

we use visual analytics (VA), a transdisciplinary field involving several components that maximize 

the human capacity to perceive, interpret, and reason complex data and events. These components 



include analytical reasoning to provide insights that support decision-making, visual interaction 

techniques to enable the interpretation of extensive data, data transformation methods to promote 

analysis, and various methods for result dissemination to communicate analytical results to diverse 

audiences (Thomas and Cook 2006).  

 

Some unique aspects of analysis in the ICS settings include (i) inherited dependencies among 

subsystems and individual assets of ICS. It signifies that monitoring individual ICS assets is 

insufficient. There is a need to (ii) separate the facts from false alarms. Finally, it is essential (iii) 

to generate insights into the impact on the physical environment. To this end, the following 

strategies and their respective visual representation support the VA for anomaly investigation in 

ICS operations. 

 

Strategy 1: Comprehensive monitoring. Situational awareness and preliminary triage of anomalies 

in ICS assets require simultaneous monitoring of many connected assets. Essential inquiries for a 

complete understanding of an incident may include but are not limited to: Which ICS assets are 

exploited and to what extent? What type of exploitation is taking place? Which incident requires 

immediate attention? How quickly can the system recover from an attack? (Property 2) 

 

To this end, the detection view (Fig. 2) shows the distribution of anomalies across ICS in the feature 

space for a selected period. 

 

 
Fig 2. A layout of detection view 

 

The view is a multilevel circular layout, each level of which represents the system process level. 

The circle is divided into 96 regions expressing 15 minutes intervals of operational hours; every 

four intervals grouped in one-hour periods to clearly communicate the cyber state of ISC at each 

point in time. The anomaly score is represented as a bar in the inner circle, and the anomaly 

threshold is a highlighted area (Property 6). The position of the bar in the shaded area indicates 

the anomaly and requires investigation. In the process level context, the visual model shows 

anomaly ranking for ICS assets for each hour. The representation also includes the confidence 

level that the attack has affected each ICS asset. Moreover, most critical assets are clearly defined 

to capture the immediate attention of cyber analysts or investigators. To this end, we employed the 



pulsation technique and the color like the threshold to stress the importance and separate anomaly 

score (Property 4.) 

 

Strategy 2: Inspection at process level.  The inspection view (Fig. 3) allows a closer look at the 

details of the anomaly score chosen from the detection view. 

 

 
Fig 3. A layout of inspection view 

 

Specifically, the view is a network graph, the nodes of which symbolize ICS assets. Central nodes 

represent ICS process levels and consolidate their elements. The edges that connect various assets 

depict the correlation between individual sensors and actuators. The graph illuminates the edges 

only between strongly correlated assets. This representation provides supplementary information 

for investigating threat impact. The dark color contrasts the attacked assets, while the pulsation 

lightens the most critical attacked assets to properly prioritize the analysis (Properties 2, 4, and 5.) 

 

Strategy 3: Prioritization. By selecting an individual asset from the detection or inspection view, 

the expert navigates to the ranking view (Fig. 4), which provides numerous ranks that support 

evident-based prioritization for remediation and risk management.  

 

 
Fig 4. A layout of ranking view 

 

The ranking view brings attention to the following rank types for ICS asset investigation: 

Individual asset at the specific process level

Process level (not attacked) 

Attacked individual asset

Attacked process level

Attacked critical asset

FIT601P6

P602

Correlated assets

ICS asset:

Rank: 

z-score:

Flow level:
overflow

underflow

0% 50% 100%

0 2 4 6
Thresholds

Adverse effect alarm

Exploitation ranks

b



• a degree to which ICS asset contributes to the anomaly given the relationship between 

system components (estimated as 𝑠𝑚 by the localization algorithms) 

• degree of abnormality at the individual asset level (𝑧 − 𝑠𝑐𝑜𝑟𝑒) 

• an impact of the attack on ICS operation (estimated based on predefined indices) 

The shaded areas represent predefined thresholds: if not meaningful, the rank value will not hit 

this area (Properties 3-6). 

 

Strategy 4. Inspection at individual level. To investigate anomalies in the individual ICS assets or 

confirm the regular operation of the respective asset, the raw data view (Fig. 5) illustrates 

measurements collected by a specific ICS asset at a selected time and visually compares them to 

regular system operations obtained from the fingerprinted behavior (Properties 2, 7 and 8). 

 

 
Fig 5. A layout of raw data view 

 

The view illuminates the attack period (based on an anomaly score higher than the threshold) so 

that the investigator can adequately observe the difference or the absence thereof (false 

localization.) 

 

Table III maps analytical strategies and coordinated views to functional requirements and visual 

techniques. 

 

Table III. Mapping analytical strategies and required properties to coordinated views and visual 
techniques 

Strategy Required 

properties  

View Visual 

technique 

Description 

Comprehensive 

monitoring 

Properties 2, 4-6  Detection Radar diagram 24 hrs of ICS operation aggregated 

by 15 minutes and six treatment 

processes (P1-P6) 

 

 

  Bar chart Anomaly score for each 15 minutes 

of operation 

   Pulsation Displays warnings for critical ICS 

assets defined in settings  

   Bubble chart ICS assets exploitation rank 

aggregated by process level (P1- P6) 

   Shaded area Anomaly threshold: score inside the 

shade represents potential attack 

Inspection  

(ICS level) 

Properties 2, 4, 5 Inspection Force graph Display ICS assets at six treatment 

processes (P1-P6)  

   Color Indicates the exploited ICS assets 

   Pulsation Displays warnings for critical ICS 

assets defined in settings  
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Prioritization  Properties 3-6  Ranking  Bar diagram  Displays rank of abnormality 

   Line chart Shows the measurements/state of 

selected ICS asset during the attack 

   Attention icon Indicates the adverse impact on ICS 

assets 

   Text Displays estimated impact indices 

   Shaded area Thresholds: ranks, score, and data 

inside the shaded area indicates the 

exploitation or its negative effect 

Inspection 

(individual level)  

Properties 2, 7, 8 Raw data  Shaded area  Highlight the period of operational 

disruption  

   Line chart Shows the measurements/state of 

selected ICS asset under normal 

operation 

   Line chart Shows the measurements/state of 

selected ICS asset during the attack  

 

The dynamic nature of the visual module enables filtering data and examining individual ICS 

assets at the lowest data level, facilitating incident investigation from general to specific 

characteristics. Each view can be used separately, allowing for hypothesis testing and identifying 

false negatives while generating collective knowledge.   

 

4 APPLICATION OF THE METHOD TO WATER TREATMENT 

 

4.1 Dataset 

We evaluated proposed approach using data collected by a small-scale water treatment plant that 

encompasses six stages of the water treatment process (P1 through P6) controlled by a dedicated 

PLC (Fig. 6) (Goh et al. 2016). The sensors, connected over the network, accumulate the water 

level and water flow by interacting with the physical environment. 

 

 
 

Fig 6. SWaT testbed (Goh et al. 2016) process overview. ICS consists of six stages of the 

treatment process (P1 though P6).  

 



The dataset retains sensor measurements (25 continuous variables) and actuators' states (26 

discrete variables). It constitutes seven days of attack-free operation and four working days under 

different cyber attacks. 

 

4.2 Threat Model 

The following classes of the attacks are carefully labeled in dataset. 

• Single Stage Single Point (SSSP) attack targets exactly one ICS asset  

• Single Stage Multi Point (SSMP) attack aims at several ICS assets deployed on one process 

level 

• Multistage Single Point (MSSP) attack is performed on multiple process levels and targets 

exactly one asset at each level 

• Multistage Multi Point (MSMP) attack is performed on two or more ICS process levels 

and targets multiple assets at each of them 

 

The attack intentions vary from overflow/underflow of the tank, reduced water quality, and system 

malfunctioning. The duration of these attacks varies from 100 sec to 10 hrs. While system requires 

time to restore normal operation after an attack, the exact time for such recovery is not provided 

in the dataset description. 

 

4.3 Results 

To demonstrate the strengths of the proposed approach, over further discussion, we consider data 

related to an operational day in which all types of attacks (described in Section 5.1.1) have been 

administered. In this operational day, the detection algorithm identified three incidents with the 

high recall; in addition, two abnormalities were detected with the low recall level. The comparison 

with existing literature is summarized in Table V.  

 

Table V. Performance (recall) across different anomaly inference models. A, B, C, D, E denote 

the attack scenarios (in the time order) administrated in the selected day 
Scenarios (Inoue et al. 

2017) 

(Elnour et al. 

2020) 

(Lin et al. 

2018) 

(Xie et al. 2020) (C. Wang et 

al. 2020) 

This work 

A - - 0.20 1.00 - 0.97 

B 0.94 1.00 1.00 1.00 0.98 1.00 

C - 1.00 - - - 1.00 

D - - 1.00 1.00 0.96 0.60 

E - 1.00 - 0.21 - 0.24 

 

The anomaly localization function takes the result of the attack inference module as a set of 

measurements indicating the probability that the system is exploited at a particular time. As the 

localization algorithm allows a combination of several methods, for validation purposes, we 

selected the following feature importance techniques: Classification and Regression Trees (CART) 

(Breiman et al. 2017), Logistic Regression (Kleinbaum et al. 2002), and Shapley values (Shapley 

1953). We contrast in Table VI the attack localization performance of the proposed approach and 

those reported in (C. Wang et al. 2020) and (Shalyga, Filonov, and Lavrentyev 2018).  

 

 

 

 



Table VI. A comparison of attack localization across different methods 

 
Model Precision Recall F-measure 

This work 0.39 0.52 0.45 

(C. Wang et al. 2020) 0.30 0.43 0.35 

(Shalyga, Filonov, and Lavrentyev 2018) 0.22 0.21 0.21 

 

The proposed method demonstrates the improved performance over the available methods. 

 

Table VII provides a deeper look at the classification of the attack rendered by the detection engine. 

 

Table VII. Deeper look into inferred attack scenarios 
Scenarios Attack window Process Exploited asset Attack type 

A 15 min P3, P4 P302, LIT401 MSSP 

B* 9.5 hrs. P3, P4 P302, LIT401, 

FIT401 

MSMP 

C 2 min P2 P203, P204 SSMP 

D** 19 min P1, P2 P101, MV201 MSSP 

E*** 6 min P1 MV101 SSMP 

Table notes: *An attack log indicates only pump P302 as exploited, rendering original attack class SSSP. The 

discrepancy has occurred due to the adverse effect of the attack on the water level in the tank. **The anomaly 

localization method did not classify LIT101 as an asset under attack, rendering the attack class MSSP, while the 

original scenario is classified as MSMP. ***The anomaly localization method did not identify the attacked asset. 

 

The classification demonstrates discrepancies with the attack log. In scenario B, for example, the 

attack log indicates only pump P302 as exploited, suggesting attack class SSSP. However, the 

incident affected the water level in the tank of the subsequent process; therefore, the localization 

algorithm codes level indicator LIT401 as under attack. Incident A may exacerbate this impact, as 

previously suggested. 

 

The final result of the incident inference and localization is passed to a visual analytics component 

in the form of JSON files. Concurrently, the visualization module receives operational 

performance indices to convert them into visual representation to focus the attention of the risk 

manager. 

 

In the visual module, the user employs the analytical strategies by navigating through the 

coordinated views depicted in Fig. 7 and configuring parameters (detection model, critical assets, 

thresholds) as needed. 

 



 
Fig 7. Interactive analytical dashboard. A, B, C, D, E denote cyber incidents. The dashboard 

illustrates the scenario A with a level indicator LIT401 under investigation 

 

The detection view (Fig. 7) illustrates 24 hours of the system under investigation. An anomaly 

score (bar in the inner circle) for five scenarios appears inside the highlighted area, indicating 

alleged attacks. For further reference, we denote these incidents as A, B, C, D, and E. The duration 

of the incidents varies from short for A, C, D, and E to lengthy (more than 9 hrs.) for incident B. 

The detection view shows the attacked ICS assets (bubbles at the process levels P1-P6) for each 

incident. The bubble size indicates the rank (percentile) that the localization algorithm assigned to 

a particular ICS asset. The pulsation technique indicates that critical assets listed in the settings 

view are involved in incidents A and B. Noble, the attacks have not targeted process levels P5 and 

P6. Further, since incidents A and B appeared one after another and affected the same process 

levels, P3 and P4, it is reasonable to expect the trace of incident A in the following incident B. 

Same is relevant for attacks C and D.  

 

For illustration purposes, we provide visual insights for one scenario since it consists of the critical 

sensors defined by an expert.  

 

Incident A. Figure 7 illustrates a detailed view for the detected attack A (only one sensor is detailed 

for illustration purposes). In this attack scenario, the measurements of the water level indicator are 

maliciously set to the level below minimal and kept this way through the incident duration. At the 

same time, pump P302 kept on, allowing continuous actual water flow. The inspection view 

reflected this incident and pinpointed that the critical asset defined in the settings is exploited. 

  

Ranking view. Both multivariate and individual (z-score) ranks reached the shaded area (the 

threshold), confirming the attack localization. The flow level indicator demonstrates the signs of 

the underflow: the line plot reached the shaded area; the index 𝑇𝑢𝑛𝑑𝑒𝑟 confirmed this assertion. In 



the raw data view, the grey shaded area visually segregates the attack window, obtained from an 

irregularity score centered around the same assets and time. It further visually compares the actual 

and expected behavior of the ICS asset, showing the sign of an ongoing incident considering a 

significant apparent deviation. 

 

4.4 Usability test 

To evaluate the capability and usability of the visualization module to support threat identification 

and initial analysis of the incident impact, we asked a focus group of six participants to apply 

defined analytical strategies and complete questionnaires assessing the success of the investigation 

and usability of the system. A focus group consisted of two cybersecurity experts, one user 

experience expert, and the rest had no mentioned expertise. The rationale behind the group 

composition is to support system evaluation by both cybersecurity experts and non-experts. The 

summary of the assessment is presented in Table VIII. 

 

Table VIII. Fraction of successful answers and standard deviation (SD) 

 
Question Strategy Answers SD 

Identify exploited ICS assets in the selected time frame Comprehensive monitoring  100% - 

 Inspection at ICS process level 100% - 

Identify the process levels involved in cyber incidents Comprehensive monitoring  100% - 

 Inspection at ICS process level 100% - 

Identify a timeframe of a selected incident Comprehensive monitoring  83% 0.41 

 Inspection at the individual level 100% - 

Identify the incident that requires prompt attention Comprehensive monitoring  83% 0.41 

 Inspection at ICS process level 83% 0.41 

 Prioritization 100% - 

Identify the severity rank of the incident Prioritization 100% - 

Identify possible false alarm  Prioritization 67% 0.52 

Identify recovery time after an attack Comprehensive monitoring  50% 0.55 

 Inspection at the individual level 100% - 

For a selected incident, identify remediation priority Comprehensive monitoring  50% 0.55 

 Inspection at ICS process level 50% 0.55 

 Prioritization 83% 0.41 

Identify the impact of the incident Prioritization 100% - 

 

The focus group found identifying and analyzing cyber incidents effective. As a recommendation 

for improvement, the cybersecurity experts mentioned the improvement of visualization 

prioritization based on the impact ranking early at the detection and inspection views. The latter 

will allow the experts to focus their investigation not only on the critical assets (current 

implementation) and the severity of the incident's effect. Further, the experts mentioned the 

importance of incident trend analysis to provide more insights to develop better remediation 

strategies. Specifically, the experts pinpointed two possibilities for trend analysis: the anomalies 

by the same time for different days and by the device type or vendor. 

 

Further, we asked the focus group to assess the usability of the visualization system using the 

System Usability Scale (SUS) Score (Brooke 1996). The questions are composed of 10 statements 

altered between positive and negative and scored on a 5-level Likert scale from 1 (Predominantly 

Disagree) to 5 (Predominantly Agree) by participants. We slightly modified the original 

questionnaire to put it in the context of the proposed visual system. In addition, we linked the 



questions to the categories recommenced in ISO 9241‐210: 2019 (ISO 2019). The summary of the 

evaluation is presented in Table IX. 

Table IX. Summary of usability assessment per question in the usability questionnaire. For 

questions with Target  high values are good results, while with Target  - low values are good 

results. 

Question ISO category Mean Median Target 

I was able to perform all defined tasks Suitability for the task 4.3 4.5  

I found the system unnecessarily complex Suitability for the task 1.3 1.0  

I found the navigation between visualization strategies 

intuitive 

Self-descriptiveness 4.5 4.5  

There are too much inconsistency in this system Self-descriptiveness 1.0 1.0  

I found the various functions in this system are well 

integrated 

Self-descriptiveness 4.2 4.0  

I think that I would need the support of a technical person 

to be able to use this system 

Self-descriptiveness 1.0 1.0  

I believe most people would be able to use this system very 

quickly 

Suitability for the 

learning 

4.7 5.0  

It is required to learn a lot of things before working with the 

system 

Suitability for the 

learning 

1.0 1.0  

I felt very confident using the system 
Conformity with user 

expectations 

4.2 4.0  

I found the system very difficult to use 
Conformity with user 

expectations 

1.2 1.0  

 

We received favorable scores concerning the suitability of the proposed visual module for the 

defined strategies and learning. Self-descriptiveness and conformity with the user expectations 

were also rated positively, implying that the system is intuitive, and screens are well integrated. 

The SUS score calculation considers the alteration of positive and negative statements; the reader 

can find a detailed calculation strategy in the original publication (Brooke 1996). The SUS score 

range is 0 to 100, with higher scores indicating better usability. The focus group assessed the 

usability score as 91 (with a median of 92.5), which is above the average score of 68 (Grier 2013). 

The result indicates that the selected visualization is well-designed to support threat identification 

and initial analysis of the incident impact. 

 

5 DISCUSSION AND CONCLUSION 

 

The method developed in this study integrates several techniques: (i) a  deep learning architecture 

to efficiently generalize the underlying system by operating on circulating ICS data and identify 

notable deviation from the regular operation; (ii) a combination of theory of belief functions to 

aggregate the results of various feature selection methods and z-score for individual variables to 

address uncertainties in anomaly localization and derive attacked ICS assets; (iii) operational 

performance metrics to evaluate the attack effect; and (iv) dynamic visual analytics to extract 

valuable insights and facilitate operational efficiency. These unique combination complements 

available attack inference methods by broadening the perspective, which provides desired 

granularity for the investigation of attack impact. It offers an extensive scope of knowledge as 

opposed to solely evident indicators of malicious activity. Furthermore, our approach provides the 

cyber operators and digital investigators an effective tool to dynamically and visually interact, 



explore and analyze heterogeneous, complex, at times, conflicting data, and provide rich context 

information. Such an approach is envisioned to facilitate the cyber incident investigation and 

support a timely evidence-based risk management process.  

 

5.1 Contributions of the Method 

This work offers three particularly salient capabilities for attack incident detection in the ICS 

setting. First, the proposed approach operates on heterogeneous empirical data with the rare 

availability of attack-related instances. To this end, it leverages Generative Adversarial Networks, 

a machine learning architecture widely used for anomaly detection across different domains such 

as healthcare, public safety, finance, and cybersecurity. This work extends the application of GAN-

based anomaly inference methods toward cybersecurity and forensics in critical water 

infrastructure. As previous research suggests, GAN-based architecture effectively generalizes the 

underlying system (Choi et al. 2020, Li et al. 2019, Du et al. 2021, Seo et al. 2018.) It can infer a 

wide range of attacks by employing learning algorithms operating on circulating ICS data, 

regardless of the deployment domain. 

 

Second, anomaly localization is a challenging task for multidimensional data. This work uniquely 

employs the degree of belief functions to address uncertainties in anomaly localization by 

converging the multivariate (operation of entire ICS) and individual assets perspectives. The 

empirical evaluation (Table VI) demonstrates that the proposed approach significantly increases 

the localization accuracy. 

 

Finally, anomaly detection methods often have limited capability to generate extensive scope of 

knowledge regarding detected anomalies (e.g., investigation of incident impact), and insufficient 

abilities to communicate the result to the broad audience with diverse background to support 

evidence-based risk management. This work pays particular attention to impact quantification by 

employing the notion of performance loss as a function of production and quality loss. Moreover, 

through the visualization module, the proposed approach shows the behavior and state of ICS at 

both local (individual assets) and global (all assets simultaneously) levels. The module advances 

the visibility of cyber incidents by effectively utilizing a screen space; it promotes investigation 

and enriches analytical pivot by integrating extensive empirical analytics and interactive 

techniques. It aims to understand detected anomalies presented in empirical data and draw 

conclusions regarding their implication for the system to support proper risk management in a 

critical realm. 

 

The study results draw an important preliminary conclusion regarding the response of ICS 

deployed in the water facilities to cyber threats. For instance, the correlation between ICS assets 

challenges anomaly localization accuracy for the methods relying solely on empirical data. 

However, the proposed visual exploration allowed an efficient investigation of falsely classified 

attacked ICS assets by providing an observable correlation between ICS assets and enabling 

subsequent analysis of the corresponding raw data. Further, the system can demonstrate the effect 

of the earliest attack with a delay. This effect, therefore, reveals incorrect incident localization 

since the system behavior does not correspond to the expected conduct. A combination of the 

proposed analytical strategies and their respective dynamic visualization provided evidence of 

such an effect and the basis for proper risk management decisions. 

 



5.2 Limitations and Future Work 

The proposed work has several limitations that lead to further research. For instance, the method 

does not consider the cause of the anomaly and the probability of such incidents. Further research 

in this area would include developing strategies to classify the various anomalies (including system 

faults) in empirical data and incorporating incident probability assessment to enable a transition to 

operational implementation through developing a suite of appropriate mitigation or response 

strategies. 

 

In addition, employed operational performance indices support one threat scenario – malicious 

manipulation of the water level in the tank. Although numerous attack scenarios exist, their impact 

quantification is out of the scope of this work. Nevertheless, the proposed framework supports the 

extension, and we are working on identifying and gathering the required data to employ an 

extensive set of indices to quantify the impact of the system malfunctioning and water quality for 

further incorporation into the analytical framework. 

 

Further, the proposed method is limited to the number of incidents, and neither analyzes incident 

trends nor provides sharing capabilities. The operational community would benefit from the attack 

trend analysis for targeted and more effective remediation strategies, including those related to the 

specific devices' vendors. We are now working on the methods for visualization of such trends and 

generation of the accumulated knowledge for further collaboration among the players of the 

operating community. The techniques under investigation include but are not limited to visual and 

semantic data analysis, the data structure for collaborative sharing, and the analytical strategies for 

collective knowledge. 

 

Finally, the proposed method is also limited by its focus on ICS as an isolated unit. As water 

facilities become a part of the connected infrastructure of smart cities, the increased 

interdependence directly relates to the severity of cyber attacks through risk contagion. This has a 

multiplicative effect on impact, requiring future research regarding quantifying the impact on the 

entire smart city ecosystem. As we develop such cyber-physical-social systems, we need to design 

cyber and safety assured systems from the very start through system of systems engineering and 

design. 
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