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A B S T R A C T   

Process-based models are widely used to predict the agroecosystem dynamics, but such modeled results often 
contain considerable uncertainty due to the imperfect model structure, biased model parameters, and inaccurate 
or inaccessible model inputs. Data assimilation (DA) techniques are widely adopted to reduce prediction un
certainty by calibrating model parameters or dynamically updating the model state variables using observations. 
However, high computational cost, difficulties in mitigating model structural error, and low flexibility in 
framework development hinder its applications in large-scale agroecosystem predictions. In this study, we 
addressed these challenges by proposing a novel DA framework that integrates a Knowledge-Guided Machine 
Learning (KGML)-based surrogate with tensorized ensemble Kalman filter (EnKF) and parallelized particle swarm 
optimization (PSO) to effectively assimilate historical and in-season multi-source remote sensing data. Specif
ically, we incorporate knowledge from a process-based model, ecosys, into a Gated Recurrent Unit (GRU)-based 
hierarchical neural network. The hierarchical architecture of KGML-DA mimics key processes of ecosys and builds 
a causal relationship between target variables. Using carbon budget quantification in the US Corn-Belt as a 
context, we evaluated KGML-DA's performance in predicting key processes of the carbon cycle at three agri
cultural sites (US-Ne1, US-Ne2, US-Ne3), along with county-level (627 counties) and 30-m pixel-level (Cham
paign County, IL) grain yield. The site experiments show that updating the upstream variable, e.g., gross primary 
production (GPP), improved the prediction of downstream variables such as ecosystem respiration, net 
ecosystem exchange, biomass, and leaf area index (LAI), with RMSE reductions ranging from 9.2% to 30.5% for 
corn and 4.8% to 24.6% for soybean. Uncertainty in downstream variables was automatically constrained after 
correcting the upstream variables, demonstrating the effectiveness of the causality linkages in the hierarchical 
surrogate. We found joint use of in-season GPP and evapotranspiration (ET) products along with historical GPP 
and surveyed yields achieved the best prediction for county-level yields, while assimilating in-season LAI ob
servations benefitted the prediction in extreme years. Uncertainty and error analysis of regional yield estimation 
demonstrated that KGML-DA could reduce prediction error by 26.5% for corn and 36.2% for soybean. 
Remarkably, the GPU-based tensor operation design makes this DA framework more than 7000 times faster than 
the PB model with a High-Performance Computing system, indicating the high potential of the proposed 
framework for in-season, high-resolution agroecosystem predictions.   
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1. Introduction 

Cropland, covering 12–14% of the global ice-free surface, is a key 
link in the terrestrial carbon cycle (Shukla et al., 2019; Lal, 2011). 
Monitoring the dynamics of the carbon cycle in agroecosystems is 
essential for carbon budget quantification, in-season crop management, 
and nutrient management for sustainable agricultural production (Gan 
et al., 2014; Wang et al., 2023; Dold et al., 2017). In-situ measurements 
are the gold standard for ground-truthing carbon pools; However, the 
lack of scalability and high cost of this method call for earth observation 
(EO) technologies to quantify regional scale terrestrial carbon budgets, 
such as gross primary production (GPP) (Jiang et al., 2021), above
ground biomass (Liang et al., 2023), leaf area index (Kimm et al., 2020), 
and crop yield (Lobell et al., 2015; Jin et al., 2019). Although remote 
sensing-based methods provide possibilities for large-scale carbon 
budget monitoring, their limitations are also obvious – only a few 
components of the carbon cycle can be directly observed and the con
tinuity of data is affected by cloud contamination and satellite revisit 
frequency (Weiss et al., 2020). Meanwhile, researchers have long been 
exploring simulations of agroecosystem carbon dynamics via process- 
based (PB) models. State-of-the-art PB models possess reasonably good 
extrapolation and transferability in time and space, and they have the 
capability to simulate comprehensive and continuous processes. From 
the first canopy photosynthesis model (Monsi, 1953) to more sophisti
cated agroecosystem models (e.g., DSSAT, APSIM, and ecosys) (Jones 
et al., 2003; Holzworth et al., 2014; Grant et al., 2020b), errors in the 
model structure have been reduced as field knowledge evolves. How
ever, it remains challenging to retrieve many field-level crop parame
ters, aleatoric events (e.g., flooding, pests, and plant diseases), and the 
management schedules of individual farmers (e.g., the timing of 
planting, fertilization, and irrigation). Substantial parametric uncer
tainty and input uncertainty have therefore been introduced into sim
ulations by default, so that models fail to capture the spatiotemporal 
variability of agroecosystems (Tao et al., 2018). 

Data assimilation (DA), a well-known approach in model-data fusion 
(Guan et al., 2023), is among the most promising ways to address these 
uncertainties in simulations. Leveraging various readily accessible 
remote sensing products such as evapotranspiration (ET), leaf area index 
(LAI), and soil moisture (SM) (Jiang et al., 2020; Melton et al., 2022; Ma 
and Liang, 2022; Li et al., 2022a, 2022b), DA is widely used to constrain 
the predictive uncertainty in the agroecosystem (Huang et al., 2019; Jin 
et al., 2018; Ines et al., 2013; Hu et al., 2019; Yang et al., 2023). The DA 
approaches can be categorized into two groups: batch DA (for retro
spective simulations) and sequential DA (for real-time simulations) 
(Markovich et al., 2022). The essential distinction between these two DA 
approaches lies in the manner of assimilating observations. Batch DA 
methods, such as variational methods and smoothing methods, perform 
global optimization for model parameters and initial states by fusing a 
period of historical time-series data all at once, while sequential DA (e. 
g., filter-based methods) ingests observations in real-time to update the 
model states (which is more suitable for dynamic systems) (Bertino 
et al., 2003). To maximize the value of historical and real-time data, 
methods that jointly use both approaches have been developed to esti
mate parameters and states simultaneously (Moradkhani et al., 2005b; 
Kang and Özdoğan, 2019). 

However, three major stumbling blocks still stand in the way of 
large-scale high-resolution (e.g., 30 m) simulations of agroecosystems 
via PB model-based DA. First, the computational challenge of traditional 
DA frameworks: the large number of model runs (due to ensemble 
members, iterations, and large-scale pixel-level simulations) entail 
extremely high computation costs, especially for advanced PB models 
(Wood et al., 2011; Bauer et al., 2021). Second, the challenge of 
reducing structural error in PB model-based DA: a PB model is a syn
thesis of state-of-the-art knowledge, but once it is developed, its struc
tural biases are hardwired (i.e., model structural error will be fixed once 
the model is developed), and correction requires comprehensive domain 

knowledge. Third, the challenge of developing a DA framework: 
coupling sequential DA algorithms with detailed PB models is highly 
intrusive (i.e., massive modifications for the PB model source code) and 
inflexible. For a detailed model in which one target variable may 
entangle with many intermediate variables, simply updating the target 
variable may break the model consistency and result in a non- 
convergence of estimates (Hu et al., 2017). Moreover, the DA frame
work needs to be scrutinized and redeveloped when new observation 
types are available to be assimilated, or an improved version of the PB 
model is released. The inflexibility of the traditional framework greatly 
hinders technological progress in fully mining information from multi- 
source remote sensing data (Table 1). 

The rapid progress of ML-based surrogate models may overcome the 
first challenge by shifting large-scale simulation from CPU-intensive PB 
models to GPU-intensive deep neural networks (Bauer et al., 2021). 
Large-scale parameter calibration is becoming feasible thanks to the 
ultra-efficient inference of surrogate neural networks (Zhou et al., 
2021a). A few preliminary attempts have been made to incorporate ML 
into a sequential DA framework. For example, Cintra and de Campos 
Velho (2018) and Wahle et al. (2015) surrogated an ensemble Kalman 
filter (EnKF) by neural networks to estimate the posterior covariance 
matrix of predictions for atmospheric and ocean models, in which the 
state vector is too large to calculate the Kalman gain. Certain works have 
investigated using ML to quantify observation uncertainty in the DA 
framework (Han et al., 2022). Notably, Brajard et al. (2020) developed 
an integrated ML-based DA framework, although it is an implementation 
of a toy model (an ordinary differential equation with one parameter). 
Although pure ML algorithms may outperform traditional methods in 
feature learning and inference speed, they have been criticized for their 
poor interpretability which may lead to poor extrapolation and gener
alization abilities (Shwartz-Ziv and Tishby, 2017). The low fidelity of 
the ML-based surrogate model also limited its ability to assimilate 
multi-source data (Table 1). As a result, a new technology that can 
mimic the comprehensive intermediate processes of PB models is needed 
to improve the fidelity of corresponding surrogates. 

Knowledge-guided machine learning (KGML) is a new research 
paradigm that has the potential to surrogate a complex system and 
address the second challenge by introducing prior knowledge into the 
neural network (Karpatne et al., 2022; Willard et al., 2022; Shen et al., 
2023). It leverages the strong feature-learning capability of machine 
learning (ML) and the interpretability of PB models. This method en
ables KGML-based surrogates to reproduce the causality and explicitness 
of the PB models, rendering it capable of consuming multi-source data to 
correct the model structural error. Pioneer achievements of KGML have 
demonstrated five possible approaches to integrating knowledge: 1) 
using a PB model-generated synthetic dataset to pre-train neural net
works (Liu et al., 2022); 2) adding extra loss terms to the training 
objective function to ingest knowledge from physical laws, such as mass 
and energy balance (Jia et al., 2021) and kinetic partial differential 
equations (PDEs) (Cuomo et al., 2022); 3) hardcoding knowledge into 
network structures. For instance, concatenating a specific network layer 
with a physical equation (or model) to force that layer to output desired 
terms (Tsai et al., 2021; ElGhawi et al., 2022); PDEs can be hardcoded 
into the network via the Fourier approximation technique (Li et al., 
2020); 4) hybrid modeling via residuals learning (Zhang et al., 2019), 
cascade coupling (e.g., using the output of ML as the input of a crop 
model, Han et al., 2022), and interactive connection (Yang et al., 2020); 
and 5) unsupervised representation learning and inverse modeling, for 
example, learning model parameters via embeddings derived from a 
self-supervised inverse learning neural network (Ghosh et al., 2022). 

Although KGML sheds light on building high-fidelity surrogates, 
methods to address the third challenge (i.e., DA framework development 
challenge) remain uninvestigated. One reason is that most of the pre
vious existing surrogates have only focused on limited target variables 
and specific processes (Zahura et al., 2020). Their non-hierarchical 
structure design outputs independent variables at the same level, 
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resulting in a lack of causality between target variables that is important 
to pass on information when an upstream variable is assimilated 
(illustrated in Fig. S1). Another critical issue in addressing this challenge 
is how to develop a surrogate neural network with the Markov property. 
This characteristic enables the neural network to assimilate real-time 
data, which means the surrogate should be able to explicitly inherit 
the previous model status into the next time step (i.e., model states at 
time t + 1 should depend only on the states from time t). It is a funda
mental assumption of sequential DA that allows the model to carry the 
information assimilated at time t. For state-of-the-art recurrent neural 
networks (RNNs) that are used to tackle sequence data, the temporal 
model states are implicitly stored in a tensor named “hidden state” 
(Chung et al., 2014). Unfortunately, how to unlock the “hidden state” of 
RNN to provide an explicit causal simulation for data assimilation is still 
an unanswered question. 

In this paper, we propose a KGML-based DA framework to simulta
neously disentangle the aforementioned three challenges for large-scale, 
high-resolution DA (Table 1). For demonstration purposes, we used an 
advanced agroecosystem PB model, named ecosys (Grant, 2001; Grant 
et al., 2011, 2020b), to drive the KGML-DA. A hierarchical surrogate 
neural network with temporal awareness was designed to allow the 
network to carry over the assimilated information. We integrated this 
surrogate with tensorized EnKF and parallelized particle swarm opti
mization (PSO) to effectively assimilate historical and in-season obser
vations. To investigate the contribution of in-season and historical data, 
we examined various DA strategies, including parameter calibration, 
state-updating, and the joint use of both techniques. Using the Mid
western US corn-soybean production system as a context, we tested the 
framework by predicting carbon budgets at three agricultural sites, 
along with county-level and pixel-level grain yield. Moreover, we 
investigated the value of assimilating multi-source remote sensing data, 
including SLOPE GPP, MODIS ET, and GLASS LAI. This framework 
possesses three notable features: 1) efficiency, i.e., the framework is 
capable of large-scale GPU-based parallel simulation; 2) flexibility and 
extensibility, i.e., designing the surrogate structure should be easy and 
flexible, and the DA framework should able to adapt to new observation 
types that might not be available currently; 3) interpretable and has an 
explicit calculation process for DA, i.e., we unlocked the implicit “hid
den state” to provide the explicit updates of state variables. The KGML- 
DA framework is not limited to predicting the carbon cycle of agro
ecosystem, but has the potential to be applied to other ecosystems such 
as forests and grasslands for water, carbon, and nutrient cycles 
prediction. 

2. Data and methodology 

2.1. Study area and data 

This study focuses on the major producing regions of corn and soy
bean, known as the Corn Belt, in the Midwestern US. A total of 627 
counties from 14 states were involved (Fig. 1). The data used in this 
study can be categorized into four aspects (Table 2):  

(1) Synthetic dataset generation. We randomly sampled 20,000 
points from the corn or soybean fields over the study area to 
capture the responses of ecosys to different climate scenarios and 
soil conditions (Fig. 1). For each sampling point, corresponding 
hourly weather forcing of NLDAS-2 from 1980 to 2020 and soil 
properties from gSSURGO were extracted to drive the ecosys to 
produce synthetic data (data with a superscript “a” in Table 2).  

(2) Site-scale experiments. The performance of the KGML-DA 
framework for estimating carbon cycle components was evalu
ated on three AmeriFlux sites (US-Ne1, US-Ne2, and US-Ne3 
located in Mead, Nebraska) (Suyker and Verma, 2012; Jeffries 
et al., 2020) (Fig. 1). The data being assimilated is the SLOPE 
GPP, a daily 250 m remotely sensed GPP product that calculates 
GPP for C3 plants (e.g., soybean) and C4 plants (e.g., corn) 
separately, while other existing products neglect this distinction 
and consequently tend to underestimate GPP for corn and over
estimate for soybean (Jiang et al., 2021). The 250 m pixels of the 
plot centers are not overlapped and have at least a two-pixel 
buffer. The validation data includes eddy-covariance-based 
fluxes, in-situ LAI and aboveground biomass. Data involved in 
site-scale experiments was marked with superscript “b” in 
Table 2.  

(3) County-level yield estimation. Multisource remote sensing data, 
including SLOPE GPP, MODIS ET, and GLASS LAI, were assimi
lated to evaluate the proposed framework. The MODIS ET and 
GLASS LAI were centralized to the mean of the open-loop simu
lations prior to DA to mitigate their systematic underestimation 
in cropland (Chen et al., 2018). The yield estimates were 
compared against the NASS-reported yield. To aggregate the 
pixel-level data to county-level, we extract pure crop pixels based 
on Corn-Soy Data Layer (CSDL, Wang et al., 2020) (from 2000 to 
2007) and USDA-Crop Data Layer (CDL, USDA, 2023) (from 2008 
to 2020). Involved data were summarized in Table 2 with su
perscript “c”.  

(4) A 30-m version of SLOPE GPP was used for the 30-m yield 
mapping. The 30-m soil properties (gSSURGO) (Fig. S2) and 1-km 
gridded Daymet v4 climate data (Fig. S3) was used for driving the 
model. Since wind speed data is not included in the Daymet 
dataset, we downloaded the mean wind speed (2 m above 

Table 1 
Comparison of different DA methods for addressing the challenges in large-scale agroecosystem modeling.  

Methods Computational 
cost 

Model structure DA framework development 

Fidelity Potential for error reduction Flexibility Extensibility 

PB model- 
based 
DA 

High High 
Low (requires comprehensive 
domain knowledge for 
redevelopment) 

Low (massive modifications for 
source code of a detailed PB 
model) 

Low (redevelopment needed 
for new observation types or 
upgraded model) 

ML-based 
DA 

Low 
Low (non-hierarchical; focus on 
limited variables or processes; 
lack of causality) 

Medium (address structural error 
for specific process via surrogate 
fine-tuning) 

Medium (without modifying 
model source code; independent 
outputs reduce DA performance) 

Low (limited data interfaces) 

KGML- 
based 
DA 

Low 

High (hierarchical; replicate 
multiple processes; causal 
linkage among these key 
processes) 

High (Comprehensively adapt 
model structure via surrogate 
fine-tuning) 

High (without modifying model 
source code; explicitly update the 
hidden states of RNN) 

High (reserve possible 
interfaces for potential data 
types) 

Notes: Fidelity refers to how comprehensively and accurately the model represents and reproduces the behavior of the real-world processes; flexibility means how 
flexibly the modeler can customize their own DA framework; extensibility refers to the ability that the DA framework adapt to new observation types that might not be 
available currently. 
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ground) data from the NASA POWER Project (https://power.larc. 
nasa.gov/). Related data was indicated by the superscript “d”. 

To ensure the temporal consistency in the assimilated data, we 
initially applied a Savitzky-Golay filter to smooth data with varying 
temporal resolutions (daily: SLOPE GPP; 8-day composite: MODIS ET 
and GLASS LAI), which was then sampled every 8 days to produce the 
temporal consistent observations. 

2.2. The process-based ecosys 

In this study, we aim to build an extensible DA framework that offers 
a wide array of data interfaces to assimilate possible observations, even 
if such data is not currently available. The prerequisite for achieving this 
goal is to utilize an advanced and holistic process-based model to guide 
the training procedure of the hierarchical surrogate neural network. 
Ecosys is one of the very few models dedicated to constructing 
comprehensive biophysical and biochemical processes and interactions 
for the soil–plant–atmosphere continuum (SPAC) system. It is an open- 
source hourly model that simulates detailed fluxes and pools of water, 
carbon, nitrogen, and phosphorus in the SPAC system, and has been 
well-examined for various ecosystems including crops, forests, and 
grassland (Grant, 2001; Grant et al., 2006; Mezbahuddin et al., 2020; 
Zhou et al., 2021a; Qin et al., 2021). Unlike traditional crop growth 
models (e.g., DSSAT, APSIM, and WOFOST) and soil biochemical models 
(e.g., DNDC and DayCent) that mainly focus on a specific domain, ecosys 
comprehensively integrates the crop/plant growth processes and soil 
microbial activities with elaborate descriptions for the exchanges of 
mass and energy and the chemical transformation of nutrients under 

Fig. 1. Relative geo-location of the study area on the core Corn Belt area (USDA-Crop Data Layer of Year 2017 was used for demonstration, USDA, 2023). The 
top-right inset shows a zoomed-in example of the spatial distribution of the sampling points (red dots). The bottom-left is three validation sites (red stars) with flux 
measurements at Mead, Nebraska. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Datasets used in this study.  

Datasets Use Descriptions References 

NLDAS-2 a, c 
Hourly weather forcing 
(0.125◦) 

https://ldas.gsfc.nasa.gov 
/nldas/v2/forcing 

gSSURGO 
a, b, 
c 

Grided soil properties 
(10 m) 

https://nrcs.app.box.com/ 
v/soils/folder/180 
112652169 

FLUXNET2015 b Eddy-covariance-based 
GPP, Reco, NEE, ET 

https://fluxnet.org/data/f 
luxnet2015-dataset/ 

AmeriFlux 
BADM b 

In-situ LAI and 
aboveground biomass 

https://ameriflux.lbl.gov/d 
ata/badm/ 

NASS yield c, d Counrt-level yield 
https://quickstats.nass.us 
da.gov/ 

SLOPE GPP- 
250 

b, c Daily GPP (250 m) Jiang et al., 2021 

MODIS ET c 
8-day composite ET 
(500 m) Mu et al., 2011 

GLASS LAI c 
8-day composite LAI 
(250 m) Ma and Liang, 2022 

USDA-CDL 
a, c, 
d 

Crop data layer (30 m) 
https://croplandcros.scinet. 
usda.gov/ 

CSDL c, d Corn-soy data layer (30 
m) 

Wang et al., 2020 

Daymet-v4 d 
Daily weather forcing 
(1 km) 

https://daac.ornl. 
gov/DAYMET 

SLOPE GPP-30 d Daily GPP (30 m) 
Luo et al., 2018; Jiang et al., 
2021 

Note: use of a, b, c, d represent synthetic data generation, site-scale experiment, 
county-level yield estimation, 30-m yield mapping, respectively. 
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diverse management practices. The sophisticated model structure makes 
ecosys capable of accurately simulating the detailed subprocesses in 
carbon, water, and nitrogen cycles (Grant et al., 2020a). For carbon 
cycle components, such as the dynamics of croplands GPP, net 
ecosystem exchange (NEE), ecosystem respiration (Reco), LAI, organ 
biomass, and methane, ecosys simulations showed high consistency with 
in-situ measurements (Zhou et al., 2021a; Chang et al., 2019). Ecosys 
also has been intensively validated in simulating the nitrogen (N) cycle 
dynamics, such as the N mineralization and plant uptake (Welegedara 
et al., 2020), soil inorganic nitrogen dynamics (Li et al., 2022a, 2022b), 
the nitri-denitrification processes and nitrous oxide (N2O) emission 
(Yang et al., 2022). The main structure of ecosys was summarized in a 
book chapter of (Grant, 2001). More details about mechanistic process 
representations in ecosys can be found in the supplement of (Grant et al., 
2020a). 

2.3. Developing the KGML-DA framework 

2.3.1. Generating synthetic data 
The surrogate model of ecosys is the core of the KGML-DA frame

work. The requisite of establishing a high-fidelity surrogate neural 
network is to generate a large synthetic dataset that includes the re
sponses of ecosys simulations to various parameter combinations and 
climate scenarios. To obtain model responses to different crop geno
types, six yield-sensitive crop parameters were selected (refers to Zhou 
et al., 2021a who conducted parameter sensitivity analysis based on a 
surrogate neural network) and randomly drawn from their respective 
uniform distributions to generate input files for the synthetic dataset. 
Additionally, management inputs, including planting date and nitrogen 
fertilizer (only for corn), are also perturbed. The ranges of parameters 
for corn and soybean are listed in Table 3. The generated input dataset 
was subsequently fed into ecosys to produce model responses for any 
possible scenarios (the first 20 years of data were used for model spin-up 
and the rest 21 years were used for generating a synthetic dataset). 

Finally, a synthetic dataset with 840,000 site-year data (20,000 sites ×
21 years × 2 crops) was generated, which consists of 21 input variables 
and 9 output variables (detailed in Table S1). 

2.3.2. Hierarchical GRU-based surrogate neural network 
There are two neural network components in the KGML-DA frame

work: a main network for surrogating the process-based model, and an 
autoencoder network (which will be introduced in the next section) for 
conducting sequential data assimilation. The integration of knowledge 
into the surrogate encompasses three aspects: First, the key processes in 
the agroecosystem were hardcoded into the hierarchical structure but 
flexibility was left for the surrogate to explore the complex intermediate 
processes and interactions. We aimed to build a high-fidelity ecosys 
surrogate by balancing the “exploration (for underlying laws)” and 
“exploitation (for well-documented knowledge)” in neural network ar
chitecture design, where a high-fidelity surrogate model means it in
cludes more intermediate processes and inherits more knowledge from 
the PB model. Second, a hierarchical network structural design was 
employed to establish a causal linkage among key agroecosystem pro
cesses. Specifically, we developed a hierarchical gated recurrent unit 
(GRU)-based neural network to mimic the calculation process of ecosys 
at a daily scale. Third, a large synthetic dataset described in the previous 
section was used to impart prior knowledge to the surrogate. 

We chose GRU (Fig. S4a), one of the variants of the RNNs, as the 
building block of the surrogate for three reasons: 1) its high computa
tional efficiency; 2) it has a similar performance with the state-of-the-art 
long short-term memory (LSTM) networks but a simpler structure 
(Gruber and Jockisch, 2020); and 3) its flexibility enables the con
struction of a hierarchical structure using GRU cells. In the proposed 
hierarchical GRU-based surrogate, the GRU cells can be grouped into 
three concatenate layers (i.e., the bottom, middle, and top) based on 
their functions (Fig. 2a). The bottom cells (cell-1 and cell-2) are sensitive 
to the climate forcing data and represent the primary processes in the 
SPAC system. Specifically, cell-1 simulates the crop phenology, a key 
upstream state variable that controls the clock of the whole system. Cell- 
2 models the carbon input (i.e., GPP) and aims to represent the light 
inception and photosynthesis processes of the agroecosystem. Both cell- 
1 and cell-2 are directly driven by the daily climate forcing, model pa
rameters, and management information. The input and output of the 
GRU-based surrogate were summarized in Table S1. The hourly climate 
forcing in the synthetic dataset was aggregated into daily. Additionally, 
LAI from the previous simulation step (t-1) is fed into cell-2 to constrain 
the current photosynthetic capacity. Considering that evapotranspira
tion and assimilation of carbon dioxide are deeply coupled and are both 
controlled by the stomatal conductance associated with plant water 
stress (Ball et al., 1987), cell-2 also simulates the ET and topsoil moisture 
dynamics (0–30 cm) along with GPP. 

The middle (cell-3) and top cells (cell-4) do not directly take the 
driving data as input; instead, they take the hidden state (i.e., the in
ternal representation that encodes the memory of the cell) as input 
which is produced by the previous cells (Fig. 2a). This design ensures 
that the upper cells are impacted by the high-level features extracted by 
the previous cells (encoded accumulated environmental effects on the 
crop), rather than by low-level fluctuating driving data. Specifically, 
cell-3 takes the hidden states from cell-1 and cell-2 as input and models 
the processes of respiration that are related to the carbon pool and 
phenology. It estimates Reco and NEE fluxes and further predicts the 
aboveground biomass, which is a high-level component in the carbon 
cycle that integrates the assimilated photosynthate and carbon 
consumed by respiration. As the top cell of the surrogate, cell-4 learns 
the dry matter partition processes and then deduces LAI, which is 
determined by the leaf matter and the specific leaf area (SLA, related to 
phenology). This cell interprets all of the information flow distilled by 
lower-level cells and ultimately outputs the crop yield. For each cell, the 
daily values of the target variables (e.g., the GPP, ET, and SM for cell-2) 
are explicitly decoded from its hidden state. 

Table 3 
Yield-sensitive parameters selected for synthetic data generation. The sampling 
procedure doesn't adhere to a specific fixed interval, making it possible to 
sample any value within the range of variations.  

Parameters Descriptions Corn Soybean 

Variation 
range 

Default Variation 
range 

Default 

CHL4 

Fraction of leaf 
protein in bundle 
sheath 
chlorophyll 

[0.02, 
0.07] 0.05 – 0 

VCMX 

Rubisco 
Carboxylation 
Activity (umol 
g−1 s−1) 

– 90 [20, 90] 45 

GROUPX 
Plant Maturity 
Group [15, 21] 17 [16, 22] 18 

STMX 

Maximum 
number of 
fruiting sites per 
reproductive 
node 

[2, 8] 5 [2, 8] 4 

GFILL 
Maximum rate of 
kernel filling (g C 
kernel h−1) 

[0.0003, 
0.0007] 

0.0005 [0.0003, 
0.0007] 

0.0005 

SLA1 
Specific leaf area 
(m2 kg−1) 

[0.005, 
0.025] 

0.018 
[0.005, 
0.02] 

0.01 

PD Planting date 
(DOY) 

[105, 
145] 

121 [125,165] 140 

NF 
Total nitrogen 
fertilizer (g N 
m−2) 

[0, 24] 18 – 0 

Note: “-” denotes the parameter is not perturbed and the default value will be 
used. 
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The fidelity of the GRU-based surrogate to ecosys was evaluated from 
two aspects: the accuracy of estimations and the surrogate responses to 
model parameters. Specifically, the estimated output variables by the 
surrogate (including phenological stage, GPP, ET, SM, aboveground 
biomass, Reco, NEE, LAI, and grain yield) were compared against the 
ecosys simulation in the test set of synthetic data. We evaluated the 
model responses of four yield-sensitive parameters (GROUPX, CHL4, 
VCMX, and SLA) between the surrogate and ecosys on a random site 
(from 2000 to 2020). To capture the response curve, we evenly dis
cretized the variation ranges of investigated parameters into seven 
levels. 

2.3.3. Autoencoder for sequential data assimilation 
In a traditional PB model-based sequential DA framework, the prior 

state variables will be replaced by the updated values explicitly, and the 
information from observation at time t can be passed on to the rest of the 
simulation. However, as we mentioned above, the temporal patterns of 
state variables are encoded in the hidden state of the RNN-based neural 
networks, which means explicitly updating state variables is impracti
cable. A solution to address this issue is to reinitialize the hidden state at 
every time step and use the target variables from the previous time step 
as additional input (Xu et al., 2022). Nevertheless, reinitializing the 
hidden state to zero will lose its temporal dependencies and hence this 
method may not be suitable for variables that have a specific temporal 
pattern or trend such as biomass, LAI, and yield. In this study, we pro
posed a deterministic variational autoencoder (DVAE) to interpret the 
hidden state and to reconstruct the updated hidden state based on the 

updated target variables after assimilating measurements (Fig. 2b, 
Fig. S4b). As shown in Fig. 2b, the prior distributions of target variables 
are approximated by the ensemble members ŷ that are inferred by the 
encoder. Then the posterior distributions of target variables (y’) are 
estimated using the EnKF algorithm given the measurements (detailed in 
Section 2.3.5.1). 

The encoder of VAE outputs the mean and standard deviation for 
each latent variable and the latent distribution is constrained to be a 
standard normal distribution. This strategy makes VAE a better extrap
olation ability than autoencoder (AE) for which the latent space is 
discrete and irregulated (Kingma and Welling, 2013). However, the 
encoder of VAE may be hard to train because learning distribution is 
more difficult than learning the mean vector only. To address this issue, 
we deployed a DVAE without distribution learning but injecting noise 
into the decoder to smooth the latent space. This strategy makes the AE 
easy to train and keeps the advantages of VAE (Ghosh et al., 2019). 
Specifically, y’ + ε is fed into the decoder to reconstruct the hidden state 
where the random noise ε follows a Gaussian distribution of 
N(0, CV × μz). CV is the pre-set coefficient of variation (0.01 in this 
study) and μz is the expectation of the target variables. The temporal 
pattern encoded in the hidden state could be affected by crop and soil 
parameters and fertilizer information; as a result, these inputs are 
additionally fed into the decoder to reconstruct the updated hidden state 
(Fig. 2b). 

2.3.4. Training GRU-based surrogate and DVAE 
The training of neural networks took place on the Pytorch platform, 

Fig. 2. Architecture of the KGML-DA framework: (a) the hierarchical GRU-based surrogate neural network that mimics the key processes of the ecosys; (b) details of 
the DVAE module to update state variables and hidden states; and (c) assimilating historical measurements for parameters re-calibration. A multi-task learning 
strategy with nine loss terms was used to train each cell. The gradient was detached between cells to make each cell learn the specific biophysical processes. 
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utilizing an NVIDIA RTX 3090 GPU. The surrogate and four DVAE (for 
four GRU cells) were trained simultaneously using a shared batch of 
synthetic data. To ensure that the DVAE gradients would not interfere 
with the main network, the gradients of the output variables for each 
GRU cell were detached prior to feeding into the DVAE. A total of nine 
mean square error (MSE) losses corresponding to nine target variables (i. 
e., phenological stage, ET, SM, GPP, NEE, Reco, Biomass, LAI, yield) 
were used to train the main network, meanwhile, each DVAE was 
trained by the corresponding reconstruction MSE losses. The initial 
learning rate was set at 0.001, with a 4% decay rate for each epoch. 
During the developing phase, the dataset was split into a training set 
(81%), a validation set (9%), and a test set (10%) to monitor the over
fitting (training and validation losses shown in Fig. S5). In the imple
mentation phase, both the training and validation sets (90%) were 
utilized to train the surrogate neural network. The training was stopped 
after 30 epochs when the validation loss oscillated near the minimum 
value. The batch size for training is 256 and the Adam optimizer is used. 

2.3.5. GPU-intensive data assimilation algorithms 

2.3.5.1. Tensorized ensemble Kalman filter for state updating. We devel
oped a three-dimension tensorized EnKF (t-EnKF) to update model states 
via assimilating in-season observations. EnKF, a variant of Kalman filter 
(KF), is the best-known sequential DA algorithm that uses the Monte 
Carlo method to estimate the prior distribution of state variables for 
nonlinear systems (Evensen, 1994). It automatically balances the con
fidence of observations and predictions via Kalman gain. There are two 
phases in EnKF: model prediction and state updating. For the prediction 
phase, the prior distribution of state variables, including the mean of 
state xf

t and covariance matrices Pf
t , are calculated from the predicted 

ensembles xf
t,i. Assuming there is an observation vector yt with noise 

covariance Rt , the Kalman gain matrix (Kt) is calculated as follows, 

Kt = Pf
t H

T (
HPf

t H
T + Rt

)−1 (1)  

where H is the transformation matrix to project states from the state 
space to the measurement space. Then, the state vector xt can be updated 
by Kt and yt , and Pt can be updated by Kt as follow, 

xa
t = xf

t + Kt
(
yt − Hxf

t + ε
)

(2)  

xa
t = N−1

e

∑Ne

i=1
xa

t,i (3)  

Pa
t = (I − KtH)Pf

t (4)  

where superscript a and f represent posterior and prior estimates, 
respectively. ε is the random noise (in this study we assumed the ε = Rt) 
to mitigate the risk of the “filter divergence” issue. I is the unit matrix. 
Eqs. 1–4 are formulated without spatial subscripts, making them ver
satile expressions applicable to pixel, site, or county-level simulations. A 
total of 100 ensemble members were randomly generated by perturbing 
the sensitive model parameters (Table 3) with a CV of 0.1, and the 
observation frequency was once every eight days during the growing 
season. We assumed constant observation errors for SLOPE GPP (1 g C/ 
m2⋅day), MODIS ET (0.5 mm), and GLASS LAI (0.4 m2/m2), corre
sponding to 5%, 10%, and 10% respectively of their peak average values 
during the vegetation growth period (approximately 20 g C/m2day, 5 
mm, and 4 m3/m3). For ET and LAI, the ratio of error to peak value was 
assumed to be relatively higher (10%) due to the coarse resolution of 
MODIS ET (i.e., 500 m) and the systematic underestimation of both 
MODIS ET and GLASS LAI in cropland areas (Huang et al., 2015; Chen 
et al., 2018). 

Traditionally, both the state matrix xt,i and Pt have 2D shapes, that 
are (nsample, nstate) and (nstate, nstate) respectively, where nsample is the 
number of ensemble members and nstate is the length of the state vector. 

For simulation tasks involving a large number of sites or pixels, the 2-D 
matrix operation may have low efficiency when the parallel threads are 
limited. To tackle this issue, we upgraded the EnKF (2-D matrix opera
tion) to the t-EnKF (3-D matrix operation) by adding the number of sites 
nsite as a new dimension. The tensor operation is backed by the Pytorch 
platform that allows the t-EnKF to enable GPU acceleration. 

2.3.5.2. Parallelized particle swarm optimization for parameter 
estimation. Before conducting in-season simulations using t-EnKF, his
torical NASS yield and SLOPE GPP data were assimilated by PSO to 
reduce the uncertainty of the parameters. A total of seven parameters for 
corn and six parameters for soybean were selected as the uncertain pa
rameters (Table 3). PSO is one of the evolutionary optimization algo
rithms (considered as batch DA method) to search the optimal 
parameter combinations for a large solution space (Kennedy and Eber
hart, 1995), and the benefits of joint use of PSO and sequential DA 
method have been demonstrated in common land models to reduce 
predictive uncertainty (Zhang et al., 2021). It initializes a group of 
particles (25 particles in this study) with random locations and velocities 
to explore the solution space. The algorithm of PSO is relatively simple 
and intuitive and its effectiveness and efficiency for the parameter 
calibration of agroecosystem models have been widely validated (Jin 
et al., 2017; Guo et al., 2018). The individual particles of the population 
are independent, which means the optimization process can be run in 
parallel using the GRU-based surrogate. Specifically, the first dimension 
(i.e., the batch dimension) of the input tensor represents the particle 
population. Therefore, simulating a generation of PSO particles needed 
only one inference. The loss function of optimization is as follows, 

loss = lossyield + α lossseason GPP + β lossmonthly GPP (5)  

where the lossyield is the MSE between the estimated final yield and NASS 
yield. lossseason GPP and lossmonthly GPP are the MSE calculated by the 
accumulated GPP during the growing season and the accumulated 
monthly GPP, respectively. α and β are the weight coefficients to 
normalize the loss terms. In this study, α is 0.0067 (the reciprocal of the 
total number of days in the growing season) and β is 0.033 (the recip
rocal of 30 days). 

2.4. Simulation experiment design 

2.4.1. Site-scale experiments 
The KGML-DA framework was evaluated at three agricultural sites 

(US-Ne1, US-Ne2, and US-Ne3) in the Midwest Corn Belt. Six target 
variables, including GPP, ET, Reco, NEE, aboveground biomass, and LAI, 
were evaluated against the ground truth data (the details of the ground 
truth data are described in Section 2.1). Two different compositions of 
the state vector of t-EnKF were investigated to test the effect of co- 
updating and the benefits of hierarchical structure. For the first case 
(Section 3.2.1), all the six target variables mentioned above were put 
into the state vector to calculate the covariance matrices and they were 
updated simultaneously after assimilating SLOPE GPP. For the second 
case (Section 3.2.2), the state vector only included the GPP, ET and SM 
from cell-2, and the rest target variables were supposed to be con
strained by the information flow of the hierarchical structure. The crop 
parameters of GROUPX and SLA were manually tuned to match the 
magnitude of the maximum GPP and LAI for all three sites. For corn, 
nitrogen fertilizer with 18 g N/m3 per year was applied before planting. 
For the soybean field, no nitrogen fertilizer was applied in the 
simulation. 

2.4.2. Regional scale evaluation 

2.4.2.1. Estimating county-level corn and soybean yield. A total of 627 
counties in the US Midwest were selected to evaluate the KGML-DA 
performance for crop yield prediction from 2000 to 2020 (Fig. 1). To 
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tackle the inconsistent spatial resolutions, we developed a sampling 
technique that aggregates pixel-level observations into county-level 
data. Specifically, for each county, a maximum of 200 sampling points 
(100 for corn and 100 for soybean) with a 240 m buffer (8 Landsat 
pixels) were randomly selected each year from CSDL and CDL. We 
assumed all the selected sampling points represent the pure crop pixels 
thus the spatial inconsistencies were eliminated. The time series of 
remote sensing products were extracted based on the sampling points, 
and the results were aggregated to the county scale. Besides the SLOPE 
GPP, we also investigated the utility of assimilating MODIS ET and 
GLASS LAI for improving model performance during the whole period 
(2000−2020) as well as during the extreme year (e.g., a severe drought 
hit the Corn Belt area in 2012). 

Assimilation strategies combining the EnKF and PSO were designed 
to address the uncertainty from unknown input (e.g., management) and 
in-season events (e.g., pest and disease) and the model's parametric 
uncertainty. Fig. 3 demonstrates the strategies for parameter calibration, 
where the calibration nodes (yellow square) provide prior model pa
rameters for the next several years and the updating nodes (grey circle) 
correct the current estimations based on the present in-season data. We 
assess two approaches to assimilate historical data for the calibration 
nodes. The first approach is to use a fixed interval (one-year and three 
years intervals were evaluated) between two calibration nodes, and the 
second approach uses all available historical data to retrieve the opti
mum parameter combinations. The state-updating node is deployed by 
default and it is always ready to assimilate observations. Common set
tings of observation uncertainty (e.g., a fixed value or a percentage of 
measurement) are non-dynamic and may lose representativeness for an 
outlier. For instance, an abnormal observation with low uncertainty may 
crash the simulation because the filter tends to accept the abnormal 
measurement and reject the model prediction. We proposed a dynamic 
observation uncertainty adaptation method to minimize the influence of 
the abnormal measurements by increasing the preset observation un
certainty when an observation significantly deviates from the model 
prediction (pseudo-code shown in Table S2). Specifically, this method 
detects the potential abnormal observation (i.e., the relative error of 
model predictions and observation exceeds a certain threshold) and uses 

an inflation factor to increase its uncertainty. Estimated county-level 
corn and soybean yield under different assimilation strategies (t-EnKF, 
PSO, and the joint use of both) was evaluated by NASS yield data. To 
consider the positive effect of technological advances on yield, the 
average annual increment of NASS yield over the past 20 years was 
derived to correct yield prediction starting at the midpoint of the cali
bration period. Except for the sensitive crop parameters, planting date 
(with a CV of 0.05) and nitrogen fertilizer amount for corn (with a CV of 
0.1) were also perturbed to generate EnKF ensemble members. For cases 
without parameter calibration, the mean values of the perturbed pa
rameters were initialized by default values (Table 3); for cases utilizing 
both historical data (PSO) and in-season data (t-EnKF), parameters 
calibrated by PSO (described in Section 2.3.5.2) were used. 

2.4.2.2. Mapping 30-m crop yield. To examine the effectiveness of the 
proposed KGML-DA framework for pixel-level simulation of the agro
ecosystem, we mapped the 30-m crop yield for Champaign County (Il
linois) from 2010 to 2013. The 30-m version of SLOPE GPP data was 
generated based on the 30-m fused daily reflectance data (Luo et al., 
2018). The county-wise model parameters were calibrated by the his
torical 250 m SLOPE GPP and NASS yield data, and they were imple
mented to every pixel. And the state variables were updated by 
assimilating the 30 m SLOPE GPP with an 8-day interval. 

2.4.3. Uncertainty analysis of county-level yield estimation 
Accurate quantification of the source of the predictive errors and 

uncertainties is essential for modelers to better understand the weak 
spots of the simulation so as to facilitate the improvement of the DA 
schemes and model structure. In this study, we partition the total pre
dictive error into the priori error and the residual error. We define the 
priori error as caused by inaccurate prior information, in other words, 
due to a lack of knowledge and awareness of the model state (e.g., un
known information about microclimate, irrigation, flooding and fertil
ization) and parameters. We define the best achievable performance 
(BAP) as produced by a well-calibrated model after assimilating avail
able data. So the priori error = error of open-loop simulation based on an 
uncalibrated model - error of BAP. The residual error includes the model 

Fig. 3. Schematic diagram of the data assimilation strategies. The parameter is calibrated by the historical data (yellow square) using the PSO algorithm before the 
simulation of the current year. The current observations are assimilated to dynamically update the state variables (grey circle). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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structural error, the irreducible error (i.e., introduced by inherent 
randomness in the data), and the error introduced by limited observa
tions. As a result, we quantified the priori error and the residual error by 
comparing the prediction error before and after DA. 

We also evaluated the predictive uncertainties that were reduced by 
assimilating different combinations of remote sensing observations (i.e., 
SLOPE GPP, MODIS ET, and GLASS LAI). A hierarchical Bayesian model 
(Fig. S6) was fitted by Markov chain Monte Carlo (MCMC) to further 
partition the components of the prediction error and prediction variance 
into a global mean μg, spatial effect μs, and temporal effect μt as follows, 

Yt,s ∼ N(μo, σ) (6)  

μo = μg + μs + μt (7)  

μg ∼ N
(

μ′
g, τ′

g

)
(8)  

μs ∼ N
(
μ′

s, τ′
s

)
(9)  

μt ∼ N
(
μ′

t, τ′
t

)
(10)  

where Yt,s represents the samples. We assumed the prior μ′
gfollows a 

uniform distribution U(0, 60); μ′
s and μ′

t follow a normal distribution 

N(0, 1); τ′
g, τ′

s and τ′
t follow an exponential distribution Exp(10). The 

posterior distributions of μg, μs and μt were produced by MCMC with two 
chains and 2000 draws. 

3. Results 

3.1. Fidelity of the GRU-based surrogate 

3.1.1. Evaluating the approximation error of the GRU-based surrogate 
Model fidelity is commonly used to indicate how well a model 

mimics real-world processes. The higher fidelity of a surrogate indicates 
a lower approximation error to the PB model. The output variables 
include two components of the water cycle (ET and SM); three carbon 
fluxes (GPP, Reco, and NEE); two carbon pools (aboveground biomass 
and grain yield); phenological stage (DVS) and LAI. Fig. 4 evaluated the 
approximation error of the surrogate and showed good agreement be
tween surrogate predictions and ecosys simulations, with R2 of all target 
variables ranging from 0.85 to 0.99. No significant biases were observed 
for the surrogate predictions and the slopes of fitting equations were all 
beyond 0.96. The results indicated that the GRU-based surrogate well 
captured the ecosys' model responses of nine target variables in various 
simulation scenarios. To further assess the out-of-sample performance of 
the GRU-based surrogate neural network, we trained a surrogate using 

Fig. 4. Evaluation of the surrogate neural network for simulating (a) phenology (development stage); (b and d) components of the water cycle; (c, e, f, g, and i) 
carbon cycle; and (h) leaf area index on the test set. 
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synthetic data belonging to Iowa, Illinois and Indiana and then subjected 
the surrogate to testing across the entire Corn Belt region between 2000 
and 2020. The distribution of prediction RMSE is illustrated in Fig. S7. 
Except for eastern North Dakota and northern Nebraska (both water- 
limited regions), no significant increase of RMSE was observed in re
gions beyond the “3I” states, indicating a credible out-of-sample per
formance for the surrogate. 

3.1.2. Comparison of model responses to crop parameters 
To achieve better spatial-temporal generalizability and trans

ferability, the proposed GRU-based surrogate takes crop and soil pa
rameters as input to learn the model responses to parameter variation. 
How the surrogate can reproduce parameter-induced responses consis
tent with the PB model quantifies the fidelity of this surrogate. Fig. 5 and 
Fig. S8 investigated the model responses to four crop parameters that are 
sensitive to GPP, LAI, and the final grain yield. CHL4 and VCMX are 
crop-specific sensitive parameters (Table 3), where CHL4 is only sensi
tive to corn and VCMX is only sensitive to soybean. Results show the 
responses of the GRU-based surrogate to the sensitive parameters agree 
well with the responses of ecosys. With the increase of CHL4 (for corn) 
and VCMX (for soybean), the yield responses of ecosys and its surrogate 
both sharply increased at first and then approached a flat, because 
higher leaf protein (CHL4 for corn) and rubisco activity (VCMX for 
soybean) increases the productivity of carbohydrates until photosyn
thesis is limited by light-dependent reactions. Plant maturity group 
(GROUPX: defined as the minimum number of vegetative nodes initiated 
before floral induction) influences the length of the growing season. 
Both ecosys and the GRU-based surrogate demonstrated that higher 
GROUPX postpones the phenological stage and produces higher GPP at 
the crop reproductive stage. Higher SLA means more leaf area with a 
fixed amount of leaf matter and thus significantly increases LAI. A 
discrepancy in the crop yield responses to SLA was observed between 
ecosys and the GRU-based surrogate (Fig. S8) due to the relatively low 
sensitivity to corn yield. These results indicate that the surrogate neural 
network learned the patterns of behavior and response to the changing 
environment and hence has high fidelity to the ecosys. 

3.2. Site-level validation of the KGML-DA framework 

3.2.1. Assimilating satellite-based GPP data 
The performance of the KGML-DA framework for carbon budgets 

simulation (including GPP, ET, Reco, NEE, aboveground biomass, and 
LAI) was evaluated at three agricultural sites against the ground truth 
data (detailed in Section 2.4.1). To examine the effectiveness of the 
KGML-DA framework, we sequentially assimilated SLOPE GPP obser
vations into the framework to update all target variables simultaneously 
(referred to as the full updating strategy). Compared with the open-loop 
simulation (i.e., the benchmark with no DA), the accuracies of almost all 
target variables were improved after assimilating in-season SLOPE GPP 
(Table 4). Specifically, the averaged root-mean-square error (RMSE) of 
the three sites for the six target variables decreased by 21.7%, 9.2%, 
14.4%, 10.4%, 30.5% and 17.8% on average, and R2 increased by 9.3%, 
13.1%, 4.8%, 13.1%, 6.7% and 24.6%, respectively. The benefit of 
assimilating SLOPE GPP at US-Ne1 (i.e., continuous corn) is smaller than 
the other two sites, where the LAI prediction was not improved and the 
improvement for GPP, Reco, and biomass is slight. This is because the 
SLOPE GPP at US-Ne1 interfered with the signal from US-Ne2 (corn- 
soybean rotation) due to coarse spatial resolution, even if the pixels were 
not overlapped. Significant reduction in RMSE of biomass and LAI 
thanks to more accurate estimates of carbon fluxes. The updated LAI was 
fed into cell-2 of the neural network on the next simulation day to close 
this loop. In order to delve further into the behavior of priors (i.e., before 
DA) and posteriors (i.e., after DA), we conducted comparisons using 
predictions extracted on days when SLOPE GPP assimilation took place 
(Table S3). Results show the model performance of posteriors only 
slightly better than prior, indicating that there are no significant biases 

in the model's structure or the calibrated parameters (such biases could 
potentially result in prediction deviations when no assimilation takes 
place). 

3.2.2. Passing information in the hierarchical structure 
In Section 3.2.1, we listed all target variables in the state vector of t- 

EnKF to update them by their correlation with the observed GPP. 
However, updating a long list of state variables may jeopardize the 
simulation due to the poor or even spurious correlation between vari
ables (Hu et al., 2019). One of the notable advantages of the hierarchical 
neural network is that the uncertainty of downstream variables will be 
automatically constrained after correcting the upstream variable. For 
example, assimilating GPP observations can benefit the downstream 
variables (e.g., Reco, biomass, and LAI) based on the hierarchical 
structure without putting the downstream variables into the state vector 
of the t-EnKF. Fig. 6 shows an example (from 2001 to 2009, US-Ne2 site) 
of the predicted trajectories of ensemble members after assimilating the 
upstream variable GPP. In this case, the Reco, biomass, LAI, and other 
variables simulated by cell-3 and cell-4 of KGML-DA were excluded from 
the state vector and not updated directly by the t-EnKF (referred to as 
partial updating strategy). Thus, the information for constraining the 
downstream variables only came from the hierarchical structure. Fig. 6 
b-e show local details of the assimilation processes. Compared to the 
open-loop simulations (green lines), GPP simulated by KGML-DA (red 
lines) was significantly improved after assimilating SLOPE GPP product 
(purple cycles) (Fig. 6b). The updated hidden states of cell-2 (carrying 
the information of assimilated observation) were passed as the input to 
the cell-3 (the downstream cell) and made the predicted Reco and 
biomass closer to the ground truth (grey dots) (Fig. 6 c and d). Subse
quently, the information carried by the hidden states of cell-3 was 
passed to cell-4 and the LAI predictions were improved (Fig. 6e). 
Notably, constraining the downstream variables via information flow 
from upstream variables makes the estimated trajectories smoother, 
whereas abrupt changes often observed when directly updating the 
target variables via covariance of the state vector (Fig. 6 d and e). We 
also compared the performance between the full updating strategy and 
the partial updating strategy (which excludes downstream variables of 
GPP). Results show that the partial updating strategy achieved better 
performance for the non-stressed US-Ne1 site (where the correlation 
between observations and state variables remains weak), as it propa
gates fewer observation errors by avoiding updating an extensive list of 
state variables via weak (even spurious) correlation. (Table S4). 

3.3. Yield estimation of the US Corn Belt 

The regional-scale performance of the proposed KGML-DA frame
work for yield estimation was evaluated over 600 counties in the Mid
west of the US from 2000 to 2020 using the NASS surveyed county-level 
yield. The following sections investigated different DA strategies and the 
contribution of the in-season and historical data. 

3.3.1. Updating model states via assimilating in-season data 
For this scenario we assumed no historical data was available and the 

crop parameters for all counties were initialized by the default value. In 
other words, the crop parameters were homogeneous, and the variance 
of county-level yield estimations came from the climate forcing and the 
heterogeneity of soil properties (gSSURGO dataset). Fig. 7 a-d show the 
open-loop simulations that are only driven by climate data. The climate 
forcing explained 37.8% variation in yield estimation for corn and 
31.9% for soybean (Fig. 7 a and c). After assimilating in-season GPP via 
t-EnKF, the R2 improved to 0.521 for corn and 0.453 for soybean (Fig. 7 
e and g). The accuracy of the multi-year averaged yield represents how 
well the model captured the spatial pattern of the yield. Although the R2 

of multi-year averaged yield was improved from 0.347 to 0.583 for corn 
and from 0.151 to 0.318 for soybean, the RMSE was not significantly 
reduced and the model overestimated yield for the low-yield county/ 
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Fig. 5. Normalized responses of the surrogate neural network to the variation of four carbon-sensitive parameters. For plant maturity group (GROUPX), GPP re
sponses were averaged during the reproductive stage (DOY 250 to 300); for the specific leaf area (SLA), LAI responses were averaged during the vegetative stage 
(DOY 190 to 220). 
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Table 4 
Evaluating the proposed KGML-DA framework at three sites (US-Ne1, US-Ne2, and US-Ne3) with eddy-covariance fluxes observations and auxiliary ground truth data 
of aboveground biomass and LAI (from 2001 to 2007). For the t-EnKF cases, remotely sensed GPP was assimilated and all target variables are state variables in t-EnKF.  

Target Variables US-Ne1 US-Ne2 US-Ne3 

Open-loop DA Open-loop DA Open-loop DA 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

GPP (gC/m2/day) 0.82 3.57 0.85 3.19 0.77 3.32 0.88 2.34 0.76 3.27 0.83 2.45 
ET (mm) 0.57 1.60 0.64 1.45 0.53 1.56 0.63 1.37 0.48 1.49 0.51 1.40 
Reco (gC/m2/day) 0.86 1.43 0.89 1.43 0.80 1.84 0.85 1.60 0.79 2.15 0.83 1.50 
NEE (gC/m2/day) 0.64 3.10 0.70 2.75 0.61 2.67 0.71 2.33 0.61 2.33 0.70 2.17 
Biomass (gC/m2) 0.91 214.95 0.92 162.35 0.83 161.42 0.93 117.56 0.87 109.55 0.93 66.01 
LAI (m2/m2) 0.77 1.16 0.74 1.40 0.58 1.85 0.86 1.16 0.60 2.33 0.77 1.47 

Note: when a remotely sensed observation is assimilated on a given day, the updated value (i.e., posterior) is used. In cases where no assimilation occurs, the model's 
initial prediction is used. 

Fig. 6. Assimilating remotely sensed GPP observations improved the estimation of (a and b) GPP, (c) Reco, (d) aboveground biomass, and (e) LAI at the US-Ne2 site, 
Mead, NE. 

Q. Yang et al.                                                                                                                                                                                                                                    



Remote Sensing of Environment 299 (2023) 113880

13

year (Fig. 7 b, d, f, and h). This result demonstrated that only assimi
lating in-season GPP mitigated the yield prediction error caused by 
uncalibrated parameters; however, the spatial yield pattern was not well 
captured. 

3.3.2. Integrating prior knowledge via assimilating historical data 
The spatial heterogeneity of model parameters can be derived from 

historical data and used as a prior for the in-season simulation. Fig. 8 
evaluated the yield estimations using parameters calibrated by all 
available historical data (NASS yield and SLOPE GPP, described in 
Section 2.3.5.2) with a frequency of every three years. The parameter 
calibration is on top of the KGML-DA framework and prior to t-EnKF. 
Compared to the open-loop runs with default global parameters (Fig. 7 
a-d), errors induced by parameter heterogeneity were addressed by 

assimilating historical observations (for corn and soybean, the R2 of 
multi-year averaged yield was improved to 0.923 and 0.882; and the 
RMSE was decreased to 9.633 and 2.979, respectively). Additionally 
assimilating in-season GPP further improved model accuracy, with an R2 

of 0.620 and 0.632 and RMSE of 19.42 and 5.648 for corn and soybean, 
respectively (Fig. 8 e and g), suggesting that assimilating the in-season 
data can dynamically constrain the uncertainty induced by unknown 
or stochastic events during the growing season. However, assimilating 
in-season GPP did not improve the multi-year average (i.e., the spatial 
pattern) of the yield for the investigated counties (Fig. 8 f and h), likely 
because the spatial variation of yield is mainly interpreted by parameter 
spatial heterogeneity instead of the in-season aleatoric events. 

Fig. 9 shows the multi-year average carbon budget predicted by the 
framework. The annual net biome productivity (NBP) was calculated by 

Fig. 7. Scatter plots of the predicted yield versus NASS yield using the default crop parameters: (a-d) open-loop simulations; (e-h) assimilating in-season GPP via t- 
EnKF. “All data” means all of the site-year data were evaluated. “Multi-year average” indicates that the temporal variation in yields has been averaged out, leaving 
only spatial patterns. The colour bar indicates the density of data points. 

Fig. 8. Performance improved by the joint use of historical measurements (yield and GPP) and in-season GPP: (a-d) open-loop simulations with parameters cali
brated by PSO algorithm using historical data; (e-h) utilizing all available data by integrating t-EnKF and PSO. 
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deducing the crop yield and Reco from annually accumulated GPP. 
Negative NBP was observed in the northwest of the Corn Belt area 
(including east of North Dakota and South Dakota, and south of Min
nesota), indicating that the agriculture in these areas is acting as a 
carbon source and thus there is huge potential to improve carbon 
sequestration through improving management. 

3.3.3. Effect of the frequency of parameter calibration on hybrid data 
assimilation 

Different lengths of parameter calibration period were investigated 
to evaluate the effect of parametric stability (Table 5). Lower bias was 
observed for cases with a short calibration period. This is caused by the 
linear yield trend correction described in Section 2.4.2.1. The adjusted 
yield increment increases as the calibration period extends, and thus the 
uncertainty introduced by the linear yield trend assumption is enlarged. 
Using parameters calibrated by the previous year's data to initialize the 
surrogate neural network produced the worst performance. This is 
because the calibrated parameters will be prone to overfit the specific 
scenario if only one year of data is available. In this circumstance, the 
parameters may fluctuate through time (yellow lines in Fig. 10) because 
the optimizer sacrificed the physical representation of these parameters 
to compensate for the model structure and input error. Cases utilizing all 
available historical data (progressively accumulated from the first year 
to the previous year, Fig. 3) to calibrate parameters produced the best 
results, with the R2 higher than 0.57 for corn and 0.60 for soybean, and 
the RMSE lower than 21.91 for corn and 6.19 for soybean. The trends of 
parameters were more stable over time (black dashes in Fig. 10) in these 
cases, indicating that the influence of extreme events on parameters can 
be reduced by using long-term data to calibrate parameters. However, 
using long-term data to calibrate parameters that exhibit a temporal 
trend may cause a time-lag effect for the calibrated parameters (e.g., 
VCMX and STMX for soybean). Therefore, a hybrid method that uses 

different calibration periods for individual parameters should be 
investigated to improve the parameter calibration. 

3.3.4. Assimilating multi-source in-season remote sensing data 
The proposed DA framework reserved multiple interfaces to assimi

late potential observations. Table 6 investigated the model performance 
with different combinations of multi-observations. For cases without 
considering parameter heterogeneity, assimilating only GPP or LAI 
sharply reduced the RMSE of yield estimation compared to the open- 
loop simulation for corn (reduced by 5.9% and 17.0%). Involving 
more types of observations tends to improve yield estimation. Assimi
lating in-season SLOPE GPP, MODIS ET, and GLASS LAI all together 
achieved the highest R2 compared to other cases (0.53 for corn and 0.50 
for soybean). Assimilating ET only slightly improved R2 (0.42 and 0.37 
for corn and soybean) but RMSE also increased (33.21 and 9.58 Bu/Acre 
for corn and soybean). 

For cases using the calibrated parameters as initial, the historical ET 
and LAI data were not involved in the parameter calibration because 
they were systematically underestimated for the cropland. Assimilating 
in-season GPP and ET at the same time was only slightly better than 
assimilating in-season GPP with the R2 of 0.63 for both corn and soybean 
and RMSE of 19.21 and 5.64 Bu/Acre for corn and soybean. Perfor
mance degradation was observed after only assimilating ET or LAI. This 
is probably because of the inconsistent pattern of LAI and ET between 
estimates and observations that may reverse the benefits from parameter 
calibration. GPP data already provides information related to photo
synthetic rate, canopy pigments and water status. As a result, the in
formation between SLOPE GPP, MODIS ET, and GLASS LAI overlapped 
and the benefits of additionally assimilating coarse ET and LAI are 
limited for yield estimation. However, the accuracy of yield estimation 
at the extreme year (2012) was significantly improved after additionally 
assimilating ET and LAI (Table S5). This is because the model tends to 

Fig. 9. Multi-year average carbon budget of the Corn belt area. NBP was calculated using the estimated GPP, Reco, and yield. Areas with higher NBP indicated more 
carbon sequestration. The metrics of GPP and yield were calculated based on the multi-year averaged SLOPE GPP and NASS yield. 

Table 5 
Effect of parameter calibration period on KGML-DA. Three calibration periods were investigated which are the previous year, the previous three years, and all historical 
data (depicted in Fig. 3).  

DA method Calibration period Corn Soybean 

R2 RMSE Bias R2 RMSE Bias 

PSO Previous year 0.36 28.31 ¡3.66 0.41 7.66 ¡1.00 
PSO Previous three years 0.49 23.78 −5.96 0.53 6.77 −2.16 
PSO All historical data 0.57 21.91 −8.05 0.60 6.19 −2.16 
PSO + t-EnKF Previous year 0.41 25.70 4.61 0.46 6.88 ¡0.04 
PSO + t-EnKF Previous three years 0.55 21.04 3.99 0.56 6.21 −1.31 
PSO + t-EnKF All historical data 0.62 19.43 4.64 0.63 5.65 −1.03  
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overestimate yield under extreme stresses and the joint use of all 
available data can improve the estimation of covariance matrices of 
state variables. To further investigate the value of assimilating potential 

ET and LAI observation with higher resolution and accuracy, we con
ducted an Observing System Simulation (OSS) experiment (Curnel et al., 
2011) using synthetic observations without error (Fig. S9). Fig. S10 

Fig. 10. Evolvement of the mean value of key crop parameters with different lengths of the calibration period. The yellow lines, red lines, and black dash represent 
the parameters that were calibrated by data from the previous year, the previous three years, and all available historical data, respectively. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 6 
Model performance with different combinations of multi-observations for all county-year.  

Initial parameters Observation types for t-EnKF Corn Soybean 

R2 RMSE Bias R2 RMSE Bias 

Default parameters 

Open-loop 0.38 26.25 5.34 0.32 8.78 3.82 
GPP 0.52 24.70 12.77 0.45 8.48 5.01 
ET 0.42 33.21 23.62 0.37 9.58 6.01 
LAI 0.50 21.80 3.11 0.40 8.91 5.25 
GPP, ET 0.52 23.85 11.00 0.46 7.70 3.69 
GPP, ET, LAI 0.53 23.28 10.07 0.50 7.87 4.46 

Parameter calibrated by PSO 

Open-loop 0.57 21.91 −8.05 0.60 6.19 −2.16 
GPP 0.62 19.43 4.64 0.63 5.65 −1.03 
LAI 0.43 25.16 −5.07 0.54 6.25 −0.37 
ET 0.51 22.51 4.30 0.56 6.46 −1.92 
GPP, ET 0.63 19.21 4.25 0.63 5.64 ¡1.17 
GPP, ET, LAI 0.46 24.05 4.15 0.56 6.14 −1.03  

Fig. 11. 30-m yield map of corn estimated by open-loop and KGML-DA. The left subplots are the overall yield map of Champaign County, IL. The top right subplots 
are the local view of the temporal variation of yield estimates in a selected area (black dash rectangles). Bottom right is the absolute error of averaged yield esti
mation compared to the NASS-reported county scale yield. The result for soybean is shown in Fig. S12. 
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shows that the estimated yield agrees well with the observed yield even 
though only GPP was assimilated. Additional assimilation of ET did not 
significantly help improve the yield estimation but assimilating LAI 
helps correct the phenology and the yield in the early stage is signifi
cantly improved. 

3.4. Pixel-level yield mapping 

To demonstrate the effectiveness of the proposed KGML-DA frame
work for subplot-level simulation, we mapped the 30-m corn and soy
bean yield of Champaign County, Illinois, from 2010 to 2013 
(Fig. S11–12 and Fig. 11). The left subplots of Fig. 11 show the spatial 
variability of the estimated yield in 2012, when the Midwest experi
enced an extreme drought. Although accumulated precipitation of 
Champaign County during the growing season of 2012 was not signifi
cantly reduced (Fig. S3b), the severe drought happened in the pre- 
season and July decreased the initial SM content and affected the 
pollination of corn (Fig. S3a), which resulted in a low reported corn 
yield (108.9 Bu/Arce). The open-loop yield map of 2012 is significantly 
overestimated due to the model parameters not calibrated for extreme 
events (the parameters calibrated by historical data), and its spatial 
variability only comes from weather and soil properties. 

In contrast, the signal of the in-season crop condition and the 
extreme event could be captured by the 30-m SLOPE GPP data, and 
assimilating this data reduced the bias in yield estimation (Fig. 11 shows 
the absolute error of county-level corn yield was reduced by 9.5–21.5 
Bu/Acre). To illustrate the details of the temporal and spatial variations 
of the estimated yield map, Fig. 11 also shows a zoomed-in view of a 
selected area in Champaign County. Compared to the open-loop simu
lation, the KGML-DA pulled up the underestimated corn yield (in 2010, 
2011, and 2013) and suppressed the overestimated corn yield (in 2012) 
using the in-season information coded in the 30 m GPP. For soybean, the 
result shows less benefit from assimilating 30 m GPP for yield estimation 
(Fig. S12). In 2012, the reported soybean yield of Champaign County 
was not significantly affected by the drought. This is because the 

stomatal conductance and grain yield of soybean show less sensitivity to 
the atmosphere condition than corn (e.g., VPD) (Lobell et al., 2014; Gray 
et al., 2016), and the relatively late planting of soybean bypassed the 
period with severest drought (during May to Jul., of 2012). However, 
the observed soybean canopy greenness and GPP was reduced because 
the plant transited energy from leaves to root and grains to resist 
drought. As a result, assimilating the low GPP observation dragged 
down the estimated soybean yield in 2012 even if the real yield was not 
significantly affected (Fig. S12). 

3.5. Uncertainty analysis of county-level yield prediction 

3.5.1. Spatial-temporal effects of yield prediction error 
The total yield prediction error (627 counties from 2003 to 2020) 

was partitioned into three components, including the global mean μg, 
spatial effect μs, and temporal effect μt , by a hierarchical Bayesian model 
(Dokoohaki et al., 2021). The posterior distribution of μg, μs, and μt was 
approximated by the MCMC algorithm. The sum of the expectation of μg 

and μs represent the spatial pattern of the prediction error (visualized in 
Fig. 12), which is important for modelers to improve the understanding 
of the model responses to various climate and environmental conditions. 
Compared to the open-loop simulations, the prediction error was 
reduced after assimilating in-season data (Fig. 12 b1 and f1) in the south 
of Minnesota, Iowa, Illinois, and Indiana (significantly reduced for corn 
and slightly reduced for soybean). However, the prediction error in the 
northwest and southwest region of the Corn Belt remains high mainly 
due to the poor consistency of spatial pattern between SLOPE GPP and 
NASS yield in these areas (e.g., the low yield was observed in north 
Missouri but GPP is moderate, Fig. S13). The northwest regions have a 
low annual air temperature and precipitation and the southwest regions 
may suffer water deficit due to high evaporation demand (Zhou et al., 
2021b). As a result, the predicted yield was biased in these regions under 
the assumption of homogeneous crop parameters. Compared to the flat 
histograms in the cases with default parameters, calibrating parameters 
by the historical data eliminates the spatial effect and the prediction 

Fig. 12. The spatial distribution (a1-h1) and histogram (a2-h2) of the yield prediction errors (sum of the posterior global mean μ′
g and spatial effect μ′

s): (a and e) 
open-loop simulations; (b and f) assimilating in-season GPP with default parameters; (c and g) open-loop simulations with calibrated parameters; (d and h) 
assimilating both in-season and historical data. μ′

g and μ′
s are the expectations of μg and μs, respectively. 
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errors of all counties are homogeneous, resulting in a more concentrated 
histogram (Fig. 12 c1–2 and g1–2). Assimilating both historical and in- 
season data via t-EnKF and PSO increased the variation of errors due to 
the introduction of the in-season observation uncertainty (Fig. 12 d2 and 
h2). However, it also produced the lowest mean prediction error and the 
hotspot areas with high prediction error were also addressed (Fig. 12 d1 
and h1). 

μt described the temporal pattern of the prediction error. Fig. 13a 
shows the reduction in temporal variability of the prediction error 
(standard deviation of μ′

t) compared to open-loop after DA. Assimilating 
in-season data significantly improves the temporal robustness of the 
model, with an 11.9% reduction of std. for corn and a 37.9% reduction 
for soybean. The reductions of μ′

g (the expectation of μg) were depicted in 
Fig. 13b. For corn and soybean, the error was reduced by 12.5% and 
26.9% after assimilating historical data and further reduced by 14.0% 
and 9.3% by assimilating in-season data. Leveraging the information 
from both historical and present in-season data, the reduced priori error 
was 26.5% for corn and 36.2% for soybean. The result validated the 
effectiveness of the proposed DA framework and indicated the necessity 
for assimilating both historical and in-season data to reduce uncertainty 
in yield prediction. 

3.5.2. Uncertainty reduction after assimilating in-season remote sensing 
data 

The variance of the predicted yield of the t-EnKF ensemble members 
was partitioned into global mean, spatial effect and temporal using the 
same Bayesian hierarchical model. The temporal effect of the 

uncertainty in yield estimation after assimilating different types of ob
servations was visualized in Fig. 14. Compared to the open-loop simu
lation, the uncertainty of yield prediction was reduced by 6.8–11.3 Bu/ 
Acre for corn and 1.1–2.0 Bu/Acre for soybean for the uncalibrated cases 
after assimilating in-season GPP. Parameter calibration altered the 
spatial pattern of yield prediction uncertainty (Fig. S14). This is because 
the model responses to the parameters are nonlinear and the initial 
values of the parameters significantly affect the prediction uncertainty. 
No significant difference was observed in the magnitude of the yield 
estimation uncertainty between only assimilating in-season GPP and 
assimilating GPP and ET, indicating that ET has a limited contribution to 
reducing uncertainty. In contrast, assimilating LAI further reduced the 
uncertainty especially for soybean, with a range of 2.3–3.0 Bu/Acre for 
the uncalibrated case and 2.6–3.7 Bu/Acre for the calibrated case. LAI is 
more influential for soybean yield because soybean tends to partition 
more dry matter to grow leaves. Although the uncertainty was reduced 
by assimilating remote sensing LAI, the yield prediction error was not 
effectively reduced (Table 6), likely because of the inconsistent magni
tude between estimates and observation, the issue of mixed pixels, and 
the challenges to quantifying observation noise. Hence, there is a need to 
develop unbiased LAI products for croplands with a high spatial reso
lution to reduce the uncertainty in yield estimation. 

Fig. 13. Partitioning the contributions of historical and in-season data for the reduction of yield prediction error: (a) the standard deviation of μ′
t . A higher value 

indicated strong interannual fluctuation of prediction error; (b) μ′
g for yield prediction error. μ′

t is the expectation of μt . 
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4. Discussion 

4.1. Data interfaces for multi-source observation 

Nine target variables (including phenology, GPP, ET, SM, Reco, NEE, 
aboveground biomass, LAI, and yield) were simulated by the proposed 
surrogate neural network and each of them acts as a reserved data 
interface to ingest possible observations. In this study, we only investi
gated three remotely sensed observation types (i.e., GPP, ET, and LAI) 
for regional crop growth simulation. Results demonstrated that the 
improvement by assimilating in-season GPP was greater than ET and 
LAI. As an upstream variable in the hierarchical neural network, GPP is a 
compound variable associated with processes of light inception (affected 
by LAI) and the exchange of water and carbon (related to ET), thus GPP 
already includes information related to ET and LAI. Information from 
the assimilated GPP observation can be passed to every downstream 
variable to benefit the whole neural network. In addition to GPP, 
thriving earth observation technologies and novel algorithms offer 
possibilities to activate other upstream data interfaces, such as SM. 
Microwave-based remote sensing technologies are considered to be the 
most effective way to monitor global SM. However, the spatial resolu
tion is coarse for SM products derived from the L-band passive radi
ometer (e.g., 36 km for the products of Soil Moisture Active Passive, 
SMAP; and the Soil Moisture and Ocean Salinity, SMOS) (Kerr et al., 
2010; Entekhabi et al., 2010). Although the resolution can be down
scaled to 1–10 km by integrating data from synthetic aperture radars 
(SAR) (Meyer et al., 2022), it is still too coarse to distinguish individual 
crop fields. Recent studies demonstrated that fine-scale (up to 30 m) SM 
with multiple layers could be predicted by ML using multi-source data 

such as weather, thermal, and topographic data (Zeng et al., 2019; 
Vergopolan et al., 2021). And inferring subgrid-scale SM profile from 
surface observation is promising via integrating PB models, ML, and DA 
techniques (Heathman et al., 2003; Kornelsen and Coulibaly, 2014; Feng 
et al., 2022). Meanwhile, the forthcoming NISAR (NASA-ISRO Synthetic 
Aperture Radar, planned to launch in 2024) mission is set to feature an 
advanced L-band instrument with a resolution of 3–10 m, making it 
particularly suitable for achieving high-resolution mapping of SM 
(Kellogg et al., 2020). Therefore, a comprehensive SM extension is worth 
being developed in future research to constrain the water cycle of the 
simulation by assimilating fine-scale surface SM data. Other than that, 
deriving management practices are critical for further constraining the 
predictive uncertainty. While extracting practices like planting and 
harvesting dates, tillage, and cover crop adoption from remote sensing 
data shows promise, the detection of certain crucial practices such as 
irrigation, drainage, and fertilizer use remains challenging (Guan et al., 
2023). 

4.2. Simulating hard-to-observe variables in the agroecosystem 

The designed DA framework is general and it can be easily adapted to 
specific tasks without changing the framework structure. This advantage 
grants researchers high-level of flexibility to customize their own target 
variables (Especially variables that are difficult to observe at the 
regional scale) for each GRU cell. For instance, partition ecosystem 
respiration into autotrophic respiration (Ra) and heterotrophic respi
ration (Rh), and simulate evaporation (E) and transpiration (T) sepa
rately. Monitoring the components of Reco and ET is critical for 
understanding the natural ecosystem behaviors in the context of climate 

Fig. 14. Temporal evolution of the uncertainty in yield estimation with different assimilation strategies: (a and c) model initialized with default parameters; (b and 
d) model initialized with parameters calibrated by historical data. 
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change (Xu et al., 2021). Ecosys provides hourly simulation for these 
components; however, in-situ measurement methods such as chamber 
(measure Rh) lysimeters (measure E), sap flow meters (measure T), and 
isotope (measure E, T, Ra, and Rh) are expensive and difficult to upscale 
to regional scale (Perez-Priego et al., 2017; Welp et al., 2008). Dynamic 
simulation of the components of Reco and ET can be achieved by PB 
ecosystem models (e.g., ecosys). However, there are still two main 
stumbling roadblocks in simulating sub-fluxes of Reco and ET: 1) large 
model structural uncertainty caused by a lack of understanding of the 
interactions in the SPAC system and the trade-off between computation 
efficiency and model complexity; 2) large uncertainty in input and 
parameter due to the scarcity of ground truth data and the heterogeneity 
of land surface. The proposed KGML-DA framework provides a prom
ising path to address these challenges by balancing the prior knowledge 
and multi-source data. Specifically, the parametric uncertainty can be 
constrained by assimilating historical data and the overall uncertainty 
can be reduced by assimilating the in-season data. The mass balance of 
the decomposed components can be closed by a residual method 
(assuming one of the fluxes in the balance equation is a residual term) or 
additionally constrained by a mass balance loss. Except for assimilating 
remote sensing data, point-level ground truth data can be used to fine- 
tune the neural network and reduce the model structural uncertainty. 
Due to the developed framework being capable of assimilation of real- 
time data, the model performs at optimal and thus produces future 
projections (using forecasted weather data) with the lowest uncertainty. 
Therefore, it is also promising to deploy the proposed framework for 
projecting the future carbon budget and provide guidance to optimize 
field management. 

4.3. Computational cost and large-scale spatial-temporal downscaling 

The extremely high computation cost limits the implementation of a 
traditional PB model-based (e.g., ecosys) DA system for large-scale 
simulation. The computation demands increase exponentially if higher 
spatial resolution is requested, making regional simulation nearly 
impossible at the subplot level. This study upgraded the t-EnKF with the 
3-D tensor operation so that the ensemble members for different sites (or 
pixels) can be simulated parallelly. The shift of computation from CPU- 
intensive to GPU-intensive greatly reduced the simulation time. A one- 
year run of ecosys (i.e., the process-based model we used in this study) 
takes 30 s for one site/pixel. While this run-time may be acceptable for 
simulations conducted at the county level (Zhou et al., 2021a, 2021b; 
Yang et al., 2022), the cumulative run-time will be astronomical for 
large-scale pixel-level simulations. For example, assuming the ensemble 
number is 100, at least 4 billion CPU hours are required for the tradi
tional method to accomplish a twenty-year simulation on the cropland 
of 3I states with a 30 m resolution (about 250 million pixels). In contrast, 
the surrogate takes around 0.4 s per site for a one-year simulation. 
However, the magic is that ensemble members from different sites can 
be merged into the batch dimension, so a large number of cases can be 
run in parallel on the GPU. The simulation time could be sharply 
reduced by 3.75 million times on only one GPU with a batch of 500 ×
100 (pixels×ensemble members), making it more than 7000 times faster 
than a traditional DA framework run on a High-Performance Computing 
(HPC) with 512 CPU cores. The computation time could be further 
reduced by deploying the framework on high-performance GPU clusters 
with a larger GPU memory so that a larger batch size can be imple
mented for one inference. 

The remarkable computation efficiency makes the KGML-DA 
framework an effective downscaling tool for performing a fine-scale 
simulation with high spatial-temporal resolution. Multi-source remote 
sensing data with different resolutions can be tackled by hierarchical 
simulation at different scales. Specifically, simulation can be run at the 
county level, 500 m, 250 m, and 30 m respectively to assimilate multi- 
source data. The coarse-level simulation provides regional means of 
the target variables to the fine-level simulation as prior knowledge. The 

fine-level simulation explains the spatial variation on the basis of the 
mean value from coarse-level simulation. Observations with different 
time intervals constrain the temporal pattern of the target variables at 
different scales. For example, the value of fine-scale estimates at the 
observation date is directly constrained by high spatial resolution data 
but with relatively long-time intervals (e.g., 30 m, 16-day products). On 
the other hand, the temporal trend of the fine-scale simulations can also 
be indirectly constrained by the more frequent but coarse data. As a 
result, the downscaled estimates benefit from both the intertwined 
multiscale data. 

4.4. Exploring more flexible data assimilation approaches for 
agroecosystem 

The KGML-DA framework employed both PSO (i.e., batch DA 
method) and t-EnKF (i.e., sequential DA method) to maximize the utility 
of historical data and in-season present data. Historical data is valuable 
for predicting the future because a variable in the past and future may 
follow the same distribution or a particular pattern. Conversely, in- 
season data is essential in addressing uncertainties arising from un
known inputs and unforeseen events. The results of county-level yield 
estimation (Section 3.3.2) and error analysis (Section 3.5.1) both indi
cated that assimilating historical data outperforms open-loop simulation 
by a large margin, demonstrating that the batch DA approach is a fast 
solution to improve model performance. However, as the frequency of 
climate-induced extremes increases, assimilating historical data alone 
may bias predictions for extreme years, and assimilating both historical 
data and present data is the only way to keep the prediction on track. 

For the sequential DA method, we opted for the widely used EnKF to 
assimilate multisource observations into the GRU-based surrogate due to 
its simplicity and effectiveness. However, inherent limitations of EnKF, 
such as its linear updating rule and the Gaussian assumption of state 
variables and observation errors, could potentially undermine its per
formance when applied to highly non-linear systems (Abbaszadeh et al., 
2019). To address this challenge, the particle filter (PF), a non- 
parametric Bayesian filter, garnered attention among modelers due to 
its suitability for addressing non-linear and non-Gaussian systems 
(Moradkhani et al., 2005a; Jiang et al., 2014). Recent advancements 
have led to the development of enhanced PF algorithms, specifically 
tailored to mitigate the particle degeneracy issue found in traditional PF 
methods. For example, the Evolutionary Particle Filter with MCMC 
(EPFM) integrates a Genetic algorithm and MCMC to enhance particle 
diversity (Abbaszadeh et al., 2018; Gavahi et al., 2020). As a result, 
advanced DA algorithms that are more flexible to handle state variables 
and observations with arbitrary distributions are worth being integrated 
into our framework. 

In this study, we designed a DVAE to assimilate in-season remote 
sensing data (elaborated in Section 2.3.3). Compared to previous work 
(Zhou et al., 2021a, 2021b) that utilizing historical and future data to 
calibrate parameters of the ecosys model (i.e., even years for parameter 
calibration and odd years for validation), the county-level yield pre
dicted by our framework achieved similar accuracy without using the 
future data (we are doing temporal extrapolation instead of interpola
tion), indicating the effectiveness of assimilating in-season observations. 
We also conducted a comparison with the work of Kang and Özdoğan 
(2019), who integrated PB models with EnKF for yield estimation in the 
Corn Belt and validated by field-level yield data. Our approach exhibited 
lower RMSE values compared to theirs, as they reported RMSE values 
ranging from 1.4 ton/ha to 2.3 ton/ha (equivalent to 20.8 Bu/Acre to 
34.2 Bu/Acre). One major limitation of the proposed method is the 
potential for information leakage once the hidden state has been 
reconstructed, owing to the presence of reconstruction errors. One 
possible strategy to bypass the hidden state reconstruction is to directly 
update the hidden state. For example, Guen and Thome (2020) devised a 
DA framework for video prediction which directly updated the hidden 
state of RNN. However, directly implementing this method into an 
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agroecosystem model is not feasible due to its assumption of linear 
additivity in hidden state transitions and the limited number of state 
variables in their context. Consequently, the pursuit of more robust data 
assimilation approaches founded on deep neural networks warrants 
further investigation in forthcoming endeavors. 

5. Conclusion 

This study established a novel KGML-DA framework that is capable 
of assimilating historical and in-season multi-source data. As far as we 
know, this is the first attempt to implement both sequential and batch 
DA on a hierarchical surrogate neural network. This study demonstrated 
a paradigm of KGML-DA framework to reduce uncertainty in multi- 
variable simulations by leveraging knowledge from the PB model and 
multi-source data. The causal relationships between target variables 
were hardcoded into the hierarchical surrogate neural network to 
streamline the inference flow and automatically constrained all con
nected variables. The responses of the surrogate to driving data and 
parameters were examined to make sure it was competent for replacing 
the ecosys. This framework was first evaluated at three agricultural sites 
and then tested in the Midwest Corn Belt for county-level yield esti
mation and 30-m yield mapping. Additionally, uncertainty and error of 
estimated yield were analyzed. The result shows updating the upstream 
variable (e.g., GPP) improved the prediction of downstream variables (e. 
g., Reco, NEE, biomass, and LAI) at three agricultural sites, indicating 
the importance of the hierarchical structure for building the linkages 
between target variables. For county-level yield estimation, assimilating 
historical data addressed the parameter uncertainty and captured the 
heterogeneous pattern of crop parameters. Involving all historical data 
to calibrate parameters mitigated the effect of extreme events and thus 
produced stable parameters. Initializing the surrogate neural network 
with the calibrated parameters significantly improved the estimation of 
multi-year averaged yield (R2 was improved from 0.367 to 0.923 for 
corn, and from 0.151 to 0.882 for soybean). Further assimilating in- 
season data on the basis of the calibrated parameters achieved the 
best performance by addressing the uncertainty induced by the sto
chastic (or unknown) events. Results indicated that the proposed KGML- 
DA framework is capable of accurately and dynamically simulating 
various variables in the agroecosystem, and it is potentially more than 
7000 times faster than the PB model. This framework is not subject to a 
certain task (e.g., yield estimation) but can be extended to simulate the 
variables that are difficult to observe at the regional scale and to 
downscale the remote sensing observations to higher spatial-temporal 
resolution. 
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