
ACCEPTED FROM OPEN CALL

Energy-Eficient Distributed Task Scheduling for Multi-Sensor IoT Networks
Elizabeth Liri, K. K. Ramakrishnan, and Koushik Kar

AbstrAct
Multi-sensor IoT devices can gather different

types of data by executing different sensing activ-
ities or tasks. Therefore, IoT applications are also
becoming more complex in order to process mul-
tiple data types and provide a targeted response
to the monitored phenomena. However, IoT
devices which are usually resource-constrained
still face energy challenges since using each of
these sensors has an energy cost. Therefore,
energy-efficient solutions are needed to extend
the device lifetime while balancing the sensing
data requirements of the IoT application. Coop-
erative monitoring is one approach for managing
energy and involves reducing the duplication of
sensing tasks between neighboring IoT devices.
Setting up cooperative monitoring is a sched-
uling problem and is challenging in a distribut-
ed environment with resource-constrained IoT
devices. In this work, we present our Distributed
Token and Tier-based task Scheduler (DTTS) for a
multi-sensor IoT network. Our algorithm divides
the monitoring period (5 min epochs) into a set
of non-overlapping intervals called tiers and deter-
mines the start deadlines for the task at each IoT
device. Then to minimize temporal sensing over-
lap, DTTS distributes task executions throughout
the epoch and uses tokens to share minimal infor-
mation between IoT devices. Tasks with earlier
start deadlines are scheduled in earlier tiers while
tasks with later start deadlines are scheduled in
later tiers. Evaluating our algorithm against a sim-
ple round-robin scheduler shows that the DTTS
algorithm always schedules tasks before their start
deadline expires.

IntroductIon
Many IoT devices are resource-constrained in
terms of energy but still need to regularly send
sensing data to the relevant IoT applications.
Therefore, to maximize IoT device operating
lifetime and meet IoT application sensing data
requirements, energy-eficient solutions like coop-
erative monitoring are required. Cooperative
monitoring saves energy by minimizing redun-
dant data sent from neighboring IoT devices
with overlapping coverage areas. Our strategy
to implement cooperative monitoring is to devel-
op a scheduling mechanism minimizing tempo-
ral sensing overlap. Therefore, we present DTTS,
an energy-eficient distributed task scheduler for
multi-sensor IoT devices.

Multi-sensor IoT devices utilize multiple sensors
to monitor different environmental phenomena in
a variety of applications like agriculture, smart cit-
ies, and disaster management including forest fires
and hurricanes. Analyzing multiple data types from
multi-sensor IoT devices requires more complex
IoT applications but improves situational aware-
ness, helping provide targeted responses to the
monitored phenomena. For example, in agriculture,
multi-sensor IoT devices can measure soil moisture,
temperature, and capture images to observe crop
health. Precision agriculture applications use this
data to provide a response that maximizes the yield
for example, by adjusting the irrigation cycle.

Deploying IoT devices over large areas poses
several challenges. First, most IoT devices are
resource-constrained with limited memory, ener-
gy, and computing power. They typically rely on
batteries and renewable energy sources, since
brown power is not always accessible or cost-ef-
fective to provide. Therefore, careful energy man-
agement strategies are needed to ensure the IoT
devices operate as long as possible (preferably
always) while providing the data required by the
IoT applications [1]. Secondly, the IoT device
deployment pattern may have overlapping cov-
erage areas. Therefore, it is important to avoid
data redundancy when IoT devices monitoring
the same location simultaneously transmit their
sensor data (i.e., temporal sensing overlap) and
thus avoid wasting precious energy. It can be
very worthwhile to use cooperative monitoring
when deploying many IoT devices. Cooperative
monitoring reduces duplication of sensing tasks
between neighboring IoT devices and helps better
utilize the total available energy across all the IoT
devices, by minimizing temporal sensing overlap.

Cooperative sensing for energy management is
used in [2] which presents a distributed multi-sen-
sor cooperative scheduling model for target track-
ing based on the partially observable Markov
decision process. Another example is [3], which
presents an IoT network cooperative power min-
imization scheme. Nodes receive task requests
with estimated task execution times and sched-
ule the tasks by scaling the CPU core’s operating
frequency ensuring task completion within the
estimated time.

Implementing cooperative monitoring is
a scheduling problem. A centralized schedul-
er may not be desirable in an IoT environment,
from the point of view of resiliency and the

Digital Object Identifier:
10.1109/MNET.006.2200548

Elizabeth Liri and K. K. Ramakrishnan are with University of California Riverside, USA;
Koushik Kar is with Rensselaer Polytechnic Institute, USA.

318 0890-8044/23/$25.00 © 2023 IEEE IEEE Network • March/April 2023

potential need to frequently communicate every
IoT device’s state information to the central
scheduler. However, setting up an energy-effi-
cient distributed scheduler is challenging. First,
IoT devices are resource-constrained and there-
fore can only store and process a limited amount
of their neighbors’ scheduling/state information.
Next, since IoT devices are usually energy-con-
strained they typically limit communication to
conserve energy. Therefore, schedulers requiring
significant inter-device communication to share
state may not be energy eficient. Lastly, as IoT
devices go to sleep or become inactive, the
network topology changes must be communi-
cated to an IoT device, thus consuming energy.
These challenges make designing a distributed
task scheduling algorithm more complex than a
centralized scheme like Earliest Deadline First,
where all necessary information (deadlines) of all
nodes is known in advance.

Our main contribution in this work is our
Distributed Token and Tier-based task Schedul-
er (DTTS), a simple energy-efficient distributed
scheduler for an IoT network. Our DTTS sched-
uler works with multi-sensor or single-sensor IoT
devices and we refer to the monitoring period
(duty cycle) as an epoch. Also, each IoT device
sensor has a start deadline. This is the latest time
(from the start of the epoch) that the sensor must
begin its sensing activity (task) in order to have all
measurements completed within the epoch. To
minimize temporal sensing overlap, our algorithm
divides each epoch into a set of non-overlapping
intervals called tiers. Then, in a distributed man-
ner and using tokens to share minimal informa-
tion between the IoT devices, our DTTS algorithm
schedules tasks with earlier start deadlines in the
earlier tiers and tasks with later start deadlines in
later tiers. Comparing DTTS against a simple peri-
odic scheduler shows that DTTS always schedules
each task before its start deadline expires.

Some examples of distributed task schedul-
ers are in [2–6]. In [4], the authors use an energy
neutrality constraint and dynamic programming
to find a task schedule that maximizes the Quality
of Service. The Lazy Scheduling Algorithm (LSA)
[5] determines whether all task deadlines can be
met before creating a schedule and uses task
energy requirements, task deadlines, and current
battery capacity of rechargeable IoT devices to
make a scheduling decision. JarvSis [6] is a distrib-
uted task scheduler that uses a hierarchy of con-
trol tasks operating in the Cloud/Fog to control
robots and IoT devices on the ground.

The DTTS algorithm is based on [7] and is sim-
ple to execute unlike the dynamic programming
approach in [4] or Markov decision process in
[2]. DTTS does not require all task deadlines in
advance like [5]. In DTTS each IoT device inde-
pendently schedules its task execution. It is differ-
ent from [6], where nodes higher in the hierarchy
control task execution of IoT nodes lower in the
hierarchy. In [3], task execution is triggered by
requests from another node. While both DTTS
and [3] are distributed and consider deadlines
when scheduling, Local [3] requires each IoT
device to also keep track of neighbor’s deadlines.
DTTS instead uses tokens for inter-device commu-
nication of minimal information, with independent
decision-making at each IoT device.

IEEE Network • March/April 2023

The DTTS algorithm schedules sensing tasks between cooperating IoT devices in a distributed manner
using tokens to share minimal information. Temporal sensing overlap between devices is minimized by
splitting sensing epochs into a set of non-overlapping time-tiers based on their deadlines. Tasks with

earlier start deadlines are scheduled in earlier tiers.

system desIgn

desIgn concepts
A task is when an IoT device performs a sensing
activity using a particular sensor. For example, an
IoT device with a camera and temperature sensors
has image, video, and temperature tasks. A task
can be executed multiple times per epoch. This
number is referred to as the task parameter value
and can change every epoch. For example, if the
temperature task parameter value is 5, the tem-
perature task is executed 5 times in the epoch.

Assuming task executions at a device are uni-
formly distributed in the epoch, the time inter-
val between two consecutive task executions is
the task period. Therefore, there is a time limit
(from the start of the epoch) to start the first task
execution so the last task execution can still be
completed within the epoch. This time limit is the
task’s start deadline (i.e., task maximum start time)
and its value is determined by subtracting the task
execution time from the period.

Our algorithm sets the task start time, that is,
when the IoT device first executes the task in the
epoch, to any value from 0 up to the task start
deadline. Once the IoT device knows its start
time, it automatically executes the task every peri-
od during the epoch until it reaches the required
task parameter value (number of executions). For
each task, we also record the minimum and maxi-
mum task periods within the IoT network.

Lastly, to minimize the temporal overlap we set
a minimum start interval between the start time of
the same task on any two IoT devices for exam-
ple, if the minimum start interval is 15s and the
start time for an IoT temperature task is 60s, then
the start time for the temperature task at the next
IoT device must be 75s or later. Figure 1 illustrates
these key concepts using a temperature task at
three IoT devices a, b, and c. The task execution
time is the same in all cases (shown by the thick
black vertical lines) and the epoch duration is five
minutes. The task parameter values for a, b, and c
are 5, 2, and 4 giving periods 60s, 150s, and 75s,
respectively. The task start time is shown by the
width of the red rectangle and takes any value
from 0 to start deadline. Note that IoT devices
with different periods have different start dead-
lines. In each case, the interval between consecu-
tive task executions at a device is the task period
(shown by the width of the blue rectangles). The
minimum task period is period a and the maxi-
mum task period is period b.

With a, the start time is equal to the start dead-
line and the task is executed five times within the
epoch. With b, the start time is less than the start
deadline so the last time the task is executed is
much earlier in the epoch. With c, the start time
exceeds the start deadline so when the task is exe-
cuted for the last time, it is not within the epoch
which is unacceptable.

319

period a

start a start b start c

0 minimum
minimum minimum minimum task period

start start start
interval interval interval

start deadline a task execution time

IoT device a 1 2 3 4 5

start time a period a

minimum start interval start deadline b

IoT device b 1 2

start time b period b

minimum start interval start time c period c

IoT device c 1 2 3 4

0 50 100 150 200 250 300

start deadline c Epoch Time (s)

FIGURE 1. Framework for distributed DTTS scheduler
to determine the task start time at an IoT device
based on its individual start deadline and its
neighbors’ start times.

The call-out above a in the figure shows how
the minimum start interval is determined. Since
the minimum task period is 60s we assume the
temperature task on all IoT devices must be
scheduled from 0-60s. Evenly distributing the task
start times from all three IoT devices within 60s
means the interval between each start time is 20s
that is, the minimum start interval. Therefore, the
interval between the task start time at two differ-
ent IoT devices must be at least the minimum start
interval (compare start times at a, b, and c).

Iot monItorIng envIronment
Our design is considered in the context of an
IoT monitoring solution we developed, and the
important characteristics in terms of tasks and
monitoring environment requirements.

SEMA: An Energy Efficient Multi-Sensor IoT
Monitoring Solution: One key aspect required for
our DTTS scheduling algorithm is knowing how
many times a task must be executed per epoch
that is, the task parameter value. DTTS relies on
existing algorithms to determine these values per
epoch at the IoT device and one example algo-
rithm is SEMA.

We use SEMA [8] to provide the task parame-
ter values for several reasons. First, it is a solution
we have built that includes a practical low-cost
and multi-sensor IoT device, therefore we can per-
form on-device experiments to test the schedul-
er’s performance. Next, SEMA includes two task
adaptation algorithms of which one is distributed
and can be executed quickly on the IoT device
itself. Therefore, together with our DTTS sched-
uler, this provides a distributed energy manage-
ment solution. Finally, it adapts the sensor task
parameter values every epoch based on the avail-
able energy and thus responds quickly to energy
changes in the device/environment.

SEMA is a Smart Energy Management Solution
for IoT Applications and runs on the SEMA Stick
hardware unit which is a prototype IoT device.
The key hardware components include a solar

panel, lithium-ion battery, a Raspberry Pi Zero W
with a camera, and an embedded microcontroller
with multiple sensors. The SEMA Stick can run 5
tasks: temperature, humidity, soil moisture, image,
and video and the energy cost for each task was
modeled based on a single variable parameter for
example, the temperature task uses number of
task executions per epoch.

For each SEMA Stick, the SEMA algorithm uses
a heuristic optimization, total available energy
(from the battery and solar source), and system
models to determine the appropriate parameter
values for each task every epoch. SEMA maxi-
mizes the information utility but also ensures that
there is sufficient battery energy for the SEMA
Stick to operate overnight till the battery can be
recharged the next day. In deployments over
large areas with multiple SEMA Sticks, the devic-
es may experience different local conditions that
affect the amount of solar energy their solar panel
receives, for example, there may be obstructions
like clouds, trees, or buildings. The SEMA algo-
rithm caters for such scenarios and therefore
in the same epoch, may generate different task
parameter values for each SEMA Stick. In this
work, we focus on the independent temperature
task which has a fixed execution time, and can be
executed independently of any other task on the
same SEMA Stick. We also assume SEMA deter-
mines the task parameter values.

Design of a Multi-Sensor IoT Monitoring Envi-
ronment:

Leader Node: We assume the network has a
leader IoT device which may change between
epochs and is determined using existing leader
selection algorithms.

Inter-Device Communication: We assume
that IoT devices communicate with each other
using a circular Distributed Hash Table (DHT)-
like network whereby all IoT devices know the
address of their nearest live neighbor [9]. Figure
2 shows an example deployment with 30 ran-
domly placed IoT devices in a deployment area
covered by numbered grid points. The central
inner figure represents the physical network and
the sensing coverage areas for the temperature
task (circular) and the video/image tasks (con-
ical) are illustrated by the black circles and red
sectors respectively. The outer circle of nodes
represents the logical network where the leader
node (2) is white and we assume the IoT device
ID is the grid point number where it is located. In
this figure, the tokens travel in a clockwise direc-
tion and we show the contents of the Status and
Scheduling tokens. The figure shows the protocol
progress, with the Status token having been pro-
cessed completely by all the nodes (shown by
the dashed node borders). The Scheduling token
has been processed by the first six nodes (shown
by the orange color) and is sent to the next node
(17) in the deployment.

SEMA currently uses WiFi for communication.
However, since we are parsimonious in using
the communication for only uploading sensor
results and strive to minimize the communica-
tion between devices, we also explore the use
of LoRaWAN (Long Range WAN), a Low Power
Wide Area Network (LPWAN) technology. LoRa
consumes less power [10] compared to WiFi,
albeit having lower bandwidth (250 kb/s vs. 54

320 IEEE Network • March/April 2023

55 45

Mb/s for 802.11 b/g), but can be suitable for
the DTTS system, for example, in [11] for data
transmission at 10kb/s over 50 meters distance
between transmitter and receiver, WiFi uses
100mW while LoRaWAN uses 20mW. Another
potential advantage for LoRAWAN is its longer
range (few Kms for LoRA compared to a few
100 meters for WiFi), which permits larger-scale
deployments.

Tokens: With DTTS, each IoT device does not
need to know the sensing schedule of other IoT
devices. DTTS strives to transmit a minimal amount
of data between IoT devices, allowing each IoT
device to schedule its tasks in a completely dis-
tributed manner. However, generating the data
to be shared requires gathering some information
across the entire IoT network. An eficient way to
first gather this information and then share mini-
mal data between IoT devices is through tokens.
Token passing is a well-understood technology
(e.g., IEEE 802.5 [12], FDDI [13]). Challenges like
handling lost/duplicate tokens are easily resolved
using existing techniques where leader nodes han-
dle token generation and initiate token recovery
after failure by using timers [14, 15].

scHeduler desIgn
Given the task parameter value for an individual
sensor on a particular IoT device, the key design
goal of DTTS’s scheduler is to distribute the task
execution across the epoch and to minimize the
temporal overlap from execution of the same
sensing task across multiple IoT devices in the
vicinity of each other.

We ensure that on each IoT device, the first
time the task is executed per epoch that is, the
task start time, is before the start deadline.

This is accomplished by using tiers in DTTS.
Our algorithm divides the epoch time into a given
number of non-overlapping intervals called tiers.
Tasks are then scheduled within tiers based on
their start deadline. This ensures that tasks with
earlier start deadlines are scheduled before tasks
with later deadlines. The number of tiers required
is provided in advance and is at least one. Each
tier has a lower and upper boundary and the first
tier (Tier 1) is always from 0-minimum task period.
The remaining time interval from minimum task
period to maximum task period is then divided
equally into the remaining tiers. In this work, we
use only two tiers so Tier 2 runs from minimum
task period to maximum task period.

Our algorithm also minimizes inter-IoT device
communication costs by piggy-backing mini-
mal meta-data in tokens that are passed around
between the IoT devices arranged in a logical ring.

In terms of operation, the DTTS algorithm
relies on two rounds of token passing each epoch
traversing through the network of IoT devices to
schedule the start time for each sensing task on
each IoT device. The leader IoT node first gen-
erates a status token that traverses the network
and gathers key information like the minimum and
maximum task periods from all the IoT devices
before returning to the leader node. The leader
node first processes the information to determine
key parameters such as the tier boundaries. It
then generates a scheduling token which traverses
the network and sets the task start time for all the
tasks at each IoT device it passes through.

73 2 13
85 4

86 5

Scheduling Token
76 1. Minimum start interval 6

2. Task original tier boundaries
3. Task current tier boundaries

77 8

68 17

66 28

63

65 37

63 35

53 34

54 Status Token 33
1. Live nodes processed
2. Minimum task period
3. Maximum task period

56 46
57 58 47

FIGURE 2. Example deployment (physical and logical network).

stAtus round

The first status round token is generated by the
leader node to carry three key pieces of critical
information that are updated as the token travels
between IoT devices. The first is the number of live
nodes that have processed the token so far in the
Status round and the next two are the minimum
task period and maximum task period for each task
seen so far. When the token returns to the leader
node, its information is used to determine the tier
boundaries and the minimum start interval.

The tier boundaries are determined as
described earlier by using the minimum task peri-
od, maximum task period, and the specified num-
ber of tiers. Given that we have an IoT device in
the network reporting a minimum task period, we
need to set the minimum start interval to be small
enough that all the devices start their tasks within
this minimum task period. This guarantees that
no (start deadline) will be violated. The minimum
start interval is calculated by dividing the mini-
mum task period by the total number of active IoT
devices (Fig. 1). Once the minimum start interval
and the tier boundaries have been determined,
the scheduling token can then be generated.

scHedulIng round
The key steps of the scheduling round algorithm
for independent tasks are shown in Fig. 3. The
leader node generates a scheduling token, that
carries three key pieces of information per task:
the minimum start interval, the original tier bound-
aries, and the current tier boundaries.

When the scheduling token arrives at an
IoT device, DTTS checks the device’s task start
deadline and by looking at the task’s original
tier boundaries it determines which tier this start
deadline is in.

IEEE Network • March/April 2023 321

No
the next lower tier

SEMA Stick

Scheduling Token arrives

Token Information:

1. Original tier boundaries
2. Current tier boundaries
3. Minimum Start Interval

Local SEMA Stick Information
1. Stick ID
2. Task k Start Deadline

Use the task Start Deadline to find
original tier for task k

Set task k current tier equal to the
original tier

Is the current tier full?
Change the current tier to

Yes
Is current lower boundary of the current No

tier less than the Start Deadline?

Yes
No Is the current tier number still equal to Yes

the original tier?

Schedule task at the Schedule task at the
upper boundary of the lower boundary of the

current tier. current tier.

Decrease the tier current Increase the tier current
upper boundary by lower boundary by

Minimum Start Interval. Minimum Start Interval.

Update the token

Scheduling Token leaves

Token Information:

1. Original tier boundaries
2. Current tier boundaries
3. Minimum Start Interval

FIGURE 3. DTTS algorithm for scheduling round.

If the tier is full, that is, no available slots for
scheduling tasks, then DTTS finds the next low-
est tier that is not full. When it finds a tier that is
not full, DTTS checks whether the current lower
boundary of the tier is lower than the device’s start
deadline. If so, then we set the task start time to the
current lower boundary value because this means
the task can be scheduled at this time without
violating its start deadline. DTTS then updates the
tier’s current lower boundary value in the token,
increasing it by the minimum start interval. If how-
ever, the tier’s current lower boundary is higher

322

than the IoT device’s start deadline then the task
cannot be scheduled in that tier without violating
the start deadline. In this case, DTTS moves to the
next lower tier and schedules the task at the upper
boundary of this lower tier. DTTS then updates the
tier’s current upper boundary value in the token,
decreasing it by minimum start interval.

DTTS repeats this scheduling process for all
device tasks before forwarding the token to the
next IoT device. By scheduling tasks at tier bound-
aries and updating the current boundaries in the
token, DTTS schedules tasks in an entirely dis-
tributed manner with minimal information being
communicated between IoT devices. More infor-
mation is in [7]. Given T tiers and K tasks, DTTS
complexity is O(TK).

eXAmple
We now describe the operation of DTTS using
an example with four IoT devices. Additionally,
the evaluation above is with 30 devices. Consid-
er a network with four IoT devices a, b, c, and d
running a temperature task with a 1 second task
execution time. The table in Fig. 4 shows the task
parameter values, periods, and start deadlines for a
5-minute epoch. For example, the task parame-ter
value (number of measurements per epoch) for
a is 5 and therefore has a 60s period with a start
deadline of 59s. By comparing all the peri-ods,
the minimum task period is 60s, the maxi-mum
task period is 300s, and since there are four
devices, the minimum task period is 60s. If we
have 2 tiers, then Tier 1 runs from 0-60s, and Tier
2 runs from 60-300s.

Figure 4 illustrates how the tasks are sched-
uled on the four IoT devices. The blue and orange
areas indicated slots in Tier 1 and Tier 2, respec-
tively, that are available for scheduling while the
white slots already have tasks scheduled. As DTTS
schedules the temperature task at each additional
device, the tier boundaries are moved progres-
sively inwards.

If a is the leader node it is the first to be sched-
uled. Since its start deadline is 59s, we see that
from the original tier boundaries this is in Tier 1
which is not full. The current lower boundary of
Tier 1 is 0 (less than 59s), so we schedule the task
at the beginning of the epoch (i.e., at 0 seconds).
We then move the Tier 1 current lower boundary
value up by 15s (the minimum start interval) in the
token before forwarding it to b.

At b, its start deadline is 149s which is in Tier 2
(from checking the task original boundaries). The
current lower boundary of Tier 2 is 60s (less than
149s) so we can schedule the task at 60s without
violating the start time deadline. The Tier 2 cur-
rent lower boundary is increased by 15s to 75s in
the token, before forwarding it to c.

At c, its start deadline is 299s which is in Tier
2 (from the original boundaries). Similar to the
case with b, we can schedule this task at the cur-
rent lower boundary of Tier 2. The current lower
boundary of Tier 2 is updated from 75s to 90s in
the token before it is forwarded to d.

At d, its start deadline is 74s which according
to the original tier boundaries is in Tier 2. How-
ever, the current lower boundary of Tier 2 is 90s,
which is beyond this task start deadline. Therefore,
in this case, we fall back to the next lower tier
(Tier 1) and schedule the task at the current upper

IEEE Network • March/April 2023

1
3

Values

minimum maximum

IoT ID
Task Parameter

Period (s) Start Deadline (s)
Epoch time (s) 0

Tier

period
100

a 5 60 59 IoT device a
b 2 150 149 IoT device b
c 1 300 299 IoT device c
d 4 75 74 IoT device d

FIGURE 4. Temperature task scheduling example.

200
period

00
Tier 2

boundary of Tier 1. The current upper boundary
of Tier 1 is then reduced by 15s to 45s. Since d is
the last IoT device the token returns to the leader
node.

results
The results from experiments done via simulations
show that our DTTS algorithm schedules tasks
with earlier start deadlines in earlier tiers and tasks
with later start deadlines in later tiers. The results
also show that DTTS always schedules the task
start time, before the start deadline expires.

Using 5 and 15-minute epochs we evaluated
the performance of our algorithm using simulations
and 30 IoT devices. We assume the tokens travel
between IoT devices based on increasing device
IDs. Here we show the results for the temperature
task only, while in [7] we considered tasks like image
and video with different parameters, for example,
duration, not just the number of executions per
epoch. We used 3 different types of epochs to rep-
resent cloudy, sunny, and hybrid days. Based on the
SEMA work, the maximum task parameter value for a
temperature sensing task during a 5 min epoch is 5.
Therefore on a sunny day, task parameter values
range from 3-5 due to suficient energy to charge
the IoT device and execute more sensing activities.
On a cloudy day, task parameter values range from
1-2 since the IoT device is conserving energy due
to low solar to recharge the battery. On a hybrid
day, task parameter values range from 1-5 since the
solar energy varies.

For each day type, we generated the task
parameter values for all the IoT devices and then
ran the DTTS scheduler to schedule all tasks. This
was done multiple times and the results from the
5-minute epoch are presented in Fig. 5 for one
sample schedule on a sunny day.

On a sunny day, higher task parameter values
correspond to a shorter task period and smaller
tiers for the temperature sensing task. From Fig.
5, we see Tier 1 is from 0-60s and Tier 2 is from
60-100s. Task start times are set to earlier in the
epoch, that is, all task start times are set within the
first 100s even though the epoch duration is 300s.

On a cloudy day, however, lower task param-
eter values correspond to a longer task period
and larger tiers so tasks are spread throughout the
entire epoch.

We also compare our DTTS scheduler with
a simple round-robin periodic scheduler which
calculates its minimum start interval by dividing
the total epoch time by the number of live IoT
devices. All the IoT devices are then scheduled
one after another with the start times separated
by an interval of minimum start interval seconds.

Figure 6 compares the scheduled start times
and start deadlines between DTTS and the periodic
scheduler at the IoT devices during a sunny epoch.

IEEE Network • March/April 2023

FIGURE 5. DTTS temperature task schedule for a sunny day.

FIGURE 6. Comparing start deadline and start time with DTTS and the periodic
schedulers.

The results show that DTTS always sets the start time
before the start deadline expires while the periodic
scheduler frequently exceeds that deadline.

If multiple devices in a deployment area simul-
taneously send their data to the sink (due to
independent scheduling), there is a high risk of
congestion loss at the sink, resulting in retransmis-
sions by IoT devices, potentially wasting energy.
In addition, if multiple devices have overlapping
coverage areas, simultaneous sensing results in
duplicate data, wasting device energy and unnec-
essary processing upstream for deduplication.
DTTS mitigates this by coordinating the schedul-
ing across all devices, reducing redundant data,
reducing simultaneous transmission, and mini-
mizing the need for retransmissions. DTTS is thus
more energy efficient compared with indepen-
dent scheduling.

323

Using a simple protocol with minimal information sharing between IoT devices, DTTS works with
multi-sensor IoT devices utilizing start deadlines to distribute task start times every epoch to minimize

temporal overlap.

conclusIon
Cooperative monitoring among multiple IoT
devices helps manage their energy consump-
tion while monitoring large physical areas. Our
Distributed Token and Tier-based task Schedul-
er scheduling protocol (DTTS) presented here is
an energy-eficient distributed scheduler suitable
for an IoT network. Using a simple protocol with
minimal information sharing between IoT devices,
DTTS works with multi-sensor IoT devices utilizing
start deadlines to distribute task start times every
epoch to minimize temporal overlap. Experiments
show DTTS always schedules the IoT device’s task
start time before its start deadline expires.

Acknowledgment
This work was supported by the US National Sci-
ence Foundation grant CNS-1818971 and the US
Dept. of Commerce, NIST PSIAP award 70NAN-
B17H188.

RefeRences
[1] F. K. Shaikh and S. Zeadally, ”Energy Harvesting in Wireless

Sensor Networks: A Comprehensive Review,” Renewable
and Sustainable Energy Reviews, vol. 55, 2016, pp. 1041–54.

[2] Z. Zhang et al., ”Research on Distributed Multi-Sensor Coop-
erative Scheduling Model Based on Partially Observable Mar-
kov Decision Process,” Sensors, vol. 22, 2022, no. 8, p. 3001.

[3] S. R. Sarangi, S. Goel, and B. Singh, ”Energy Eficient Schedul-
ing in IoT Networks,” Proc. ACM SAC’18, 2018, pp. 733–40.

[4] A. Caruso et al., ”A Dynamic Programming Algorithm for
High-Level Task Scheduling in Energy Harvesting IoT,” IEEE
IoT J., vol. 5, no. 3, 2018, pp. 2234–48.

[5] C. Moser, J. J. Chen, and L. Thiele, ”Dynamic Power Man-
agement in Environmentally Powered Systems,” IEEE ASP-
DAC, IEEE, 2010, pp. 81–88.

[6] M. De Benedetti et al., ”JarvSis: A Distributed Scheduler for
iIoT Applications.,” Cluster Computing, vol. 20, no. 2, 2017,
pp. 1775–90.

[7] E. Liri, K. K. Ramakrishnan, and K. Kar, ”A Renewable Ener-
gy-Aware Distributed Task Scheduler for Multi-Sensor IoT
Networks.,” Proc. ACM SIGCOMM Workshop on NET4us’22,
2022, pp. 26–32.

[8] E. Liri, et al, ”An Eficient Energy Management Solution for
Renewable Energy Based IoT Devices.,” Proc. ICDCN’23,
IEEE, 2023, pp. 20–27.

[9] I. Stoica et al., ”Chord: A Scalable Peer-to-Peer Lookup Pro-
tocol for Internet Applications.,” IEEE/ACM ToN, vol. 11, no.
1, 2003, pp. 17–32.

[10] M. Afaneh, ”Wireless Connectivity Options for IoT Appli-
cations — Technology Comparison.,” 2020, https://www.
bluetooth.com/blog/wirelessconnectivity-options-for-iot-ap-
plications-technology-comparison/, accessed Sept, 23 2022.

[11] Voler Systems, ”Which Wireless Standard Makes Sense for
Your Application?” 2022, https://www.volersystems.com/
guide-wireless-technology, accessed Feb 01, 2023.

[12] IEEE, “IEEE Information Technology - Local and metropoli-
tan area networks - Part 5: Token ring access method and
physical layer specifications,” in ANSI/IEEE Std 802.5-1992
(ISO/IEC 8802-5) , vol., no., pp.1-112, 12 June 1992, doi:
10.1109/IEEESTD.1992.7438701.

[13] M. S. Kingley, ”ANSI Fiber Distributed Data Interface
(FDDI) Standards,” Feb. 1996, https://tinyurl.com/2yu9x25r,
accessed June 26, 2022.

[14] H. Yang, and K. K. Ramakrishnan. ”A Ring Purger for the
FDDI Token Ring.,” Proc. 16th Conf. Local Computer Net-
works, IEEE Comput. Soc., 1991, pp. 503–04.

[15] M. J. Johnson, ”Reliability Mechanisms of the FDDI High
Bandwidth Token Ring Protocol,” Computer Networks and
ISDN Systems, vol. 11, no. 2, 1986, 1986, pp. 121–31.

BiogRaphies
E l i z a b E t h l i r i [StM] (eliri001@ucr.edu) is currently working
toward a Ph.D degree in Computer Science at the University
of California, Riverside, USA. Her research interests include
developing communication protocols for the Internet of Things
to improve energy eficiency and network resiliency and integra-
tion of IoT with edge computing.

K. K. r a m a K r i s h n a n [F] (kk@cs.ucr.edu) is a Distinguished Profes-
sor at the University of California, Riverside. Earlier, he was at Dig-
ital Equipment Corporation, and then AT&T Labs-Research. He
is an IEEE, ACM, and AT&T Fellow. He has an MTech. from IISc,
India, and MS, Ph.D. from University of Maryland, College Park.

K o u s h i K K a r [SM] (koushik@ecse.rpi.edu) received his Ph.D.
in electrical and computer engineering from the University of
Maryland at College Park in 2002 and has been a faculty mem-
ber at Rensselaer Polytechnic Institute since then. His primary
research expertise is in developing and analyzing low-complexity
optimization algorithms for computer networks.

324 IEEE Network • March/April 2023

