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Solar generation can become a major and global source of clean energy by 2050. Nevertheless, few studies have
assessed its resilience to extreme events, and none have used empirical data to characterize the fragility of solar
panels. This paper develops fragility functions for rooftop and ground-mounted solar panels calibrated with solar
panel structural performance data in the Caribbean for Hurricanes Irma and Maria in 2017 and Hurricane Dorian
in 2019. After estimating the hurricane wind fields, we follow a Bayesian approach to estimate fragility functions
for rooftop and ground-mounted panels based on the observations supplemented with existing numerical studies
on solar panel vulnerability. Next, we apply the developed fragility functions to assess failure rates due to
hurricane hazards in Miami-Dade, Florida, highlighting that the panels perform below the code requirements,
especially rooftop panels. We also illustrate that strength increases can improve the panels’ structural perfor-
mance effectively. However, strength increases by a factor of two still cannot meet the reliability stated in the

code.

1. Introduction

The power system infrastructure is rapidly changing as the world
transitions towards cleaner energy sources. Market and government
projections state that solar generation will be 20-30% of the global
electricity by 2050 [1-4]. In 2019 in the United States, installations of
solar generators already accounted for 40% of the electric generating
capacity installed [5]. As a result, the resilience of the power system
infrastructure is also changing. First, the design standards or the level of
exposure of solar energy generating infrastructure can differ from those
of current generation infrastructure. For example, engineers design
nuclear plants or dams with risk category IV for safety in nuclear and
hydroelectric generation, source of 20 and 7% of electricity generation
in the United States [6]. This category provides the highest structural
reliability levels in the ASCE7-16 design code since failure “could pose a
substantial hazard to the community” [7]. In contrast, engineers can
design solar panels following conventional reliability levels for rooftops,
i.e., risk category II. Engineers can design them with even lower levels, i.
e., risk category I, if the solar installation structural failure “represents
low risk to human life in the event of failure” as for large

* Corresponding author at: 370 Jay St, Room 1309, Brooklyn, NY 11201.
E-mail address: ceferino@nyu.edu (L. Ceferino).

https://doi.org/10.1016/j.ress.2022.108896

ground-mounted installations in remote locations [8]. Moreover, by
design, the solar generators themselves must be placed outdoors and are
directly exposed to extreme loads such as high winds. This exposure
level is markedly different from existing generating units typically
within protective infrastructure. For example, natural gas, the source of
40% of the electricity in the United States [6], is often transported in
pipes underground and is processed in power plants with key equipment
within buildings. As solar generation becomes a key source of our energy
production, we need a better understanding of its resilience to natural
hazards and ability to provide sufficient and reliable power during
extreme load conditions.

Fragility functions describe the likelihood of damage (or failure) due
to an extreme load, e.g., earthquake shaking, hurricane wind. The
development of fragility functions for energy generation components is
essential to understand the risk profile of power systems [9-12]. How-
ever, lack of data has prevented the assessment of panel vulnerability to
extreme loads, hindering our ability to understand the resilience of
future power grids. Due to the lack of solar panel failure data or
appropriate experimental tests, Goodman [13] used simplified numeri-
cal structural assessment to propose the first solar panel fragility
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functions. The analysis focused on the yielding onset of rooftop panel
racks due to high wind loads. Due to the lack of better models, its
fragility function has also been applied to ground-mounted solar panels
[10,14].

To the authors’ knowledge, data-driven assessments of solar panel
vulnerability have not been conducted. In this paper, we fill this
research gap by compiling and analyzing a novel dataset of solar panel
structural performance in 60 sites in the Caribbean during the 2017 and
2019 hurricane seasons. This dataset captures these storms’ severe
impact on renewable infrastructure, especially in Puerto Rico [15],
including a wider variety of panels’ structural failure mechanisms that
were represented in the numerical simulation by Goodman [13]. We
used our empirical dataset to enhance Goodman [13]’s results and
preset the first data-driven fragility functions for both rooftop and
ground-mounted solar panels.

Combining multiple information sources, e.g., numerical simulations
with ground-truth data of infrastructure damage, can improve fragility
function estimations since disaster data is generally scarce. However,
rigorously combining different data sources for fragility functions is
challenging. At the end of the ‘90 s, a study first proposed using Bayesian
statistics to combine various data sources of earthquake damage and
improve fragility functions for concrete buildings [16]. The study was
followed by other formulations and implementation of Bayesian statis-
tics to combine multiple data sources for fragility and hazard analyses
[17-30].

This paper formulates and implements Bayesian methods to combine
different information sources and find more robust estimates of fragility
function parameters than those based on either observation or numeri-
cal simulation. We present an algorithm based on Metropolis-Hastings
(MH) Monte Carlo Markov Chain (MCMC) to solve the Bayesian
formulation with computational efficiency. Through the Bayesian
approach, we explicitly characterize the uncertainty in the fragility
functions’ parameters, which is critical to account for the uncertainty in
key risk metrics, e.g., panels’ annual rate of failure.

Next, this paper shows an application of the developed fragility
functions by assessing the structural reliability of solar panels in Miami-
Dade, Florida, to hurricanes. Our assessment combines our new fragility
functions and hurricane hazard modeling for mainland United States
[31]. Finally, this paper explores the value of increasing solar panel

-
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strength in, for example, reducing annual failure rates and meeting
different ASCE7-16 standards for structural reliability. This paper con-
tributes to the body of literature on the risk of modern power systems
under extreme events by providing the first data-informed fragility
functions for solar panels and a holistic assessment of their reliability to
hurricanes.

2. Solar panel structural performance data
2.1. Panel damage data

Our dataset is an extended version of the “Solar Under Storm” re-
ports’ panel failure dataset [32,33]. The initial dataset consists of 26
sites primarily located in residential buildings in Puerto Rico for rooftop
panels. “Solar Under Storm” focuses on reporting main failure mecha-
nisms in rooftop installations with qualitative descriptions of failure
modes in the Caribbean after the large hurricanes Irma and Maria in
2017 and Dorian in 2019. The study reports frequent failures in racks
and the clips that attach the panel to the racks [32]. Unlike Goodman
[13], which covers the early serviceability damage state, i.e., yielding
onset in racks, the identified damage conditions in the dataset introduce
a damage state of structural collapse (Fig. 1).

Because the “Solar under Storm” dataset focuses on failed rooftop
panels, we extended the dataset to cover panels that survived the hur-
ricanes. The data extension is critical to properly fit fragility functions
with data representing various panels’ structural performance. By
surveying local engineers in Puerto Rico, we extended the dataset to 46
sites. Table 1 lists the data attributes, and Supplementary Table 1 shows

Table 1

Data attributes of solar panels’ structural performance in the Caribbean after the
2017 and 2019 hurricane seasons. An initial dataset with 26 rooftop installations
[32,33] was extended in this study to include other 20 rooftop and 14 large
ground-mounted installations.

Rooftop panels Ground-mounted panels

Coordinates
Installation Size (in Mw)
Damage extent (in%)

Coordinates
Panel Type (e.g., rail-based metal)
Failure Type (e.g., clip failure)

(b) Large grund—mounted panels |

Fig. 1. Example of solar panel damage in dataset. (a) Rooftop panels: Clip failures in the bolt connection between panels and racks (red arrows) lead to panel uplift
(see bolt in circle at the left with zoom-in view). Clamp failures (see clamp in circle in the middle with zoom-in view) lead to blown racks (see red line where a rack
used to be placed) [32]. (b) Large ground-mounted panels: Satellite imagery shows the scale of the wind damage in comparison to the pre-hurricane view in the
rectangle [34]. In large-scale failures, multiple failure modes were found, including debris impact from damaged panel arrays.
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the full dataset of the rooftop solar panels. Out of the 46 sites, 46%
experienced clip (clamp) failures (e.g., Fig. 1a), 17% racking failures,
4% roof attachment failures, and 50% rack or connection, roof attach-
ment failure. Most panels underwent damage due to debris impact (65%
in the initial dataset). It is important to note that debris failure was
primarily part of a cascading mechanism with projectiles originating
from the damaged panels themselves. Fig. 2a shows a map with all the
rooftop panel installation sites, indicating clip, racking, or attachment
failures. The plot also shows that Hurricane Irma, Maria, and Dorian’s
tracks were near the sites.

For ground-mounted solar panels, we surveyed reports and news-
papers to determine panels’ failures in large sites. Utility-scale solar
installations are primarily ground-mounted, each one composed of
hundreds or thousands of panels. Thus, their failures often have media
coverage. We visually verified the installation damage with high-
resolution satellite imagery from the National Oceanic and Atmo-
spheric Administration (NOAA) [34] and Google Earth Satellite Imag-
ery. We obtained information for 14 large panel installations with 13
MW of capacity on average in the Caribbean for Hurricanes Irma and
Maria in 2017. The “Solar Under Storm” study also surveyed a few of
these installations, but it did not report the installations’ geographical
coordinates to preserve the confidentiality of the sites [33]. Table 1 lists
the data attributes, and Supplementary Table 2 shows the full dataset
these ground-mounted solar panels. 36% of the sites reported significant
failures in more than 50% of their panels, including the Humacao Solar
Farm (Fig. 1b) with 40 MW of capacity, the second largest solar farm in
Puerto Rico [35]. Fig. 2b shows installations indicating the sites with
significant failures, i.e., more than 50% of failed panels. The reported
failures included clip (clamp) failures, racking fractures and buckling,
bolt shear failure, and bolt loosening [33]. We observed evidence of
cascading structural failures triggered by debris from damaged panels in
large sites, suggesting that damage in a few panels can progress quickly
to massive failures. This observation is consistent with the cascading
failures of clip (T-clamps) fractures found in the more detailed
post-hurricane structural inspections [33].

In Puerto Rico, where 50 and 59% of the inspected rooftop and
ground-mounted panels were located, wind design levels range from 63
to 72 m/s and from 57 to 76 m/s for structures with risk categories I and
11, respectively [7]. As mentioned earlier, the ASCE7-16 requires solar
panels on residential buildings to be designed with a risk category of II.
Ground-mounted solar panels can be designed with a risk category I.
While the structural design levels for ground-mounted solar panels are
lower, our described findings reported fewer sites with large failures
than rooftop panels (50% versus 60%). For further assessment, we
analyzed the wind conditions that the panels experienced.

— Irma (2017)

—— Maria (2017)
Dorian (2019}

® No failure

@® Failure

25°N| -

20°N

15°N

75°W 70°W 65°W 60°W

(a) Residential rooftop panels
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2.2. Wind conditions

We obtained the hurricanes’ tracks, their radii of maximum wind,
and maximum winds from the revised HURDAT2 Atlantic hurricane
database [36]. We estimated axisymmetric winds circulating counter-
clockwise based on a tropical cyclone wind profile model [37]. We then
combined these circulating winds with the estimated background winds
[38] to calculate the resulting asymmetric wind fields for each hurri-
cane. For smoothness, we interpolated HURDAT?2 3 h timesteps to obtain
maximum wind at each panel site for every 10 min (Supplementary
Fig. 1).

For evaluation, we compared the resulting wind estimates to the
hourly wind records from the NOAA National Centers for Environmental
Information [39]" Global Integrated Surface Dataset during Hurricane
Maria from the weather station at the San Juan International Airport in
Puerto Rico (Fig. 3). No other stations reported wind data from Puerto
Rico for the event. Unfortunately, wind data were not gathered for the
most intense period; nevertheless, data during and before August 20th,
2017, show that our wind estimates and records closely follow each
other. During August 20th, both datasets showed rapid wind intensifi-
cation, at least up to ~30 m/s, when records stopped. Our estimates
indicate that winds peaked at 60 m/s on August 20th, 2017.

Using a multiplicative factor from an empirical formula [40], we
converted the 1-m sustained wind estimates at the panel sites to 3 s gusts
to be compatible with the wind load metrics for structural design [7].
Failures in rooftop panels were caused by gusts starting at 73 m/s, with a
mean in all sites of 81 m/s (Fig. 4a). Failures in ground-mounted panels

60 .
°® ° NCEI
o’ e (15
40 .
£ .
= e
£ Y 4
= 201
e o
0- . . r

18 19 20 21 22 23

Fig. 3. Comparison of wind estimates and the wind records from NOAA Na-
tional Centers for Environmental Information [39] at the San Juan Interna-
tional Airport.

— Irma (2017)
25°N |- —— Maria (2017)
® No failure
@ Failure
20°N
15°N '
60°W

75°W 70°W 65°W

(b) Large ground-mounted panels

Fig. 2. Solar panel sites in collected dataset after Hurricanes Irma and Maria in 2017 and Hurricane Dorian in 2019. The lines indicate the hurricane tracks, and the
panels with failures (clip, racking, rooftop attachment) and without failures are highlighted in the map. Failure in the panel array is defined as either clip, racking, or
roof attachment (in case of rooftop panels) failures in more than 50% of the panels.
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(b) Ground-mounted panel

Fig. 4. 3 s gust distributions for panels with (black) and without (gray) damage. The data are shown as points and the empirical probability density functions are

estimated using a Gaussian kernel.

were caused by gusts starting at 83 m/s, with a mean of 91 m/s (Fig. 4b).
The solar panel dataset is suitable for assessing fragility functions as it
contains ranges of gusts where failure occurrence has large variability
(Fig. 4). For example, between 70 and 90 m/s, several sites with rooftop
panels experienced both failure and no failure. Getting data in this range
is critical for fragility functions to appropriately capture the un-
certainties in panel failure when transitioning from low winds to high
winds.

3. Bayesian framework for fragility function updates
3.1. Fragility function

Fragility functions with lognormal shape are typically used to model
infrastructure’s damage due to wind hazards and other extreme loads
[41-43]. Its shape is given by

In(w) — 1n(u)>

1
3 (€Y

s =of

where q is the probability of panel failure due to a wind gust w, v is the
wind gust with a failure probability of 50%, f is a normalizing factor,
and @ is the cumulative standard normal distribution function.  defines
the width of the transition range between winds with low and high
failure probability, and it is a measure of aleatory uncertainty in the
vulnerability analysis. In the limit, when $—0, Eq. (1) becomes equiv-
alent to a deterministic assessment, where the panel would fail after a
fixed wind threshold.

We follow a Bayesian approach to fit solar panels’ fragility functions
due to two key factors.

e The Bayesian formulation can represent fragility functions’ signifi-
cant epistemic uncertainties through random fragility function pa-
rameters, v and f. Treating v and f as random variables rather than
deterministic parameters allows for the propagation of their uncer-
tainty to solar panel damage predictions in risk analysis.

The Bayesian approach allows for the combination of multiple
sources of information to improve the fragility function character-
ization. The dataset presented in this paper provides the opportunity
for a data-driven, probabilistic description of panel failure. However,
the number of samples is not high, e.g., 46 and 14 for rooftop and
ground-mounted panels, respectively. Thus, through the Bayesian
approach, we use Goodman [13]’s numerical assessment as prior
information and then combine it with the dataset for the final
fragility function estimates.

In the Bayesian formulation, the posterior distribution p(v, f|x) after

combining both data sources is

_ pWo,Bpv,p)
PP = T 7o lo. Bpv, fdvdp @

where x = {x1,X2,...,Xs} is the vector containing the failure informa-
tion at each site, thus x, € {0,1} equals zero if the panel did not fail and
one if it failed, and n is the number of sites, i.e., equal to 46 and 14 for
rooftop and ground-mounted panels, respectively. The limit state for
rooftop panel failure is defined as extensive damage, including clip,
racking, or roof attachment failures. Hereafter, we refer to this damage
state as panel failure. The limit state for failure in the large ground-
mounted panels is defined as extensive damage, including clip and
racking failures, in more than 50% of their panels. p(x|v, #) is the like-
lihood function of observing the dataset for fixed values of v and , and
p(v, p) is the prior distribution of v and f.

3.2. Prior

As in the Bayesian approach, v and g from Eq. (2) are random vari-
ables rather than deterministic values. Additionally, v and f can only be
positive numbers. We select lognormal distributions to model the prior.
Other distributions could also be used, e.g., Gamma distributions, but
their implementation falls outside this study’s scope. The probability
density functions (pdfs) of p(v) and p(f}) are given by

1 (v — p,)? 3)
p(l}) - UG,,\/EGXP - 20_5
B) = 1 exp| — M 4)
P posy/2n P 20

where y, and 6, are hyperparameters defining the logarithmic mean and
standard deviation of v. y; and op are hyperparameters defining the
logarithmic mean and standard deviation of $. For simplicity, we assume
v and f are independent. Thus

p(v,B) = p(v)p(B) ®)

For Bayesian assessments, the data supporting the prior distribution
need to be independent of the data used for the parameter update. Thus,
the selection of Goodman [13]’s fragility function is appropriate for this
study. The numerical assessment is based on code-conforming rooftop
panels designed for wind conditions in Atlanta, Georgia. The uncertainty
in the fragility function stems maily from the stochastic velocity pressure
induced by winds acting on the panel. It also models stochasticity in
material strength and construction quality. Goodman [13]’s study is
frequentist; thus, the parameters defining the fragility function in Eq. (1)
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are deterministic. The resulting fragility functions had a deterministic v,
gust for 50%-failure probability, of 60 m/s and $ of 0.13 for a panel on a
30° roof.

To use these numerical evaluations as a prior distribution, we
adjusted their wind design conditions to the Caribbean. Taking San
Juan, Puerto Rico, as a reference, we scaled up v to represent a local
solar panel design using the ratio between the wind design values in San
Juan and Atlanta. We consider a design with risk category II (wind with
a return period of 700 years) for rooftop panels and a risk category I
(wind with a return period of 300 years) for the ground-mounted panels
[8]. We use resulting values of 85 m/s and 81 m/s as the prior’s medians
of v for the rooftop and ground-mounted solar panels, respectively, and
then estimate the logarithmic means (u,) since the median equals the
exponential of the logarithmic mean (e*+) for lognormal distributions.
Similarly, we estimate the logarithmic means of # (4;) using Goodman
[13]’s value of 0.13 as the prior’s median for both panel types.

The prior’s logarithmic standard deviations (¢, and o;) are a measure
of uncertainty in Goodman [13]’s estimates of v and . Small values of o,
and o, imply that we are certain that Goodman [13]’s study accurately
and thoroughly modeled solar panel’s structural properties and their
behavior under extreme loads. However, capturing actual structural and
material properties is difficult as they vary widely according to con-
struction, manufacturing, and installation processes [44,45-47,48].
Additionally, Goodman [13]’s numerical assessment only included
failures triggered by bending loads on the racks, without considering the
other failure modes observed in the ground-truth data, like clip or roof
attachment failures. To account for potentially different structural
properties and failure modes, we use ¢, and o; values equal to 0.5. For
the lognormal prior, these values are equivalent to a coefficient of
variation of 0.53, a considerable high value representing that actual
structural behavior can differ from the numerical simulation. For
example, the y + 1.5¢ interval for the prior of v is 19 to 173 m/s. We
consider this is a reasonable range since failures below 19 m/s are only
common for quite vulnerable infrastructure, like old wooden poles from
distribution lines [49,50]. Winds above 173 m/s are catastrophic and
damage most infrastructure [41,51,52].

3.3. Likelihood of observing the data

Panel failure follows a Bernoulli distribution with probability q that
is a function of the wind. Considering that the failures at different n sites
are independent, then the likelihood of observing failures or non-failures
in n sites is given by

plalo.p) = [[a" (1 -9~ ®)

where x; is one if the panel failed at the site or zero otherwise and q is
found from the fragility function in Eq. (1) with parameters v and p.

3.4. Posterior distribution

According to the Bayes rule for conditional probabilities, the poste-
rior p(v, f|x) can be found in Eq. (2). The numerator is the product of the
likelihood of observing the panel failures and the prior distribution. The
denominator is the integral of this product through the entire parameter
space of v and f. Egs. (5) and (6) allow us to find the numerator in closed
form, but the denominator requires a complex integration that cannot be
solved analytically.

3.5. Solving for the posterior distribution using MCMC

To overcome the challenge stemming from numerical integration, we
followed an approach based on MCMC [53]. MCMC only requires
evaluating a proportional function to the posterior distribution rather
than the posterior itself. Thus, we can find samples from the posterior

Reliability Engineering and System Safety 229 (2023) 108896

and circumvent the evaluation of the integral with MCMC since

p(, flx)ep(xlv, B)p(v, ) %)

We use the Metropolis-Hastings (MH) MCMC algorithm to define a
Markov Chain (MC) that samples from the posterior distributions of v
and p. With the MH algorithm, we define the MC as a random walk
through the parameter space of v and . To generate m-th sample pair
(Om,p,,) of the posterior, we sample a candidate (v*, ") using the
following uncorrelated bivariate normal distribution

(v, p°) ~ N(.“(RW)a (7(RW)> ®

where gy, is the mean vector of the random walk, and it is equal to the
last posterior sample (V1,5 1) 6&w) is the covariance matrix, equal
to the diagonal matrix diag(c, &w), 65 &w))- 6» ®w) and oy grw) are
calibrated values for an effective exploration of the high-probability
regions, i.e., good mixing. For this symmetrical random walk, the sam-
ple candidate (v*, ") is accepted with probability min(1,A), where

PG )
p(x‘l]m,] - )p(vm—l - )

©)

According to the MH properties, the MC has a stationary distribution,
i.e., the resulting distribution when the number of samples is sufficiently
large, equal to the posterior distribution of v and g in Eq. (2).

This algorithm was implemented to assess the posterior of the
fragility function parameters for both rooftop and ground-mounted
panels. We ensured a good mixing by calibrating 6, (vcuc) and o &w)
such that the average acceptance rate is around 25% as recommended in
the literature [54,55]. Using the MH MCMC analysis, we sampled 10,
000 realizations of v and f from the posterior distribution after a burn-in
period containing 1000 realizations. We selected the burn-in period
after verifying the MC stationarity (Supplementary Fig. 2).

4. Bayesian updates for fragility functions
4.1. Rooftop panels

We used the generated 10,000 samples to estimate the posterior
distribution of the fragility function parameters. For v, the median
varied from 85 m/s in the prior to 80 m/s in the posterior, its standard
deviation from 51 to 5 m/s, and its logarithmic standard deviation from
0.5 to 0.07 (Fig. 5a). The similar prior and posterior medians show that
the numerical analysis in Goodman [13] is consistent with the obser-
vations of wind in terms of the 50%-failure probability. The significant
decrease (90%) in the standard deviation reveals the importance of the
solar panel dataset in decreasing the initial epistemic uncertainties of v.

For f, the median varied from 0.13 in the prior to 0.32 in the pos-
terior, its standard deviation from 0.08 to 0.11, and its logarithmic
standard deviation from 0.5 to 0.30 (Fig. 5b). The posterior median of g
is almost three times the prior value. Such an increase reveals the
inconsistency of the numerical analysis in Goodman [13] with the
empirical data in terms of the aleatory uncertainty measured by . The
numerical analysis implies that the transition range between winds with
low and high failure probabilities is narrow. Conversely, previous
empirical evidence [56,57] suggests that the g value of 0.13 is too small
to characterize the uncertainty in wind hazards, implying a wider
transition range between winds with low and high failure probabilities.
This observation demonstrates the importance of empirical data to
calibrate numerical analysis.

We found a lack of correlation between v and f in the posterior as the
Pearson’s coefficient between their posterior samples was only 3x10~*.
This result suggests independence between v and f, as assumed in the
prior.

The Bayesian update from the parameters’ prior distribution to the
posterior distribution brings important implications for the fragility
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Fig. 5. The prior and posterior distribution of v and $ for rooftop solar panels. Samples from the posterior distribution were used to depict the histogram, and

Gaussian kernel was used to develop each empirical pdf.

function of rooftop solar panels. The mean fragility function, describing
the probability of panel failure, for the posterior distribution can be
found as

Elq(w)] = / [ atwsv. oo pirsavap (10)

Eq. (10) uses the posterior p(v, f|x) as the distribution of v and f to
find the posterior of E[q(w)]. Replacing p(v, f|x) by the prior p(v, ) will
result in the prior E[q(w)].

We solved Eq. (10) by averaging all q values for the suite of 10,000

1.00

0.75

©0.50

0.25

0 60 80 100 120
w (3-s gust in m/s)

a) Rooftop panel

fragility functions, obtained by evaluating the 10,000 samples of v and
(Fig. 6a). With this procedure, we incorporate and propagate the un-
certainty in v and g to the fragility function. The deterministic prior
distribution in Goodman [13] was used to set up the prior medians’
hyperparameters. However, the resulting mean fragility function
(E[g(w))) from the Bayesian prior is different than its frequentist coun-
terpart due to its parameters’ uncertain nature. The difference is negli-
gible for the wind with a 50%-failure probability (~85 m/s for both).
Yet, it is significant for the wind with a 10 and 90%-failure probability
(71 versus 43 and 100 versus 167 m/s). The wider wind range in the
transition from a 10% to a 90%-failure probability in the Bayesian

1.00 >
~—— Prior 7
LY ) e Posterior
...... Goodman*

©0.50

0.25

Ve 80 100 120
w (3-s gust in m/s)

b) Ground-mounted panel

Fig. 6. Fragility functions for random samples v and  according to their prior and posterior distributions. The solid thicker lines indicate the expectation of the
failure probability over the parameters’ distribution, and the dashed lines indicate the mean plus and minus a standard deviation. Goodman* is the deterministic
fragility function adapted from Goodman [13].
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assessment results from the uncertainty propagation from » and g
(Fig. 5a and b’s gray curves) to the fragility function.

The posterior distribution changes the wind for 50%-failure proba-
bility only slightly (—5%), from 86 m/s in the prior to 80 m/s in the
posterior. The wind range that transitions from a 10% to a 90%-failure
probability, 52 and 123 m/s, respectively, has a width that is 56%
smaller than the prior. This reduction results from the lower uncertainty
in v, whose standard deviation decreases from 51 in the prior to 5 m/s in
the posterior (Fig. 5a). Moreover, the posterior fragility function shows a
significantly narrower confidence interval than the prior fragility func-
tion. These results demonstrate the importance of the Bayesian approach
to capture and reduce large initial uncertainties through empirical data,
not only in the fragility function parameters (v and f), but also in the
mean fragility function itself.

4.2. Ground-mounted panels

The distribution of v shows that the median varies from 81 m/s in the
prior to 90 m/s in the posterior, its standard deviation from 50 m/s to 6
m/s, and its logarithmic standard deviation from 0.5 to 0.07 (Fig. 5c).
The posterior shows a significant reduction in the uncertainty in v, with
a standard deviation 87% lower than that of the prior. Such a reduction
is very close to the one found in rooftop solar panels, even though the
number of data points is one-third of the latter.

For f, the median varies from 0.13 in the prior to 0.15 in the pos-
terior, its standard deviation remains in 0.07, and its logarithmic stan-
dard deviation from 0.5 to 0.39 (Fig. 5d). As a result, the posterior
distribution exhibits a slight shift to the right. The little variations in f’s
standard deviation and logarithmic standard deviation suggest that the
number of data points is insufficient to substantially reduce uncertainty.

Following the same procedure for the rooftop panels, we estimated
the mean fragility function (E[q(w)]) for ground-mounted solar panels
(Fig. 6b). Unlike the posterior fragility function for rooftop panels, the
posterior fragility function for ground-mounted panels has a higher
wind value (+10%) for a 50%-failure probability than its prior, 90
versus 81 m/s. This increase suggests that the panel installations for
ground-mounted solar panels were structurally sounder than for rooftop
panels, whose wind for 50%-failure probability in the posterior was 5%
less than in the prior. This better structural performance may result from
more code enforcement, better member and connection installation (e.
g., avoiding loose bolts), or proper inspections [32,33]. These panels are
part of large installations with massive investments from utility com-
panies, which, unlike residential homes that install rooftop panels, often
have a budget for appropriate quality and control.

We found that the wind range that transitions from a 10 to 90%
failure probability in the posterior, 73 and 116 m/s, is reduced in 64%
from the prior, 41 and 160 m/s. This narrower range is driven mainly by
the lower standard deviation in v (Fig. 5¢). This reduction in the tran-
sition range is larger than that in the case of the rooftop panels (Fig. 6)
because, unlike the rooftop panels, the ground-mounted panels’ poste-
rior of f did not have a larger standard deviation than the prior.
Furthermore, the posterior fragility function shows a much narrower
confidence interval than the prior fragility function. However, the
confidence interval is slightly wider than in rooftop panels because the
ground-mounted panel dataset is only a third of the rooftop panel
dataset.

5. Panel’s annual failure rate

To illustrate their application, we use our fragility functions to assess
solar panel risk for hurricane winds for Miami-Dade, Florida, as a case
study. Miami-Dade is exposed to similar wind hazards in Puerto Rico.
For example, the risk category II design wind (700-year return period) in
San Juan, Puerto Rico, is 71 m/s (159 mph), whereas the design wind in
Miami-Dade is 73 m/s (164 mph). Different standards for solar panel
installation and code enforcement might be in place in Miami-Dade,
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especially for rooftop panels, which performed worse than ground-
mounted panels. However, more data collection efforts will be needed
to confirm whether panels in mainland United States have fundamen-
tally different structural behavior than those in the Caribbean. Due to
the lack of these datasets, here we use our fragility functions from the
Caribbean to study solar panels’ reliability and resilience performance in
Miami-Dade; analysis for other regions can be similarly performed.

A study site in the mainland United States is chosen to leverage a
synthetic hurricane database with 5018 landfalling storms in the United
States generated from a statistical-deterministic tropical cyclone (TC)
model [31]. These synthetic hurricanes account for current climate
conditions (from 1980 to 2005) according to the National Center for
Environmental Prediction (NCEP) reanalysis. The 5018 synthetic storms
correspond to ~1485 years of storm simulation. The model that gen-
erates these storms consists of three stages: a genesis model; a
beta-advection TC motion model; and a dynamical TC model that cap-
tures how environmental factors influence TC development [58]. The
model solves the synthetic storms’ tracks, maximum sustained winds,
and radii of maximum winds, and we use its results at 2 h intervals. We
estimated the wind fields by combining the storm’s axisymmetric winds
circulating counterclockwise [37] and background winds [38], as in the
wind analysis for the historical storms. The synthetic hurricanes were
evaluated with observations by Marsooli et al. [31].

We determine the annual rate of panel failure 4; by combining the
wind simulations with the Bayesian fragility functions. The rate defines
the average number of events leading to panel failures in a given year
assuming a Poisson process. In a frequentist analysis, the fragility
function parameters v and f are fixed. Thus, 4¢(v, #) can be estimated as

h0) = [ awio.paa an
0

where 4,, is the annual exceedance probability of wind speed. It is the
average number of events that result in winds exceeding a threshold w in
a given year under a Poisson process of storm arrivals, and it can be
estimated from the synthetic storms. In our Bayesian framework, v and
are random variables. Thus, / is also a random variable. Accordingly, its
probability density function p, . (4) can be found as

)

Dy, (4) = 7 7 p(o,p)s | 4 /

0 0 0

q(w;v, B)dA,, | dodp 12)

where §() is the Dirac delta function on 1 — /q(w; 0,p)dAy. Eq. (12) uses
0

the posterior p(v, §|x) as the distribution of » and f to find the posterior
of Py (4). Replacing p(v, f|x) by the prior p(v, ) will result in the prior
p,,(4). The expected value of A, E[%], can be found as:

)

ely) = [ [ | [ atwopian | pio.pisasas a3
0 0

0

Explicitly evaluating E[4¢] and particularly p, " (4) is computationally
challenging by traditional numerical integration. Thus, we used Monte
Carlo analysis due to its simplicity to find such estimates. Using the
10,000 Monte Carlo samples of prior and posterior fragility functions,
we estimated the prior and posterior of A, (Fig. 7).

Our results indicate a marked decrease in uncertainty for /¢ in the
posterior. The posterior standard deviation and logarithmic standard
deviation for rooftop panels are 1.2 x 1072 /yr and 6.3 x 10~!, whereas
the priors’ ones are 5.1 x 10~2/yr and 1.82. The posterior standard
deviation and logarithmic standard deviation for ground-mounted
panels are 1.7 x 1073 /yr and 5.5 x 107!, whereas the priors’ ones are
5.7 x 1072 /yr and 1.87. This uncertainty decrease in the annual failure



L. Ceferino et al.

1.0

e Prior

0.8- = Posterior

0.6

Pa(A)

0.4-

0.0 =
10" 107° 107 10 10
A (Uyn

a) Rooftop panel

Reliability Engineering and System Safety 229 (2023) 108896

1.0
m— Prior
08- = Posterior
_ 06
S
Sy
0.4-
0.2-
0.0 g -
10" 107 10° 10" 10°
A (L/yn)
b) Ground-mounted panel

Fig. 7. Probability density function P (1) of the annual probability of failure rate of solar panels. Samples from the Monte Carlo simulations were used to fit

empirical pdfs with a Gaussian kernel.

rate is consistent with the observed posterior fragility function uncer-
tainty reductions for rooftop and ground-mounted panels (Fig. 6).

For rooftop panels, the posterior E[/f] is 1.3 x 1072/yr, i.e., return
period of 75 years. Under the assumption of a Poisson process, this rate
results in a 48% probability of failure in 50 years. This rate is equivalent
to a 33% failure probability in 30 years, often considered the usable
panel service time. The reliability index, defined as the inverse of the
cumulative standard normal distribution function on the survival
probability, i.e., one minus the failure probability, in 50 years, is 0.04.
This reliability is significantly lower than the current standards in the
ASCE7-16. Using reliability curves from a recent study on wind risks
[59], we estimated that a structure designed for winds with a 700-year
return period (risk category II) should have a reliability index of 2.3 in
50 years, i.e., failure rate of 2.3 x 10~*/yr. Thus, our findings show that
the structural reliability of rooftop solar panels in our dataset was
significantly below current code standards if similar panels are adopted
in Miami-Dade. These results are consistent with the observed structural
deficiencies in the installation and design of panels with failures in the
dataset, e.g., insufficient connection strength, lack of vibration-resistant
connections [32]. Thus, significant gains in reliability could be achieved
by increasing quality and control during design and installation.

For ground-mounted panels, the posterior E[4;] is 2.0 x 1072 /yr, i.e.,
return period of 504 years. This rate is equivalent to a 9 and a 6%
probability of failure in 50 and 30 years, respectively. The reliability
index for 50 years is 1.3. According to the ASCE7-16, the reliability
index for a structure designed for winds with a 300-year return period
(risk category I) is 1.9, i.e., failure rate of 6.1 x 10~*/yr [59]. Thus, our
results indicate that ground-mounted panels also have lower reliability
than required by the current code standards. These results are also
consistent with previously reported structural deficiencies in
ground-mounted panels in the Caribbean, e.g., undersized racks, and
undersized or under-torqued bolts [33]. Nevertheless, the contrast be-
tween rooftop and ground-mounted panel performance indicates that
the latter had a significantly higher structural reliability than the former.

6. Stronger solar panels for generation resilience
6.1. Assessing structural reliability and generation in stronger panels

We assessed panels’ strength increases by factors of 1.25, 1.50, 1.75,
and 2.0. This wide range of strength increases accounts for addressing
various panel installations and design deficiencies reported in the
Caribbean. Existing studies already point to cost-effective solutions to
correct these deficiencies, e.g., torque checks on bolts, well-designed

clips [32,33].

This range also covers increases in strength for critical infrastructure.
Hospitals and fire stations require that their buildings’ structural and
non-structural components have higher strength for continuous opera-
tions in a disaster emergency response. Accordingly, solar panels serving
these facilities must be designed with a risk category IV, higher than for
panels on residential (risk category II) or utility-scale (risk category I)
installations. For example, the wind design in Miami-Dade is 69 m/s
(154 mph) for a risk category I and 81 m/s (182 mph) for a risk category
IV. The difference represents a strength factor of 1.40 as the design force
is proportional to the square of the design wind.

Wind velocity pressures are a function of the square root of wind
speeds [7]. Thus, we multiplied the posterior samples of (capacities of)
wind speeds v by 1.12, 1.22, 1.32, 1.41 to represent the strength increase
factors of 1.25, 1.50, 1.75, and 2.0. We let samples of # remain the same
to limit the increase in uncertainty, i.e., the transition from
low-failure-probability to high-failure-probability winds. The resulting
fragility functions are shifted to the right of the posterior functions in
Fig. 6, reducing the likelihood of panel failure (Fig. 8). For example, the
mean failure probability ¢ when rooftop panels undergo gusts of 60 m/s
decreases from 0.19 to 0.12, 0.08, 0.05, and 0.04 for the strength factors
of 1.25, 1.50, 1.75, and 2.0, respectively. Similarly, the mean ¢ when
ground-mounted panels undergo gusts of 80 m/s decreases from 0.23 to
0.09, 0.04, 0.02, and 0.01.

Using Monte Carlo sampling, we estimated Py (1) for the different
increases in strength (Fig. 9). Expectedly, increases in strength shift
P f(/l) to the left as they reduce the resulting annual rate of failure. We

also found E[/;] and assessed the corresponding panels’ structural reli-
ability (Table 2). The increases in strength are effective at decreasing
E[/]. The strength factor of two reduces E[/s] by a factor of 3.9 and 2.5
for rooftop and ground-mounted panels, respectively. A more modest
strength factor of 1.25 also effectively decreases panel failure risk,
reducing E[4] by ~50% and ~70% for rooftop and ground-mounted
panels, respectively. Nevertheless, our results indicate that the reli-
ability indexes for these stronger panels are still below the ASCE7-10
targets even for a risk category I, i.e., 1.9.

These results highlight large structural vulnerabilities in solar panels
since they do not reach code-level reliability even if their strength is
increased twice. These results suggest that existing lack of structural
design and limited inspections in the panel installations were significant
[32,33]. High vulnerability to hurricane winds has been noted previ-
ously in buildings. For example, a previous study in Southern Florida
determined that roof-to-wall connections with 3-8d toenails in wooden
residential buildings have an annual failure rate between 0.005 and
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Fig. 9. Probability density function of the annual failure rate of solar panels for different increases in panel strength. The labels indicate the strength factor increase.

Table 2
Annual probability of panel failure and reliability indexes (for 50 years) for
different increases in strength.

Strength Rooftop panel Ground-mounted panels
Fact
actor Ely] (1/yr)  Reliability Eli] (1/yr) Reliability
index index

1.0 0.0132 0.04 0.0020 1.30

1.25 0.0089 0.36 0.0012 1.58

1.50 0.0061 0.63 0.0010 1.66

1.75 0.0043 0.87 0.0009 1.73

2.0 0.0034 1.01 0.0008 1.77

0.024 [60]. These rates are comparable to the rooftop panels in our case
study and below the performance of ground-mounted panels (Table 2).
Furthermore, roof panels with 6d nails @ 6/12 in. on these buildings
showed even poorer performance, with higher annual failure rates of
0.077-0.137.

6.2. Will stronger solar panels increase generation resilience?

As demonstrated previously, increasing panel strength will increase
its reliability. However, other critical factors also play a significant role
in solar generation resilience, i.e., the ability to generate sufficient
electricity during storms. First, solar generation can decrease even if
panels remain structurally sound and functional during a hurricane.

Ceferino et al. [61] demonstrated that hurricane clouds can reduce
irradiance and generation significantly through light absorption and
reflection. For example, a category-4 hurricane can decrease the gen-
eration by more than 70%, even if the panels remain undamaged.
Cloud-driven generation losses can last for days, although they will
bounce back to normal conditions in an undamaged panel as the hur-
ricane leaves.

Failure of supporting infrastructure can also decrease generation
resilience even if panels withstand extreme wind loads. Increasing the
strength of rooftop panels on vulnerable roofs will not increase the
global reliability of the residential energy system. Global reliability must
consider that panels can fail in a cascading failure triggered by roof
uplift, damaging the panel or its connections. The weakest link will
control the reliability of this in-series system. As mentioned previously,
roof-to-wall connections with 3-8d toe nails or roof panels with 6d nails
@ 6/12" exhibited similar or poorer performance than vulnerable
rooftop panels [60]. Strengthening panels on these roofs will substan-
tially increase their local reliability (Table 2), but it will increase global
reliability only negligibly. Conversely, roofs with H2.5 hurricane clips in
roof-to-wall connections and 8d nails @ 6/12" in roof panels will make
roofs an appropriate supporting system through higher reliability [60].
Thus, our results advocate for stronger panels but under a holistic
assessment of global reliability.

Structurally sound rooftop panels have the intrinsic advantage of
delivering power even if the primary grid is down. When inverters are
within buildings, occupants can use their locally generated energy
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during an outage (Cook et al., 2020) to sustain essential functions, e.g.,
food refrigeration. Access to energy is also pivotal to sustaining emer-
gency response operations for critical infrastructure such as hospitals or
fire stations. Communities can further utilize locally generated energy
through energy sharing and microgrids to increase households’ access to
power after a disaster, even for those who did not install panels [62,63].
Nevertheless, solar panels will not replace the need for backup genera-
tion units for resilience, especially for critical facilities, and fully
charged behind-the-meter batteries must complement them for power
access during an emergency response.

Stronger panels will also increase power security at the utility level
by avoiding massive structural failures at the generation sites, as in
Fig. 1b. As noted previously, solar panels are directly exposed to wind.
Poor structural performance in utility companies’ solar installations
could result in significant generation losses and outages that can affect
the disaster emergency response and recovery activities. Recently,
Hurricane Ida caused damage to the power system that resulted in ~1 M
outages in Louisiana, reducing electricity access by more than 60% in
more than ten parishes (counties), critically affecting the functionality of
the water system and delaying recovery [64,65]. While solar generation
losses could be potentially offset by other generating sources during an
emergency response, adopting vulnerable panels in our grid will be a
missed opportunity to make our power systems resilient.

7. Conclusions

This paper presented the first data-driven fragility curves for solar
panels under hurricane wind loads. The article estimated the fragility
curves using data on the structural performance of 46 rooftop panels in
residential buildings and 14 large ground-mounted solar panel arrays in
utility generation sites. Solar panel failure data was collected after
Hurricanes Maria and Irma in 2017 and Hurricane Dorian in 2019 in the
Caribbean. Further, this paper assessed solar generation resilience and
its improvements with stronger panels.

We used a Bayesian approach to supplement the panel dataset with
an existing numerical assessment of panel failure. Using a Markov Chain
Monte Carlo algorithm, we estimated the posterior distributions of
fragility parameters for the rooftop and ground-mounted panels sepa-
rately. Our results show significant reductions in epistemic uncertainty
for v (wind for a 50%-failure probability) in rooftop and ground-
mounted panels with 90 and 87% decreases in the standard deviation.
Using Monte Carlo, we then propagated the uncertainty in the param-
eters to the fragility functions, showing significantly narrower confi-
dence intervals. This result highlighted the importance of characterizing
fragility functions with ground-truth data.

We combined our fragility functions with a hurricane hazard
assessment in Miami-Dade, Florida, using Monte Carlo simulations.
Miami-Dade has similar hurricane hazards to Puerto Rico, where most
damage data was collected. Our estimates of the annual rate of panel
structural failure indicated that the panels are below the current struc-
tural reliability standards specified in ASCE7-16. These performance
deficiencies were particularly striking for rooftop panels (estimated
failure rate of 1.3 x 1072 /yr versus 2.3 x 10~*/yr in the code), whose
documented installation issues and frequent lack of structural design
made them particularly vulnerable to high winds.

Finally, we analyzed the implications of building stronger solar
panels by up to a factor of two due to improvements in the panels’ in-
stallations, structural design, or higher structural requirements. We
show that increasing panel strength effectively reduces the annual fail-
ure rate. However, even the factor of two is still insufficient to meet
annual failure rates in the ASCE7-10 (reliability index of 1.9 for the
lowest risk category) for rooftop and ground-mounted panels (reliability
indexes of 1.01 and 1.77).
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