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ARTICLE INFO ABSTRACT

Editor: Jing M. Chen Process-based models are widely used to predict the agroecosystem dynamics, but such modeled results often
contain considerable uncertainty due to the imperfect model structure, biased model parameters, and inaccurate

Keywords: or inaccessible model inputs. Data assimilation (DA) techniques are widely adopted to reduce prediction un-
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certainty by calibrating model parameters or dynamically updating the model state variables using observations.
However, high computational cost, difficulties in mitigating model structural error, and low flexibility in
Crop yield framework development hinder its applications in large-scale agroecosystem predictions. In this study, we
Agroecosystem addressed these challenges by proposing a novel DA framework that integrates a Knowledge-Guided Machine
U.S. Midwest Learning (KGML)-based surrogate with tensorized ensemble Kalman filter (EnKF) and parallelized particle swarm
optimization (PSO) to effectively assimilate historical and in-season multi-source remote sensing data. Specif-
ically, we incorporate knowledge from a process-based model, ecosys, into a Gated Recurrent Unit (GRU)-based
hierarchical neural network. The hierarchical architecture of KGML-DA mimics key processes of ecosys and builds
a causal relationship between target variables. Using carbon budget quantification in the US Corn-Belt as a
context, we evaluated KGML-DA's performance in predicting key processes of the carbon cycle at three agri-
cultural sites (US-Nel, US-Ne2, US-Ne3), along with county-level (627 counties) and 30-m pixel-level (Cham-
paign County, IL) grain yield. The site experiments show that updating the upstream variable, e.g., gross primary
production (GPP), improved the prediction of downstream variables such as ecosystem respiration, net
ecosystem exchange, biomass, and leaf area index (LAI), with RMSE reductions ranging from 9.2% to 30.5% for
corn and 4.8% to 24.6% for soybean. Uncertainty in downstream variables was automatically constrained after
correcting the upstream variables, demonstrating the effectiveness of the causality linkages in the hierarchical
surrogate. We found joint use of in-season GPP and evapotranspiration (ET) products along with historical GPP
and surveyed yields achieved the best prediction for county-level yields, while assimilating in-season LAI ob-
servations benefitted the prediction in extreme years. Uncertainty and error analysis of regional yield estimation
demonstrated that KGML-DA could reduce prediction error by 26.5% for corn and 36.2% for soybean.
Remarkably, the GPU-based tensor operation design makes this DA framework more than 7000 times faster than
the PB model with a High-Performance Computing system, indicating the high potential of the proposed
framework for in-season, high-resolution agroecosystem predictions.
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1. Introduction

Cropland, covering 12-14% of the global ice-free surface, is a key
link in the terrestrial carbon cycle (Shukla et al., 2019; Lal, 2011).
Monitoring the dynamics of the carbon cycle in agroecosystems is
essential for carbon budget quantification, in-season crop management,
and nutrient management for sustainable agricultural production (Gan
etal., 2014; Wang et al., 2023; Dold et al., 2017). In-situ measurements
are the gold standard for ground-truthing carbon pools; However, the
lack of scalability and high cost of this method call for earth observation
(EO) technologies to quantify regional scale terrestrial carbon budgets,
such as gross primary production (GPP) (Jiang et al., 2021), above-
ground biomass (Liang et al., 2023), leaf area index (Kimm et al., 2020),
and crop yield (Lobell et al., 2015; Jin et al., 2019). Although remote
sensing-based methods provide possibilities for large-scale carbon
budget monitoring, their limitations are also obvious - only a few
components of the carbon cycle can be directly observed and the con-
tinuity of data is affected by cloud contamination and satellite revisit
frequency (Weiss et al., 2020). Meanwhile, researchers have long been
exploring simulations of agroecosystem carbon dynamics via process-
based (PB) models. State-of-the-art PB models possess reasonably good
extrapolation and transferability in time and space, and they have the
capability to simulate comprehensive and continuous processes. From
the first canopy photosynthesis model (Monsi, 1953) to more sophisti-
cated agroecosystem models (e.g., DSSAT, APSIM, and ecosys) (Jones
et al., 2003; Holzworth et al., 2014; Grant et al., 2020b), errors in the
model structure have been reduced as field knowledge evolves. How-
ever, it remains challenging to retrieve many field-level crop parame-
ters, aleatoric events (e.g., flooding, pests, and plant diseases), and the
management schedules of individual farmers (e.g., the timing of
planting, fertilization, and irrigation). Substantial parametric uncer-
tainty and input uncertainty have therefore been introduced into sim-
ulations by default, so that models fail to capture the spatiotemporal
variability of agroecosystems (Tao et al., 2018).

Data assimilation (DA), a well-known approach in model-data fusion
(Guan et al., 2023), is among the most promising ways to address these
uncertainties in simulations. Leveraging various readily accessible
remote sensing products such as evapotranspiration (ET), leaf area index
(LAI), and soil moisture (SM) (Jiang et al., 2020; Melton et al., 2022; Ma
and Liang, 2022; Li et al., 2022a, 2022b), DA is widely used to constrain
the predictive uncertainty in the agroecosystem (Huang et al., 2019; Jin
et al., 2018; Ines et al., 2013; Hu et al., 2019; Yang et al., 2023). The DA
approaches can be categorized into two groups: batch DA (for retro-
spective simulations) and sequential DA (for real-time simulations)
(Markovich et al., 2022). The essential distinction between these two DA
approaches lies in the manner of assimilating observations. Batch DA
methods, such as variational methods and smoothing methods, perform
global optimization for model parameters and initial states by fusing a
period of historical time-series data all at once, while sequential DA (e.
g., filter-based methods) ingests observations in real-time to update the
model states (which is more suitable for dynamic systems) (Bertino
et al., 2003). To maximize the value of historical and real-time data,
methods that jointly use both approaches have been developed to esti-
mate parameters and states simultaneously (Moradkhani et al., 2005b;
Kang and Ozdogan, 2019).

However, three major stumbling blocks still stand in the way of
large-scale high-resolution (e.g., 30 m) simulations of agroecosystems
via PB model-based DA. First, the computational challenge of traditional
DA frameworks: the large number of model runs (due to ensemble
members, iterations, and large-scale pixel-level simulations) entail
extremely high computation costs, especially for advanced PB models
(Wood et al., 2011; Bauer et al.,, 2021). Second, the challenge of
reducing structural error in PB model-based DA: a PB model is a syn-
thesis of state-of-the-art knowledge, but once it is developed, its struc-
tural biases are hardwired (i.e., model structural error will be fixed once
the model is developed), and correction requires comprehensive domain
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knowledge. Third, the challenge of developing a DA framework:
coupling sequential DA algorithms with detailed PB models is highly
intrusive (i.e., massive modifications for the PB model source code) and
inflexible. For a detailed model in which one target variable may
entangle with many intermediate variables, simply updating the target
variable may break the model consistency and result in a non-
convergence of estimates (Hu et al., 2017). Moreover, the DA frame-
work needs to be scrutinized and redeveloped when new observation
types are available to be assimilated, or an improved version of the PB
model is released. The inflexibility of the traditional framework greatly
hinders technological progress in fully mining information from multi-
source remote sensing data (Table 1).

The rapid progress of ML-based surrogate models may overcome the
first challenge by shifting large-scale simulation from CPU-intensive PB
models to GPU-intensive deep neural networks (Bauer et al., 2021).
Large-scale parameter calibration is becoming feasible thanks to the
ultra-efficient inference of surrogate neural networks (Zhou et al.,
2021a). A few preliminary attempts have been made to incorporate ML
into a sequential DA framework. For example, Cintra and de Campos
Velho (2018) and Wabhle et al. (2015) surrogated an ensemble Kalman
filter (EnKF) by neural networks to estimate the posterior covariance
matrix of predictions for atmospheric and ocean models, in which the
state vector is too large to calculate the Kalman gain. Certain works have
investigated using ML to quantify observation uncertainty in the DA
framework (Han et al., 2022). Notably, Brajard et al. (2020) developed
an integrated ML-based DA framework, although it is an implementation
of a toy model (an ordinary differential equation with one parameter).
Although pure ML algorithms may outperform traditional methods in
feature learning and inference speed, they have been criticized for their
poor interpretability which may lead to poor extrapolation and gener-
alization abilities (Shwartz-Ziv and Tishby, 2017). The low fidelity of
the ML-based surrogate model also limited its ability to assimilate
multi-source data (Table 1). As a result, a new technology that can
mimic the comprehensive intermediate processes of PB models is needed
to improve the fidelity of corresponding surrogates.

Knowledge-guided machine learning (KGML) is a new research
paradigm that has the potential to surrogate a complex system and
address the second challenge by introducing prior knowledge into the
neural network (Karpatne et al., 2022; Willard et al., 2022; Shen et al.,
2023). It leverages the strong feature-learning capability of machine
learning (ML) and the interpretability of PB models. This method en-
ables KGML-based surrogates to reproduce the causality and explicitness
of the PB models, rendering it capable of consuming multi-source data to
correct the model structural error. Pioneer achievements of KGML have
demonstrated five possible approaches to integrating knowledge: 1)
using a PB model-generated synthetic dataset to pre-train neural net-
works (Liu et al., 2022); 2) adding extra loss terms to the training
objective function to ingest knowledge from physical laws, such as mass
and energy balance (Jia et al., 2021) and kinetic partial differential
equations (PDEs) (Cuomo et al., 2022); 3) hardcoding knowledge into
network structures. For instance, concatenating a specific network layer
with a physical equation (or model) to force that layer to output desired
terms (Tsai et al., 2021; ElIGhawi et al., 2022); PDEs can be hardcoded
into the network via the Fourier approximation technique (Li et al.,
2020); 4) hybrid modeling via residuals learning (Zhang et al., 2019),
cascade coupling (e.g., using the output of ML as the input of a crop
model, Han et al., 2022), and interactive connection (Yang et al., 2020);
and 5) unsupervised representation learning and inverse modeling, for
example, learning model parameters via embeddings derived from a
self-supervised inverse learning neural network (Ghosh et al., 2022).

Although KGML sheds light on building high-fidelity surrogates,
methods to address the third challenge (i.e., DA framework development
challenge) remain uninvestigated. One reason is that most of the pre-
vious existing surrogates have only focused on limited target variables
and specific processes (Zahura et al., 2020). Their non-hierarchical
structure design outputs independent variables at the same level,



Q. Yang et al.

Table 1
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Comparison of different DA methods for addressing the challenges in large-scale agroecosystem modeling.

Methods Computational Model structure DA framework development
t
cos Fidelity Potential for error reduction Flexibility Extensibility
PB model- Low (requires comprehensive Low (massive modifications for Low (redevelopment needed
based High High domain knowledge for source code of a detailed PB for new observation types or
DA redevelopment) model) upgraded model)
ML-based Low (non-hierarchical; focus on Medium (address structural error Medium (without modifying
DA Low limited variables or processes; for specific process via surrogate model source code; independent Low (limited data interfaces)
lack of causality) fine-tuning) outputs reduce DA performance)
High (hi hical; replicat
KGML- '8 .( rerarchica’; repiicate High (Comprehensively adapt High (without modifying model High (reserve possible
multiple processes; causal . L. . .
based Low linkage among these ke model structure via surrogate source code; explicitly update the interfaces for potential data
DA & & 4 fine-tuning) hidden states of RNN) types)

processes)

Notes: Fidelity refers to how comprehensively and accurately the model represents and reproduces the behavior of the real-world processes; flexibility means how
flexibly the modeler can customize their own DA framework; extensibility refers to the ability that the DA framework adapt to new observation types that might not be

available currently.

resulting in a lack of causality between target variables that is important
to pass on information when an upstream variable is assimilated
(illustrated in Fig. S1). Another critical issue in addressing this challenge
is how to develop a surrogate neural network with the Markov property.
This characteristic enables the neural network to assimilate real-time
data, which means the surrogate should be able to explicitly inherit
the previous model status into the next time step (i.e., model states at
time t + 1 should depend only on the states from time t). It is a funda-
mental assumption of sequential DA that allows the model to carry the
information assimilated at time t. For state-of-the-art recurrent neural
networks (RNNs) that are used to tackle sequence data, the temporal
model states are implicitly stored in a tensor named “hidden state”
(Chung et al., 2014). Unfortunately, how to unlock the “hidden state” of
RNN to provide an explicit causal simulation for data assimilation is still
an unanswered question.

In this paper, we propose a KGML-based DA framework to simulta-
neously disentangle the aforementioned three challenges for large-scale,
high-resolution DA (Table 1). For demonstration purposes, we used an
advanced agroecosystem PB model, named ecosys (Grant, 2001; Grant
et al.,, 2011, 2020b), to drive the KGML-DA. A hierarchical surrogate
neural network with temporal awareness was designed to allow the
network to carry over the assimilated information. We integrated this
surrogate with tensorized EnKF and parallelized particle swarm opti-
mization (PSO) to effectively assimilate historical and in-season obser-
vations. To investigate the contribution of in-season and historical data,
we examined various DA strategies, including parameter calibration,
state-updating, and the joint use of both techniques. Using the Mid-
western US corn-soybean production system as a context, we tested the
framework by predicting carbon budgets at three agricultural sites,
along with county-level and pixel-level grain yield. Moreover, we
investigated the value of assimilating multi-source remote sensing data,
including SLOPE GPP, MODIS ET, and GLASS LAIL This framework
possesses three notable features: 1) efficiency, i.e., the framework is
capable of large-scale GPU-based parallel simulation; 2) flexibility and
extensibility, i.e., designing the surrogate structure should be easy and
flexible, and the DA framework should able to adapt to new observation
types that might not be available currently; 3) interpretable and has an
explicit calculation process for DA, i.e., we unlocked the implicit “hid-
den state” to provide the explicit updates of state variables. The KGML-
DA framework is not limited to predicting the carbon cycle of agro-
ecosystem, but has the potential to be applied to other ecosystems such
as forests and grasslands for water, carbon, and nutrient cycles
prediction.

2. Data and methodology
2.1. Study area and data

This study focuses on the major producing regions of corn and soy-
bean, known as the Corn Belt, in the Midwestern US. A total of 627
counties from 14 states were involved (Fig. 1). The data used in this
study can be categorized into four aspects (Table 2):

(1) Synthetic dataset generation. We randomly sampled 20,000
points from the corn or soybean fields over the study area to
capture the responses of ecosys to different climate scenarios and
soil conditions (Fig. 1). For each sampling point, corresponding
hourly weather forcing of NLDAS-2 from 1980 to 2020 and soil
properties from gSSURGO were extracted to drive the ecosys to
produce synthetic data (data with a superscript “a” in Table 2).

(2) Site-scale experiments. The performance of the KGML-DA
framework for estimating carbon cycle components was evalu-
ated on three AmeriFlux sites (US-Nel, US-Ne2, and US-Ne3
located in Mead, Nebraska) (Suyker and Verma, 2012; Jeffries
et al., 2020) (Fig. 1). The data being assimilated is the SLOPE
GPP, a daily 250 m remotely sensed GPP product that calculates
GPP for C3 plants (e.g., soybean) and C4 plants (e.g., corn)
separately, while other existing products neglect this distinction
and consequently tend to underestimate GPP for corn and over-
estimate for soybean (Jiang et al., 2021). The 250 m pixels of the
plot centers are not overlapped and have at least a two-pixel
buffer. The validation data includes eddy-covariance-based
fluxes, in-situ LAI and aboveground biomass. Data involved in
site-scale experiments was marked with superscript “b” in
Table 2.

(3) County-level yield estimation. Multisource remote sensing data,
including SLOPE GPP, MODIS ET, and GLASS LAI, were assimi-
lated to evaluate the proposed framework. The MODIS ET and
GLASS LAI were centralized to the mean of the open-loop simu-
lations prior to DA to mitigate their systematic underestimation
in cropland (Chen et al, 2018). The yield estimates were
compared against the NASS-reported yield. To aggregate the
pixel-level data to county-level, we extract pure crop pixels based
on Corn-Soy Data Layer (CSDL, Wang et al., 2020) (from 2000 to
2007) and USDA-Crop Data Layer (CDL, USDA, 2023) (from 2008
to 2020). Involved data were summarized in Table 2 with su-
perscript “c”.

(4) A 30-m version of SLOPE GPP was used for the 30-m yield
mapping. The 30-m soil properties (§SSURGO) (Fig. S2) and 1-km
gridded Daymet v4 climate data (Fig. S3) was used for driving the
model. Since wind speed data is not included in the Daymet
dataset, we downloaded the mean wind speed (2 m above
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Table 2
Datasets used in this study.
Datasets Use Descriptions References
Hourly weather forcing https://ldas.gsfc.nasa.gov
NLDAS-2 ac (0.125°) /nldas/v2/forcing
. . . https://nrcs.app.box.com/
gSSURGO ab, gr(;d:l‘; soil properties 115 folder/180
112652169
Eddy-covariance-based https://fluxnet.org/data/f
FLUXNET2015 b GPP, Reco, NEE, ET luxnet2015-dataset/
AmeriFlux b In-situ LAI and https://ameriflux.1bl.gov/d
BADM aboveground biomass ata/badm/
. . https://quickstats.nass.us
NASS yield c, d Counrt-level yield
da.gov/
SL;);)E GPP- b,c  Daily GPP (250 m) Jiang et al., 2021
8-day composite ET
MODIS ET c (500 m) Mu et al., 2011
8-day composite LAI .
GLASS LAI c (250 m) Ma and Liang, 2022
https://croplandcros.scinet.
USDA-CDL a, ¢, Crop data layer (30 m) ttps://croplandcros.scinet.
d usda.gov/
CSDL o d rcrgm'soy datalayer (30 o et al, 2020
Daily weather forcing https://daac.ornl.
Daymet-v4 d @ km) gov/DAYMET
SLOPE GPP-30  d Daily GPP (30 m) Luo et al., 2018; Jiang et al.,

2021

Note: use of a, b, ¢, d represent synthetic data generation, site-scale experiment,

county-level yield estimation, 30-m yield mapping, respectively.

ground) data from the NASA POWER Project (https://power.larc.
nasa.gov/). Related data was indicated by the superscript “d”.

To ensure the temporal consistency in the assimilated data, we
initially applied a Savitzky-Golay filter to smooth data with varying
temporal resolutions (daily: SLOPE GPP; 8-day composite: MODIS ET
and GLASS LAI), which was then sampled every 8 days to produce the
temporal consistent observations.

2.2. The process-based ecosys

In this study, we aim to build an extensible DA framework that offers
a wide array of data interfaces to assimilate possible observations, even
if such data is not currently available. The prerequisite for achieving this
goal is to utilize an advanced and holistic process-based model to guide
the training procedure of the hierarchical surrogate neural network.
Ecosys is one of the very few models dedicated to constructing
comprehensive biophysical and biochemical processes and interactions
for the soil-plant-atmosphere continuum (SPAC) system. It is an open-
source hourly model that simulates detailed fluxes and pools of water,
carbon, nitrogen, and phosphorus in the SPAC system, and has been
well-examined for various ecosystems including crops, forests, and
grassland (Grant, 2001; Grant et al., 2006; Mezbahuddin et al., 2020;
Zhou et al., 2021a; Qin et al., 2021). Unlike traditional crop growth
models (e.g., DSSAT, APSIM, and WOFOST) and soil biochemical models
(e.g., DNDC and DayCent) that mainly focus on a specific domain, ecosys
comprehensively integrates the crop/plant growth processes and soil
microbial activities with elaborate descriptions for the exchanges of
mass and energy and the chemical transformation of nutrients under
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diverse management practices. The sophisticated model structure makes
ecosys capable of accurately simulating the detailed subprocesses in
carbon, water, and nitrogen cycles (Grant et al., 2020a). For carbon
cycle components, such as the dynamics of croplands GPP, net
ecosystem exchange (NEE), ecosystem respiration (Reco), LAI, organ
biomass, and methane, ecosys simulations showed high consistency with
in-situ measurements (Zhou et al., 2021a; Chang et al., 2019). Ecosys
also has been intensively validated in simulating the nitrogen (N) cycle
dynamics, such as the N mineralization and plant uptake (Welegedara
et al., 2020), soil inorganic nitrogen dynamics (Li et al., 2022a, 2022b),
the nitri-denitrification processes and nitrous oxide (N,O) emission
(Yang et al., 2022). The main structure of ecosys was summarized in a
book chapter of (Grant, 2001). More details about mechanistic process
representations in ecosys can be found in the supplement of (Grant et al.,
2020a).

2.3. Developing the KGML-DA framework

2.3.1. Generating synthetic data

The surrogate model of ecosys is the core of the KGML-DA frame-
work. The requisite of establishing a high-fidelity surrogate neural
network is to generate a large synthetic dataset that includes the re-
sponses of ecosys simulations to various parameter combinations and
climate scenarios. To obtain model responses to different crop geno-
types, six yield-sensitive crop parameters were selected (refers to Zhou
et al., 2021a who conducted parameter sensitivity analysis based on a
surrogate neural network) and randomly drawn from their respective
uniform distributions to generate input files for the synthetic dataset.
Additionally, management inputs, including planting date and nitrogen
fertilizer (only for corn), are also perturbed. The ranges of parameters
for corn and soybean are listed in Table 3. The generated input dataset
was subsequently fed into ecosys to produce model responses for any
possible scenarios (the first 20 years of data were used for model spin-up
and the rest 21 years were used for generating a synthetic dataset).

Table 3

Yield-sensitive parameters selected for synthetic data generation. The sampling
procedure doesn't adhere to a specific fixed interval, making it possible to
sample any value within the range of variations.

Parameters  Descriptions Corn Soybean
Variation Default  Variation Default
range range

Fraction of leaf
protein in bundle [0.02,

CHL4 sheath 0.07] 0.05 - 0
chlorophyll
Rubisco

VCMX Carboxylation - ) [20, 90] 45
Activity (umol
g s

GROUpX ~ lantMaturity [15, 21] 17 [16, 22] 18
Group
Maximum
number of

STMX fruiting sites per [2, 8] 5 [2, 8] 4
reproductive
node
Maximum rate of

. [0.0003, [0.0003,

GFILL kernel ﬁ{l;ng (gC 0.0007] 0.0005 0.0007] 0.0005
kernel h™")
Specific leaf area [0.005, [0.005,

SLA1 kg ) 0.025] 0.018 0.02] 0.01
Planting date [105,

PD 121 125,1 1
(DOY) 145] [125,165] 40
Total nitrogen

NF fertilizer (g N [0, 24] 18 - 0
m %)

Note: “-” denotes the parameter is not perturbed and the default value will be
used.
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Finally, a synthetic dataset with 840,000 site-year data (20,000 sites x
21 years x 2 crops) was generated, which consists of 21 input variables
and 9 output variables (detailed in Table S1).

2.3.2. Hierarchical GRU-based surrogate neural network

There are two neural network components in the KGML-DA frame-
work: a main network for surrogating the process-based model, and an
autoencoder network (which will be introduced in the next section) for
conducting sequential data assimilation. The integration of knowledge
into the surrogate encompasses three aspects: First, the key processes in
the agroecosystem were hardcoded into the hierarchical structure but
flexibility was left for the surrogate to explore the complex intermediate
processes and interactions. We aimed to build a high-fidelity ecosys
surrogate by balancing the “exploration (for underlying laws)” and
“exploitation (for well-documented knowledge)” in neural network ar-
chitecture design, where a high-fidelity surrogate model means it in-
cludes more intermediate processes and inherits more knowledge from
the PB model. Second, a hierarchical network structural design was
employed to establish a causal linkage among key agroecosystem pro-
cesses. Specifically, we developed a hierarchical gated recurrent unit
(GRU)-based neural network to mimic the calculation process of ecosys
at a daily scale. Third, a large synthetic dataset described in the previous
section was used to impart prior knowledge to the surrogate.

We chose GRU (Fig. S4a), one of the variants of the RNNs, as the
building block of the surrogate for three reasons: 1) its high computa-
tional efficiency; 2) it has a similar performance with the state-of-the-art
long short-term memory (LSTM) networks but a simpler structure
(Gruber and Jockisch, 2020); and 3) its flexibility enables the con-
struction of a hierarchical structure using GRU cells. In the proposed
hierarchical GRU-based surrogate, the GRU cells can be grouped into
three concatenate layers (i.e., the bottom, middle, and top) based on
their functions (Fig. 2a). The bottom cells (cell-1 and cell-2) are sensitive
to the climate forcing data and represent the primary processes in the
SPAC system. Specifically, cell-1 simulates the crop phenology, a key
upstream state variable that controls the clock of the whole system. Cell-
2 models the carbon input (i.e., GPP) and aims to represent the light
inception and photosynthesis processes of the agroecosystem. Both cell-
1 and cell-2 are directly driven by the daily climate forcing, model pa-
rameters, and management information. The input and output of the
GRU-based surrogate were summarized in Table S1. The hourly climate
forcing in the synthetic dataset was aggregated into daily. Additionally,
LAI from the previous simulation step (t-1) is fed into cell-2 to constrain
the current photosynthetic capacity. Considering that evapotranspira-
tion and assimilation of carbon dioxide are deeply coupled and are both
controlled by the stomatal conductance associated with plant water
stress (Ball et al., 1987), cell-2 also simulates the ET and topsoil moisture
dynamics (0-30 cm) along with GPP.

The middle (cell-3) and top cells (cell-4) do not directly take the
driving data as input; instead, they take the hidden state (i.e., the in-
ternal representation that encodes the memory of the cell) as input
which is produced by the previous cells (Fig. 2a). This design ensures
that the upper cells are impacted by the high-level features extracted by
the previous cells (encoded accumulated environmental effects on the
crop), rather than by low-level fluctuating driving data. Specifically,
cell-3 takes the hidden states from cell-1 and cell-2 as input and models
the processes of respiration that are related to the carbon pool and
phenology. It estimates Reco and NEE fluxes and further predicts the
aboveground biomass, which is a high-level component in the carbon
cycle that integrates the assimilated photosynthate and carbon
consumed by respiration. As the top cell of the surrogate, cell-4 learns
the dry matter partition processes and then deduces LAI, which is
determined by the leaf matter and the specific leaf area (SLA, related to
phenology). This cell interprets all of the information flow distilled by
lower-level cells and ultimately outputs the crop yield. For each cell, the
daily values of the target variables (e.g., the GPP, ET, and SM for cell-2)
are explicitly decoded from its hidden state.
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Fig. 2. Architecture of the KGML-DA framework: (a) the hierarchical GRU-based surrogate neural network that mimics the key processes of the ecosys; (b) details of
the DVAE module to update state variables and hidden states; and (c) assimilating historical measurements for parameters re-calibration. A multi-task learning
strategy with nine loss terms was used to train each cell. The gradient was detached between cells to make each cell learn the specific biophysical processes.

The fidelity of the GRU-based surrogate to ecosys was evaluated from
two aspects: the accuracy of estimations and the surrogate responses to
model parameters. Specifically, the estimated output variables by the
surrogate (including phenological stage, GPP, ET, SM, aboveground
biomass, Reco, NEE, LAI, and grain yield) were compared against the
ecosys simulation in the test set of synthetic data. We evaluated the
model responses of four yield-sensitive parameters (GROUPX, CHL4,
VCMX, and SLA) between the surrogate and ecosys on a random site
(from 2000 to 2020). To capture the response curve, we evenly dis-
cretized the variation ranges of investigated parameters into seven
levels.

2.3.3. Autoencoder for sequential data assimilation

In a traditional PB model-based sequential DA framework, the prior
state variables will be replaced by the updated values explicitly, and the
information from observation at time t can be passed on to the rest of the
simulation. However, as we mentioned above, the temporal patterns of
state variables are encoded in the hidden state of the RNN-based neural
networks, which means explicitly updating state variables is impracti-
cable. A solution to address this issue is to reinitialize the hidden state at
every time step and use the target variables from the previous time step
as additional input (Xu et al., 2022). Nevertheless, reinitializing the
hidden state to zero will lose its temporal dependencies and hence this
method may not be suitable for variables that have a specific temporal
pattern or trend such as biomass, LAL and yield. In this study, we pro-
posed a deterministic variational autoencoder (DVAE) to interpret the
hidden state and to reconstruct the updated hidden state based on the

updated target variables after assimilating measurements (Fig. 2b,
Fig. S4b). As shown in Fig. 2b, the prior distributions of target variables
are approximated by the ensemble members y that are inferred by the
encoder. Then the posterior distributions of target variables (y) are
estimated using the EnKF algorithm given the measurements (detailed in
Section 2.3.5.1).

The encoder of VAE outputs the mean and standard deviation for
each latent variable and the latent distribution is constrained to be a
standard normal distribution. This strategy makes VAE a better extrap-
olation ability than autoencoder (AE) for which the latent space is
discrete and irregulated (Kingma and Welling, 2013). However, the
encoder of VAE may be hard to train because learning distribution is
more difficult than learning the mean vector only. To address this issue,
we deployed a DVAE without distribution learning but injecting noise
into the decoder to smooth the latent space. This strategy makes the AE
easy to train and keeps the advantages of VAE (Ghosh et al., 2019).
Specifically, y + e is fed into the decoder to reconstruct the hidden state
where the random noise ¢ follows a Gaussian distribution of
N(0,CV x u,). CV is the pre-set coefficient of variation (0.01 in this
study) and y, is the expectation of the target variables. The temporal
pattern encoded in the hidden state could be affected by crop and soil
parameters and fertilizer information; as a result, these inputs are
additionally fed into the decoder to reconstruct the updated hidden state
(Fig. 2b).

2.3.4. Training GRU-based surrogate and DVAE
The training of neural networks took place on the Pytorch platform,
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utilizing an NVIDIA RTX 3090 GPU. The surrogate and four DVAE (for
four GRU cells) were trained simultaneously using a shared batch of
synthetic data. To ensure that the DVAE gradients would not interfere
with the main network, the gradients of the output variables for each
GRU cell were detached prior to feeding into the DVAE. A total of nine
mean square error (MSE) losses corresponding to nine target variables (i.
e., phenological stage, ET, SM, GPP, NEE, Reco, Biomass, LAI, yield)
were used to train the main network, meanwhile, each DVAE was
trained by the corresponding reconstruction MSE losses. The initial
learning rate was set at 0.001, with a 4% decay rate for each epoch.
During the developing phase, the dataset was split into a training set
(81%)), a validation set (9%), and a test set (10%) to monitor the over-
fitting (training and validation losses shown in Fig. S5). In the imple-
mentation phase, both the training and validation sets (90%) were
utilized to train the surrogate neural network. The training was stopped
after 30 epochs when the validation loss oscillated near the minimum
value. The batch size for training is 256 and the Adam optimizer is used.

2.3.5. GPU-intensive data assimilation algorithms

2.3.5.1. Tensorized ensemble Kalman filter for state updating. We devel-
oped a three-dimension tensorized EnKF (t-EnKF) to update model states
via assimilating in-season observations. EnKF, a variant of Kalman filter
(KF), is the best-known sequential DA algorithm that uses the Monte
Carlo method to estimate the prior distribution of state variables for
nonlinear systems (Evensen, 1994). It automatically balances the con-
fidence of observations and predictions via Kalman gain. There are two
phases in EnKF: model prediction and state updating. For the prediction
phase, the prior distribution of state variables, including the mean of

state I"; and covariance matrices P{, are calculated from the predicted
ensembles x{l Assuming there is an observation vector y, with noise
covariance R;, the Kalman gain matrix (K,) is calculated as follows,

K, = P/H"(HP'H" +R,)"' 6))

where H is the transformation matrix to project states from the state
space to the measurement space. Then, the state vector x, can be updated
by K; and y,, and P, can be updated by K; as follow,

x¢ =x/ +K,(y, — Hx| +¢) @
+a -1 Ne 4

xz = Ne Zi:lx“' (3)
P =(I-KH)P, 4

where superscript a and f represent posterior and prior estimates,
respectively. € is the random noise (in this study we assumed thee = R;)
to mitigate the risk of the “filter divergence” issue. I is the unit matrix.
Egs. 1-4 are formulated without spatial subscripts, making them ver-
satile expressions applicable to pixel, site, or county-level simulations. A
total of 100 ensemble members were randomly generated by perturbing
the sensitive model parameters (Table 3) with a CV of 0.1, and the
observation frequency was once every eight days during the growing
season. We assumed constant observation errors for SLOPE GPP (1 g C/
m?-day), MODIS ET (0.5 mm), and GLASS LAI (0.4 m2/m?), corre-
sponding to 5%, 10%, and 10% respectively of their peak average values
during the vegetation growth period (approximately 20 g C/m2day, 5
mm, and 4 m3/m®). For ET and LA, the ratio of error to peak value was
assumed to be relatively higher (10%) due to the coarse resolution of
MODIS ET (i.e., 500 m) and the systematic underestimation of both
MODIS ET and GLASS LAI in cropland areas (Huang et al., 2015; Chen
et al., 2018).

Traditionally, both the state matrix x.; and P, have 2D shapes, that
are (Nsample> Mstate) aNd (Mseare, Nstare) TeSPectively, where nggnpe is the
number of ensemble members and ny. is the length of the state vector.
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For simulation tasks involving a large number of sites or pixels, the 2-D
matrix operation may have low efficiency when the parallel threads are
limited. To tackle this issue, we upgraded the EnKF (2-D matrix opera-
tion) to the t-EnKF (3-D matrix operation) by adding the number of sites
nge as a new dimension. The tensor operation is backed by the Pytorch
platform that allows the t-EnKF to enable GPU acceleration.

2.3.5.2. Parallelized particle swarm optimization for parameter
estimation. Before conducting in-season simulations using t-EnKF, his-
torical NASS yield and SLOPE GPP data were assimilated by PSO to
reduce the uncertainty of the parameters. A total of seven parameters for
corn and six parameters for soybean were selected as the uncertain pa-
rameters (Table 3). PSO is one of the evolutionary optimization algo-
rithms (considered as batch DA method) to search the optimal
parameter combinations for a large solution space (Kennedy and Eber-
hart, 1995), and the benefits of joint use of PSO and sequential DA
method have been demonstrated in common land models to reduce
predictive uncertainty (Zhang et al., 2021). It initializes a group of
particles (25 particles in this study) with random locations and velocities
to explore the solution space. The algorithm of PSO is relatively simple
and intuitive and its effectiveness and efficiency for the parameter
calibration of agroecosystem models have been widely validated (Jin
etal., 2017; Guo et al., 2018). The individual particles of the population
are independent, which means the optimization process can be run in
parallel using the GRU-based surrogate. Specifically, the first dimension
(i.e., the batch dimension) of the input tensor represents the particle
population. Therefore, simulating a generation of PSO particles needed
only one inference. The loss function of optimization is as follows,

loss = 10SSyielg + @ 10SSseason Gpp + B LOSSponmiy P 5)

where the lossy;q is the MSE between the estimated final yield and NASS
yield. 10sSseqson gpp and 10SSponehly gpp are the MSE calculated by the
accumulated GPP during the growing season and the accumulated
monthly GPP, respectively. o and p are the weight coefficients to
normalize the loss terms. In this study, o is 0.0067 (the reciprocal of the
total number of days in the growing season) and f is 0.033 (the recip-
rocal of 30 days).

2.4. Simulation experiment design

2.4.1. Site-scale experiments

The KGML-DA framework was evaluated at three agricultural sites
(US-Nel, US-Ne2, and US-Ne3) in the Midwest Corn Belt. Six target
variables, including GPP, ET, Reco, NEE, aboveground biomass, and LAI,
were evaluated against the ground truth data (the details of the ground
truth data are described in Section 2.1). Two different compositions of
the state vector of t-EnKF were investigated to test the effect of co-
updating and the benefits of hierarchical structure. For the first case
(Section 3.2.1), all the six target variables mentioned above were put
into the state vector to calculate the covariance matrices and they were
updated simultaneously after assimilating SLOPE GPP. For the second
case (Section 3.2.2), the state vector only included the GPP, ET and SM
from cell-2, and the rest target variables were supposed to be con-
strained by the information flow of the hierarchical structure. The crop
parameters of GROUPX and SLA were manually tuned to match the
magnitude of the maximum GPP and LAI for all three sites. For corn,
nitrogen fertilizer with 18 g N/m?> per year was applied before planting.
For the soybean field, no nitrogen fertilizer was applied in the
simulation.

2.4.2. Regional scale evaluation
2.4.2.1. Estimating county-level corn and soybean yield. A total of 627

counties in the US Midwest were selected to evaluate the KGML-DA
performance for crop yield prediction from 2000 to 2020 (Fig. 1). To
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tackle the inconsistent spatial resolutions, we developed a sampling
technique that aggregates pixel-level observations into county-level
data. Specifically, for each county, a maximum of 200 sampling points
(100 for corn and 100 for soybean) with a 240 m buffer (8 Landsat
pixels) were randomly selected each year from CSDL and CDL. We
assumed all the selected sampling points represent the pure crop pixels
thus the spatial inconsistencies were eliminated. The time series of
remote sensing products were extracted based on the sampling points,
and the results were aggregated to the county scale. Besides the SLOPE
GPP, we also investigated the utility of assimilating MODIS ET and
GLASS LAI for improving model performance during the whole period
(2000—2020) as well as during the extreme year (e.g., a severe drought
hit the Corn Belt area in 2012).

Assimilation strategies combining the EnKF and PSO were designed
to address the uncertainty from unknown input (e.g., management) and
in-season events (e.g., pest and disease) and the model's parametric
uncertainty. Fig. 3 demonstrates the strategies for parameter calibration,
where the calibration nodes (yellow square) provide prior model pa-
rameters for the next several years and the updating nodes (grey circle)
correct the current estimations based on the present in-season data. We
assess two approaches to assimilate historical data for the calibration
nodes. The first approach is to use a fixed interval (one-year and three
years intervals were evaluated) between two calibration nodes, and the
second approach uses all available historical data to retrieve the opti-
mum parameter combinations. The state-updating node is deployed by
default and it is always ready to assimilate observations. Common set-
tings of observation uncertainty (e.g., a fixed value or a percentage of
measurement) are non-dynamic and may lose representativeness for an
outlier. For instance, an abnormal observation with low uncertainty may
crash the simulation because the filter tends to accept the abnormal
measurement and reject the model prediction. We proposed a dynamic
observation uncertainty adaptation method to minimize the influence of
the abnormal measurements by increasing the preset observation un-
certainty when an observation significantly deviates from the model
prediction (pseudo-code shown in Table S2). Specifically, this method
detects the potential abnormal observation (i.e., the relative error of
model predictions and observation exceeds a certain threshold) and uses
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an inflation factor to increase its uncertainty. Estimated county-level
corn and soybean yield under different assimilation strategies (t-EnKF,
PSO, and the joint use of both) was evaluated by NASS yield data. To
consider the positive effect of technological advances on yield, the
average annual increment of NASS yield over the past 20 years was
derived to correct yield prediction starting at the midpoint of the cali-
bration period. Except for the sensitive crop parameters, planting date
(with a CV of 0.05) and nitrogen fertilizer amount for corn (with a CV of
0.1) were also perturbed to generate EnKF ensemble members. For cases
without parameter calibration, the mean values of the perturbed pa-
rameters were initialized by default values (Table 3); for cases utilizing
both historical data (PSO) and in-season data (t-EnKF), parameters
calibrated by PSO (described in Section 2.3.5.2) were used.

2.4.2.2. Mapping 30-m crop yield. To examine the effectiveness of the
proposed KGML-DA framework for pixel-level simulation of the agro-
ecosystem, we mapped the 30-m crop yield for Champaign County (II-
linois) from 2010 to 2013. The 30-m version of SLOPE GPP data was
generated based on the 30-m fused daily reflectance data (Luo et al.,
2018). The county-wise model parameters were calibrated by the his-
torical 250 m SLOPE GPP and NASS yield data, and they were imple-
mented to every pixel. And the state variables were updated by
assimilating the 30 m SLOPE GPP with an 8-day interval.

2.4.3. Uncertainty analysis of county-level yield estimation

Accurate quantification of the source of the predictive errors and
uncertainties is essential for modelers to better understand the weak
spots of the simulation so as to facilitate the improvement of the DA
schemes and model structure. In this study, we partition the total pre-
dictive error into the priori error and the residual error. We define the
priori error as caused by inaccurate prior information, in other words,
due to a lack of knowledge and awareness of the model state (e.g., un-
known information about microclimate, irrigation, flooding and fertil-
ization) and parameters. We define the best achievable performance
(BAP) as produced by a well-calibrated model after assimilating avail-
able data. So the priori error = error of open-loop simulation based on an
uncalibrated model - error of BAP. The residual error includes the model
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Fig. 3. Schematic diagram of the data assimilation strategies. The parameter is calibrated by the historical data (yellow square) using the PSO algorithm before the
simulation of the current year. The current observations are assimilated to dynamically update the state variables (grey circle). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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structural error, the irreducible error (i.e., introduced by inherent
randomness in the data), and the error introduced by limited observa-
tions. As a result, we quantified the priori error and the residual error by
comparing the prediction error before and after DA.

We also evaluated the predictive uncertainties that were reduced by
assimilating different combinations of remote sensing observations (i.e.,
SLOPE GPP, MODIS ET, and GLASS LAI). A hierarchical Bayesian model
(Fig. S6) was fitted by Markov chain Monte Carlo (MCMC) to further
partition the components of the prediction error and prediction variance
into a global mean p,, spatial effect y,, and temporal effect y, as follows,

Y, ~N(u,,0) (6)
Ho = Mg + 1y + 4, 7
e~ N (17, ®
o~ N (7)) ©
#~ N(uy,7,) (10)

where Y, represents the samples. We assumed the prior /lgfollows a

uniform distribution U(0, 60); ,u; and l‘/t follow a normal distribution
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N(0,1); T:g, 7, and 7, follow an exponential distribution Exp(10). The
posterior distributions of yg, 4 and y, were produced by MCMC with two
chains and 2000 draws.

3. Results
3.1. Fidelity of the GRU-based surrogate

3.1.1. Evaluating the approximation error of the GRU-based surrogate
Model fidelity is commonly used to indicate how well a model
mimics real-world processes. The higher fidelity of a surrogate indicates
a lower approximation error to the PB model. The output variables
include two components of the water cycle (ET and SM); three carbon
fluxes (GPP, Reco, and NEE); two carbon pools (aboveground biomass
and grain yield); phenological stage (DVS) and LAL Fig. 4 evaluated the
approximation error of the surrogate and showed good agreement be-
tween surrogate predictions and ecosys simulations, with R? of all target
variables ranging from 0.85 to 0.99. No significant biases were observed
for the surrogate predictions and the slopes of fitting equations were all
beyond 0.96. The results indicated that the GRU-based surrogate well
captured the ecosys' model responses of nine target variables in various
simulation scenarios. To further assess the out-of-sample performance of
the GRU-based surrogate neural network, we trained a surrogate using
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Fig. 4. Evaluation of the surrogate neural network for simulating (a) phenology (development stage); (b and d) components of the water cycle; (c, e, f, g, and i)

carbon cycle; and (h) leaf area index on the test set.
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synthetic data belonging to Iowa, Illinois and Indiana and then subjected
the surrogate to testing across the entire Corn Belt region between 2000
and 2020. The distribution of prediction RMSE is illustrated in Fig. S7.
Except for eastern North Dakota and northern Nebraska (both water-
limited regions), no significant increase of RMSE was observed in re-
gions beyond the “3I” states, indicating a credible out-of-sample per-
formance for the surrogate.

3.1.2. Comparison of model responses to crop parameters

To achieve better spatial-temporal generalizability and trans-
ferability, the proposed GRU-based surrogate takes crop and soil pa-
rameters as input to learn the model responses to parameter variation.
How the surrogate can reproduce parameter-induced responses consis-
tent with the PB model quantifies the fidelity of this surrogate. Fig. 5 and
Fig. S8 investigated the model responses to four crop parameters that are
sensitive to GPP, LAI, and the final grain yield. CHL4 and VCMX are
crop-specific sensitive parameters (Table 3), where CHL4 is only sensi-
tive to corn and VCMX is only sensitive to soybean. Results show the
responses of the GRU-based surrogate to the sensitive parameters agree
well with the responses of ecosys. With the increase of CHL4 (for corn)
and VCMX (for soybean), the yield responses of ecosys and its surrogate
both sharply increased at first and then approached a flat, because
higher leaf protein (CHL4 for corn) and rubisco activity (VCMX for
soybean) increases the productivity of carbohydrates until photosyn-
thesis is limited by light-dependent reactions. Plant maturity group
(GROUPX: defined as the minimum number of vegetative nodes initiated
before floral induction) influences the length of the growing season.
Both ecosys and the GRU-based surrogate demonstrated that higher
GROUPX postpones the phenological stage and produces higher GPP at
the crop reproductive stage. Higher SLA means more leaf area with a
fixed amount of leaf matter and thus significantly increases LAIL. A
discrepancy in the crop yield responses to SLA was observed between
ecosys and the GRU-based surrogate (Fig. S8) due to the relatively low
sensitivity to corn yield. These results indicate that the surrogate neural
network learned the patterns of behavior and response to the changing
environment and hence has high fidelity to the ecosys.

3.2. Site-level validation of the KGML-DA framework

3.2.1. Assimilating satellite-based GPP data

The performance of the KGML-DA framework for carbon budgets
simulation (including GPP, ET, Reco, NEE, aboveground biomass, and
LAI) was evaluated at three agricultural sites against the ground truth
data (detailed in Section 2.4.1). To examine the effectiveness of the
KGML-DA framework, we sequentially assimilated SLOPE GPP obser-
vations into the framework to update all target variables simultaneously
(referred to as the full updating strategy). Compared with the open-loop
simulation (i.e., the benchmark with no DA), the accuracies of almost all
target variables were improved after assimilating in-season SLOPE GPP
(Table 4). Specifically, the averaged root-mean-square error (RMSE) of
the three sites for the six target variables decreased by 21.7%, 9.2%,
14.4%, 10.4%, 30.5% and 17.8% on average, and R? increased by 9.3%,
13.1%, 4.8%, 13.1%, 6.7% and 24.6%, respectively. The benefit of
assimilating SLOPE GPP at US-Nel (i.e., continuous corn) is smaller than
the other two sites, where the LAI prediction was not improved and the
improvement for GPP, Reco, and biomass is slight. This is because the
SLOPE GPP at US-Nel interfered with the signal from US-Ne2 (corn-
soybean rotation) due to coarse spatial resolution, even if the pixels were
not overlapped. Significant reduction in RMSE of biomass and LAI
thanks to more accurate estimates of carbon fluxes. The updated LAI was
fed into cell-2 of the neural network on the next simulation day to close
this loop. In order to delve further into the behavior of priors (i.e., before
DA) and posteriors (i.e., after DA), we conducted comparisons using
predictions extracted on days when SLOPE GPP assimilation took place
(Table S3). Results show the model performance of posteriors only
slightly better than prior, indicating that there are no significant biases
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in the model's structure or the calibrated parameters (such biases could
potentially result in prediction deviations when no assimilation takes
place).

3.2.2. Passing information in the hierarchical structure

In Section 3.2.1, we listed all target variables in the state vector of t-
EnKF to update them by their correlation with the observed GPP.
However, updating a long list of state variables may jeopardize the
simulation due to the poor or even spurious correlation between vari-
ables (Hu et al., 2019). One of the notable advantages of the hierarchical
neural network is that the uncertainty of downstream variables will be
automatically constrained after correcting the upstream variable. For
example, assimilating GPP observations can benefit the downstream
variables (e.g., Reco, biomass, and LAI) based on the hierarchical
structure without putting the downstream variables into the state vector
of the t-EnKF. Fig. 6 shows an example (from 2001 to 2009, US-Ne2 site)
of the predicted trajectories of ensemble members after assimilating the
upstream variable GPP. In this case, the Reco, biomass, LAIL, and other
variables simulated by cell-3 and cell-4 of KGML-DA were excluded from
the state vector and not updated directly by the t-EnKF (referred to as
partial updating strategy). Thus, the information for constraining the
downstream variables only came from the hierarchical structure. Fig. 6
b-e show local details of the assimilation processes. Compared to the
open-loop simulations (green lines), GPP simulated by KGML-DA (red
lines) was significantly improved after assimilating SLOPE GPP product
(purple cycles) (Fig. 6b). The updated hidden states of cell-2 (carrying
the information of assimilated observation) were passed as the input to
the cell-3 (the downstream cell) and made the predicted Reco and
biomass closer to the ground truth (grey dots) (Fig. 6 c and d). Subse-
quently, the information carried by the hidden states of cell-3 was
passed to cell-4 and the LAI predictions were improved (Fig. 6e).
Notably, constraining the downstream variables via information flow
from upstream variables makes the estimated trajectories smoother,
whereas abrupt changes often observed when directly updating the
target variables via covariance of the state vector (Fig. 6 d and e). We
also compared the performance between the full updating strategy and
the partial updating strategy (which excludes downstream variables of
GPP). Results show that the partial updating strategy achieved better
performance for the non-stressed US-Nel site (where the correlation
between observations and state variables remains weak), as it propa-
gates fewer observation errors by avoiding updating an extensive list of
state variables via weak (even spurious) correlation. (Table S4).

3.3. Yield estimation of the US Corn Belt

The regional-scale performance of the proposed KGML-DA frame-
work for yield estimation was evaluated over 600 counties in the Mid-
west of the US from 2000 to 2020 using the NASS surveyed county-level
yield. The following sections investigated different DA strategies and the
contribution of the in-season and historical data.

3.3.1. Updating model states via assimilating in-season data

For this scenario we assumed no historical data was available and the
crop parameters for all counties were initialized by the default value. In
other words, the crop parameters were homogeneous, and the variance
of county-level yield estimations came from the climate forcing and the
heterogeneity of soil properties (§SSURGO dataset). Fig. 7 a-d show the
open-loop simulations that are only driven by climate data. The climate
forcing explained 37.8% variation in yield estimation for corn and
31.9% for soybean (Fig. 7 a and c). After assimilating in-season GPP via
t-EnKF, the R? improved to 0.521 for corn and 0.453 for soybean (Fig. 7
e and g). The accuracy of the multi-year averaged yield represents how
well the model captured the spatial pattern of the yield. Although the R?
of multi-year averaged yield was improved from 0.347 to 0.583 for corn
and from 0.151 to 0.318 for soybean, the RMSE was not significantly
reduced and the model overestimated yield for the low-yield county/



Q. Yang et al.
50
0 _===__,_---===:::::::J
— /," ‘
N
E
O 50 ////
30 i/
o] // II
A ’
2 1001 VA
< 4
/
U
-1504 7
cormn
0.02 0.03 0.04 0.05 0.06
CHL4
7.54 —
3“‘#
5.0 1 7
Py
= 2.5 f/
s /
@) S
5 0.0 /
& —2.5 1 ,9’
g
tols
—5.0 A /’,::/
75| S
w00 corm
16 17 18 19 20 21 22
GROUPX

ALAI (m2/m2)

. corn
0.0105 0.610 O.OIIS O.()I20
SLA
————— ecosys

Remote Sensing of Environment 299 (2023) 113880

20 1
~ 07
o
S
2, —20 -
N’
= ,
QL 04 ‘9
5 40 i
< ,’,/
60 - ('/
,I
0. soybean
20 30 40 50 60 70 80
VCMX
3.0
25 J
2.0 /,;ﬁ
= P
< /7 7
< 151 Vv
~ 7 7/
Q L5
ARE L
ﬁ-< /j/,
?5 0.5 1 ”/:’
2 e
0.0_ y //
i
-0.5 1 ,—$¢,
o R soybean
6 17 18 19 20 21 2
GROUPX
N
£
o
E
[S—
<
—
3
7
y soybean
0.005 0.010 0.015 0.020
SLA
GRUs surrogate

Fig. 5. Normalized responses of the surrogate neural network to the variation of four carbon-sensitive parameters. For plant maturity group (GROUPX), GPP re-
sponses were averaged during the reproductive stage (DOY 250 to 300); for the specific leaf area (SLA), LAI responses were averaged during the vegetative stage

(DOY 190 to 220).

11



Q. Yang et al.

Table 4
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Evaluating the proposed KGML-DA framework at three sites (US-Nel, US-Ne2, and US-Ne3) with eddy-covariance fluxes observations and auxiliary ground truth data
of aboveground biomass and LAI (from 2001 to 2007). For the t-EnKF cases, remotely sensed GPP was assimilated and all target variables are state variables in t-EnKF.

Target Variables US-Nel US-Ne2 US-Ne3

Open-loop DA Open-loop DA Open-loop DA

R? RMSE R? RMSE R? RMSE R? RMSE R? RMSE R? RMSE
GPP (gC/mz/day) 0.82 3.57 0.85 3.19 0.77 3.32 0.88 2.34 0.76 3.27 0.83 2.45
ET (mm) 0.57 1.60 0.64 1.45 0.53 1.56 0.63 1.37 0.48 1.49 0.51 1.40
Reco (gC/m2/day) 0.86 1.43 0.89 1.43 0.80 1.84 0.85 1.60 0.79 2.15 0.83 1.50
NEE (gC/mZ/day) 0.64 3.10 0.70 2.75 0.61 2.67 0.71 2.33 0.61 2.33 0.70 2.17
Biomass (gC/mz) 0.91 214.95 0.92 162.35 0.83 161.42 0.93 117.56 0.87 109.55 0.93 66.01
LAI (m?/m?) 0.77 1.16 0.74 1.40 0.58 1.85 0.86 1.16 0.60 2.33 0.77 1.47

Note: when a remotely sensed observation is assimilated on a given day, the updated value (i.e., posterior) is used. In cases where no assimilation occurs, the model's

initial prediction is used.
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Fig. 7. Scatter plots of the predicted yield versus NASS yield using the default crop parameters: (a-d) open-loop simulations; (e-h) assimilating in-season GPP via t-
EnKF. “All data” means all of the site-year data were evaluated. “Multi-year average” indicates that the temporal variation in yields has been averaged out, leaving

only spatial patterns. The colour bar indicates the density of data points.

year (Fig. 7 b, d, £, and h). This result demonstrated that only assimi-
lating in-season GPP mitigated the yield prediction error caused by
uncalibrated parameters; however, the spatial yield pattern was not well
captured.

3.3.2. Integrating prior knowledge via assimilating historical data

The spatial heterogeneity of model parameters can be derived from
historical data and used as a prior for the in-season simulation. Fig. 8
evaluated the yield estimations using parameters calibrated by all
available historical data (NASS yield and SLOPE GPP, described in
Section 2.3.5.2) with a frequency of every three years. The parameter
calibration is on top of the KGML-DA framework and prior to t-EnKF.
Compared to the open-loop runs with default global parameters (Fig. 7
a-d), errors induced by parameter heterogeneity were addressed by
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assimilating historical observations (for corn and soybean, the R? of
multi-year averaged yield was improved to 0.923 and 0.882; and the
RMSE was decreased to 9.633 and 2.979, respectively). Additionally
assimilating in-season GPP further improved model accuracy, with an R
of 0.620 and 0.632 and RMSE of 19.42 and 5.648 for corn and soybean,
respectively (Fig. 8 e and g), suggesting that assimilating the in-season
data can dynamically constrain the uncertainty induced by unknown
or stochastic events during the growing season. However, assimilating
in-season GPP did not improve the multi-year average (i.e., the spatial
pattern) of the yield for the investigated counties (Fig. 8 f and h), likely
because the spatial variation of yield is mainly interpreted by parameter
spatial heterogeneity instead of the in-season aleatoric events.

Fig. 9 shows the multi-year average carbon budget predicted by the
framework. The annual net biome productivity (NBP) was calculated by
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Fig. 8. Performance improved by the joint use of historical measurements (yield and GPP) and in-season GPP: (a-d) open-loop simulations with parameters cali-
brated by PSO algorithm using historical data; (e-h) utilizing all available data by integrating t-EnKF and PSO.
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Fig. 9. Multi-year average carbon budget of the Corn belt area. NBP was calculated using the estimated GPP, Reco, and yield. Areas with higher NBP indicated more
carbon sequestration. The metrics of GPP and yield were calculated based on the multi-year averaged SLOPE GPP and NASS yield.

deducing the crop yield and Reco from annually accumulated GPP.
Negative NBP was observed in the northwest of the Corn Belt area
(including east of North Dakota and South Dakota, and south of Min-
nesota), indicating that the agriculture in these areas is acting as a
carbon source and thus there is huge potential to improve carbon
sequestration through improving management.

3.3.3. Effect of the frequency of parameter calibration on hybrid data
assimilation

Different lengths of parameter calibration period were investigated
to evaluate the effect of parametric stability (Table 5). Lower bias was
observed for cases with a short calibration period. This is caused by the
linear yield trend correction described in Section 2.4.2.1. The adjusted
yield increment increases as the calibration period extends, and thus the
uncertainty introduced by the linear yield trend assumption is enlarged.
Using parameters calibrated by the previous year's data to initialize the
surrogate neural network produced the worst performance. This is
because the calibrated parameters will be prone to overfit the specific
scenario if only one year of data is available. In this circumstance, the
parameters may fluctuate through time (yellow lines in Fig. 10) because
the optimizer sacrificed the physical representation of these parameters
to compensate for the model structure and input error. Cases utilizing all
available historical data (progressively accumulated from the first year
to the previous year, Fig. 3) to calibrate parameters produced the best
results, with the R? higher than 0.57 for corn and 0.60 for soybean, and
the RMSE lower than 21.91 for corn and 6.19 for soybean. The trends of
parameters were more stable over time (black dashes in Fig. 10) in these
cases, indicating that the influence of extreme events on parameters can
be reduced by using long-term data to calibrate parameters. However,
using long-term data to calibrate parameters that exhibit a temporal
trend may cause a time-lag effect for the calibrated parameters (e.g.,
VCMX and STMX for soybean). Therefore, a hybrid method that uses

Table 5

different calibration periods for individual parameters should be
investigated to improve the parameter calibration.

3.3.4. Assimilating multi-source in-season remote sensing data

The proposed DA framework reserved multiple interfaces to assimi-
late potential observations. Table 6 investigated the model performance
with different combinations of multi-observations. For cases without
considering parameter heterogeneity, assimilating only GPP or LAI
sharply reduced the RMSE of yield estimation compared to the open-
loop simulation for corn (reduced by 5.9% and 17.0%). Involving
more types of observations tends to improve yield estimation. Assimi-
lating in-season SLOPE GPP, MODIS ET, and GLASS LAI all together
achieved the highest R? compared to other cases (0.53 for corn and 0.50
for soybean). Assimilating ET only slightly improved R? (0.42 and 0.37
for corn and soybean) but RMSE also increased (33.21 and 9.58 Bu/Acre
for corn and soybean).

For cases using the calibrated parameters as initial, the historical ET
and LAI data were not involved in the parameter calibration because
they were systematically underestimated for the cropland. Assimilating
in-season GPP and ET at the same time was only slightly better than
assimilating in-season GPP with the R? of 0.63 for both corn and soybean
and RMSE of 19.21 and 5.64 Bu/Acre for corn and soybean. Perfor-
mance degradation was observed after only assimilating ET or LAL This
is probably because of the inconsistent pattern of LAI and ET between
estimates and observations that may reverse the benefits from parameter
calibration. GPP data already provides information related to photo-
synthetic rate, canopy pigments and water status. As a result, the in-
formation between SLOPE GPP, MODIS ET, and GLASS LAI overlapped
and the benefits of additionally assimilating coarse ET and LAI are
limited for yield estimation. However, the accuracy of yield estimation
at the extreme year (2012) was significantly improved after additionally
assimilating ET and LAI (Table S5). This is because the model tends to

Effect of parameter calibration period on KGML-DA. Three calibration periods were investigated which are the previous year, the previous three years, and all historical

data (depicted in Fig. 3).

DA method Calibration period Corn Soybean
R? RMSE Bias R? RMSE Bias

PSO Previous year 0.36 28.31 —3.66 0.41 7.66 -1.00
PSO Previous three years 0.49 23.78 —5.96 0.53 6.77 -2.16
PSO All historical data 0.57 21.91 —8.05 0.60 6.19 —-2.16
PSO + t-EnKF Previous year 0.41 25.70 4.61 0.46 6.88 —0.04
PSO + t-EnKF Previous three years 0.55 21.04 3.99 0.56 6.21 -1.31
PSO + t-EnKF All historical data 0.62 19.43 4.64 0.63 5.65 -1.03
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Fig. 10. Evolvement of the mean value of key crop parameters with different lengths of the calibration period. The yellow lines, red lines, and black dash represent
the parameters that were calibrated by data from the previous year, the previous three years, and all available historical data, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 6
Model performance with different combinations of multi-observations for all county-year.
Initial parameters Observation types for t-EnKF Corn Soybean
R? RMSE Bias R? RMSE Bias
Open-loop 0.38 26.25 5.34 0.32 8.78 3.82
GPP 0.52 24.70 12.77 0.45 8.48 5.01
Default parameters ET 0.42 33.21 23.62 0.37 9.58 6.01
P LAI 0.50 21.80 3.11 0.40 8.91 5.25
GPP, ET 0.52 23.85 11.00 0.46 7.70 3.69
GPP, ET, LAI 0.53 23.28 10.07 0.50 7.87 4.46
Open-loop 0.57 21.91 -8.05 0.60 6.19 -2.16
GPP 0.62 19.43 4.64 0.63 5.65 -1.03
. LAI 0.43 25.16 -5.07 0.54 6.25 -0.37
Parameter calibrated by PSO ET 0.51 22.51 430 0.56 6.46 ~1.92
GPP, ET 0.63 19.21 4.25 0.63 5.64 -1.17
GPP, ET, LAI 0.46 24.05 4.15 0.56 6.14 -1.03
overestimate yield under extreme stresses and the joint use of all ET and LAI observation with higher resolution and accuracy, we con-
available data can improve the estimation of covariance matrices of ducted an Observing System Simulation (OSS) experiment (Curnel et al.,
state variables. To further investigate the value of assimilating potential 2011) using synthetic observations without error (Fig. S9). Fig. S10
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Fig. 11. 30-m yield map of corn estimated by open-loop and KGML-DA. The left subplots are the overall yield map of Champaign County, IL. The top right subplots
are the local view of the temporal variation of yield estimates in a selected area (black dash rectangles). Bottom right is the absolute error of averaged yield esti-
mation compared to the NASS-reported county scale yield. The result for soybean is shown in Fig. S12.
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shows that the estimated yield agrees well with the observed yield even
though only GPP was assimilated. Additional assimilation of ET did not
significantly help improve the yield estimation but assimilating LAI
helps correct the phenology and the yield in the early stage is signifi-
cantly improved.

3.4. Pixel-level yield mapping

To demonstrate the effectiveness of the proposed KGML-DA frame-
work for subplot-level simulation, we mapped the 30-m corn and soy-
bean yield of Champaign County, Illinois, from 2010 to 2013
(Fig. S11-12 and Fig. 11). The left subplots of Fig. 11 show the spatial
variability of the estimated yield in 2012, when the Midwest experi-
enced an extreme drought. Although accumulated precipitation of
Champaign County during the growing season of 2012 was not signifi-
cantly reduced (Fig. S3b), the severe drought happened in the pre-
season and July decreased the initial SM content and affected the
pollination of corn (Fig. S3a), which resulted in a low reported corn
yield (108.9 Bu/Arce). The open-loop yield map of 2012 is significantly
overestimated due to the model parameters not calibrated for extreme
events (the parameters calibrated by historical data), and its spatial
variability only comes from weather and soil properties.

In contrast, the signal of the in-season crop condition and the
extreme event could be captured by the 30-m SLOPE GPP data, and
assimilating this data reduced the bias in yield estimation (Fig. 11 shows
the absolute error of county-level corn yield was reduced by 9.5-21.5
Bu/Acre). To illustrate the details of the temporal and spatial variations
of the estimated yield map, Fig. 11 also shows a zoomed-in view of a
selected area in Champaign County. Compared to the open-loop simu-
lation, the KGML-DA pulled up the underestimated corn yield (in 2010,
2011, and 2013) and suppressed the overestimated corn yield (in 2012)
using the in-season information coded in the 30 m GPP. For soybean, the
result shows less benefit from assimilating 30 m GPP for yield estimation
(Fig. S12). In 2012, the reported soybean yield of Champaign County
was not significantly affected by the drought. This is because the

Remote Sensing of Environment 299 (2023) 113880

stomatal conductance and grain yield of soybean show less sensitivity to
the atmosphere condition than corn (e.g., VPD) (Lobell et al., 2014; Gray
et al., 2016), and the relatively late planting of soybean bypassed the
period with severest drought (during May to Jul., of 2012). However,
the observed soybean canopy greenness and GPP was reduced because
the plant transited energy from leaves to root and grains to resist
drought. As a result, assimilating the low GPP observation dragged
down the estimated soybean yield in 2012 even if the real yield was not
significantly affected (Fig. S12).

3.5. Uncertainty analysis of county-level yield prediction

3.5.1. Spatial-temporal effects of yield prediction error

The total yield prediction error (627 counties from 2003 to 2020)
was partitioned into three components, including the global mean y,,
spatial effect yi,, and temporal effect 4, by a hierarchical Bayesian model
(Dokoohaki et al., 2021). The posterior distribution of Hgs Hss and y, was
approximated by the MCMC algorithm. The sum of the expectation of s,
and y, represent the spatial pattern of the prediction error (visualized in
Fig. 12), which is important for modelers to improve the understanding
of the model responses to various climate and environmental conditions.
Compared to the open-loop simulations, the prediction error was
reduced after assimilating in-season data (Fig. 12 b1 and f1) in the south
of Minnesota, Iowa, Illinois, and Indiana (significantly reduced for corn
and slightly reduced for soybean). However, the prediction error in the
northwest and southwest region of the Corn Belt remains high mainly
due to the poor consistency of spatial pattern between SLOPE GPP and
NASS yield in these areas (e.g., the low yield was observed in north
Missouri but GPP is moderate, Fig. S13). The northwest regions have a
low annual air temperature and precipitation and the southwest regions
may suffer water deficit due to high evaporation demand (Zhou et al.,
2021Db). As aresult, the predicted yield was biased in these regions under
the assumption of homogeneous crop parameters. Compared to the flat
histograms in the cases with default parameters, calibrating parameters
by the historical data eliminates the spatial effect and the prediction
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Fig. 12. The spatial distribution (al-h1) and histogram (a2-h2) of the yield prediction errors (sum of the posterior global mean /Ig and spatial effect 4,): (a and €)

open-loop simulations; (b and f) assimilating in-season GPP with default parameters; (c and g) open-loop simulations with calibrated parameters; (d and h)

assimilating both in-season and historical data. ;lg and i are the expectations of Hg and pg, respectively.
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errors of all counties are homogeneous, resulting in a more concentrated
histogram (Fig. 12 c1-2 and g1-2). Assimilating both historical and in-
season data via t-EnKF and PSO increased the variation of errors due to
the introduction of the in-season observation uncertainty (Fig. 12 d2 and
h2). However, it also produced the lowest mean prediction error and the
hotspot areas with high prediction error were also addressed (Fig. 12 d1
and hl).

u, described the temporal pattern of the prediction error. Fig. 13a
shows the reduction in temporal variability of the prediction error
(standard deviation of ,u/[) compared to open-loop after DA. Assimilating
in-season data significantly improves the temporal robustness of the
model, with an 11.9% reduction of std. for corn and a 37.9% reduction
for soybean. The reductions of ,u/g (the expectation of u,) were depicted in
Fig. 13b. For corn and soybean, the error was reduced by 12.5% and
26.9% after assimilating historical data and further reduced by 14.0%
and 9.3% by assimilating in-season data. Leveraging the information
from both historical and present in-season data, the reduced priori error
was 26.5% for corn and 36.2% for soybean. The result validated the
effectiveness of the proposed DA framework and indicated the necessity
for assimilating both historical and in-season data to reduce uncertainty
in yield prediction.

3.5.2. Uncertainty reduction after assimilating in-season remote sensing
data

The variance of the predicted yield of the t-EnKF ensemble members
was partitioned into global mean, spatial effect and temporal using the
same Bayesian hierarchical model. The temporal effect of the
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uncertainty in yield estimation after assimilating different types of ob-
servations was visualized in Fig. 14. Compared to the open-loop simu-
lation, the uncertainty of yield prediction was reduced by 6.8-11.3 Bu/
Acre for corn and 1.1-2.0 Bu/Acre for soybean for the uncalibrated cases
after assimilating in-season GPP. Parameter calibration altered the
spatial pattern of yield prediction uncertainty (Fig. S14). This is because
the model responses to the parameters are nonlinear and the initial
values of the parameters significantly affect the prediction uncertainty.
No significant difference was observed in the magnitude of the yield
estimation uncertainty between only assimilating in-season GPP and
assimilating GPP and ET, indicating that ET has a limited contribution to
reducing uncertainty. In contrast, assimilating LAI further reduced the
uncertainty especially for soybean, with a range of 2.3-3.0 Bu/Acre for
the uncalibrated case and 2.6-3.7 Bu/Acre for the calibrated case. LAl is
more influential for soybean yield because soybean tends to partition
more dry matter to grow leaves. Although the uncertainty was reduced
by assimilating remote sensing LAI, the yield prediction error was not
effectively reduced (Table 6), likely because of the inconsistent magni-
tude between estimates and observation, the issue of mixed pixels, and
the challenges to quantifying observation noise. Hence, there is a need to
develop unbiased LAI products for croplands with a high spatial reso-
lution to reduce the uncertainty in yield estimation.

(a)
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Soybean -
0 1 2 3 4 5 6
Std of yj for different years (Bu/Acre)
Std reduced by historical data Remained std of U}
I Std reduced by present data
Corn -
Soybean -
0 5 10 15 20

[J;] for yield prediction error (Bu/Acre)

Error reduced by historical data L=
B Error reduced by present data

Priori error

Remained global error [y
(from epistemic uncertainty)

Fig. 13. Partitioning the contributions of historical and in-season data for the reduction of yield prediction error: (a) the standard deviation of y,. A higher value

indicated strong interannual fluctuation of prediction error; (b) y'g for yield prediction error. y, is the expectation of y,.
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4. Discussion
4.1. Data interfaces for multi-source observation

Nine target variables (including phenology, GPP, ET, SM, Reco, NEE,
aboveground biomass, LAI, and yield) were simulated by the proposed
surrogate neural network and each of them acts as a reserved data
interface to ingest possible observations. In this study, we only investi-
gated three remotely sensed observation types (i.e., GPP, ET, and LAI)
for regional crop growth simulation. Results demonstrated that the
improvement by assimilating in-season GPP was greater than ET and
LAL As an upstream variable in the hierarchical neural network, GPP is a
compound variable associated with processes of light inception (affected
by LAI) and the exchange of water and carbon (related to ET), thus GPP
already includes information related to ET and LAL Information from
the assimilated GPP observation can be passed to every downstream
variable to benefit the whole neural network. In addition to GPP,
thriving earth observation technologies and novel algorithms offer
possibilities to activate other upstream data interfaces, such as SM.
Microwave-based remote sensing technologies are considered to be the
most effective way to monitor global SM. However, the spatial resolu-
tion is coarse for SM products derived from the L-band passive radi-
ometer (e.g., 36 km for the products of Soil Moisture Active Passive,
SMAP; and the Soil Moisture and Ocean Salinity, SMOS) (Kerr et al.,
2010; Entekhabi et al., 2010). Although the resolution can be down-
scaled to 1-10 km by integrating data from synthetic aperture radars
(SAR) (Meyer et al., 2022), it is still too coarse to distinguish individual
crop fields. Recent studies demonstrated that fine-scale (up to 30 m) SM
with multiple layers could be predicted by ML using multi-source data
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such as weather, thermal, and topographic data (Zeng et al., 2019;
Vergopolan et al., 2021). And inferring subgrid-scale SM profile from
surface observation is promising via integrating PB models, ML, and DA
techniques (Heathman et al., 2003; Kornelsen and Coulibaly, 2014; Feng
et al., 2022). Meanwhile, the forthcoming NISAR (NASA-ISRO Synthetic
Aperture Radar, planned to launch in 2024) mission is set to feature an
advanced L-band instrument with a resolution of 3-10 m, making it
particularly suitable for achieving high-resolution mapping of SM
(Kellogg et al., 2020). Therefore, a comprehensive SM extension is worth
being developed in future research to constrain the water cycle of the
simulation by assimilating fine-scale surface SM data. Other than that,
deriving management practices are critical for further constraining the
predictive uncertainty. While extracting practices like planting and
harvesting dates, tillage, and cover crop adoption from remote sensing
data shows promise, the detection of certain crucial practices such as
irrigation, drainage, and fertilizer use remains challenging (Guan et al.,
2023).

4.2. Simulating hard-to-observe variables in the agroecosystem

The designed DA framework is general and it can be easily adapted to
specific tasks without changing the framework structure. This advantage
grants researchers high-level of flexibility to customize their own target
variables (Especially variables that are difficult to observe at the
regional scale) for each GRU cell. For instance, partition ecosystem
respiration into autotrophic respiration (Ra) and heterotrophic respi-
ration (Rh), and simulate evaporation (E) and transpiration (T) sepa-
rately. Monitoring the components of Reco and ET is critical for
understanding the natural ecosystem behaviors in the context of climate
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change (Xu et al., 2021). Ecosys provides hourly simulation for these
components; however, in-situ measurement methods such as chamber
(measure Rh) lysimeters (measure E), sap flow meters (measure T), and
isotope (measure E, T, Ra, and Rh) are expensive and difficult to upscale
to regional scale (Perez-Priego et al., 2017; Welp et al., 2008). Dynamic
simulation of the components of Reco and ET can be achieved by PB
ecosystem models (e.g., ecosys). However, there are still two main
stumbling roadblocks in simulating sub-fluxes of Reco and ET: 1) large
model structural uncertainty caused by a lack of understanding of the
interactions in the SPAC system and the trade-off between computation
efficiency and model complexity; 2) large uncertainty in input and
parameter due to the scarcity of ground truth data and the heterogeneity
of land surface. The proposed KGML-DA framework provides a prom-
ising path to address these challenges by balancing the prior knowledge
and multi-source data. Specifically, the parametric uncertainty can be
constrained by assimilating historical data and the overall uncertainty
can be reduced by assimilating the in-season data. The mass balance of
the decomposed components can be closed by a residual method
(assuming one of the fluxes in the balance equation is a residual term) or
additionally constrained by a mass balance loss. Except for assimilating
remote sensing data, point-level ground truth data can be used to fine-
tune the neural network and reduce the model structural uncertainty.
Due to the developed framework being capable of assimilation of real-
time data, the model performs at optimal and thus produces future
projections (using forecasted weather data) with the lowest uncertainty.
Therefore, it is also promising to deploy the proposed framework for
projecting the future carbon budget and provide guidance to optimize
field management.

4.3. Computational cost and large-scale spatial-temporal downscaling

The extremely high computation cost limits the implementation of a
traditional PB model-based (e.g., ecosys) DA system for large-scale
simulation. The computation demands increase exponentially if higher
spatial resolution is requested, making regional simulation nearly
impossible at the subplot level. This study upgraded the t-EnKF with the
3-D tensor operation so that the ensemble members for different sites (or
pixels) can be simulated parallelly. The shift of computation from CPU-
intensive to GPU-intensive greatly reduced the simulation time. A one-
year run of ecosys (i.e., the process-based model we used in this study)
takes 30 s for one site/pixel. While this run-time may be acceptable for
simulations conducted at the county level (Zhou et al., 2021a, 2021b;
Yang et al., 2022), the cumulative run-time will be astronomical for
large-scale pixel-level simulations. For example, assuming the ensemble
number is 100, at least 4 billion CPU hours are required for the tradi-
tional method to accomplish a twenty-year simulation on the cropland
of 3I states with a 30 m resolution (about 250 million pixels). In contrast,
the surrogate takes around 0.4 s per site for a one-year simulation.
However, the magic is that ensemble members from different sites can
be merged into the batch dimension, so a large number of cases can be
run in parallel on the GPU. The simulation time could be sharply
reduced by 3.75 million times on only one GPU with a batch of 500 x
100 (pixels x ensemble members), making it more than 7000 times faster
than a traditional DA framework run on a High-Performance Computing
(HPC) with 512 CPU cores. The computation time could be further
reduced by deploying the framework on high-performance GPU clusters
with a larger GPU memory so that a larger batch size can be imple-
mented for one inference.

The remarkable computation efficiency makes the KGML-DA
framework an effective downscaling tool for performing a fine-scale
simulation with high spatial-temporal resolution. Multi-source remote
sensing data with different resolutions can be tackled by hierarchical
simulation at different scales. Specifically, simulation can be run at the
county level, 500 m, 250 m, and 30 m respectively to assimilate multi-
source data. The coarse-level simulation provides regional means of
the target variables to the fine-level simulation as prior knowledge. The
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fine-level simulation explains the spatial variation on the basis of the
mean value from coarse-level simulation. Observations with different
time intervals constrain the temporal pattern of the target variables at
different scales. For example, the value of fine-scale estimates at the
observation date is directly constrained by high spatial resolution data
but with relatively long-time intervals (e.g., 30 m, 16-day products). On
the other hand, the temporal trend of the fine-scale simulations can also
be indirectly constrained by the more frequent but coarse data. As a
result, the downscaled estimates benefit from both the intertwined
multiscale data.

4.4. Exploring more flexible data assimilation approaches for
agroecosystem

The KGML-DA framework employed both PSO (i.e., batch DA
method) and t-EnKF (i.e., sequential DA method) to maximize the utility
of historical data and in-season present data. Historical data is valuable
for predicting the future because a variable in the past and future may
follow the same distribution or a particular pattern. Conversely, in-
season data is essential in addressing uncertainties arising from un-
known inputs and unforeseen events. The results of county-level yield
estimation (Section 3.3.2) and error analysis (Section 3.5.1) both indi-
cated that assimilating historical data outperforms open-loop simulation
by a large margin, demonstrating that the batch DA approach is a fast
solution to improve model performance. However, as the frequency of
climate-induced extremes increases, assimilating historical data alone
may bias predictions for extreme years, and assimilating both historical
data and present data is the only way to keep the prediction on track.

For the sequential DA method, we opted for the widely used EnKF to
assimilate multisource observations into the GRU-based surrogate due to
its simplicity and effectiveness. However, inherent limitations of EnKF,
such as its linear updating rule and the Gaussian assumption of state
variables and observation errors, could potentially undermine its per-
formance when applied to highly non-linear systems (Abbaszadeh et al.,
2019). To address this challenge, the particle filter (PF), a non-
parametric Bayesian filter, garnered attention among modelers due to
its suitability for addressing non-linear and non-Gaussian systems
(Moradkhani et al., 2005a; Jiang et al., 2014). Recent advancements
have led to the development of enhanced PF algorithms, specifically
tailored to mitigate the particle degeneracy issue found in traditional PF
methods. For example, the Evolutionary Particle Filter with MCMC
(EPFM) integrates a Genetic algorithm and MCMC to enhance particle
diversity (Abbaszadeh et al., 2018; Gavahi et al., 2020). As a result,
advanced DA algorithms that are more flexible to handle state variables
and observations with arbitrary distributions are worth being integrated
into our framework.

In this study, we designed a DVAE to assimilate in-season remote
sensing data (elaborated in Section 2.3.3). Compared to previous work
(Zhou et al., 2021a, 2021b) that utilizing historical and future data to
calibrate parameters of the ecosys model (i.e., even years for parameter
calibration and odd years for validation), the county-level yield pre-
dicted by our framework achieved similar accuracy without using the
future data (we are doing temporal extrapolation instead of interpola-
tion), indicating the effectiveness of assimilating in-season observations.
We also conducted a comparison with the work of Kang and Ozdogan
(2019), who integrated PB models with EnKF for yield estimation in the
Corn Belt and validated by field-level yield data. Our approach exhibited
lower RMSE values compared to theirs, as they reported RMSE values
ranging from 1.4 ton/ha to 2.3 ton/ha (equivalent to 20.8 Bu/Acre to
34.2 Bu/Acre). One major limitation of the proposed method is the
potential for information leakage once the hidden state has been
reconstructed, owing to the presence of reconstruction errors. One
possible strategy to bypass the hidden state reconstruction is to directly
update the hidden state. For example, Guen and Thome (2020) devised a
DA framework for video prediction which directly updated the hidden
state of RNN. However, directly implementing this method into an
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agroecosystem model is not feasible due to its assumption of linear
additivity in hidden state transitions and the limited number of state
variables in their context. Consequently, the pursuit of more robust data
assimilation approaches founded on deep neural networks warrants
further investigation in forthcoming endeavors.

5. Conclusion

This study established a novel KGML-DA framework that is capable
of assimilating historical and in-season multi-source data. As far as we
know, this is the first attempt to implement both sequential and batch
DA on a hierarchical surrogate neural network. This study demonstrated
a paradigm of KGML-DA framework to reduce uncertainty in multi-
variable simulations by leveraging knowledge from the PB model and
multi-source data. The causal relationships between target variables
were hardcoded into the hierarchical surrogate neural network to
streamline the inference flow and automatically constrained all con-
nected variables. The responses of the surrogate to driving data and
parameters were examined to make sure it was competent for replacing
the ecosys. This framework was first evaluated at three agricultural sites
and then tested in the Midwest Corn Belt for county-level yield esti-
mation and 30-m yield mapping. Additionally, uncertainty and error of
estimated yield were analyzed. The result shows updating the upstream
variable (e.g., GPP) improved the prediction of downstream variables (e.
g., Reco, NEE, biomass, and LAI) at three agricultural sites, indicating
the importance of the hierarchical structure for building the linkages
between target variables. For county-level yield estimation, assimilating
historical data addressed the parameter uncertainty and captured the
heterogeneous pattern of crop parameters. Involving all historical data
to calibrate parameters mitigated the effect of extreme events and thus
produced stable parameters. Initializing the surrogate neural network
with the calibrated parameters significantly improved the estimation of
multi-year averaged yield (R? was improved from 0.367 to 0.923 for
corn, and from 0.151 to 0.882 for soybean). Further assimilating in-
season data on the basis of the calibrated parameters achieved the
best performance by addressing the uncertainty induced by the sto-
chastic (or unknown) events. Results indicated that the proposed KGML-
DA framework is capable of accurately and dynamically simulating
various variables in the agroecosystem, and it is potentially more than
7000 times faster than the PB model. This framework is not subject to a
certain task (e.g., yield estimation) but can be extended to simulate the
variables that are difficult to observe at the regional scale and to
downscale the remote sensing observations to higher spatial-temporal
resolution.
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