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Abstract: Projections indicate that solar energy will constitute 55% of total electricity capacity by 2050 in the US. Despite solar energy’s
growing importance, few studies have analyzed the risks of countrywide deployments of solar infrastructure due to extreme weather events
such as hurricanes. This paper presents a probabilistic framework to evaluate the performance of solar infrastructure to generate energy during
hurricanes, which often cause significant outages in the US. Our novel framework integrates recent data-driven models that capture two
critical and compounding factors: transient cloud conditions that decrease irradiance and high winds that can cause permanent panel damage.
We apply the framework to the 2,694 counties in the 38 central and eastern US states to elucidate the risk landscape of solar generation during
hurricanes. Our results show that hurricane impacts are significant, compounding, and strikingly disproportional in the US. We show that in
Florida and Louisiana, clouds rapidly reduce solar generation to 32% and 65%, respectively, of their normal levels with a return period
of 100 years. Our results also show that damage to panels can induce more acute and permanent energy losses, especially in rarer storms,
e.g., causing 80% more losses than hurricane clouds 2 days after landfall for 200-year events. DOI: 10.1061/NHREFO.NHENG-1764.
© 2023 American Society of Civil Engineers.
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Introduction

Ensuring continuous electricity delivery is key to supporting com-
munities in responding and recovering from extreme natural events.
Nevertheless, the grid is far from resilient. Hurricane Maria in 2017,
for example, caused one of the longest and largest power outages in
the modern US, which left half of Puerto Rico without power for at
least 4 months (Wang et al. 2018). Last year, Hurricane Ida damaged
30,000 utility poles, leaving 1.2 million customers without power
across eight states (Boyle 2021), ranking as the costliest disaster in
the world in 2021 (Swiss Re Institute 2022).

Governments are investing aggressively in upgrading the grid to
enhance resilience. Through the Bipartisan Infrastructure Law, the
US Department of Energy (DOE) will provide USD 2.3 billion over
the next 5 years to strengthen US power systems against extreme
weather (White House 2022). Furthermore, through the Bipartisan
Infrastructure Law and the 2022 Energy Act, the US will invest
even more ambitiously (USD 62 billion) in accelerating renewable
adoption, including solar energy, to achieve net-zero electricity by
2035 and become a net-zero economy by 2050 (Department of
Energy 2022). Motivated by the need to plan for these large-scale
investments holistically, this paper studies the large-scale risk land-
scape of solar generation to hurricanes across the entire central and
eastern US.

We focus on solar panels because the US Energy Information
Administration (EIA) projects them to constitute 55% of total elec-
tricity capacity by 2050 (US Energy Information Administration
2022) and also because they have a high potential to increase resil-
ience when deployed as a distributed energy resource. In fact, the
USD 2.3-billion investments to modernize the grid include utilizing
distributed energy resources as a key pillar to enhance resilience
(White House 2022). For example, rooftop solar panels and
behind-the-meter batteries together can provide continuous energy
to communities in an outage in the main grid (Ceferino et al. 2020a;
Patel et al. 2021). Despite these opportunities, little is known about
the ability of panels to generate electricity during hurricanes.

Extensive energy system models can assess disruptions in power
systems (Anderson et al. 2018; Colson et al. 2011; Laws et al.
2018; Arora and Ceferino 2023), enabling the design of strategies
for risk mitigation (e.g., grid hardening) or emergency response
(e.g., grid operations and repairs) (Bennett et al. 2021; Ceferino
et al. 2020b; Guikema et al. 2010; Han et al. 2009; Nateghi
et al. 2014; Ouyang et al. 2012; Shashaani et al. 2018;
Talebiyan and Duenas-Osorio 2020; Winkler et al. 2010). Never-
theless, these studies build on critical assumptions about electricity
generation during extreme weather events, especially for solar
energy during hurricanes. Many studies focused on damage to
the distribution lines, not considering that extreme weather events
also damage infrastructure for energy generation (Guikema et al.
2010; Han et al. 2009; Nateghi et al. 2014; Shashaani et al.
2018). Recent observations have shown extensive wind-induced
failures in rooftop and ground-mounted panels after Hurricane Irma,
Maria, and Dorian in 2017 and 2019 (Burgess et al. 2020; Burgess
and Goodman 2018; Stone et al. 2020). Other systemmodels assume
that energy sources remain constant during extreme weather events,
neglecting transient environmental effects (Bennett et al. 2021; Liu
and Zhong 2017; Ouyang et al. 2012; Talebiyan and Duenas-Osorio
2020; Winkler et al. 2010). Yet, hurricanes bring optically-thick
clouds that can absorb and reflect light and thus decrease gener-
ation drastically, e.g., to a fifth (Cole et al. 2020), during a hurri-
cane emergency (Ceferino et al. 2022).

Current system models cannot capture these effects because no
existing quantitative methods take them into account. These effects
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are complex because they are compounding and dynamic, i.e., they
co-occur with conditions that vary rapidly over a storm’s life spans.
The DOE, energy regulators, and utility companies must account for
these acute effects to assess the risk of solar generation losses and
strategize a risk-informed response to outages and an effective de-
ployment of solar energy for grid resilience.Wind hazard maps could
provide an initial starting point to identify locations where solar gen-
eration infrastructure would be exposed to extreme winds, but there
is a lack of formal methods to quantify the risk of solar panel failures
and electricity losses during these extreme natural events.

To address this research gap, we present a probabilistic frame-
work to quantify solar generation during hurricanes. This frame-
work integrates recently developed data-driven models to capture
the stochasticity in panels’ structural performance and the inter-
mittency of solar generation during hurricanes. We first apply the
framework to studyMiami-Dade, Florida, which faces high hurricane
hazards (Vickery et al. 2009) and large-scale hurricane-triggered
outages (Mitsova et al. 2019). Then, we extend the study to the 38
central and eastern US states at the county level to elucidate the risk
landscape of solar generation. Central and eastern US states are ex-
posed to particularly high wind hazards, especially in coastal areas.
Thus, this study allows us to unveil the areas with corresponding high
risks and quantitatively determine their extent.

We reveal considerable variability in solar generation risks, high-
lighting where and when wind-induced panel failures and cloud-
driven irradiance reduction are critical. Performing energy system
studies to assess the implications of these energy losses on power
delivery falls outside this paper’s scope. Instead, we apply the pro-
posed methodology to the US to create risk maps of solar generation
to help inform the response of utility operators during hurricanes
and long-term investments in solar panels for grid resilience.

Materials and Methods

Compounding Solar Energy Losses due to Storms

The dashed line shows solar power and accumulated energy in a
nondamaged solar panel during 5 days, i.e., from t ¼ 0 to
t ¼ tf . The dotted black lines show the counterfactual scenario, en-
ergy in the absence of the hurricane, highlighting the reduction in
losses from hurricane cloud conditions ΔEc, represented as the
dark-shaded area in Fig. 1(a) and difference between ordinates
of the solid and dotted lines in Fig. 1(b). The solid line shows
the generation and power for a panel that is damaged at t ¼ td
due to high hurricane winds. The panel is unable to generate energy
after t ¼ td, generating additional energy losses ΔEd shown in
light-shaded area in Fig. 1(a) and as the difference between ordi-
nates of the dashed and solid lines in Fig. 1(b). Generation will
bounce back to normal levels as soon as the hurricane leaves if

the panel is undamaged. If the panel is damaged, generation will be
zero after t ¼ td until it is repaired or replaced. This conceptualiza-
tion is valid for either small residential rooftop panel arrays or large
ground-mounted arrays for utility companies.

We assess the time series of solar generation during hurricanes
(Fig. 1). Consider that P is the solar power generation rate during a
storm and E is the total harvested energy from a starting time zero
of interest (e.g., 24 h before landfall when emergency preparations
start) until time tf in the hurricane emergency. Thus

E ¼
Z

tf

0

Pdt ð1Þ

If Ē is the counterfactual energy, i.e., the harvested energy that
would have been collected at the same site and time in the absence
of the hurricane, then

Ē ¼ EþΔEc þΔEd ð2Þ
where ΔEc and ΔEd = energy losses due to cloud conditions and
damage to the panels, respectively. Power generation is first affected
by the cloud conditions brought by hurricanes (Ceferino et al. 2023),
reducing the irradiance that reaches the panel according to hurricane
intensity and proximity. When the hurricane leaves and it is at a
sufficient distance away from the site, P will bounce back to normal
levels. Thus, ΔEc is transient. In contrast, if wind conditions are
high enough, the panel will be damaged and remain unfunctional,
driving power generation P to be permanently 0, starting at t ¼ td,
until the panel is repaired or replaced (Ceferino et al. 2023). Thus,
ΔEd grows indefinitely, and the cumulative electricity generation E
will become flat from t ¼ td. If the panel is repaired or replaced,
thenΔEd will stop increasing because the panel will harvest energy
again. However, because our focus is the hurricane emergency, we
did not consider this case because this period often lasts only a few
days. If there is no failure, ΔEd will always be zero.

To assess the relative effect of these two factors on the total solar
generation, we use two multiplicative factors to characterize solar
generation during hurricanes

E ¼ Ē
AcAd

ð3Þ

where Ac = reduction factor that accounts for the energy losses due
to the optically thick clouds reducing irradiance and is given by

Ac ¼
Ē

Ē −ΔEc
ð4Þ

and Ad = reduction factor that accounts for the energy losses due to
failures in the solar panel structural system and is given by

Ad ¼
Ē −ΔEc

E
ð5Þ

Fig. 1. Conceptual illustration of solar generation losses during hurricanes: (a) instantaneous solar power generation; and (b) cumulative solar energy.
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Framework for Simulating Time Series of Solar
Generation during Storms

To evaluate these compounding effects, we modeled solar genera-
tion during storms in four stages (Fig. 2). We based our assessment
on ∼50,000 Monte Carlo simulations to capture the spatiotemporal
complexities in the factors affecting generation. We first used sim-
ulations of landfalling synthetic hurricanes representative of the
current hurricane climatology in the Atlantic Basin (Marsooli
et al. 2019). These simulations of synthetic hurricanes tracked
the maximum wind (and thus category, C), storm size, and location
of the hurricane’s center, which enables the computation of its dis-
tance d to any site. This information was modeled at a fine temporal
resolution of 2 h, critical to capture intraday variations of solar ir-
radiance and rapid wind intensifications that can damage panels. In
the second stage, we assessed solar irradiance during hurricanes
(Ih) using a recently developed mixed-regression model (Ceferino
et al. 2022). To capture the physics of irradiance decay with hurri-
canes, this model estimates irradiance decay as a function of hur-
ricane category C and distance d normalized by storm size. In the
third stage, solar panel functionality F (1 if there is no structural
damage and 0 otherwise) and time-to-damage td were estimated
stochastically. To account for these impacts on the panels’ structural
system, we used Ceferino et al.’s (2023) study to link the likelihood
of panel damage to varying winds (W) in hurricanes. We further
detail Stage 1, 2, and 3’s models in the following subsections. In
the fourth stage, we used Ih, F, and td to compute the synthetic time
series of instantaneous solar generation P and cumulative energy E.

For a panel, with efficiency η (the ratio of energy that is con-
verted into electricity form the solar energy reaching the panel) and
area a, the instantaneous solar generation is

P ¼ FIhaη ð6Þ

If we isolate the effect of hurricane clouds (not considering
panel failure), then F ¼ 1 and

P ¼ Ihaη ð7Þ

Additionally, in regular conditions

P̄ ¼ Iaη ð8Þ

where I = irradiance in the absence of a hurricane. Thus

ΔEc ¼ aη
Z

tf

0

ðI − IhÞdt ð9Þ

We then estimate our metrics for compounding effects reducing
solar generation through the factors Ac and Ad. From Eq. (4)

Ac ¼
aη

R tf
0 Idt

aη
R tf
0 Idt − aη

R tf
0 ðI − IhÞdt ¼

R tf
0 IdtR tf
t0 Ihdt

ð10Þ

Similarly, from Eq. (5)

Ad ¼
aη

R tf
0 Idt − aη

R tf
0 ðI − IhÞdt

aη
R tf
0 FIhdt

¼
R tf
0 IhdtR tf
0 FIhdt

¼
R tf
0 IhdtRminðtd;tfÞ

0 Ihdt

ð11Þ

Limiting Behavior of Compounding Factors

Using L’ Hospital’s rule for the limiting behavior of Ac, then

lim
tf→∞Ac ¼

R tf
0 IdtR tf
t0 Ihdt

¼ lim
tf→∞

I
Ih

ð12Þ

Fig. 2. Overview of proposed probabilistic framework to estimate the times series of solar generation during hurricanes. The analysis builds on the
probabilistic modeling of hurricane hazards, solar damage due to high winds, and irradiance decays under hurricane cloud conditions to estimate the
resulting solar generation.
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Because the hurricane eventually leaves or gets dissipated

lim
tf→∞Ih ¼ lim

tf→∞I ð13Þ

Thus

lim
tf→∞Ac ¼ 1 ð14Þ

In the case of Ad, if the panel does not fail, then F ¼ 1, and
td ¼ ∞. Thus

Ad ¼
R tf
0 IhdtR tf
0 Ihdt

¼ 1 ð15Þ

If the panel fails, td < ∞ and

lim
tf→∞Ad ¼

limtf→∞
R tf
0 IhdtR td

0 Ihdt
¼ ∞ ð16Þ

Solar Irradiance during Storms

Ih is the irradiance, e.g., global horizontal irradiance, during hur-
ricane conditions and can be estimated as follows:

Ih ¼ IefðR;CÞ ð17Þ
where I = irradiance under normal conditions, i.e., without a hur-
ricane, at the time and location of interest; and fðR;CÞ = irradiance
decay equation as a function of the normalized proximity from the
site to the hurricane center R and hurricane intensity C (Fig. 3).
According to Ceferino et al. (2022), this factor can be assessed as
follows:

f ¼

8>>><
>>>:

ð0.0965Cþ 1.97Þ ln
�
Rþ ð−0.126Cþ 1.15Þ

2.48–0.139C

�
Rþ ð1.15–0.126CÞ

2.48–0.139C
≤ 1

1
Rþ ð1.15–0.126CÞ

2.48–0.139C
> 1

ð18Þ

where C = hurricane intensity in the Saffir-Simpson wind scale;
and R = distance from the site of interest to the hurricane center,
normalized by the hurricane’s radius of the outermost closed iso-
bar (ROCI). ROCI can be estimated from the synthetic storm’s
radius of maximum wind using an empirical equation (Ceferino
et al. 2022). This irradiance model was calibrated to ∼0.75 million
data points from the 20-years of intense storm activity archived in
the Atlantic hurricane data set (HURDAT2) (Landsea and Franklin
2013) and high-resolution spatiotemporal data set of global hori-
zontal irradiance (GHI) from the National Renewable Energy
Laboratory (NREL) (Sengupta et al. 2018).

R and C are dynamic over the hurricane life span. As the hurri-
cane approaches the site of interest and potentially strengthens be-
fore landfall, f and thus Ih become smaller (Fig. 3). Conversely, as
the hurricane leaves and weakens, f and thus Ih increase. Therefore,
Ih is highly dynamic. Also, Ih is stochastic as I is random [Eq. (17)].
If we assume I is lognormally distributed, then Ih is also lognor-
mally distributed, with a logarithmic mean that is smaller in f units
and a logarithmic standard deviation that is the same to the one for I.
Following the procedure of Ceferino et al. (2022), the logarithmic
means and standard deviations of I at the site were computed using
each county’s 20-year history of irradiance (Sengupta et al. 2018).
They were then adjusted to sample Ih every 2 h during the life span
of each synthetic hurricane.

Damage to Panels during Storms

High hurricane winds increase the likelihood of panels’ structural
failure and loss of functionality. The functional form of damage
likelihood, i.e., fragility function, uses natural hazards’ intensities
as input, such as maximum wind for hurricanes or spectral ac-
celeration for earthquakes. Accordingly, we utilized the following
fragility function recently calibrated (Ceferino et al. 2023) with a
ground-truth data on panel structural performance after Hurricane
Irma and Maria in 2017 and Dorian in 2019 (Burgess et al. 2020;
Burgess and Goodman 2018; Stone et al. 2020):

q ¼ Φ

�
lnðWÞ − lnð80Þ

0.32

�
ð19Þ

where q = damage probability; W ¼ 3-s gusts at a site (m/s); and
Φð·Þ = cumulative standard normal distribution function. The data
set consisted of observations of damages in 46 rooftop solar panel
installations in the Caribbean. Failure modes included clip (clamp),
racking, and roof attachment failures on rooftop panels, especially
for panels that experienced strong winds. Fig. 4 shows the calibrated
fragility function for multiple values of W. Damage is only caused

Fig. 3. Functional form (in logarithmic scale) of irradiance decay dur-
ing hurricanes due to cloud conditions as a function of distance from
the site to the storm’s center [normalized by the radius of outermost
closed isobar (ROCI)] and tropical storm (TS) category in the Saffir-
Simpson Scale. R and C are dynamic during the hurricane life span.
Plot based Ceferino et al. (2022).
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by high-intensity hurricanes. For hurricanes reaching Category 1,W
is 42 m=s [after transforming 1-m sustained winds to 3-s gusts with
an empirical formula (Vickery and Skerlj 2005)], and q is only 0.02.
It takes an intensity of Category 4 (W ¼ 74 m=s) to increase the
probability of failure to 0.4. In our model, F ¼ 1 until td and = 0
after. If the panel is undamaged, then the time to failure td ¼ ∞.
Thus, td ¼ ∞ with probability of 1 − qmax, where qmax is the maxi-
mum q induced at the site of interest during the life span of the
hurricane. Conversely, td < ∞, i.e., there is a failure, with probabil-
ity of qmax.

We modeled the time to failure stochastically, with probability
of failure at time t proportional to the varying values of q during
the hurricane’s life span. Although high-resolution and high-
fidelity structural analysis models may better capture td, this
simplified approach accounts for the fact that it is more likely
to have failures during the highest wind conditions imposed by
hurricanes.

Hurricane Simulation

We used a synthetic hurricane database with 5018 landfalling storms
in the US Atlantic Coast, and simulated 10 time series of solar gen-
eration for each storm, reaching ∼50,000 simulations. The synthetic
hurricanes were generated in a previous study (Marsooli et al. 2019)
using a statistical-deterministic tropical cyclone model. These syn-
thetic hurricanes account for current climate conditions, represen-
tative of hurricane activity from 1980 to 2005 according to the
National Center for Environmental Prediction (NCEP) reanalysis.
The model that generates these storms consists of three stages: a
probabilistic genesis model, a probabilistic beta-advection motion
model, and a deterministic model that captures how environmental
factors influence the development of storm intensity (Emanuel et al.
2008). The model solves the synthetic storms’ tracks, maximum
sustained winds, and radii of maximum winds, and we use its results
at 2-h intervals.

We estimated the total wind fields with a complete wind profile
model (Chavas et al. 2015) and estimated background winds

(Lin and Chavas 2012). The average rate of landfalling tropical
cyclones in the US Atlantic coast from 1980 to 2005 was 3.37 per
year (Landsea and Franklin 2013). Accordingly, the total ∼50,000
simulations are representative of ∼14,850 years of simulation of
solar generation during storms, i.e., to match the rates of historical
and synthetic tropical cyclones.

Results and Discussion

We studied the impact of a large number of synthetic storms
(Marsooli et al. 2019) making landfall on the US Atlantic Coast.
The storm simulations account for current climate conditions and
include the assessment of the synthetic storms’ track, size, and wind
field at 2-h intervals. We determined solar generation reduction fac-
tors Ac and Ad at this high temporal resolution to capture intermit-
tency of solar generation within a day and its seasonal variability
during storms, which occur at different monthly rates (Emanuel
2006).

To capture different risk levels, we used our probabilistic ap-
proach to estimate the return period (RP) for the total reduction
factor, AcAd, as the inverse of its annual exceedance rate λ. Using
the nMonte Carlo simulations, we computed the empirical estimate
of this rate as follows:

λ̂ðAcAd > xÞ ¼
P

n
i¼1 1fAi

cAi
d > xg

T
ð20Þ

where x = threshold of interest. The summation computes the num-
ber of simulations (with index i) that exceed the threshold, and T is
the equivalent number of years of simulation. We followed a similar
procedure to calculate the RP for Ac and Ad.

Risk of Solar Generation in Miami-Dade

We utilized our proposed framework to first generate ∼50,000
Monte Carlo simulations of the time series of P and E in Miami-
Dade, Florida (Fig. 5). We characterized the occurrence of energy
losses probabilistically, estimating different levels of total reduction
factor, i.e., AcAd [Eq. (3)], and their associated return periods RP
[Eq. (20)]. The total reduction factor was assessed for the total har-
vested solar energy starting the day before hurricane landfall,
i.e., t ¼ 0, because important energy losses also occur when the
hurricane’s center is still on the ocean but near the coastline
(Ceferino et al. 2022; Cole et al. 2020).

Our simulations capture how more extreme events (longer RP)
trigger larger solar energy losses, i.e., large total reduction factors
AcAd, across the wide range of return periods at landfall and 1 day
(tf ¼ 24 h), 2 days (tf ¼ 48 h), and 3 days (tf ¼ 96 h) days after
[Fig. 6(a)]. We also show that even frequent events will induce large
energy generation losses, with total reduction factors increasing
sharply in the initial return period range. Miami-Dade will lose 70%,
63%, 52%, and 40% of its solar generation, i.e., AcAd ¼ 3.3, 2.7,
2.1, and 1.67, at landfall and 1, 2, and 3 days after, respectively,
for hurricane emergencies happening on average every 50 years
(RP ¼ 50 years).

Time-Variant Contributions of Reduction Factors

We observed that the total reduction factor was bigger at landfall
than 3 days after for the frequent events [Fig. 6(a)]. However, they
reached similar values, AcAd of ∼3.4, for hurricanes with RP
of ∼90 years. For rarer events, the order flips, and energy losses
increased over time after landfall in Miami-Dade due to the varying
contributions of the factors Ac and Ad through the wide range of

Fig. 4. Fragility functions for solar panels fitted to solar panel
damage after Hurricanes Irma and Maria in 2017 and Dorian in 2019
in the Caribbean. The fitting was conducted in a previous study using
a Bayesian approach, and in this study, we used the maximum a
posteriori estimates from the parameter joint distribution based on
Ceferino et al. (2023). For reference, 3-s winds for a Category 2 hur-
ricanes are included based on Vickery and Skerlj (2005) to highlight
that storms with lower intensity will have low chances of damaging
panels.
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return periods [Fig. 6(b)]. Ac was initially bigger than Ad until they
reached a similar value of 1.7 for a RP of ∼90 years for tf ¼ 96 h.
This RP threshold coincides with the transition from decreasing to
increasing values of AcAd as a function of tf. Empirically, we dem-
onstrate that this transition is dominated by the change in the en-
ergy loss mode, from predominantly transient and cloud-induced to
permanent and damage-induced losses.

We also observed transient but strong cloud-induced energy
losses, especially for small tf . For example, at tf ¼ 6 h, i.e., 18 h
before landfall, events with RP of 200 years will trigger losses
of 68% [Fig. 7(a)], almost entirely due to the hurricane clouds
(Ac ¼ 3.1 and Ad ¼ ∼1). Cloud-induced losses will reach their
maximum values of 77% ðAc ¼ 4.4Þ for 24 < tf < 36 h (between
landfall and the 12 h after). This observation is consistent with pres-
ence of optically thick cloud structures (with high moisture levels
and vertical depths) in the hurricane eyewalls (John et al. 2020)
that will cover Miami-Dade after landfall. More frequent events can
also induce large energy losses. In events with RP of only 9 years,
clouds will induce losses of 50% (Ac ¼ 2) at tf ¼ 6 h. These strong

cloud effects are transient. Thirteen days after landfall, Ac is
only 1.19 with return period of 200 years, which is a modest energy
loss of 11% for an extreme event [Fig. 7(a). As time goes on,
cloud-induced losses will be negligible, i.e., Ac ¼ 1 in the limit
[Eq. (14)].

Less frequent events (RP > ∼90 years) can have permanent ef-
fects on energy [Fig. 7(b)]. Ad is close to 1 for RP < ∼90 years for
all values of tf , and then it grows steadily as a function of the return
period given that these extreme events will induce higher solar
panel damage likelihoods (Fig. 4). In contrast to Ac, Ad is close
to 1 (below 1.03), i.e., no effects, until tf ¼ 36 h (12 h after land-
fall) even for very extreme events with RP of 1,000 years, demon-
strating that storms require additional time to be near the site and
damage panels. If the panel is damaged, then energy losses will
grow to infinite unless the panel is repaired or replaced [Eq. (16)].
Accordingly, the factor Ad becomes rapidly dominant for damaged
panels. For events with RP of 200 years, the ratio between Ad and
Ac is 0.4 at tf ¼ 48 h, but it increases to 1.8 only 48 h after (Fig. 7).

Fig. 6. Return periods for different levels of relative energy loss due to hurricanes for Miami-Dade, Florida: (a) relative energy loss is depicted
through total reduction factors, AcAd, equal to the cumulative energy harvested by the panel until landfall and 1, 2, and 3 days after (tf ¼ 24, 48, 72,
and 96 h) compared with the counterfactual event, i.e., generation in the absence of a hurricane; 95% confidence was estimated using χ2 distributions
for Poisson rate estimates (Ulm 1990) and are shown as shaded areas; and (b) total reduction factor is decomposed in its two factors, Ac and Ad, for
cumulative energy until 72 h after landfall (tf ¼ 96 h) to highlight the contributions of cloud conditions and panel damage in the energy losses for
different return periods.

Fig. 5. Multiple simulations of solar generation in Miami-Dade, Florida, for future tropical storms in thin gray lines: (a) Instantaneous power gen-
eration (P); and (b) Cumulative solar energy (E). The synthetic simulations of solar generation start at one day before landfall (t ¼ 0). The contrast
between thicker solid line and dotted line highlights the difference between solar power (P) and generation (E) during the storm (in solid line) and
under the counterfactual power (P) and generation (E) if there would have not been a hurricane (in dotted lines). P is reduced due to hurricane clouds
and it becomes 0 if the panel has structural failure. E becomes flat after the panel’s failure.
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These results demonstrate that structural reliability is critical for
generation reliability during a hurricane emergency.

Storms’ Features Driving Bigger Energy Losses

We deaggregated the storm simulations to assess the storm features
driving large energy losses quantitatively. We analyzed the joint
probability distribution of category C and distance to the site d,
empirically, utilizing 500,000 Monte Carlo simulations (by simu-
lating 100 time series of solar generation for each synthetic storm)
instead of 50,000 to estimate these joint distributions more
smoothly. We analyzed the drivers for energy losses of 33% and
50%, i.e., AcAd of 1.3 (RP of 12 years) and 2 (RP of 58 years), at
tf ¼ 96 h (Fig. 8). The average hurricane categories that caused
these losses were 3.1 and 3.6, and the average closest distances
were 66 and 33 km, respectively. Hurricane cloud conditions rather
than high winds drove the reduction factor of 1.3 because 88% of
the storms did not cause panel failure; 33% of these synthetic
storms did not reach hurricane categories beyond Category 2,
and 44% were more than 50 km away, indicating that the 1.3

reduction factor can be caused by events distant from the site.
For the reduction factor of 2, panels experienced failures in
69% of the simulations, indicating that significant panel damage
can occur at return periods of AcAd lower than 90 years (although
panel damage can only occur at return period of Ac greater than
90 years [Fig. 7(b)]. Moreover, 72% of the simulations had storms
with categories above Category 3, and 90% had distances from the
track to the site of 50 km or less. This result is consistent with
frequent observations of hurricane’s maximum winds at radii be-
tween 20 and 80 km (Wang and Rosowsky 2012).

Annual Rates of Panel Failure in Central and
Eastern US

We extended the analysis to the entire central and eastern US and
generated 50,000 Monte Carlo simulations for their 2,694 counties
in 38 states. We first focused on simulations of structural damage to
assess the spatial distribution of RP and reliability indexes of panel
failures. As defined in the ASCE 7-16 (ASCE 2017), the reliability
index β was estimated as the cumulative distribution function for

Fig. 7. Time-varying behavior of compounding factors Ac and Ad across different return periods: (a) reduction factor due to cloud conditions (Ac);
and (b) reduction factor due to solar panel damage (Ad). The reduction factors were estimated for cumulative energy losses starting at 24 h before
landfall until different tf values, i.e., the values of Ac and Ad for tf ¼ 6 h correspond to cumulative from 24 h before landfall until 18 h before landfall.

Fig. 8.Analysis of the drivers of energy capacity loss through deaggregation of the simulations for Miami-Dade, Florida: (a) AcAd ¼ 1.3 (Ac ¼ 1.29,
Ad ¼ 1.01, and RP ¼ 12 years); and (b) AcAd ¼ 2 Ac ¼ 1.59, Ad ¼ 1.26, and RP ¼ 58 years). The plots show histograms of the storms’ features that
triggered generation losses of 33 and 50%, respectively, or lower. The dark-shaded portion of the plot represents losses associated to structural
failures, and the light-shaded portion represents losses due to hurricane clouds. The plots highlight that larger capacity losses are driven by structural
failures rather than hurricane cloud conditions.
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a standard normal random variable evaluated on the probability of
infrastructure survival (the complementary of failure) in 50 years.
Thus

β ¼ Φ−1ðexpð−50λfÞÞ ð21Þ
where λf = annual probability of panel failure, equal to the inverse
of RP of structural failure. We estimated λf empirically from the
50,000 Monte Carlo simulations in the 38 states, like in a maximum
likelihood estimation of a Poisson distribution’s rate, and then com-
puted RP [Fig. 9(a)] and β [Fig. 9(b)]. We show that Florida and
Louisiana face the highest failure risks due to hurricanes, with aver-
age RP of 174 years and 265 years across all their counties; 55% and
41% of the counties in Florida and Louisiana have RP of panel fail-
ure below 200 years. Our results also show that Texas, Mississippi,
Alabama, Georgia, and South and North Carolina also have high
risks, where installed solar panels will experience failures with RP
below 600 years in 19%, 22%, 19%, 26%, 24%, and 12% of their
counties, respectively.

Using results from a recent reliability study that assessed wind
loads and capacities according to ASCE 7-16 (McAllister et al.
2018), we estimated that a structure well designed for Risk category
II (winds with a 700-year return period) should have a β at or above
2.3 (ASCE 2017). For the Risk category I (winds with a 300-year
return period), the lowest design standard in ASCE7-16, a well-
designed structure should achieve a β value at or above 1.9 (ASCE
2017; Ceferino et al. 2023; McAllister et al. 2018). Our results in-
dicate that the panel installations in Texas, Louisiana, Mississippi,
Alabama, Florida, Georgia, and South and North Carolina have β
values below 1.9 in 62% of their counties. Thus, these results reveal
extensive structural vulnerabilities and highlight that panels are be-
low all ASCE 7-16 standards for resilience in large regions in the
southern US [Fig. 9(b)].

Spatial Distribution of Solar Generation Losses in
Central and Eastern US

Next, we assessed generation during storms in the central and
eastern US. We generated 50,000 Monte Carlo simulations of the
time series of P and E for panels in the 2,694 counties’ centroids
(the examples of Texas and North Carolina are shown in Fig. S1).
Similar to the analysis in Miami-Dade, we determined the reduction
factors Ac and Ad at different return periods. We assessed return
periods of 100, 300, and 700 years to evaluate a wide range of

extreme events. Solar panels might not have a high probability of
experiencing energy losses with 700-year return periods because
their life span is ∼30 years. However, it is critical to understand
how they behave under these extreme conditions, especially under
warming climates that can intensify tropical cyclones. Furthermore,
as stated previously, the ASCE 7-16 standards require us to design
infrastructure for wind levels associated with long return periods,
e.g., from 300 to 3,000. Thus, we assessed here how these rare events
affect solar generation. We focused on cumulative energy at tf ¼
24 h (Fig. 10), 48 h (Fig. S2), 72 h (Fig. 11), and 96 h (Fig. S3).

The spatial distribution of Ac at tf ¼ 24 h revealed that hurri-
cane clouds will induce significant energy losses at landfall even at
tens of kilometers away from the southern and eastern US coastline
(Fig. 10). For a RP of 100 years, Florida and Louisiana will only
harvest 32% (Ac ¼ 3.13) and 65% (Ac ¼ 1.54) of their regular so-
lar energy on average across all their counties, with hardest-hit
counties generating only at 23% (Ac ¼ 4.27) and 27% (Ac ¼ 3.65),
respectively. More extreme events will increase the intensity and the
spatial extent of high energy losses. For RP of 300 years, Florida
and Louisiana will only harvest 21% (Ac ¼ 4.80) and 50% (Ac ¼
2.01) on average across all their counties. For RP of 700 years, they
will only harvest 25% (Ac ¼ 4) and 54% (Ac ¼ 1.84), with hardest-
hit counties generating only at 17% (Ac ¼ 5.83) and 18% (Ac ¼
5.46) of regular capacity, respectively. All southern and central
counties near the coastline up to the ones in Virginia, Maryland, and
Delaware will have reduced generation equal or below 33% due to
the storm clouds (Ac > ∼3).

Our results showed that compounding effects will be critical
only after tf ¼ 24 h, i.e., at landfall. Before, AcAd is almost equiv-
alent to Ac across the different levels of storms’ return periods for
all counties (Fig. 10). However, at tf ¼ 72 h (2 days after landfall),
we started observing important contributions of solar damage to the
energy losses (Fig. 11). At this time, Florida and Louisiana already
experienced 26% and 15% less energy losses than at landfall,
thanks to the recovery of regular irradiance levels after the hurricane
leaves, but damage-induced losses will start dominating the total
energy losses. In counties on the coastline, this transition can happen
as early as 24 h after landfall (Fig. S2).

For RP of 300 years, Ad across all of Florida and Louisiana’s
counties was 2.03 and 1.13 at tf ¼ 72 h (2 days after landfall),
inducing energy losses 25% and 9% higher than those when panels
do not fail, respectively. For RP of 700 years, the compounding
effect of damage becomes stronger because Ad increases to 3.48

Fig. 9. Spatial distribution of return period of structural failure and reliability index for solar panels located on different counties in the central and
eastern US: (a) return period; and (b) structural reliability index. The plot highlights that southern US states have significantly lower reliability than the
threshold.
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and 1.39 for Florida and Louisiana, respectively, inducing 38% and
25% higher losses, which will become even stronger for longer
tf (Fig. 11).

Limitations and Future Research

This study focused on understanding the resilience of solar gener-
ation during hurricanes. As such, it quantified how much electricity
can be harvested from solar panel installations during storms. How-
ever, it did not evaluate whether a grid with solar farms will become
more resilient or if customers with rooftop panels will access suf-
ficient electricity. Understanding the grid’s resilience and house-
hold access to electricity requires modeling households and critical
infrastructure’s demands for electricity during a hurricane, which
can be quite different from normal conditions. Further, assessing
grid resilience also requires the assessment of power flow through
potentially vulnerable transmission and distribution lines that can
disrupt solar electricity delivery. To fill these research gaps, future
research could integrate models for solar generation, like the one
presented in this paper, with models representing power demands
during disasters and network models capturing power system
behavior to holistically quantify power system resilience.

Discussion

In sum, our results show that hurricane’s impacts on solar gener-
ation are significant, compounding and strikingly disproportional
in the US. Clouds can induce losses above 66% in extensive regions
in the southern and eastern US (e.g., RP of 100 years in Fig. 10),
but fortunately, these effects are only transient. In contrast, damage
to solar panels will induce more acute and permanent energy losses
but fortunately in smaller extents (e.g., counties with highest risk of
panel failure in Fig. 9). When these two effects are compounded,
solar generation risk will induce large energy losses throughout the
entire hurricane emergency.

A direct implication of this study is that the naïve adoption of
panels in the current conditions will create electricity generating
infrastructure with high risks, especially in Louisiana and Florida,
which have experienced massive hurricane outages in the last few
years (Boyle 2021; Esnard 2018; Prevatt et al. 2021). Building
stronger panels can help prevent panel damage, i.e., making Ad ¼ 1.
Thus, this paper advocates installing stronger panels, at least up to
the ASCE-7 standards for infrastructure with Risk category I.
Existing studies pointed out that cheap solutions can increase the
performance of solar installation’s structural system, e.g., torque

Fig. 10. Spatial distribution of energy generation losses for uniform risk targets (associated to return periods) in the central and eastern US and the
compounding factors for energy losses at landfall (tf ¼ 24 h): (a) Ac for events with a 100-year return period; (b) AcAd for events with a 100-year
return period; (c) Ac for events with 300-year return period; (d) AcAd for events with a 300-year return period; (e) Ac for events with a 700-year return
period; and (f) AcAd for events with a 700-year return period.
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check on bolts (Burgess et al. 2020; Burgess and Goodman 2018).
If panels do not fail, all solar energy reductions (Ac) will be driven
by hurricane clouds only, making solar energy losses only transient.

These results underscore that massive investments in resilience
and clean energy in power infrastructure will pay off if their deploy-
ment is risk-informed. Placing panels on coastlines in the southern
or eastern US can make the grid lose (sometimes permanently) so-
lar generation during hurricane emergencies (Figs. 10 and 11).
Power system models can optimize the deployment of new solar
farms, maximizing profits for regulators, power utility companies,
and consumers. But they should also assess resilience to consider
the trade-off between costs and risks, especially in Florida and
Louisiana, where generation potential is high, but risks are also
high.

Additionally, for communities exposed to high risks, like those
in Miami-Dade or New Orleans installing decentralized resources,
such as rooftop panels and behind-the-meter batteries must account
for the potential high reduction in energy generation. Even if they
have continuous power supply even in case of a main grid’s outage,
they should still plan for only using necessary building functions in
a hurricane emergency, e.g., refrigeration for food or even cooling,
especially if heatwaves follow storms (Feng et al. 2022).

This paper also advocates risk-informed utility companies’ con-
tingency planning during extreme events. We provide a framework
to account for these losses quantitatively so that utility companies
can plan for offsetting the large losses in solar generation from other
sources. In the context of disaster, additional difficulties might arise
from failures in transmission lines that prevent the use of other func-
tional electricity sources. Thus, it is critical for utility companies to
install robust generating infrastructure to ensure the resilience of our
future grids, especially because global warming is projected to in-
tensify hurricanes in the future climate (Knutson et al. 2020).
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Ouyang, M., L. Dueñas-Osorio, and X. Min. 2012. “A three-stage resil-
ience analysis framework for urban infrastructure systems.” Struct. Saf.
36–37 (May–Jul): 23–31. https://doi.org/10.1016/j.strusafe.2011.12.004.

Patel, S., L. Ceferino, C. Liu, A. Kiremidjian, and R. Rajagopal. 2021. “The
disaster resilience value of shared rooftop solar systems in residential

© ASCE 04023029-11 Nat. Hazards Rev.

 Nat. Hazards Rev., 2023, 24(4): 04023029 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Pr
in

ce
to

n 
U

ni
ve

rs
ity

 L
ib

ra
ry

 o
n 

12
/2

0/
23

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.

http://ascelibrary.org/doi/10.1061/NHREFO.NHENG-1764#supplMaterial
http://ascelibrary.org/doi/10.1061/NHREFO.NHENG-1764#supplMaterial
http://www.ascelibrary.org
http://www.ascelibrary.org
https://doi.org/10.3390/su10040933
https://doi.org/10.3390/su10040933
https://doi.org/10.5194/nhess-23-1665-2023
https://doi.org/10.5194/nhess-23-1665-2023
https://doi.org/10.1038/s41560-020-00758-6
https://doi.org/10.1038/s41560-020-00758-6
https://www.independent.co.uk/climate-change/news/hurricane-ida-power-grid-louisiana-b1915145.html
https://www.independent.co.uk/climate-change/news/hurricane-ida-power-grid-louisiana-b1915145.html
https://www.independent.co.uk/climate-change/news/hurricane-ida-power-grid-louisiana-b1915145.html
https://rmi.org/solar-under-storm-part-ii-designing-hurricane-resilient-pv-systems/
https://rmi.org/solar-under-storm-part-ii-designing-hurricane-resilient-pv-systems/
https://rmi.org/wp-content/uploads/2018/06/Islands_SolarUnderStorm_Report_digitalJune122018.pdf
https://rmi.org/wp-content/uploads/2018/06/Islands_SolarUnderStorm_Report_digitalJune122018.pdf
https://doi.org/10.1007/s00477-021-02154-2
https://doi.org/10.1016/j.ress.2022.108896
https://doi.org/10.1016/j.ress.2022.108896
https://doi.org/10.1038/s41467-020-18072-w
https://doi.org/10.1038/s41467-020-18072-w
https://doi.org/10.1175/JAS-D-15-0014.1
https://doi.org/10.1175/JAS-D-15-0014.1
https://doi.org/10.1016/j.solener.2020.04.094
https://doi.org/10.1109/ISRCS.2011.6016094
https://doi.org/10.1109/ISRCS.2011.6016094
https://www.energy.gov/articles/doe-optimizes-structure-implement-62-billion-clean-energy-investments-bipartisan
https://www.energy.gov/articles/doe-optimizes-structure-implement-62-billion-clean-energy-investments-bipartisan
https://www.energy.gov/articles/doe-optimizes-structure-implement-62-billion-clean-energy-investments-bipartisan
https://doi.org/10.1175/JCLI3908.1
https://doi.org/10.1175/JCLI3908.1
https://doi.org/10.1175/BAMS-89-3-347
https://doi.org/10.1175/BAMS-89-3-347
https://doi.org/10.1007/s11069-018-3413-x
http:// https://doi.org/10.1038/s41467-022-32018-4
https://doi.org/10.1111/j.1539-6924.2010.01510.x
https://doi.org/10.1111/j.1539-6924.2009.01280.x
https://doi.org/10.1111/j.1539-6924.2009.01280.x
https://doi.org/10.1007/s00704-019-03047-9
https://doi.org/10.1175/BAMS-D-18-0194.1
https://doi.org/10.1175/BAMS-D-18-0194.1
https://doi.org/10.1175/MWR-D-12-00254.1
https://doi.org/10.1016/j.renene.2018.05.011
https://doi.org/10.1029/2011JD017126
https://doi.org/10.1109/PTC.2017.7981141
https://doi.org/10.1109/PTC.2017.7981141
https://doi.org/10.1038/s41467-019-11755-z
https://doi.org/10.1038/s41467-019-11755-z
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002011
https://doi.org/10.1061/(ASCE)ST.1943-541X.0002011
https://doi.org/10.3390/su11020516
https://doi.org/10.1111/risa.12131
https://doi.org/10.1016/j.strusafe.2011.12.004


communities.” Earthquake Spectra 37 (4): 2638–2661. https://doi.org
/10.1177/87552930211020020.

Prevatt, D., et al. 2021. StEER: Hurricane Ida joint preliminary virtual re-
connaissance report: Early access reconnaissance report (PVRR-EARR).
Seattle, WA: DesignSafe-CI. https://doi.org/10.17603/ds2-3pc2-7p82 v1.

Sengupta, M., Y. Xie, A. Lopez, A. Habte, G. Maclaurin, and J. Shelby.
2018. “The national solar radiation data base (NSRDB).” Renewable
Sustainable Energy Rev. 89 (Jun): 51–60. https://doi.org/10.1016/j
.rser.2018.03.003.

Shashaani, S., S. D. Guikema, C. Zhai, J. V. Pino, and S. M. Quiring. 2018.
“Multi-stage prediction for zero-inflated hurricane induced power out-
ages.” IEEE Access 6 (Oct): 62432–62449. https://doi.org/10.1109
/ACCESS.2018.2877078.

Stone, L., C. Burgess, and J. Locke. 2020. “Solar under the storm for
policymakers: Select best practices for resilient photovoltaic systems
for small island developing states.” Accessed January 1, 2023. www
.rmi.org/insight/solar-under-storm-for-policymakers.

Swiss Re Institute. 2022. Natural catastrophes in 2021: The floodgates are
open (Issue 1). Zurich, Switzerland: Swiss Re Institute.

Talebiyan, H., and L. Duenas-Osorio. 2020. “Decentralized decision mak-
ing for the restoration of interdependent networks.” ASCE-ASME J. Risk
Uncertainty Eng. Syst. Part A: Civ. Eng. 6 (2): 04020012. https://doi
.org/10.1061/AJRUA6.0001035.

Ulm, K. 1990. “Simple method to calculate the confidence interval of a
standardizedmortality ratio (SMR).” Am. J. Epidemiol. 131 (2): 373–375.
https://doi.org/10.1093/oxfordjournals.aje.a115507.

US Energy Information Administration. 2022. “Annual energy Outlook
2022.” Accessed January 1, 2023. https://www.eia.gov/outlooks/aeo

/data/browser/#/?id=16-AEO2022&region=0-0&cases=ref2022&start
=2020&end=2050&f=A&linechart=ref2022-d011222a.4-16-AEO2022
&sourcekey=0;inGW.

Vickery, P., and P. Skerlj. 2005. “Hurricane gust factors revisited.” J. Struct.
Eng. 131 (5): 825–832. https://doi.org/10.1061/(ASCE)0733-9445(2005)
131:5(825).

Vickery, P. J., D. Wadhera, L. A. Twisdale, and F. M. Lavelle.
2009. “U.S. hurricane wind speed risk and uncertainty.” J. Struct. Eng.
135 (3): 301–320. https://doi.org/10.1061/(ASCE)0733-9445(2009)
135:3(301).

Wang, Y., and V. D. Rosowsky. 2012. “Joint distribution model for predic-
tion of hurricane wind speed and size.” Struct. Saf. 35 (Mar): 40–51.
https://doi.org/10.1016/j.strusafe.2011.12.001.

Wang, Z., M. O. Román, Q. Sun, A. L. Molthan, L. A. Schultz, and V. L.
Kalb. 2018. “Monitoring disaster-related power outages using NASA
black marble nighttime light product.” In Proc., ISPRS—Int. Archives
of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, XLII–3, 1853–1856. Göttingen, Germany: Copernicus Publi-
cations. https://doi.org/10.5194/isprs-archives-XLII-3-1853-2018.

White House. 2022. “President Biden’s Bipartisan Infrastructure Law.”
Accessed January 1, 2023. https://www.whitehouse.gov/bipartisan
-infrastructure-law/#:∼:text=TheBipartisanInfrastructureLawwilldeliver
%2465 billiontohelpinvestmentinbroadbandinfrastructuredeployment.
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