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L
i-ion batteries are ubiquitous in our lives, as they are 
used in many modern technologies. Li-ion batteries have 
dominated the market because of their high energy density 
and stability. However, sustainability is a big issue with 
Li-ion batteries, because many of these batteries utilize 

expensive and/or toxic materials such as Li, Ni, and Co.1 Hence, 
researchers have been actively working on developing alternatives 
to Li-ion batteries. One facile way of developing beyond Li-ion 
batteries is to replace the Li with more affordable Na. However, with 
the lower redox potential of Na+ and its higher density relative to 
Li+, Na-ion batteries provide inferior energy density than their Li-ion 
counterparts. Furthermore, Na-ion batteries suffer from stability issues 
because of the complex structural and chemical evolutions during 
battery cycling. Still, Na-ion batteries attract much attention because 
of cost effectiveness as they require relatively cheap components 
such as Na, cathodes without expensive elements such as Co and Ni, 
and an Al current collector instead of Cu. These advantages mean Na-
ion batteries can be an attractive choice for large-scale energy storage 
such as grid energy storage.2

Layered oxide materials are widely studied as cathode candidates 
for Na-ion batteries. They are made of alternating layers of transition 
metal oxide and alkali ions such as Na (Fig. 1a). Na-layered oxides 
show intriguing structural and compositional complexities.3 Unlike 
their Li-layered counterparts, Na-layered oxides can incorporate 
many different low-cost transition metals such as Cu and Fe4 and can 
be synthesized with different layered structures (e.g., O3, O2, P3, 
P2).3 This versatility opens multiple avenues to explore for stable 
cathode materials for Na-ion batteries. Here, three strategies to design 
stable Na-layered oxide cathodes are discussed. Taking advantage 
of their compositional and structural flexibility, stable Na-layered 
oxide cathodes can be synthesized by 1) utilizing doping chemistry 
to manipulate the structural and chemical properties, 2) tuning the 
elemental distribution to optimize the surface and bulk chemistry, 
and 3) exploring the elemental/compositional space to design stable 
Na-layered oxide cathodes.

This feature page is intended to let ECS award winning students and post-docs write a 
primary-author perspective on their field, their work, and where they believe things are going. 
This month we highlight the work of Muhammad Mominur Rahman, the Battery Division 2021 
Student Research Award winner.
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Doping Chemistry to Stabilize  
Layered Oxide Cathodes

Doping Na-layered oxides with trace elements enables controlled 
modification of the properties of these materials. Further tunability 
can be achieved when lattice site-specific doping is performed. For 
example, Mg can be doped either in the transition metal site or in 
the alkali-ion site of the layered oxide (Fig. 1a). If Mg is sitting on 
the transition metal layer, it can suppress local structural distortion,5 
or when it is sitting on the alkali-ion layer, it can act as a pillar 
against interlayer gliding.6 Ti doping in layered oxides enables 
better retention of lattice oxygen during cycling due to strong Ti-O 
bonding.7 Doping with both Mg and Ti enables synergistic utilization 
of their stabilization effects on layered oxide cathodes. For example, 
doping NaxLiyMn1-yO2 with Mg and Ti enables suppression of 
Jahn-Teller distortion and better overall oxygen retention.8 Li in 
NaxLiyMn1-yO2 allows access to a large capacity from the material 
through oxygen redox because of the formation of unhybridized O2p 
orbitals. Mg-Ti dual doping in this material leads to suppressed Mn 
dissolution, prevention of Li loss, stabilization of the lattice structure, 
and reversible redox reaction during cycling (Fig. 1a). Overall, this 
leads to stable electrochemical performance of Mg-Ti dual doped 
NaxLiyMn1-yO2. 

Tuning Elemental  
Distribution in Cathode Particles

Layered oxide cathodes contain multiple transition metals (TM) 
with different degrees of hybridization between TM3d and O2p 
orbitals. Cathode particles interact dynamically with the electrolyte 
during cycling. Incompatibility of electrolyte with cathode material 
can lead to electrolyte decomposition, transition metal dissolution, 
and cathode surface reconstruction.9,10 During electrochemical 
cycling, the extent of hybridization of TM3d-O2p orbitals undergoes 
dynamic evolution, which influences their interaction with the 
electrolyte. Hence, tuning the TM3d-O2p hybridization can be an 
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effective way of influencing the cathode-electrolyte interaction. 
Conventionally, layered oxide cathodes are synthesized with a 
homogeneous distribution of the transition metals. However, our 
work has shown that the TM3d-O2p hybridization can be tuned by 
controlling the distribution of transition metals in each individual 
cathode particle.11 This approach can lead to an advantageous 
depth-dependent redox reaction in the cathode particles and thereby 
influence their interaction with the electrolyte. Taking advantage 
of these facts, Na0.9Cu0.2Fe0.28Mn0.52O2 with a heterogeneous 3D 
elemental distribution (Fig. 1b) provides stable electrochemical 
performance. Hence, our study shows that optimizing the distribution 
of transition metals in individual cathode particles is an effective way 
of tuning the electrochemical performance.

Exploring Elemental/ 
Compositional Space to Design  

Stable Cathode Materials

One remarkable advantage of a Na-layered oxide is that it can 
tolerate many different transition metals in its structure because 
of the large size difference between Na ions (1.02 Å) and TM ions 
(0.5–0.7  Å).12 Such flexibility opens opportunities to explore the 
compositional space of Na-layered oxides, which provides further 

tuning knobs for performance optimization. This wide design 
space allows creation of Na-layered oxide cathodes using cheap 
and abundant transition metals such as Fe. Taking advantage of 
the vast compositional space of Na-layered oxides, we designed 
a Na0.75Co0.125Cu0.125Fe0.125Ni0.125Mn0.5O2 cathode material using 
the majority of the first row transition metals (Fig. 1c).13 Stable 
electrochemical performance is achieved with earth-abundant 
transition metals such as Cu and Fe. Further optimization can be 
accomplished by designing cathode materials where Cu and Fe are 
the majority of the transition metals and completely eliminating Co 
and Ni.   

Remarks and Perspectives

Na-ion batteries based on Na-layered oxide cathodes are a 
promising and cost-effective alternative to Li-ion batteries. Wide 
compositional variations enable utilization of cheap and abundant 
elements, which potentially makes them environmentally friendly. 
Structural and chemical complexities can be exploited to design 
stable layered oxide cathodes. Incorporating trace elements in Na-
layered oxides enables tuning the physicochemical properties of 
these materials, which further enables performance optimization. 
Purposefully designing the elemental distribution of cathode particles 
influences the cathode-electrolyte interaction and takes advantage of 

(a) (b)

Fig. 1. Approaches to develop stable layered oxide cathodes for Na-ion batteries. (a) Crystal structure of Na-
layered oxides. The structure of these materials is made of alternating layers of transition metal oxides and Na. 
Doping Na-layered oxides with trace elements such as Mg and Ti in NaxLi1-yMnyO2 leads to mitigated Jahn-Teller 
distortion and reversible structural evolution. Reproduced with permission from Ref. 8. (b) Tuning elemental 
distribution in individual cathode particles. 3D heterogeneous elemental distribution in Na0.9Cu0.2Fe0.28Mn0.52O2. 
Reproduced with permission from Ref. 11. (c) Exploring the composition space of Na-layered oxides. Elemental 
distribution in primary particles of Na0.75Co0.125Cu0.125Fe0.125Ni0.125Mn0.5O2. Reproduced with permission from Ref. 13.
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depth-dependent redox reactions to stabilize cathode performance. 
Future development of Na-layered oxide cathodes may combine 
multiple approaches to controlling elemental distribution along with 
structural/compositional space exploration to design stable cathode 
materials.
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