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Reports from

the Frontier

edited by Scott Cushing,
Interface Contributing Editor

This feature page is intended to let ECS award winning students and post-docs write a
primary-author perspective on their field, their work, and where they believe things are going.
This month we highlight the work of Muhammad Mominur Rahman, the Battery Division 2021

Student Research Award winner.

Strategies to Design Stable
Layered Oxide Cathodes for Na-lon Batteries

by Muhammad Mominur Rahman and Feng Lin

i-ion batteries are ubiquitous in our lives, as they are

used in many modern technologies. Li-ion batteries have

dominated the market because of their high energy density

and stability. However, sustainability is a big issue with

Li-ion batteries, because many of these batteries utilize
expensive and/or toxic materials such as Li, Ni, and Co.' Hence,
researchers have been actively working on developing alternatives
to Li-ion batteries. One facile way of developing beyond Li-ion
batteries is to replace the Li with more affordable Na. However, with
the lower redox potential of Na" and its higher density relative to
Li*, Na-ion batteries provide inferior energy density than their Li-ion
counterparts. Furthermore, Na-ion batteries suffer from stability issues
because of the complex structural and chemical evolutions during
battery cycling. Still, Na-ion batteries attract much attention because
of cost effectiveness as they require relatively cheap components
such as Na, cathodes without expensive elements such as Co and Ni,
and an Al current collector instead of Cu. These advantages mean Na-
ion batteries can be an attractive choice for large-scale energy storage
such as grid energy storage.’

Layered oxide materials are widely studied as cathode candidates
for Na-ion batteries. They are made of alternating layers of transition
metal oxide and alkali ions such as Na (Fig. 1a). Na-layered oxides
show intriguing structural and compositional complexities.® Unlike
their Li-layered counterparts, Na-layered oxides can incorporate
many different low-cost transition metals such as Cu and Fe* and can
be synthesized with different layered structures (e.g., O3, O2, P3,
P2).* This versatility opens multiple avenues to explore for stable
cathode materials for Na-ion batteries. Here, three strategies to design
stable Na-layered oxide cathodes are discussed. Taking advantage
of their compositional and structural flexibility, stable Na-layered
oxide cathodes can be synthesized by 1) utilizing doping chemistry
to manipulate the structural and chemical properties, 2) tuning the
elemental distribution to optimize the surface and bulk chemistry,
and 3) exploring the elemental/compositional space to design stable
Na-layered oxide cathodes.
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Doping Chemistry to Stabilize
Layered Oxide Cathodes

Doping Na-layered oxides with trace elements enables controlled
modification of the properties of these materials. Further tunability
can be achieved when lattice site-specific doping is performed. For
example, Mg can be doped either in the transition metal site or in
the alkali-ion site of the layered oxide (Fig. 1a). If Mg is sitting on
the transition metal layer, it can suppress local structural distortion,’
or when it is sitting on the alkali-ion layer, it can act as a pillar
against interlayer gliding.® Ti doping in layered oxides enables
better retention of lattice oxygen during cycling due to strong Ti-O
bonding.” Doping with both Mg and Ti enables synergistic utilization
of their stabilization effects on layered oxide cathodes. For example,
doping Na,LiMn, O, with Mg and Ti enables suppression of
Jahn-Teller distortion and better overall oxygen retention.® Li in
Na,LiMn, O, allows access to a large capacity from the material
through oxygen redox because of the formation of unhybridized O2p
orbitals. Mg-Ti dual doping in this material leads to suppressed Mn
dissolution, prevention of Li loss, stabilization of the lattice structure,
and reversible redox reaction during cycling (Fig. la). Overall, this
leads to stable electrochemical performance of Mg-Ti dual doped
Na,LiMn, ,0,.

Tuning Elemental
Distribution in Cathode Particles

Layered oxide cathodes contain multiple transition metals (TM)
with different degrees of hybridization between TM3d and O2p
orbitals. Cathode particles interact dynamically with the electrolyte
during cycling. Incompatibility of electrolyte with cathode material
can lead to electrolyte decomposition, transition metal dissolution,
and cathode surface reconstruction.”! During electrochemical
cycling, the extent of hybridization of TM3d-O2p orbitals undergoes
dynamic evolution, which influences their interaction with the
electrolyte. Hence, tuning the TM3d-O2p hybridization can be an

(continued on next page)
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Fi1G. 1. Approaches to develop stable layered oxide cathodes for Na-ion batteries. (a) Crystal structure of Na-
layered oxides. The structure of these materials is made of alternating layers of transition metal oxides and Na.
Doping Na-layered oxides with trace elements such as Mg and Ti in Na Li, Mn 0O, leads to mitigated Jahn-Teller
distortion and reversible structural evolution. Reproduced with permission from Ref. 8. (b) Tuning elemental
distribution in individual cathode particles. 3D heterogeneous elemental distribution in Na, ,Cu,,Fe, ,;Mn, ;,0,.
Reproduced with permission from Ref. 11. (c) Exploring the composition space of Na-layered oxides. Elemental
distribution in primary particles of Na,, ,5Co, ,sCu,, ,sFe, ,sNiy ;,sMn, sO,. Reproduced with permission from Ref. 13.

effective way of influencing the cathode-electrolyte interaction.
Conventionally, layered oxide cathodes are synthesized with a
homogeneous distribution of the transition metals. However, our
work has shown that the TM3d-O2p hybridization can be tuned by
controlling the distribution of transition metals in each individual
cathode particle.!! This approach can lead to an advantageous
depth-dependent redox reaction in the cathode particles and thereby
influence their interaction with the electrolyte. Taking advantage
of these facts, Na,,Cu,,Fe,,sMn, 5,0, with a heterogeneous 3D
elemental distribution (Fig. 1b) provides stable electrochemical
performance. Hence, our study shows that optimizing the distribution
of transition metals in individual cathode particles is an effective way
of tuning the electrochemical performance.

Exploring Elemental/
Compositional Space to Design
Stable Cathode Materials

One remarkable advantage of a Na-layered oxide is that it can
tolerate many different transition metals in its structure because
of the large size difference between Na ions (1.02 A) and TM ions
(0.5-0.7 A).12 Such flexibility opens opportunities to explore the
compositional space of Na-layered oxides, which provides further
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tuning knobs for performance optimization. This wide design
space allows creation of Na-layered oxide cathodes using cheap
and abundant transition metals such as Fe. Taking advantage of
the vast compositional space of Na-layered oxides, we designed
a  Nay;5C0,1,5Cuy 5sFeg 15sNi 1,sMn sO, cathode material using
the majority of the first row transition metals (Fig. 1c)."* Stable
electrochemical performance is achieved with earth-abundant
transition metals such as Cu and Fe. Further optimization can be
accomplished by designing cathode materials where Cu and Fe are
the majority of the transition metals and completely eliminating Co
and Ni.

Remarks and Perspectives

Na-ion batteries based on Na-layered oxide cathodes are a
promising and cost-effective alternative to Li-ion batteries. Wide
compositional variations enable utilization of cheap and abundant
elements, which potentially makes them environmentally friendly.
Structural and chemical complexities can be exploited to design
stable layered oxide cathodes. Incorporating trace elements in Na-
layered oxides enables tuning the physicochemical properties of
these materials, which further enables performance optimization.
Purposefully designing the elemental distribution of cathode particles
influences the cathode-electrolyte interaction and takes advantage of
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depth-dependent redox reactions to stabilize cathode performance.
Future development of Na-layered oxide cathodes may combine
multiple approaches to controlling elemental distribution along with
structural/compositional space exploration to design stable cathode
materials.
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