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ABSTRACT

With the continuous modernization of water plants, the risk of cyber attacks on them potentially
endangers public health and the economic efficiency of water treatment and distribution. This
paper signifies the importance of developing improved techniques to support cyber risk
management for critical water infrastructure, given an evolving threat environment. In particular,
we propose a method that uniquely combines machine learning, the theory of belief functions,
operational performance metrics, and dynamic visualization to provide the required granularity for
attack inference, localization, and impact estimation. We illustrate how the focus on visual
domain-aware anomaly exploration leads to performance improvement, more precise anomaly
localization, and effective risk prioritization. Proposed elements of the method can be used
independently, supporting the exploration of various anomaly detection methods. It thus can
facilitate the effective management of operational risk by providing rich context information and
bridging the interpretation gap.
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treatment plants



1. INTRODUCTION

The importance of reliability of computer-controlled for water infrastructure is well established
(Coulbeck and Orr, 1993). The increasing global scarcity of water has led many providers towards
developing smart water systems. These cyber-physical systems and their networked industrial
control systems (ICS) face an increased risk of cyber attacks similar to one that was recorded over
a decade ago in Australia, where around 120k people were put in danger by the water
contamination due to cyber attack (Slay and Miller 2007). Another partially successful attempt to
poison water was recently made in the U.S., threatening the health of around 15k individuals
(Robles Frances and Perlroth Nicole 2021). Cyber attacks also can target water meters to
manipulate the billing system and cause economic loss (Hassanzadeh et al. 2020). These are not
isolated incidents but rather examples of numerous conducted attacks. According to DHS, the
water sector demonstrates the fourth-largest number of incidents in the US (ICS-CERT 2015).
Therefore, from both economic and public health perspectives, developing improved methods to
support cyber risk management for critical water infrastructure is an imperative given an evolving
threat environment.

We approach this imperative from a data-driven cyber incident identification and characterization
perspective. The detection of cyber attacks against ICS deployed in water facilities is a complex
task that can rarely be solved using only automatic data mining methods. Numerous methods rely
on anomaly detection as a technique to discover attacks against ICS (Ahmed et al. 2016). This is
aligned with a precursor analysis approach to risk management, especially in the context of
infrastructure systsems (Guo and Haimes, 2016), and involves monitoring and analyzing patterns,
behavior, and events related to ICS assets to detect potential precursors to cyber attacks.
Cybersecurity and forensics analysts face several challenges when exploring the massive number
of records generated by a large number of heterogeneous ICS assets. These challenges include but
are not limited to the scarcity of attack-related data, spatial-temporal characteristics of the collected
data, and the interpretability challenges (Ahmed et al. 2020). The latter inevitably hinders the
transition of anomaly detection methods to operations.

Existing methods in this area include control-theoretic approaches (Bou-Harb et al. 2017; Busby,
Green and Hutchison 2017), various machine learning algorithms (Elnour et al. 2020; Li et al.
2019), and visual analytics (Kotenko et al. 2018; Lohfink et al. 2020). The first approach assumes
the availability of a mathematical model of the system, which is often an impractical assumption.
On the other hand, machine learning approaches can be scaled efficiently to support a modernized
system or another ICS, which is a desirable quality in water facilities, where each deployed ICS
can have its unique characteristics. Further, the values of visual analytics for network monitoring
and classification, incident and malware forensics have been largely recognized by research and
operational communities (Fischer et al. 2008; Wagner et al. 2015).

Although these research endeavors provide sound methods for attack detection in ICS realms, they
rarely offer the essential strategy to attribute assets and quantify the impact, which is a critical
function towards cyber risk management. Without the ability to evaluate and determine the impact
of the attack on ICS assets, efforts to transition risk inference methods to operations are hindered.



To address these challenges, we propose a visually supported method that can be integrated into
attack detection and forensics tools to guide domain experts through a set of tasks to examine a
detected anomaly. To achieve this, we first employ a deep-learning architecture to fingerprint ICS
behavioral patterns and detect abnormal behavior. The result from the inference engine is then
passed to the visual analytics module that models domain-aware analytical reasoning and maps it
to the appropriate visual techniques, views, and interaction. The expert user can then analyze
inferred anomaly at a global level, decide whether it represents a false alarm, or look for more
information at ICS asset level if it is impossible to reach a confident conclusion. Hence, we propose
increased robustness of incident inference and analysis by including a human decision maker-in-
the-loop through the use of visual analytics.

The rest of this article is organized as follows. In the next section, we briefly review related works
and in section 3, we discuss the proposed method of analysis and outline the design components.
In Section 4, we describe the experiment and report the result of applying our method to the data
collected using a testbed emulating working water treatment system, and present preliminary
insights regarding the water plant response to cyber attacks. Finally, in Section 5, we highlight the
contributions of our method and discuss limitations and future work.

2. A BRIEF LITERATURE REVIEW

In this section, we highlight relevant risk management and cyber incident detection methods in
ICS realms, as well as studies that leverage visual analytics for cybersecurity.

2.1 Risk Management in Water Infrastructure

Risk management studies related to water infrastructure vary in their focus, from the identification
of threats to an assessment of their potential consequences. In a survey of the state of cybersecurity
research in water systems over the past two decades, Tuptuk et al. (2021) found that research has
predominantly focused on detection models and analyzing the impact of attacks. For instance,
Davis et al ( 2014 ) developed an analytic framework to estimate the impact of contaminants in
water distribution systems under varying network conditions. Other studies evaluate various threat
management strategies (Zechman 2011). Pate’-Cornell et al. (2018) estimated the effectiveness of
protection measures for critical infrastructure against the full spectrum of attack severity levels.
While their cases do not include water infrastructure specifically, their example of power
infrastructure has many relevant parallels to water infrastructure risk management. Moraitis et al.
(2020) described an approach to quantify the impact of cyber-physical attacks on water distribution
networks. Shin et al. (2020) proposed a resilience metric to measure the ability of water systems
to withstand, adapt and recover from cyber attacks. The urgent need to protect water infrastructure
is also reflected in the growing recognition by policymakers to strengthen the cybersecurity
resilience (Kott and Linkov, 2021) of water infrastructure through legislation. For example, in the
U.S., the America’s Water Infrastructure Act of 2018 and the Internet of Things Cybersecurity
Improvement Act of 2020, at the federal level, and some legislation at the state level, are focusing
on strategies for securing water infrastructure (You, 2022). Further, critical systems such as water
are closely linked to social order and wellbeing. Emerging ideas in systems engineering of complex
system of systems (Haimes, 2018) and social systems engineering (Scalco and Palmer, 2022) have
potential to provide cyber and safety assurance as we continue to develop interconnected and
interdependent infrastructure systems.



2.2 Cyber incident detection in Industrial Control Systems

A cyber incident renders abnormal behavioral patterns, and numerous inference methods are
defined as anomaly discovery problems and leverage control-theoretical and machine-learning
approaches.

The former method converts ICS architecture and process to a mathematical model and exploits it
for incident identification and investigation. Some notable works include (Bou-Harb et al. 2017;
Busby, Green and Hutchison 2017; Mo, Weerakkody, and Sinopoli 2015; Pasqualetti, Dorfler, and
Bullo 2013; Chabukswar, Mo, and Sinopoli 2011; Henry and Haimes, 2009; Khanna and Liu
2008). Yet, the ICS realm challenges the widespread application of control-theoretic approaches.
For instance, ICS can have an inconsistent structure, depending on their type, technology, and
continuous modification and optimization level. Therefore, while rendering superior results, using
the identical model-based attack detection technique for ICS deployed in different settings seems
impractical. Moreover, control charts such as Multivariate Cumulated SUMs (Woodall et al. 1985)
and Multivariate Exponential Weighted Moving Average (Lowry et al. 1992) monitor the mean
and variance of a time series over time to detect abrupt changes in its statistical behavior. Coupled
with machine learning, control charts can enable proactive detection and response to cyber threats.

Accordingly, the researchers consider data-driven methods to generalize the underlying system by
employing deep learning algorithms operating on circulating ICS data. However, due to privacy
and security issues, empirical data is rarely available. Moreover, these techniques require high
computational power, while velocity and variety of data require advanced techniques to extract
valuable insights. For instance, the methods that approach incident detection from data gathered
by ICS sensors should consider multivariate time series. Prominent works herein include the
application of Deep Neural Network (DNN) and Support Vector Machine (OSVM) (Inoue et al.
2017), and Dual Isolation Forest (DIF) (Elnour et al. 2020). Anomaly detection using Generative
Adversarial Networks (GANs) are employed across infrastructure sectors such as power plant
(Choi et al. 2020), water treatment (L1 et al. 2019.) and distribution (Du et al. 2021), in-vehicle
network (Seo et al. 2018), to name a few. However, most works omit bridging captured anomalies
with the ICS assets that significantly contribute to it, while it is an essential function toward cyber
risk management.

2.3 Visual Analytics

A most relevant to our work direction of visual analytics in decision support is to visualize anomaly
and multivariate data over time. A classical design to display anomalous trends in temporal data
is statistical diagrams such as line charts, and histograms (Laskov et al. 2005). However, multiple
lines in the same space reduce anomaly visibility; therefore, a glyph-based design has gained more
popularity due to its practical usage of screen space. For instance, it captures the behavior of
individual users based on their communication activities over time (Cao et al. 2015); it is used for
computer network monitoring (Kotenko et al. 2018). Another notable technique - spiral plots -
demonstrated its promising application for monitoring ICS assets (Lohfink et al. 2020) over time
and allowing visual analysis of individual assets. Further, dashboards, similar to one proposed in
(Bakirtzis et al. 2018), promote interactive security analysis to provide different views largely
centered around the system and its associated attack vector space.



In contrast to available contributions that allow visual analysis of detected attacks at individual
assets, we offer an effective tool to explore anomalies simultaneously at all system levels: from
generalized information for the entire system to business process and ICS asset level. The proposed
model reasons the anomalies by allowing dynamic visual exploration and providing rich context
information valuable for risk management.

3. DEVELOPMENT OF THE METHOD

This section first contextualizes the challenges of data-driven risk management methods. It then
derives desired properties for such methods, followed by a detailed design of the proposed method.

3.1. Application Domain and Challenges

We consider a risk as a triplet R = {{s;, p;, i;)} (Kaplan and Garrick 1981), where s; is an
undesirable scenario identification, p; denotes a probability of the scenario, and i; is an outcome
of an adverse scenario. Contextualized in the ICS cybersecurity domain, a set of triplets can be
identified from past events, simulations, and the detection of ongoing cyber incidents and their
digital forensics.

3.1.1. Cyber Threat Model

An analysis of the cyber incidents in critical sectors that combines those that reported in (Hemsley
and Fisher 2018) and in an open-source literature renders the following observations regarding
threat scenarios s; and outcomes i; (Table I). We further confirmed the consistency of our
observations with a public knowledge base ATT&CK for ICS (Alexander, Belisle, and Steele
2020).

Table 1. Cyber attack scenarios and their outcomes
Identifier Cyber attack scenario Cyber attack outcome

1

Si

i

1

An attacker injects false measurements, which
are dynamically calculated by ICS during
usual operation process

An incorrect response of the PLC and lead undesired
system state

It can cause the reduced/elevated chemical injection
and reduce the quality of purified water

Undesirable state can lead to property damage and
threaten safety.

2 An attacker can inject false measurements All consequences of the scenario 1, without ability to
without violating the control-flow integrity of detect the attack promptly.

ICS (evasion) An operator can make incorrect decision based on
corrupted data.

3 An attacker sends a direct command to the Overflow/underflow in the tanks can cause the waste
actuator to maliciously manipulate of the of resources.
current state Damage of the critical components of ICS.

Reduced amount of distributed potable water.

4 An adversary can send command messages to  Activated system response outside the conditions and
perform actions outside of their intended boundaries (open water pumps, activate alarms, etc.)
functionality

5 An adversary can plant malware to encrypt or Loss of data availability.

delete critical data

Loss of the ability to perform intended functions.
Financial loss due to inability to provide resources.




When an attacker has opportunity, capability, and motivation to conduct the attack, the latter can
be considered probable. ICS nowadays are connected to the network, providing plenty of
opportunities for the attack to gain remote control over their operations. There is also an abundance
of capability out there. The tools to accomplish attacks are available on the dark web at large,
making it possible to gain access to them at little cost (Samtani, Chai, and Chen 2022). Moreover,
many attacks are conducted by using the access permissions of current or former employees. Some
incidents aim to demonstrate attacker capabilities; another is an act of retaliation by disgruntled
employees (Slay and Miller 2007); it can also aim to disrupt another country's critical infrastructure
(Case 2016). Given the above considerations and the mounting number of attempts to gain control
over the critical infrastructure, we regard cyber attacks in this area as highly probable and
concentrate efforts in this work on identifying the incidents s; and their impact i;.

3.1.2 Challenges of Data-driven Approach

A risk management aims to focus the efforts on the significant threat scenarios and use appropriate
techniques to convert data into valuable analytics for decision-makers (Bier 2020). As we define
cyber incident detection as an anomaly inference problem and approach to the solution from a
data-driven perspective, it is essential to acknowledge the corresponding challenges. Visibility and
spatio-temporal characteristics of data generated by ICS introduce unique challenges for attack
detection methods that solely rely on empirical data (S. Wang, Cao, and Yu 2020). Further,
mapping data anomalies to the actual incident and confirming it is non-trivial due to the inherent
dependencies between ICS devices (Ahmed, MR, and Mathur 2020). Moreover, given the high
number of connected components, it is imperative to prioritize the remediation of cyber crises and
further development by addressing the affected ICS assets first. Besides, we observe a lack of
techniques to convert the results of anomaly detection methods to narratives that allow decision-
makers to interpret the outcomes (Neshenko 2020).

Data availability. The primary reason for the lack of available data is its intrinsic sensitivity. Any
leakage of the operational patterns can be used for crafting highly stealthy attacks that can lead to
catastrophic consequences on operations of critical infrastructure and the human population.
Another cause of data scarcity is the rarity of reported attacks.

Spatio-temporal data. ICS data contains spatial and temporal attributes with complex correlations.
For instance, water distribution can show a cyclical pattern in time depending on usage by
consumers during the day and nighttime. Extracting insightful patterns from spatial datasets
introduces additional challenges due to the complexity of spatial data types and relationships
(Rashid 2012). Overlooked relations, however, can lead to inadequate attack detection accuracy
and localization.

Model scalability. Depending on their type, ICS deployed in various realms can have an
incomparable structure. For instance, domestic and industrial wastewater treatment requires
different filtering and disinfecting technology and advanced treatment such as oil separation and
removing toxic dissolved organic ingredients, to name a few (EPA n.d.). Furthermore, ICS assets
are prone to continuous modification demanding advanced scalable methods that can be directly
employed for different systems.



Attack localization. Nonlinear and dynamic nature of water facilities, particularly water plants,
causes evolving data characteristics at different levels of ICS process. In addition, attack
techniques constantly evolve to evade detection. In this context, data-driven methods, which
explore behavioral patterns of a single element of the system, explicitly detect irregular behavior
of the underlying asset; however, they fail to detect the coordinated incidents that affect whole
system. At the same time, the techniques that engage multivariate data display a high level of false
localization. Therefore, a balance between different perspectives to reduce false alarms and
enhance operating efficiency is paramount need.

Incident investigation. Empowering risk managers to drive consistent investigations and make
more precise conclusions is one of the crucial considerations for transitioning the research to
operation and must be noticed (Sommer and Paxson 2010). Unlike traditional rule-based or
knowledge-based approaches, machine learning algorithms are designed to automatically learn
from data and make decisions based on this learning. The latter results in highly accurate
conclusions but can lead to a need for more transparency in decision-making. The proper incident
investigation curated by the system will reduce dwell time, increase efficiency, and provide
actionable insights.

3.2 Required Properties

Well-designed cyber risk management for ICS deployed in water plants should address mentioned
challenges, support accurate inference and interpretation of the detected threats. We define the
following required properties to meet this goal.

Property 1: Ability to discover boundaries and dependencies between ICS assets without previous
knowledge about its process model.

Property 2: Ability to illustrate the status of the ICS system at each process level and individual
asset, for the defined period.

Property 3: Ability to display incident alarms with relevant information, including detection
results, impact, and data overview.

Property 4: Ability to display special warnings for the critical (predefined) ICS assets should an
incident affect them.

Property 5: Ability to evaluate the potential impact of the disruption and display it as an alarm.
Property 6: Ability to allow configuration, including the maximum acceptable level of incident
impact parameters.

Property 7: Ability to facilitate of dynamic visual data comparison.

Property 8: Ability to support browsing of relevant raw data.

Table II associates the properties to the corresponding challenges.

Table II. Mapping system properties to challenges

Challenges Requirements

Data availability Property 1
Spatio-temporal data Property 1

Model scalability Property 1

Attack localization Property 2, Property 3

Incident investigation Property 2 — Property 8




3.3 Design of the Method

As numerous techniques are proposed to improve cyber resilience, including those that focus on
adaptive response, analytical monitoring, and dynamic representation (Ross et al. 2019), these
techniques and the imperative need for cyber resilience quantification become a design foundation
for our approach.

In summary, the proposed approach (Fig. 1) consists of four core segments, which incorporate
machine learning methods and interactive visualization (together known as visual analytics) to
infer cyber incidents and their potential effect on directly and indirectly connected components of
water treatment plants.

Proposed Approach

Module €9

] Data stream: > Behavior fingerprinting «
& Attack inference

[N
Module o o <« |Configuration — (‘O’ﬁ
Anomaly localization [
Cybersecurity &
ICS assets Forensics Experts

Module €) L R
Impact quantification

Modue @ .
Interactive visualization

I— | Visual Insights

Fig 1. The proposed method to assist cyber risk inference for water treatment plants

As we define cyber incident inference as an anomaly discovery problem, the first module employs
deep learning architecture to explore the boundaries and dependencies of the system and estimate
the anomaly score. A score that exceeds a predefined threshold indicates the potential attack.
Further, the anomaly localization module derives the exploited assets operating a belief function
theory and various feature importance algorithms. Subsequently, the module "impact
quantification" estimates the potential production loss that would indicate the severity of the
incident impact. The role of cybersecurity and forensics experts is to (i) determine the initial
parameters of the system and (7i) examine the validity of the output. To support evidence-based
decision-making, module 4 maps domain-specific analytical strategies and results from the
inference model to appropriate visual techniques, views, and interactions. We now adopt a granular
perspective, highlighting the architectural design of each component.

3.3.1. Behavior Fingerprinting and Attack Inference

To discover boundaries and dependencies between ICS (Property 1) and infer incidents (Property
2), we employ a generative and discriminative deep learning architecture known as a Generative
Adversarial Network (GAN), inspired by the architecture proposed in (Donahue, Krdhenbiihl, and



Darrell 2016). The framework utilizes three deep learning networks: discriminator D, generator G,
and encoder E; each plays a distinct role in the training and continuous working process.

Let x; represent the physical measurement of the ICS sensor (or state of the ICS actuator) i; x =
{xq, ... x;, } stands for an attribute vector, where m is the number of ICS assets (variables). During
the training phase, network E receives attack-free behavioral vector x and maps it to latent variable
space. Simultaneously, the network G models the data distribution as a fixed latent synthetic
attribute vector G(z) = {x1,...x;,}. The network D then receives the tuples (x,E(x)) and
(G(2), z), discriminates them, and assigns the labels P(y) = {0,1}, where 1 is a label for “real”
data, and 0 is for “generated” data. To improve the accuracy of generated attribute vector, the error
is back propagated to the network G and the training process repeats.

This architecture offers the salient capability for anomaly detection. First, trained network D
distinguishes the normal operational behavior of ICS. The network D takes the incoming attribute
vector and extracts the distribution between fingerprinted behavioral patterns and a latent
representation of incoming vector E (x). It then returns the loss Lp(,) calculated based on sigmoid
cross entropy (Eq.(1)).

Lp(x) = cross_entropy(D(x,E(x)),1) (1)

Second, network G generates a synthetic attribute vector with the same probability distribution as
vector x. The difference between incoming and expected ICS behavioral patterns is calculated as
a distance (l;-norm) between actual and reconstructed instances and represents a residual loss
Lreo (Eq. (2)).

Lren =l x = G(E(x)) Iy 2

The significant loss value indicates the large difference between the incoming and expected
behavioral vectors. Further, an anomaly score is obtained as a weighted linear combination of
L and Ly (Eq. (3)).

a_sore = (1 — a)Lg) + aLp(y 3)
where a is a weighting parameter indicating the priority of the loss. If a_score = 6, where 0 is
predefined severity threshold, the detected cyber incident requires attention of cyber operator.

3.3.2  Anomaly Localization
To mitigate uncertainties in detecting the location of anomalies, this module approaches the
anomaly detection problem from two distinct perspectives: (i) multivariate and (i) individual.

Multivariate perspective. Feature importance algorithms can serve as a medium for anomaly
localization for the methods that solely rely on empirical data (Taormina et al. 2018a). The
estimations of employed feature importance methods are recorded as f = {fj, ... fj}, where f; =

{ fjl, .. f{™} denotes a vector representing importance of attribute m for detected anomaly.

To render better anomaly localization, we combine the independent outcomes produced by each
method. To achieve the latter, we use a degree of belief (b)) that technique j precisely estimated
the relevance of the ICS assets to the anomaly. To this end, relative support (Yong et al. 2004),
RS, representing a distance between the methods' estimations, is used to estimate the degree b;.
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Finally, we record a score s,, denoting a degree of relevance of the variable m to the anomaly.
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If s,,, is in the 75" percentile, we declare asset m as an asset that is affected by the incident. The
rationale behind the selection of the 75th percentile is as follows. We aim to determine a threshold
that enables the identification of sensors under distress and minimizes false negatives. To this end,
we empirically evaluated various percentile thresholds and found that the 75th percentile provides
the optimal result. Our determination is critical for identifying affected sensors and can contribute
to developing reliable systems.

Localization based on individual variable. Inherent dependencies among ICS prevent the precise
identification of exploited assets. To filter out the potential false positives, we verify the
abnormalities in the measurements of individual assets. To this end, z — score for variables with
Sy, in 75" percentile is calculated. Formally, it is defined as
a_score(x) —
Z — score,, = 5 s (7)
where u 1s the mean (Eq. (8)) and o is a standard deviation of data during the time window (Eq.

(9)); N stands for a number of datapoints in the respective time window.

1 n
u=N;xi ®)
o= li@-— )2 ©)
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Datapoints with z — score,, that is beyond three standard deviations of a given data sample is
classified as abnormal (Aggarwal 2017) and as a potential false positive otherwise.

Final localization. We further obtain a final localization score [, for each ICS asset m by
employing weighted linear combination of s, and z — score (Eq. (10)) .

ln=0—-a) s, +a-z—scorey (10)
where a is a weighting parameter governing the effect of each perspective on the final localization
score. A larger score [, highlights the variables representing ICS assets, whose measurements
influence the anomaly score, therefore, portrays the affected assets.




3.3.3  Impact Quantification

To quantify the adverse effect of the cyber incident s; (Properties 3 and 5), we estimate
performance loss P, as a function of production and quality loss (Wei and Ji 2010), Pry,s and
Q055> respectively.

Pioss(5i) = f(PTipss, Quoss) (11)

Although the attack intentions vary, in this work, we focus on quantification of the threat of
malicious regulation of water levels in tanks. To enrich the incident investigation and
characterization for the production loss, we employ the indices suggested in (Taormina et al. 2017.)
We employ the limited number of metrics to evaluate the feasibility and effectiveness of the
designed system before comprehensive implementation.

The first index, Ty qer assesses the amount of time during which an attacked asset led to tank
underflow:

T
Tunder = Z l At (12)
t=1
where [; is an indicator defined as follows.

1 hy <1
— ) ) 1
e {O otherwise (13)
where h, is a water level of the attacked tank, [ is lower acceptable water level.

Similar index, Ty,er, 1s employed to estimate the amount of time during which an attacked ICS
asset lead tank overflow:

T
Tover = ) Lt (14)
t=1
where
1 h: >u
=1’ ’ 15
e { 0 otherwise (15)

and u is upper acceptable water level.
Further, Tynger and T,ye, are compared with predefined threshold 6, and 6,, to assign a
corresponding level of the severity of the production loss.

. 1, T, <6,
severityunaer = { e = W (16)
. 1, T >0,
severityoer ={ o o0 (17)

The respective mitigation procedure should be employed for the cases with severity level 1.

3.3.4  Visual Analytics

The result from the inference and impact quantification modules is passed to the interactive
visualization module, where the domain expert can analyze inferred anomalies. To achieve this,
we use visual analytics (VA), a transdisciplinary field involving several components that maximize
the human capacity to perceive, interpret, and reason complex data and events. These components



include analytical reasoning to provide insights that support decision-making, visual interaction
techniques to enable the interpretation of extensive data, data transformation methods to promote

analysis, and various methods for result dissemination to communicate analytical results to diverse
audiences (Thomas and Cook 2006).

Some unique aspects of analysis in the ICS settings include (i) inherited dependencies among
subsystems and individual assets of ICS. It signifies that monitoring individual ICS assets is
insufficient. There is a need to (ii) separate the facts from false alarms. Finally, it is essential (7ii)
to generate insights into the impact on the physical environment. To this end, the following
strategies and their respective visual representation support the VA for anomaly investigation in
ICS operations.

Strategy 1: Comprehensive monitoring. Situational awareness and preliminary triage of anomalies
in ICS assets require simultaneous monitoring of many connected assets. Essential inquiries for a
complete understanding of an incident may include but are not limited to: Which ICS assets are
exploited and to what extent? What type of exploitation is taking place? Which incident requires
immediate attention? How quickly can the system recover from an attack? (Property 2)

To this end, the detection view (Fig. 2) shows the distribution of anomalies across ICS in the feature
space for a selected period.

/' \ 15 min interval of operation
y -

1 hr. interval of operation

Anomaly score for each 15 minutes
______ .ff oo Ofoperation ________________________

Six stages of treatment process (P1-PB)
e .. Alarm forcriticalasset ...

(ICS assets exploitation rank

Fig 2. A layout of detection view

The view is a multilevel circular layout, each level of which represents the system process level.
The circle is divided into 96 regions expressing 15 minutes intervals of operational hours; every
four intervals grouped in one-hour periods to clearly communicate the cyber state of ISC at each
point in time. The anomaly score is represented as a bar in the inner circle, and the anomaly
threshold is a highlighted area (Property 6). The position of the bar in the shaded area indicates
the anomaly and requires investigation. In the process level context, the visual model shows
anomaly ranking for ICS assets for each hour. The representation also includes the confidence
level that the attack has affected each ICS asset. Moreover, most critical assets are clearly defined
to capture the immediate attention of cyber analysts or investigators. To this end, we employed the



pulsation technique and the color like the threshold to stress the importance and separate anomaly
score (Property 4.)

Strategy 2: Inspection at process level. The inspection view (Fig. 3) allows a closer look at the
details of the anomaly score chosen from the detection view.

Attacked process level

Fig 3. A layout of inspection view

Specifically, the view is a network graph, the nodes of which symbolize ICS assets. Central nodes
represent ICS process levels and consolidate their elements. The edges that connect various assets
depict the correlation between individual sensors and actuators. The graph illuminates the edges
only between strongly correlated assets. This representation provides supplementary information
for investigating threat impact. The dark color contrasts the attacked assets, while the pulsation
lightens the most critical attacked assets to properly prioritize the analysis (Properties 2, 4, and 5.)

Strategy 3: Prioritization. By selecting an individual asset from the detection or inspection view,
the expert navigates to the ranking view (Fig. 4), which provides numerous ranks that support
evident-based prioritization for remediation and risk management.
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Fig 4. A layout of ranking view

The ranking view brings attention to the following rank types for ICS asset investigation:



e a degree to which ICS asset contributes to the anomaly given the relationship between
system components (estimated as s,,, by the localization algorithms)
e degree of abnormality at the individual asset level (z — score)
e an impact of the attack on ICS operation (estimated based on predefined indices)
The shaded areas represent predefined thresholds: if not meaningful, the rank value will not hit

this area (Properties 3-0).

Strategy 4. Inspection at individual level. To investigate anomalies in the individual ICS assets or

confirm the regular operation of the respective asset, the raw data view (Fig. 5) illustrates
measurements collected by a specific ICS asset at a selected time and visually compares them to
regular system operations obtained from the fingerprinted behavior (Properties 2, 7 and 8).
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Fig 5. A layout of raw data view
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The view illuminates the attack period (based on an anomaly score higher than the threshold) so
that the investigator can adequately observe the difference or the absence thereof (false

localization.)

Table III maps analytical strategies and coordinated views to functional requirements and visual

techniques.

Table III. Mapping analytical strategies and required properties to coordinated views and visual

techniques
Strategy Required View Visual Description
properties technique
Comprehensive Properties 2, 4-6 Detection Radar diagram 24 hrs of ICS operation aggregated
monitoring by 15 minutes and six treatment
processes (P1-P6)
Bar chart Anomaly score for each 15 minutes
of operation
Pulsation Displays warnings for critical ICS
assets defined in settings
Bubble chart ICS assets exploitation rank
aggregated by process level (P1- P6)
Shaded area Anomaly threshold: score inside the
shade represents potential attack
Inspection Properties 2, 4, 5 Inspection  Force graph Display ICS assets at six treatment
(ICS level) processes (P1-P6)
Color Indicates the exploited ICS assets
Pulsation Displays warnings for critical ICS

assets defined in settings



Prioritization Properties 3-6 Ranking Bar diagram Displays rank of abnormality
Line chart Shows the measurements/state of
selected ICS asset during the attack
Attention icon  Indicates the adverse impact on ICS
assets
Text Displays estimated impact indices
Shaded area Thresholds: ranks, score, and data
inside the shaded area indicates the
exploitation or its negative effect
Inspection Properties 2, 7, 8 Raw data Shaded area Highlight the period of operational
(individual level) disruption
Line chart Shows the measurements/state of
selected ICS asset under normal
operation
Line chart Shows the measurements/state of

selected ICS asset during the attack

The dynamic nature of the visual module enables filtering data and examining individual ICS
assets at the lowest data level, facilitating incident investigation from general to specific
characteristics. Each view can be used separately, allowing for hypothesis testing and identifying
false negatives while generating collective knowledge.

4 APPLICATION OF THE METHOD TO WATER TREATMENT

4.1 Dataset

We evaluated proposed approach using data collected by a small-scale water treatment plant that

encompasses six stages of the water treatment process (P1 through P6) controlled by a dedicated

PLC (Fig. 6) (Goh et al. 2016). The sensors, connected over the network, accumulate the water
level and water flow by interacting with the physical environment.
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Fig 6. SWaT testbed (Goh et al. 2016) process overview. ICS consists of six stages of the
treatment process (P1 though P6).



The dataset retains sensor measurements (25 continuous variables) and actuators' states (26
discrete variables). It constitutes seven days of attack-free operation and four working days under
different cyber attacks.

4.2 Threat Model
The following classes of the attacks are carefully labeled in dataset.
e Single Stage Single Point (SSSP) attack targets exactly one ICS asset
e Single Stage Multi Point (SSMP) attack aims at several ICS assets deployed on one process
level
e Multistage Single Point (MSSP) attack is performed on multiple process levels and targets
exactly one asset at each level
e Multistage Multi Point (MSMP) attack is performed on two or more ICS process levels
and targets multiple assets at each of them

The attack intentions vary from overflow/underflow of the tank, reduced water quality, and system
malfunctioning. The duration of these attacks varies from 100 sec to 10 hrs. While system requires
time to restore normal operation after an attack, the exact time for such recovery is not provided
in the dataset description.

4.3 Results

To demonstrate the strengths of the proposed approach, over further discussion, we consider data
related to an operational day in which all types of attacks (described in Section 5.1.1) have been
administered. In this operational day, the detection algorithm identified three incidents with the
high recall; in addition, two abnormalities were detected with the low recall level. The comparison
with existing literature is summarized in Table V.

Table V. Performance (recall) across different anomaly inference models. A, B, C, D, E denote
the attack scenarios (in the time order) administrated in the selected day
Scenarios (Inoue et al. (Elnour et al. (Lin et al. (Xieetal 2020) (C. Wang et This work

2017) 2020) 2018) al. 2020)

A - - 0.20 1.00 - 0.97
B 0.94 1.00 1.00 1.00 0.98 1.00
C - 1.00 - - - 1.00
D - - 1.00 1.00 0.96 0.60
E - 1.00 - 0.21 - 0.24

The anomaly localization function takes the result of the attack inference module as a set of
measurements indicating the probability that the system is exploited at a particular time. As the
localization algorithm allows a combination of several methods, for validation purposes, we
selected the following feature importance techniques: Classification and Regression Trees (CART)
(Breiman et al. 2017), Logistic Regression (Kleinbaum et al. 2002), and Shapley values (Shapley
1953). We contrast in Table VI the attack localization performance of the proposed approach and
those reported in (C. Wang et al. 2020) and (Shalyga, Filonov, and Lavrentyev 2018).



Table VI. A comparison of attack localization across different methods

Model Precision Recall F-measure
This work 0.39 0.52 0.45
(C. Wang et al. 2020) 0.30 0.43 0.35
(Shalyga, Filonov, and Lavrentyev 2018)  0.22 0.21 0.21

The proposed method demonstrates the improved performance over the available methods.
Table VII provides a deeper look at the classification of the attack rendered by the detection engine.

Table VII. Deeper look into inferred attack scenarios

Scenarios Attack window Process Exploited asset Attack type

A 15 min P3, P4 P302, LIT401 MSSP

B* 9.5 hrs. P3, P4 P302, LIT401, MSMP
FIT401

C 2 min P2 P203, P204 SSMP

D** 19 min P1, P2 P101, MV201 MSSP

o 6 min Pl MV101 SSMP

Table notes: *An attack log indicates only pump P302 as exploited, rendering original attack class SSSP. The
discrepancy has occurred due to the adverse effect of the attack on the water level in the tank. **The anomaly
localization method did not classify LIT101 as an asset under attack, rendering the attack class MSSP, while the
original scenario is classified as MSMP. ***The anomaly localization method did not identify the attacked asset.

The classification demonstrates discrepancies with the attack log. In scenario B, for example, the
attack log indicates only pump P302 as exploited, suggesting attack class SSSP. However, the
incident affected the water level in the tank of the subsequent process; therefore, the localization
algorithm codes level indicator LIT401 as under attack. Incident A may exacerbate this impact, as
previously suggested.

The final result of the incident inference and localization is passed to a visual analytics component
in the form of JSON files. Concurrently, the visualization module receives operational
performance indices to convert them into visual representation to focus the attention of the risk
manager.

In the visual module, the user employs the analytical strategies by navigating through the
coordinated views depicted in Fig. 7 and configuring parameters (detection model, critical assets,
thresholds) as needed.
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Fig 7. Interactive analytical dashboard. A, B, C, D, E denote cyber incidents. The dashboard
illustrates the scenario A with a level indicator LIT401 under investigation

The detection view (Fig. 7) illustrates 24 hours of the system under investigation. An anomaly
score (bar in the inner circle) for five scenarios appears inside the highlighted area, indicating
alleged attacks. For further reference, we denote these incidents as A, B, C, D, and E. The duration
of the incidents varies from short for A, C, D, and E to lengthy (more than 9 hrs.) for incident B.
The detection view shows the attacked ICS assets (bubbles at the process levels P1-P6) for each
incident. The bubble size indicates the rank (percentile) that the localization algorithm assigned to
a particular ICS asset. The pulsation technique indicates that critical assets listed in the settings
view are involved in incidents A and B. Noble, the attacks have not targeted process levels P5 and
P6. Further, since incidents A and B appeared one after another and affected the same process
levels, P3 and P4, it is reasonable to expect the trace of incident A in the following incident B.
Same is relevant for attacks C and D.

For illustration purposes, we provide visual insights for one scenario since it consists of the critical
sensors defined by an expert.

Incident A. Figure 7 illustrates a detailed view for the detected attack A (only one sensor is detailed
for illustration purposes). In this attack scenario, the measurements of the water level indicator are
maliciously set to the level below minimal and kept this way through the incident duration. At the
same time, pump P302 kept on, allowing continuous actual water flow. The inspection view
reflected this incident and pinpointed that the critical asset defined in the settings is exploited.

Ranking view. Both multivariate and individual (z-score) ranks reached the shaded area (the
threshold), confirming the attack localization. The flow level indicator demonstrates the signs of
the underflow: the line plot reached the shaded area; the index Ty, 4., confirmed this assertion. In



the raw data view, the grey shaded area visually segregates the attack window, obtained from an
irregularity score centered around the same assets and time. It further visually compares the actual
and expected behavior of the ICS asset, showing the sign of an ongoing incident considering a
significant apparent deviation.

4.4 Usability test

To evaluate the capability and usability of the visualization module to support threat identification
and initial analysis of the incident impact, we asked a focus group of six participants to apply
defined analytical strategies and complete questionnaires assessing the success of the investigation
and usability of the system. A focus group consisted of two cybersecurity experts, one user
experience expert, and the rest had no mentioned expertise. The rationale behind the group
composition is to support system evaluation by both cybersecurity experts and non-experts. The
summary of the assessment is presented in Table VIIL

Table VIII. Fraction of successful answers and standard deviation (SD)

Question Strategy Answers SD
Identify exploited ICS assets in the selected time frame  Comprehensive monitoring 100% -
Inspection at ICS process level 100% -
Identify the process levels involved in cyber incidents Comprehensive monitoring 100% -
Inspection at ICS process level 100% -
Identify a timeframe of a selected incident Comprehensive monitoring 83% 0.41
Inspection at the individual level ~ 100% -
Identify the incident that requires prompt attention Comprehensive monitoring 83% 0.41
Inspection at ICS process level 83% 0.41
Prioritization 100% -
Identify the severity rank of the incident Prioritization 100% -
Identify possible false alarm Prioritization 67% 0.52
Identify recovery time after an attack Comprehensive monitoring 50% 0.55
Inspection at the individual level ~ 100% -
For a selected incident, identify remediation priority Comprehensive monitoring 50% 0.55
Inspection at ICS process level 50% 0.55
Prioritization 83% 0.41
Identify the impact of the incident Prioritization 100% -

The focus group found identifying and analyzing cyber incidents effective. As a recommendation
for improvement, the cybersecurity experts mentioned the improvement of visualization
prioritization based on the impact ranking early at the detection and inspection views. The latter
will allow the experts to focus their investigation not only on the critical assets (current
implementation) and the severity of the incident's effect. Further, the experts mentioned the
importance of incident trend analysis to provide more insights to develop better remediation
strategies. Specifically, the experts pinpointed two possibilities for trend analysis: the anomalies
by the same time for different days and by the device type or vendor.

Further, we asked the focus group to assess the usability of the visualization system using the
System Usability Scale (SUS) Score (Brooke 1996). The questions are composed of 10 statements
altered between positive and negative and scored on a 5-level Likert scale from 1 (Predominantly
Disagree) to 5 (Predominantly Agree) by participants. We slightly modified the original
questionnaire to put it in the context of the proposed visual system. In addition, we linked the



questions to the categories recommenced in ISO 9241-210: 2019 (ISO 2019). The summary of the
evaluation is presented in Table IX.

Table IX. Summary of usability assessment per question in the usability questionnaire. For
questions with Target 1l high values are good results, while with Target U - low values are good

results.
Question ISO category Mean Median Target
I was able to perform all defined tasks Suitability for the task 4.3 4.5 i
I found the system unnecessarily complex Suitability for the task 1.3 1.0 U
I found the navigation between visualization strategies Self-descriptiveness 4.5 4.5 n
intuitive
There are too much inconsistency in this system Self-descriptiveness 1.0 1.0 U
I found the various functions in this system are well Self-descriptiveness 4.2 4.0 )
integrated
I think that I would need the support of a technical person Self-descriptiveness 1.0 1.0 U
to be able to use this system
I believe most people would be able to use this system very  Suitability for the 4.7 5.0 n
quickly learning
It is required to learn a lot of things before working with the ~ Suitability for the 1.0 1.0 U
system learning
I felt very confident using the system Confonmty withuser 4.2 4.0 f
expectations
I found the system very difficult to use Confompty withuser 1.2 1.0 U
expectations

We received favorable scores concerning the suitability of the proposed visual module for the
defined strategies and learning. Self-descriptiveness and conformity with the user expectations
were also rated positively, implying that the system is intuitive, and screens are well integrated.
The SUS score calculation considers the alteration of positive and negative statements; the reader
can find a detailed calculation strategy in the original publication (Brooke 1996). The SUS score
range is 0 to 100, with higher scores indicating better usability. The focus group assessed the
usability score as 91 (with a median of 92.5), which is above the average score of 68 (Grier 2013).
The result indicates that the selected visualization is well-designed to support threat identification
and initial analysis of the incident impact.

S  DISCUSSION AND CONCLUSION

The method developed in this study integrates several techniques: (i) a deep learning architecture
to efficiently generalize the underlying system by operating on circulating ICS data and identify
notable deviation from the regular operation; (i) a combination of theory of belief functions to
aggregate the results of various feature selection methods and z-score for individual variables to
address uncertainties in anomaly localization and derive attacked ICS assets; (iii) operational
performance metrics to evaluate the attack effect; and (iv) dynamic visual analytics to extract
valuable insights and facilitate operational efficiency. These unique combination complements
available attack inference methods by broadening the perspective, which provides desired
granularity for the investigation of attack impact. It offers an extensive scope of knowledge as
opposed to solely evident indicators of malicious activity. Furthermore, our approach provides the
cyber operators and digital investigators an effective tool to dynamically and visually interact,



explore and analyze heterogeneous, complex, at times, conflicting data, and provide rich context
information. Such an approach is envisioned to facilitate the cyber incident investigation and
support a timely evidence-based risk management process.

5.1 Contributions of the Method

This work offers three particularly salient capabilities for attack incident detection in the ICS
setting. First, the proposed approach operates on heterogeneous empirical data with the rare
availability of attack-related instances. To this end, it leverages Generative Adversarial Networks,
a machine learning architecture widely used for anomaly detection across different domains such
as healthcare, public safety, finance, and cybersecurity. This work extends the application of GAN-
based anomaly inference methods toward cybersecurity and forensics in critical water
infrastructure. As previous research suggests, GAN-based architecture effectively generalizes the
underlying system (Choi et al. 2020, Li et al. 2019, Du et al. 2021, Seo et al. 2018.) It can infer a
wide range of attacks by employing learning algorithms operating on circulating ICS data,
regardless of the deployment domain.

Second, anomaly localization is a challenging task for multidimensional data. This work uniquely
employs the degree of belief functions to address uncertainties in anomaly localization by
converging the multivariate (operation of entire ICS) and individual assets perspectives. The
empirical evaluation (Table VI) demonstrates that the proposed approach significantly increases
the localization accuracy.

Finally, anomaly detection methods often have limited capability to generate extensive scope of
knowledge regarding detected anomalies (e.g., investigation of incident impact), and insufficient
abilities to communicate the result to the broad audience with diverse background to support
evidence-based risk management. This work pays particular attention to impact quantification by
employing the notion of performance loss as a function of production and quality loss. Moreover,
through the visualization module, the proposed approach shows the behavior and state of ICS at
both local (individual assets) and global (all assets simultaneously) levels. The module advances
the visibility of cyber incidents by effectively utilizing a screen space; it promotes investigation
and enriches analytical pivot by integrating extensive empirical analytics and interactive
techniques. It aims to understand detected anomalies presented in empirical data and draw
conclusions regarding their implication for the system to support proper risk management in a
critical realm.

The study results draw an important preliminary conclusion regarding the response of ICS
deployed in the water facilities to cyber threats. For instance, the correlation between ICS assets
challenges anomaly localization accuracy for the methods relying solely on empirical data.
However, the proposed visual exploration allowed an efficient investigation of falsely classified
attacked ICS assets by providing an observable correlation between ICS assets and enabling
subsequent analysis of the corresponding raw data. Further, the system can demonstrate the effect
of the earliest attack with a delay. This effect, therefore, reveals incorrect incident localization
since the system behavior does not correspond to the expected conduct. A combination of the
proposed analytical strategies and their respective dynamic visualization provided evidence of
such an effect and the basis for proper risk management decisions.



5.2 Limitations and Future Work

The proposed work has several limitations that lead to further research. For instance, the method
does not consider the cause of the anomaly and the probability of such incidents. Further research
in this area would include developing strategies to classify the various anomalies (including system
faults) in empirical data and incorporating incident probability assessment to enable a transition to
operational implementation through developing a suite of appropriate mitigation or response
strategies.

In addition, employed operational performance indices support one threat scenario — malicious
manipulation of the water level in the tank. Although numerous attack scenarios exist, their impact
quantification is out of the scope of this work. Nevertheless, the proposed framework supports the
extension, and we are working on identifying and gathering the required data to employ an
extensive set of indices to quantify the impact of the system malfunctioning and water quality for
further incorporation into the analytical framework.

Further, the proposed method is limited to the number of incidents, and neither analyzes incident
trends nor provides sharing capabilities. The operational community would benefit from the attack
trend analysis for targeted and more effective remediation strategies, including those related to the
specific devices' vendors. We are now working on the methods for visualization of such trends and
generation of the accumulated knowledge for further collaboration among the players of the
operating community. The techniques under investigation include but are not limited to visual and
semantic data analysis, the data structure for collaborative sharing, and the analytical strategies for
collective knowledge.

Finally, the proposed method is also limited by its focus on ICS as an isolated unit. As water
facilities become a part of the connected infrastructure of smart cities, the increased
interdependence directly relates to the severity of cyber attacks through risk contagion. This has a
multiplicative effect on impact, requiring future research regarding quantifying the impact on the
entire smart city ecosystem. As we develop such cyber-physical-social systems, we need to design
cyber and safety assured systems from the very start through system of systems engineering and
design.
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