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ARTICLE INFO ABSTRACT
Keywords: Agriculture contributes nearly a quarter of global greenhouse gas (GHG) emissions, which is motivating interest
Agroecosystem in adopting certain farming practices that have the potential to reduce GHG emissions or sequester carbon in soil.

Carbon outcomes
GHG quantification
System-of-Systems

The related GHG emission (including N3O and CH4) and changes in soil carbon stock are defined here as
“agricultural carbon outcomes”. Accurate quantification of agricultural carbon outcomes is the basis for
Soil organic carbon achieving emission reductions for agriculture, but existing approaches for measuring carbon outcomes (including
Nitrous oxide direct measurements, emission factors, and process-based modeling) fall short of achieving the required accuracy
Methane and scalability necessary to support credible, verifiable, and cost-effective measurement and improvement of
these carbon outcomes. Here we propose a foundational and scalable framework to quantify field-level carbon
outcomes for farmland, which is based on the holistic carbon balance of the agroecosystem: Agroecosystem
Carbon Outcomes = Environment (E) X Management (M) X Crop (C). Following a comprehensive review of
the scientific challenges associated with existing approaches, as well as their tradeoffs between cost and
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accuracy, we propose that the most viable path for the quantification of field-level carbon outcomes in agri-
cultural land is through an effective integration of various approaches (e.g. diverse observations, sensor/in-situ
data, and modeling), defined as the “System-of-Systems” solution. Such a “System-of-Systems” solution should
simultaneously comprise the following components: (1) scalable collection of ground truth data and cross-scale
sensing of environment variables (E), management practices (M), and crop conditions (C) at the local field level;
(2) advanced modeling with necessary processes to support the quantification of carbon outcomes; (3) sys-
tematic Model-Data Fusion (MDF), i.e. robust and efficient methods to integrate sensing data and models at each
local farmland level; (4) high computation efficiency and artificial intelligence (AI) to scale to millions of in-
dividual fields with low cost; and (5) robust and multi-tier validation systems and infrastructures to ensure
solution fidelity and true scalability, i.e. the ability of a solution to perform robustly with accepted accu-
racy on all targeted fields. In this regard, we provide here the detailed scientific rationale, current progress, and
future research and development (R&D) priorities to achieve different components of the “System-of-Systems”
solution, thus accomplishing the EnvironmentxManagementxCrop framework to quantify field-level agricul-

tural carbon outcomes.

1. Introduction

Agriculture contributes about a quarter of global greenhouse gas
(GHG) emissions, with approximately 14% directly from agricultural
activities and 10% through clearing land to create new croplands and
pastures (IPCC, 2014). In many countries with intensified crop pro-
duction, such as the United States (U.S.), GHG emissions associated with
soil and fertilizer management contribute to about half of the total
agricultural emissions (Clark et al., 2020). Reducing these emissions is
critical for limiting global warming to the Paris Agreement of 1.5 °C or
2.0 °C compared to preindustrial levels, and requires rapid adoption of
multiple and coordinated solutions (Bossio et al., 2020; Fargione et al.,
2018; Searchinger et al., 2019; Wollenberg et al., 2016). Certain farming
practices have the potential to reduce GHG emissions and/or increase
soil carbon storage, and we define changes of GHG or soil carbon
resulting from these farming practices as “agricultural carbon out-
comes” in this paper. These practices, which largely overlap with
“conservation agriculture” practices, are alternatively referred to as
“regenerative agricultural”, “climate-smart” or “carbon farming” prac-
tices. They include but are not limited to: no-till, cover cropping, pre-
cision nitrogen (N) fertilizer management, biochar and compost
application, enhanced mineral weathering, new crop rotations, agro-
forestry, controlled drainage and some edge-of-field practices (Beerling
et al., 2020; Fargione et al., 2018; Paustian et al., 2016). The urgency in
combating climate change and achieving sustainable development has
spurred climate-pledges by individual companies to cut their carbon
footprints (Pineda and Faria, 2019) and stimulate the growth of agri-
cultural carbon markets to incentivize farmers to adopt these practices
(Stubbs et al., 2021). Accurate quantification of carbon emissions and
removal resulting from adopting various practices is the basis for carbon
insetting and offsetting programs related to agriculture. However, the
existing scientific literature is not yet conclusive as to where, when, if,
and by how much these practices might lead to genuine GHG reduction
or carbon removal (Bradford et al., 2019; Ranganathan et al., 2020;
Smith et al., 2020).

While some may debate the effectiveness of these practices for GHG
reduction and carbon removal, various public and private sector ini-
tiatives are driving substantial investment in policy and incentivization
programs to motivate agricultural carbon outcomes, driven by strong
political, investor, corporate, and consumer pushes in the European
Union, the U.S., China, and other nations (Oldfield et al., 2022; Novick
et al., 2022). It is thus more urgent than ever for the scientific com-
munity to develop robust and scalable strategies for the credible quan-
tification of agricultural carbon outcomes. These estimates will form the
basis for assessment of the climate mitigation potential of these prac-
tices, and guide investment in incentivization tools, and perhaps more
importantly, to ensure the market rewards mitigation actions fairly and
accurately.

Here, we propose that field-level quantification of agricultural car-
bon outcomes is not only fundamental to a trustworthy, transparent, and

cost-effective agricultural carbon market, but also critical to any other
sustainability-oriented program for ecosystem services. The existing
literature has illuminated the scientific and technical issues and chal-
lenges related to the rigor of these assessments of carbon outcomes in
agricultural land (Paustian et al., 2019; Smith et al., 2020), but action-
able roadmaps and pathways to quantify field-level carbon outcomes are
scarce. From the scientific perspective, existing approaches, such as
direct measurement (e.g. soil sampling), emission factors, and process-
based modeling, face fundamental challenges that prohibit them from
achieving the accuracy, scalability, and cost-effectiveness demanded by
both public and private sectors of the society (Bradford et al., 2019;
Ranganathan et al., 2020; Smith et al., 2020). Given the growing de-
mand for solutions to the climate crisis, the market is eager to rely upon
existing and/or outdated quantification methods for rapid deployment
without sufficiently considering their accuracy or scalability. This poses
a major risk for large-scale public and private investment in market-
based emission reduction and carbon sequestration strategies in the
agricultural sector such as food/beverage supply-chain intervention,
carbon intensity of bioenergy feedstock, climate-smart commodity cer-
tification, carbon crediting, and carbon markets - the credibility of these
market-based emission reduction instruments, and the quantification of
their outcomes is foundational to their success. Thus there is an urgent
need to develop the right scientific tools for quantifying carbon out-
comes in working lands in order to minimize the risks of large-scale
public and private investment in initiatives that do not provide actual
climate benefits.

In this regard, we provide a framework for scalably quantifying field-
level agricultural carbon outcomes that addresses many of the issues and
uncertainty associated with the status quo approaches. Specifically, we
first discuss the criteria for a successful quantification solution (Section
2.1), then propose a new framework to scalably quantify field-level
agroecosystem outcomes (Section 2.2), and lay out the underlying
disciplinary foundation (Section 2.3), followed by identifying the sci-
entific challenges in existing approaches (Section 2.4). We then present
a “System-of-Systems” solution for achieving the field-level quantifica-
tion of agricultural carbon outcome in an accurate, cost-effective and
truly scalable way (Section 3). Finally, in Section 4 we propose an R&D
agenda that can substantiate not only agricultural carbon markets but
also sustainable indicators for agroecosystem management.

2. A foundational framework to scalably quantify field-level
carbon outcomes for agroecosystems

2.1. Criteria for a successful quantification technology for field-level
carbon outcomes

Effective carbon quantification technology applied at the field level
must be accurate, scalable, and cost-effective. “Field-level accuracy” is
needed if individual farmland’s carbon outcomes may be monetized in
the carbon market; it is also required for traceability of any aggregated
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carbon outcomes in supply-chain quantification (e.g. SCOPE 3 emis-
sion). “Scalable” here means that the quantification solution must have
an independently verified uncertainty measure across all possible loca-
tions; in other words, showing that a solution works well at a few
demonstration sites, as many existing Measurement-Reporting-and-
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Verification (MRV) efforts do, is not enough. Instead, true “scalability”
means one method must demonstrate an acceptable accuracy of the
solution at randomly selected real-world sites. Another benefit of
“scalability” is the potential to map the benefits of different possible
practice interventions across the landscape, so investments can be

Explanations of “Carbon Intensity” and “Carbon Credit”

Market-based emission reduction instruments have two main categories, one is based on the calculation of “Carbon Intensity” (defined as net
GHG emission per unit production, i.e. the ratio of net GHG emission dividing crop yield or crop biomass) for carbon inventory accounting, and
the other is based on net carbon emission reduction compared to baseline and project/intervention accounting, thus to generate “Carbon
Credits”. The examples of using “Carbon Intensity” are low carbon bioenergy feedstock and climate-smart commodity certification. Producers
with lower carbon intensity scores (or receive climate-smart certification) gain advantages on the marketplaces by selling their commodities
with a price premium. The buyers of these low carbon commodities, on the other hand, will be able to reduce carbon inventory in their supply
chains, i.e. reduce SCOPE 3 emission.

“Carbon Credits” are defined as the amount of the reduction, avoidance, or sequestration of CO» or GHG equivalent due to the adoption of new
practices, compared to the “business-as-usual” scenario (Stubbs et al., 2021). “One carbon credit represents one tonne of CO, removed from the
atmosphere or the equivalent amount of a different GHG (CO5e)” (Oldfield et al., 2021). There are a few key criteria to ensure high-quality
“carbon credits”: permanence/durability (i.e. accrued reduction or sequestration should last for a sufficiently long time), verifiability (i.e.
carbon credits should be verified by third party based on registry’s protocols), and additionality (i.e. carbon credits are generated due to the
change in practices or adoption of new practices).

In particular, “additionality” is an important criteria required by “carbon credits” but not necessarily by “carbon intensity”. “Additionality”
defined by the Greenhouse Gas Protocol (Ranganathan et al., 2004) is related to “whether the project has resulted in emission reductions or
removals in addition to what would have happened in the absence of the project”. Thus, the “additionality” requirement means that “carbon
credits” are quantified as the difference of carbon outcomes between counterfactual scenarios (e.g., with and without cover crops for the same
field) (Fig. 0). To better explain this point, we use a hypothetical corn-soybean rotation field in the U.S. Midwest to illustrate “carbon credits”
that can be derived by adopting cover crops with a ten-year commitment (Fig. 0). In the “business-as-usual” scenario, this field experiences SOC
loss over time as many other fields in the U.S. Midwest (Thaler et al., 2021). Adding cover cropping may not reverse the overall declining trend
of SOC in many cases, but can slow down the rate of SOC decline (Qin et al., 2023). The difference of the ASOC between these two scenarios is
the real carbon benefit (i.e. carbon credit) that the system generates in a period.

It is worth noting that in many literatures the “climate benefits” of a certain practice or intervention is defined in a similar way as “carbon
credits” that requires the quantification of outcome difference between counterfactual scenarios. A major debate of “additionality” for agri-
cultural sectors is that it excludes early-adopter farmers who have been adopting “climate-smart practices” from participating carbon credit
programs, because “additionality” only counts new adoptions of “climate-smart practices” (Oldfield et al., 2021). “Carbon intensity” does not
necessarily require the “additionality” criteria, as “carbon intensity” is meant to capture the actual net GHG emission rather than considering
differences from counterfactual scenarios.
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Fig. 0. Illustration of the “additionality” concept for agricultural carbon credit, using a hypothetical corn-soybean rotation field in the U.S.
Midwest as an example, assuming cover cropping is newly adopted in 2021 with a ten-year commitment. (a) Annual change in the SOC stock (i.
e. ASOC) since 2015, with hypothetical scenarios from 2021 to 2030. (b) Generated annual carbon credit from 2021 to 2030. (c) Change in
SOC stock over time.
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prioritized in places they are most likely to succeed. Though some
practitioners argue that aggregated-level accuracy is sufficient because
most market-based emission reduction mechanisms nowadays only
require carbon outcomes quantified at the aggregated level, we argue
that aggregated-level accuracy, which is almost impossible to validate,
must come from field-level accuracy. Finally, for any technology, there
is a tradeoff between cost and accuracy, and the desired solution should
be sufficiently cost-effective to achieve the needed accuracy (See Section
2.4).

2.2. A proposed framework of field-level carbon outcome quantification

Here we propose a foundational framework for the quantification of
field-level carbon-related outcomes for farmland based on the holistic
carbon balance of the agroecosystem, and captured in the following
equation (Fig. 1):

Agroecosystem Carbon Outcomes =

Environment (E) x Management (M) x Crop (C) M

Earth-Science Reviews 243 (2023) 104462

Here, “agroecosystem outcomes” generically include crop produc-
tivity and various sustainability-related metrics (e.g. GHG emission, soil
carbon sequestration, nutrient leaching); “agricultural carbon out-
comes” particularly refer to a specific group of agroecosystem outcomes
that is related to the changes in GHG emission (including N,O and CHy4)
and/or soil carbon stock due to the change in agricultural practices. To
calculate field-specific outcomes, three dimensions of information (E, M,
C) as well as their interactions (i.e. two “X” in the equation) must be
well represented at the field level. Specifically, E primarily refers to
weather and soil information, which is often available as public, gridded
products. However, these datasets may contain certain levels of uncer-
tainty at the field level (Potash et al., 2022; Zhou et al., 2021, Zhou et al.,
2023a), and strategic soil sampling and local sensing may be needed to
improve their accuracy; this is especially true when moving to a geog-
raphy without such public databases. M primarily refers to farmers’
management practices. Since certain “actions” determine the agricul-
tural carbon outcomes, both monitoring and auditing of M are needed.
The default methods to collect M information through farmer reporting

(a) Agroecosystem Carbon Outcome = Environment (E) x Management (M) x Crop (C)
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Fig. 1. Conceptual diagram of quantifying agroecosystem carbon outcomes at the field level for agroecosystems. (a) Agricultural carbon outcome is determined by
three factors, i.e. environment condition (E), management practices (M), and crop condition (C), as well as their interactions. (b) Accuracy of the quantification
methods improves significantly as more information is constrained at the field level. The example shown here focuses on quantifying net ecosystem exchange (NEE),
which is the net CO, exchange between land and atmosphere that can be measured directly with the eddy-covariance flux tower sites in the U.S. Midwest (Zhou et al.,
2021); the three scenarios refer to: (left) only using E information (i.e. weather and soil) as input in the carbon outcome quantification, (center) using both M (i.e.
field-level management practices) and E information for the carbon outcome quantification, and (right) using C (i.e. photosynthesis, yield, leaf area index), M, E

information together to drive or constrain the model.
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Fig. 2. The holistic carbon and nitrogen balance and its linkage with greenhouse gas emissions over annual row cropping farmland (a) and a mass balance based
approach to quantify the change of soil organic carbon (SOC) (b). GPP: gross primary productivity; Ra:autotrophic respiration; Rh: heterotrophic respiration; NEE:
net ecosystem exchange; DOM: dissolved organic matter; POM: particulate organic matter; MAOM: mineral-associated organic matter.

are largely inefficient, error-prone, and leads to privacy concerns (DelLay
et al., 2020). Recent advancements in remote sensing and geospatial
intelligence have unlocked an opportunity to generate accurate, unbi-
ased, and verifiable estimates for M (see Section 3.1). C refers to
location-specific crop information such as crop variety and interactions
with E and M, manifested in pheno-stages, maturity group, photosyn-
thetic capacity, crop water use strategy, crop responses to stresses, etc.
Obtaining C information at the field-level is extremely challenging, but
missing this information and especially how C interacts with E and M,
can lead to large uncertainties in quantifying agroecosystem carbon
outcomes (Fig. 1b, also see Section 2.3). Finally, even when we have all
the three types of information, the two “x” indicate that the outcome
quantification requires us to quantify the interactions among E, M, and
C; and such quantification is usually achieved through process-based
models (Section 2.4). Process-based models, in the current context of
quantifying agroecosystem carbon outcomes, have also been referred to
as “crop models” (more crop focused), “soil biogeochemistry models”
(more soil focused), and “ecosystem models” (largely combining the
above two). Despite a long history and rich literature, how to effectively
use process-based models in field-level carbon outcome quantification
remains unsettled in the scientific community (Riley et al., 2022), as
existing approaches have large uncertainties (Section 2.3).

2.3. A holistic view of farmland carbon balance and their connections to
the GHG emissions - the disciplinary foundation for field-level carbon
outcome quantification

A holistic perspective on farmland carbon balance is the foundation
for carbon outcome quantification (Fig. 2). From a systems perspective,
the change of carbon storage in the system is determined by the mass
balance of input and output carbon fluxes (Zhou et al., 2021; Smith
et al., 2008). Specifically for annual row cropping systems, soil organic
carbon (SOC) is the primary carbon storage pool, as other carbon pools

from plants will be harvested at the end of growing season. For typical
soils in farmland, carbon input is entirely from plant litter, including
both aboveground and belowground litters and root exudates (Preece
and Penuelas, 2020; Williams et al., 2022). Addition of carbon through
manure, composts, and biochar also contributes to the carbon input
when they are applied. The carbon output is primarily heterotrophic
respiration (Rh) from soil, with minor mass contribution from methane
emission, dissolved organic carbon (DOC) and dissolved inorganic car-
bon (DIC) leaching, photodegradation and soil erosion. At the annual
scale, carbon input (i.e., plant litter and root exudates) can be calculated
by plant photosynthesis (drawing CO from atmosphere to plants) minus
plant autotrophic respiration and harvested yield (or biomass), i.e. Litter
+ root exudates = GPP - Ra - Crop Yield (at annual scale) (Bernacchi
et al., 2005). The carbon output (i.e., Rh) is controlled by a cascade of
microbial decomposition of plant litter and transformation of different
SOC pools with varying residence times. Therefore, at the annual scale
or longer term for annual row crops, the change of SOC (ASOC) can be
quantified using the carbon mass balance approach as (Fig. 2b):

ASOC = (Input) — (Output)
= Litter + Root_exudates — (Ry_jier + Rir_sot) — &
= (GPP — R, — Crop Yield) — R, — ¢

= —NEE — Crop Yield — ¢ (at annual scale) (2)
in which - NEE = GPP - R, - Ry, and £ is the carbon leakage including CH,4
emission, DOC and DIC leaching from the field (¢ is a much smaller term
compared with others in Eq.2, and in most cases can be neglected,
though sometimes not). All the terms above are aggregated terms at the
annual scale. Based on the definition of Chapin et al. (2006), NBP = —
NEE - Crop Yield - ¢, where NBP is net biome productivity. Eq. 2 is thus
only valid at annual scale or longer time scales, when NBP can be used to
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approximate ASOC for annual cropping systems (>annual scale).
Biomass harvested besides Crop Yield (i.e. crop residue removal) is not
common in the U.S. Midwest row crop systems, and here we included it
in the generic “Crop Yield” term. For agricultural soils, both carbon
input and output vary from field to field due to the intrinsic heteroge-
neity embedded in E, M, C conditions, and accurate quantification of
both carbon input and output at the field level is thus required for field-
level carbon outcome quantification.

SOC dynamics can mediate emissions of other GHGs (N30 and CHy4)
from agricultural soils through several mechanisms (Fig. 2a). Meth-
anogenesis and many of the microbial processes responsible for N,O
production, such as denitrification (Butterbach-Bahl et al., 2013),
represent heterotrophic metabolisms that rely on SOC as an energy
source and a carbon source for biosynthesis. The decomposition of soil
organic matter also plays an important role in supplying inorganic N as a
substrate to fuel nitrification and denitrification, the two major N2O
source processes in agricultural systems (Fig. 2a). Even in fertilized
agricultural systems with large inputs of exogenous inorganic N,
mineralization of organic N contained in SOM can continue to endoge-
nously supply NHj for plant and microbial use (Mahal et al., 2019; Daly
et al., 2021). Nitrogen mineralization rates are controlled largely by the
C:N ratio of SOM (Booth et al., 2005; Yang et al., 2017a), with microbes
excreting NHJ into the soil when the C:N ratio of SOM is below mi-
crobial stoichiometric requirements. As such, N2O emissions tend to be
higher in agricultural systems that generate low C:N ratio plant residues
that decompose in the field, such as leguminous cover cropping systems
(Basche et al., 2014). Soil oxygen consumption during SOM decompo-
sition can also mediate N;O and CH4 emissions via the formation of
anoxic soil microsites conducive for anaerobic processes, such as
methanogenesis, denitrification, and dissimilatory nitrate reduction to
NHZ (DNRA), even in non-flooded soils (Von Fischer and Hedin, 2007;
Yang and Silver, 2016; Yang et al., 2017b). These anaerobic processes
can therefore be more important where higher quantity and quality SOC
supports faster SOM decomposition rates (Parkin, 1987), particularly
when soil aggregation and high soil moisture limit the diffusive supply
of oxygen into soil (Silver et al., 1999; Sey et al., 2008). Given that
higher quantity and quality SOM can potentially lead to greater N,O and
CH4 emissions through these distinct mechanisms, it is important to
account for how SOC influences soil emissions of these other GHGs to
capture fully the carbon outcomes of different agricultural systems and
practices.

2.4. Issues in the existing quantification methods

Based on the above framework and disciplinary foundations, we can
identify shortcomings of existing carbon outcome quantification
methods, including: (1) direct measurements, such as soil sampling for
SOC change (Norman and Allison, 1965; Smith, 2006; Wendt and
Hauser, 2013), and eddy-covariance technique to measure GHG emis-
sions (Baldocchi et al., 2001; Baldocchi et al., 1988); (2) emission factor
estimation, in which a fixed linear factor is used to approximate “carbon
outcomes” based on different management practices (IPCC, 2019); and
(3) process-based modeling (Ogle et al., 2010; Sandor et al., 2018).

Direct measurements have long been the primary tool for quanti-
fying carbon outcomes and have significantly advanced our under-
standing of carbon cycling in the agroecosystems, although they are in
general cost-prohibitive and thus not scalable. Specifically, direct mea-
surements, such as using soil sampling to measure changes in SOC
storage or using eddy-covariance flux towers to measure carbon fluxes
(e.g. photosynthesis and respiration), have been widely used to quantify
agroecosystem GHG flux and soil carbon dynamics at site levels
(Kucharik et al., 2001; Luo et al., 2017; Zhou et al., 2021). However, it is
impractical to collect direct measurements for every field due to the high
financial and labor costs.

While direct measurements of SOC through soil sampling and lab-
based soil tests have been widely perceived as the most trustable
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measurements to verify soil carbon outcomes, soil sampling has inherent
limitations. Conventional measurement of SOC stocks requires quanti-
fication of SOC concentrations and bulk density. Soil organic C con-
centration is measured by dry combustion, in which C is converted to
CO, for quantification by gas chromatography. Small sample sizes
(0.010-0.500 g) can challenge the accuracy of measurements if soils are
not properly homogenized. Measuring bulk density straddles field and
lab requires foresight to sample soils of a defined volume in the field
with subsequent lab-based measurement of water-free soil mass (e.g.,
oven-drying) to calculate density. Soil bulk density measurement can be
complicated by needing to account for non-soil components (e.g., roots)
in samples, adjusting for >2 mm size particles (e.g., gravel and stones),
avoiding compaction of soil during sampling, difficulty in comparing
across bulk density measurement methods, and acquiring samples at
subsurface depths. An ex-situ technology that has matured in the past
decade is laboratory optical and mid-infrared spectroscopy, which has
significantly reduced the cost of quantifying SOC concentrations as well
as labor-intensive SOC fractions (e.g., Tatzber et al., 2010; Gholizadeh
et al., 2013; Margenot et al., 2016; Sanderman et al., 2020; Sanderman
etal., 2021) and has been promoted by Global Soil Partnership of the UN
Food & Agriculture Organisation (Shepherd et al., 2022). Emerging
technologies such as in-situ spectroscopy (Wijewardane et al., 2020) or
geophysical measurements (Doolittle and Brevik, 2014) to estimate soil
C can reduce sampling cost, but their accuracy is significantly lower than
classical laboratory tests. The fact that spatial variation within any given
field can be larger than year-to-year changes in SOC contributes sub-
stantial uncertainty inherent in direct measurement of SOC stock
(Maillard et al., 2017; Stanley et al., 2023) (Fig. 3). As a result, soil
sampling is infeasible as a short-term (i.e. annual) quantification method
but is well positioned to set the baseline (i.e. measure initial SOC stock)
or periodic verification after 5+ years of practice changes (Schrumpf
et al., 2011; Smith, 2004).

While not a direct measurement, satellite or other remote sensing
techniques (particularly hyperspectral) have shown potential to monitor
SOC (Wang et al., 2022), but deploying these techniques for real-field
SOC monitoring remain challenging. This is because: (1) remote
sensing only detects soil carbon and associated soil properties at the soil
surface, not the the soil profile to full depth (Jobbagy and Jackson,
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Fig. 3. Soil sampling accuracy (i.e. minimum detectable change, in terms of
relative change in the SOC stock) as a function of the number of soil samples
and field sizes, which is much larger than the annual change of SOC stock in
reality (Maillard et al., 2017).
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2000); and (2) crop residues, green vegetation cover, and soil moisture
have a large confounding impact on spectral signals, thus making the
estimation of bare soil surface carbon concentration difficult in practice
(Wang et al., 2022a).

Moreover, direct measurement can not simultaneously measure
changes in SOC or GHG fluxes under a practice change versus a coun-
terfactual business-as-usual scenario, but both are needed for estimating
their induced “carbon credits” by definition (Fig. 0). Direct measure-
ments may be useful when paired experiments are properly imple-
mented in the same field — an approach which has not historically been
adopted by market systems. Using the cover crop adoption as an
example (Fig. 0), the “additionality” criterion for carbon credits requires
us to know the SOC stock in the two scenarios, one with newly adopted
cover cropping in which SOC stock can be directly measured, and the
counterfactual scenario for “business-as-usual” in which SOC stock can
no longer be measured directly, but can only be estimated through
modeling. Because soil sampling cannot measure ASOC that involves a
hypothetical “business-as-usual” scenario, the standard soil sampling
methods for assessing carbon credits are actually not able to directly
quantify the realized carbon benefits (e.g. carbon credit). This issue also
applies to other direct measurements (such as eddy-covariance flux
measurements), as the “carbon credit” quantification always requires
counterfactual scenarios for calculating the difference, and agricultural
practice inevitably has such a challenge unless farmers are willing to
carve out part of their field for two different practices to create the
counterfactual scenarios.

Emission factor methods are the most widely used approaches in
past IPCC reports (IPCC, 2019) and also the easiest method to use. While
useful for large-scale carbon emission accounting, they suffer from the
inability to capture spatial and temporal heterogeneity of E and C and
cannot comprehensively track the dynamics embedded in the in-
teractions between E, M and C. The assumption of the same (or a linear
scaling of) emission or sequestration outcomes based on a particular
“action” (M) across different fields is not only inaccurate, but may also
disincentivize farmers from participating in a carbon market. Emission
factor methods also assume constant crop conditions (C), while inter-
annual/decadal variability in crop and carbon budget could be signifi-
cant and not captured. Emission factor methods thus can be hardly used
for field-level carbon outcome quantification. For some recent efforts of
applying process-based modeling to generate emission factors for more
granular spatial and temporal scales (Cui et al., 2021; Wang et al.,
2020a), we treat that approach as “process-based modeling” in the next
section.

Process-based modeling has been regarded as the most mechanistic
method to quantify carbon outcomes. Since process-based models can
simulate “business-as-usual” scenarios and other counterfactual sce-
narios, this approach arguably addresses the counterfactual issues of the
direct measurement approach laid out above (Fig. 0) and can allow
direct calculation of the actual carbon benefit. Although there has been
an increase in the use of process-based modeling as the main approaches
to quantify agricultural carbon outcomes (e.g. Verra VMO0042 and
Climate Action Reserve Soil Enrichment Protocol) (Verra, 2020; Climate
Action Reserve, 2020b), existing modeling approaches have various
critical gaps to address, especially related to the absence of necessary
processes (see detailed discussion in Section 3.2) and the lack of con-
straints to reduce uncertainties in model parameters.

As to the latter point, few existing process-based models include
observational constraints, especially when applied to locations beyond
calibration/validation sites. The performance of process-based models is
ultimately determined by two groups of parameters, i.e. process-spe-
cific and location-specific parameters. Process-specific parameters
usually do not vary over space and time (e.g. the maximum microbial
denitrification rate, gaseous and aqueous diffusivities of O, and the
energy yield of aerobic respiration), therefore can be obtained through
calibration and validation based on extensive lab or field experiment
data. In contrast, location-specific parameters vary at different
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locations. Location-specific parameters are fundamental to the scal-
ability of process-based models. For example, photosynthetic capacity is
a variable that is spatially and temporally variant with a key control on
the photosynthesis process, unfortunately such a major carbon-related
process is missing in most process-based models currently used for
agricultural carbon quantification. For the limited number of models
that include the photosynthetic process explicitly, they are still using
crop-specific or even plant-functional-type-specific values of photosyn-
thetic capacity (i.e. maximum carboxylation rate; Vc,max) without
considering the variabity of photosynthetic capacity in space and time
(the common practice for now), which can lead to 21% error in esti-
mating photosynthesis (Luo et al., 2019). More broadly speaking,
location-specific parameters also include local information of model
inputs (such as weather and soil properties), boundary conditions, and
management practices at the field level, without which the field-level
accuracy is impossible to achieve. The lack of location-specific infor-
mation for both model input and model constraints thus is the largest
uncertainty in quantifying field-level carbon outcomes (Fig. 1b).

3. “System-of-Systems” solutions represent the most viable
pathway

For any technology used for carbon outcome quantification, there is
a tradeoff between cost and accuracy (Fig. 4). Although no clear crite-
rion has been established so far to accept or reject a technology, for any
quantification technology to be scalable, its per-acre operational cost
must be meaningfully lower or significantly lower than the expected
monetized carbon values from adopting climate-smart practices. In the
current U.S. agriculture carbon market with a carbon price of roughly US
$20/t COqe, for example, this criterion, based on the DOE ARPA-E
estimation (DOE ARPA-E: DE-FOA-0002250, 2020), means costs
should be significantly lower than $10/acre/year for soil carbon and
$50/acre/year for NoO quantification for large-scale deployment,
including installation, calibration, operation, and hardware lifetime and
at the same time, the technology should be able to achieve less than 20%
error at the field level (DOE ARPA-E: DE-FOA-0002250, 2020). No
single existing technology can meet both of these expectations. Instead,
we propose that a more viable path for quantification of field-level
carbon outcomes in agricultural soils is through an integration of sam-
pling, sensing, and modeling, defined as the “System-of-Systems”
solution.

The “System-of-Systems” concept means that the complex problem
of quantifying agroecosystem carbon outcomes cannot be solved by
using a single sensor or a model alone, but only can be solved by
effectively integrating various approaches (e.g. diverse observations,
sensor/in-situ data, modeling). Such a “System-of-Systems” solution
should simultaneously comprise the following features (Fig. 5): (1)
scalable collection of ground truth data and cross-scale sensing of E, M,
and C at the local field level; (2) advanced modeling with necessary
processes to support the quantification of carbon outcomes; (3) sys-
tematic Model-Data Fusion (MDF), i.e. robust and efficient methods to
integrate sensing data and models at each local farmland level; (4) high
computation efficiency and Al to scale to millions of individual fields
with low cost; (5) robust and multi-tier validation systems and in-
frastructures to test model/solution’s scalability, defined as the ability
of a solution to perform robustly with accepted accuracy on all
targeted fields. Thus the “System-of-Systems” solution is a holistic
framework including multiple sub-systems for sensing, monitoring,
modeling, and model-data fusion, targeting to assure field-level accu-
racy, scalability, and cost-effectiveness.

The “System-of-Systems” approach is so far the only pathway to
implement the mass-balance approach to quantify SOC changes, which
requires various localized observations and the integration of observa-
tions/data with models to accurately estimate each term in the mass-
balance equation and achieve the field-level accuracy. Compared with
existing approaches (Section 2.4), there are several advantages of using
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represents carbon loss from various sources, which is usually very small (<0.5%) and thus can be neglected in most cases.

the mass-balance approach to quantify the change of SOC. First, all of change of SOC. In contrast, soil sampling is generally not able to detect
the carbon budget terms (NEE, GPP, Ra, Rh, and Crop yield) are annual changes, as the uncertainty of soil sampling is usually much
measurable, although some being costly, and can be used to verify model larger than the annual change of SOC. Third, those carbon budget terms
accuracy and provide a basis for confidence. Second, all the carbon (GPP, Ra, Crop yield) for calculating the carbon input to soil (i.e. litter)
budget terms can be measured and verified at relatively short time can be estimated using advanced remote sensing technologies (see
scales, i.e. from sub-hourly scale (e.g. NEE, GPP, Ra, Rh) to annual time Section 3.1), which offers an efficient and scalable way to achieve the
scale (e.g. Crop yield), which enables the quantification of annual field-level observational constraints in a large region due to the



K. Guan et al.

ubiquitous coverage of remote sensing technologies. Fourth, the carbon
mass balance approach provides a holistic picture of the overall carbon
budget of farmland soils, which enables a mechanistic understanding of
differential impacts of management practices on SOC from field to field
and from year to year, thereby could help farmers to improve their
management practices along with the changing climate.

3.1. Scalable collection of ground truth data and cross-scale sensing of
field-level information

Scalably sensing/estimating local information of E, M, and C at the
field level is the first step of a “System-of-Systems” solution, which in-
volves two seemingly different but inherently connected tasks: (1)
ground truth collection, and (2) cross-scale sensing. Ground truth here is
broadly defined as information that is collected on the ground to train,
constrain or validate models. Agricultural ground truth is scarce and
expensive to collect. For example, collecting carbon flux data requires
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eddy-covariance flux towers, which are generally costly to set up (~
$100 K needed to set up) and operate. The need for ground truth data
is non-negotiable and should be a major investment with public
funding (see Section 4). However, we also have to face the reality that
even with low-cost sensing technology or crowdsourcing efforts, one
cannot collect ground truth for every field. Instead, we propose to
develop “cross-scale sensing” approaches, especially those enabled by
remote sensing, to scale-up “ground truth” collection to large scales.
Cross-scale sensing can be demonstrated by the most recent devel-
opment of deriving field-level photosynthesis information. Photosyn-
thesis is the only term for land carbon input and also the largest carbon
budget term (Beer et al., 2010). Ecosystem photosynthesis (i.e. GPP) is
the primary driver for crop litter (i.e. carbon input to the SOC) and thus
significantly contributes to the long-term change in SOC, as demon-
strated in Section 2.3. Correctly quantifying photosynthesis at the field
level puts significant constraint and reduces uncertainty on simulated
crop carbon dynamics, crop litter (including both aboveground and
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Fig. 6. Cross-scale sensing to generate photosynthesis information at the field level. (Top) The cross-scale sensing from leaf to canopy, and to regional levels for
estimating photosynthesis. (Bottom) A snapshot of field-level estimation of photosynthesis on July 10, 2020, derived from the large-scale SLOPE photosynthesis data
at daily frequency (Jiang et al., 2021), and the inserts show field-level spatial pattern over Champaign County, IL and a field-level daily time series of photosynthesis.
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belowground) and soil carbon dynamics (Li et al., 2021; Peng et al.,
2018a, 2018b; Zhou et al., 2021). A recent breakthrough in the remote
sensing of photosynthesis was made possible by full integration of leaf-
level chamber/sensor measurements, canopy-level hyperspectral
sensing (especially solar-induced fluorescence, SIF) (Berry, 2018; Kimm
et al., 2021; Porcar-Castell et al., 2021), and regional-scale mapping
through satellite fusion data (Fig. 6) (Jiang et al., 2021; Luo et al., 2018).
The cross-scale sensing here is guided by the domain knowledge of plant
physiology, radiative transfer modeling, and hyperspectral theories;
ground truth data - in particular, leaf-level samples and eddy-covariance
flux tower data - are extensively used in the model development stage,
but once the translation from ground-truth data to satellite-scale signals
can be robustly developed, satellite fusion data can expand the photo-
synthesis information for every single field every day since 2000 to
present (Jiang et al., 2021).

Another advance in cross-scale sensing is the use of intermediate
sensing to augment traditional ground truth collection, and enable the
scaling from leaf-level or plot-level ground measurements to coarse
satellite pixel size - a classic problem in the area of remote sensing. A
typical example is the use of airborne hyperspectral imaging (AHI).
Hyperspectral imaging can provide estimates of certain soil and plant
traits with high accuracy (Wang et al., 2022), although its application
for scalable mapping has been limited by its high cost. A novel use of AHI
is to treat AHI data as an intermediate bridge between ground truth
collection and satellite scale-up. A general procedure is to first develop
robust methods to translate AHI signals with targeted estimates (i.e.
surface crop residue, surface SOC, cover crop biomass) based on data
from intensive lab and field experiments; and then to use AHI as a
strategic sampler to selectively “sample” over space and time, serving as
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a bridge from granular resolution of ground truth to large satellite pixels;
and finally, to use satellite data overlaid with the AHI sampled area to
translate satellite multispectral signals along with environmental vari-
ables into plant and soil trait estimation, thus deriving targeted E, M, C
variables ubiquitously using satellite data. Though similar approaches
have achieved success in mapping forests canopy biogeochemistry
(Asner et al., 2016, 2017), they have rarely been used in agro-
ecosystems. Once advanced and automated pipelines are established to
conduct AHI collection and data processing (Wang et al., 2021; Zhou
et al.,, 2023b), AHI can be applied to estimate crop canopy nitrogen
content, cover crop biomass, and crop residue fraction and tillage
practices. Fig. 7 demonstrates how AHI is used to scale up the estimation
of crop residue fraction and tillage intensity at the regional scale. Other
sensing approaches, such as mobile vehicle sensing (Yan and Ryu,
2021), IoT sensing network and robotics (Elijah et al., 2018; Tzounis
et al., 2017), could also achieve a similar function to augment ground
truth collection and enable satellite scaling-up to regional scales. Table 1
provides a non-inclusive list of different critical E, M, C variables that
currently have been estimated using cross-scale sensing technologies.

3.2. Advanced modeling with necessary processes to support the
quantification of carbon outcomes

The “System-of-Systems” solution heavily relies on advanced
process-based models to simulate the complex carbon, nutrient, water
and energy cycles on farmland. There are many process-based models
with different levels of complexity available in the scientific community.
We envision that these modeling approach would benefit from following
the three principles below:
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Table 1
Major E, M, C variables that we can or will be able to derive based on cross-scale sensing technology.
Variables Typical upscaling framework Methodology Use Cases References
Maturity
E Local weather and its forecast IoT sensors — integrating with weather High Model input (Tzounis et al., 2017)
forecasting
Soil properties (e.g., soil types, soil Ground data — satellite Low Model (Entekhabi et al., 2010; Croft et al., 2012;
hydraulic properties, soil moisture, soil constraints Wang et al., 2022)
organic carbon)
M  Planting & harvest date Ground data — satellite Medium-high Model input (Weiss et al., 2020)
Tile drainage Ground/airborne surveys — satellite Low Model input (Khanal et al., 2017)
Tillage practices Ground data — airborne — satellite Medium Model input (Daughtry et al., 2006; Wang et al., 2023a)
Cover crop adoption/growth outcome Ground data — airborne — satellite Medium Model input/ (Thieme et al., 2020; Wang et al., 2023b;
constraint Zhou et al., 2023b)
Irrigation availability (e.g. existence ofa ~ Ground data — satellite High Model input (Salmon et al., 2015; Xie and Lark, 2021)

center pivot)
Irrigation water amount Model-Data Fusion

Nitrogen fertilizer use Currently challenging to acquire from

remote sensing, with satellite-based NH3

possibly shed some lights
C Crop types Mobile vehicle or survey — satellite

Photosynthesis (i.e. GPP) Flux tower — satellite

Agroecosystem water use (e.g. ET) Flux tower — satellite

Leaf Area Index (LAI) Ground data — satellite

Crop yield Ground data — satellite

Leaf traits (e.g., Photosynthetic capacity, =~ Ground data — airborne — satellite

nitrogen content, chlorophyll content)

Low to medium Model input (Lépez Valencia et al., 2020; Zhang et al.,

2021a, 2021b; Zhang et al., 2023)

Low Model input
High Model input (Cai et al., 2018; Johnson, 2019; Lin et al.,
2022)
High Model (Ryu et al., 2019; Jiang et al., 2021; Wu
constraint et al., 2019)
High Model (Anderson et al., 2011; Jiang et al., 2020)
constraint
High Model (Luo et al., 2018; Vina et al., 2011)
constraint
Medium Model (Guan et al., 2016, 2017, 2022; Cai et al.,
constraint 2019; Jin et al., 2017; Peng et al., 2018b,
2020Db; Lobell et al., 2015)
Medium Model input/ (Serbin et al., 2015; Wang et al., 2021)

constraint

(1) Have sufficient and necessary processes represented.
Coupled carbon-nutrient-water-energy cycling over farmland is the
foundation for field-level carbon outcome quantification, thus models
should include a sufficient number of mechanistic pathways that clearly
track the input, output and storage of water, carbon, nutrient and energy
in crop lands under the interference of agricultural management. For the
plant component, simulating the responses of crop carbon uptake and
water use to different abiotic and biotic stresses is necessary as they
largely determine the crop production and carbon input to the soil. From
this perspective, proper representation of canopy energy balance, sto-
matal conductance, uptake and transport of water and nutrients from
soil to canopy are needed to mechanistically simulate the crop carbon
and nutrient uptake and crop water use (Peng et al., 2018a, 2020a).
Many of the existing process-based models may lack critical processes or
use over-simplified processes to model specific carbon outcomes. One
obvious example, following our prior discussion on the importance of
the holistic carbon budget of agroecosystems, is that most existing
process-based models lack sufficient mechanisms that can model plant
carbon processes as emergent phenomenon (including GPP, Ra, Rh, and
litterfall), resulting in significant errors when quantifying the down-
stream ASOC. For example, lack of explicit modeling of photosynthesis
(Farquhar et al., 1980; Wu et al., 2016), plant stomatal responses to
environmental stresses (Buckley and Mott, 2013), and reproductive
processes for yield (Peng et al., 2018a) can cause huge uncertainty of the
modeled carbon input to the soil pools, contributing significant error to
the simulated ASOC. For the belowground part, soil temperature, water,
oxygen, and pH dynamics, biogeochemical reactions related to carbon,
nitrogen and phosphorus cycling, microbial activities and their regula-
tion on SOM formation and stabilization as well as GHG emissions are
core processes that need to be simulated. For example, recent studies
identified two distinct pathways of SOM stabilization from litter
decomposition, i.e. the DOM-microbial pathway (non-structural or sol-
uble compound in the litter) in the early stage of decomposition, and the
physical transfer pathway (brittle litter residue) in the final stage of
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decomposition (Cotrufo et al., 2015). This work emphasized the
importance of dissolved organic matter (DOM) and microbial activities,
and necromass in stabilizing SOM (Cotrufo et al., 2015). Having those
mechanisms and their interactions with related environmental drivers
(such as soil temperature, oxygen, moisture, and nutrient conditions)
well represented in the soil carbon models is essential to accurately
simulate the dynamics of SOC and its physical fractionations. Besides
these biophysical and biogeochemical processes, representing the
farming management practices and their impacts on coupled carbon-
nutrient-water-energy cycling over farmland is critically needed to
quantify the carbon outcomes.

Neverthless, there should be a good balance between model
complexity and practicality. Any model used for operational carbon
outcomes quantification should have necessary complexity and pro-
cesses, and new theoretical advances in science should be ultimately
incorporated into existing models to improve representations of relevant
processes. However, we also need to acknowledge that models with new
mechanistic representations are not always better than simpler models
in practice, especially when there is not enough data to constrain those
new mechanistic representations. When evaluating the appropriate
model structures for agricultural carbon outcomes, we should focus on
two fundamental questions: (1) Is a specific process indispensable for
simulating the specific outcome and also achieving the desired accu-
racy? (2) Is there sufficient data to parameterize that specific process at
both field and regional scales? If the answer to either question is no, then
including the new process may not necessarily benefit the quantification
of carbon outcome for now.

(2) Maximum use of mechanistic process representation. To
simulate biogeochemical and biogeophysical processes, many existing
models use multiplication factors (Schimel et al., 2001), law of the
minimum (Agren et al., 2012), and empirically-derived response func-
tions (Azizi-Rad et al., 2022), all of which are ad hoc by nature. One
consequence of these non-mechanistic modeling approaches is that
different researchers applying the same method to a given process will
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obtain different mathematical representations, which then lead to a
loose foundation to implement that particular process in these models
(Tang and Riley, 2017). Moreover, non-mechanistic representation
which lacks support from physical laws also limits the generality and
scalability of the model simulations, especially when a model is used to
extrapolate beyond the environmental and management conditions
under which the model is previously developed or calibrated. For
example, many models use the empirically-derived soil water stress
functions to depict the down-regulation of crop carbon uptake and water
use under water stress conditions, which causes inconsistencies and
discrepancies in multi-model intercomparison simulations (Egea et al.,
2011; Grant et al., 2006; Verhoef and Egea, 2014). A more mechanistic
way to account for crop soil water stress would be to explicitly represent
the plant-hydraulic-stomatal-photosynthetic coordination from soils to
plant, and to atmosphere (Grant, 2001; Woo et al., 2022). Similarly,
most models formulate soil carbon decomposition rate by assuming
different controlling factors independently and multiplicatively scale
the decomposition rate (factors including temperature, moisture,
chemical composition, and soil mineral content, etc); in reality, these
factors are interacting and intertwined following specific mechanistic
pathways to lead to decomposition rate, but very few existing models
include such interactions and mechanistic pathways (Tang and Riley,
2017). Another example is how the impacts of different tillage practices
are represented on soil physical and biogeochemical processes. From a
mechanistic perspective, tillage directly changes the mixing of soil and
crop residue as well as soil structure, which then affect soil biogeo-
chemistry (Bouskill et al., 2022; Shirley et al., 2022) and crop perfor-
mance through various mechanistic pathways (Grant, 2001). As such, all
other impacts on water, energy, carbon and nutrient cycles from tillage
are then simulated as an emergent outcome in a coherent way. In
contrast, some models represent the effect of tillage as direct modifica-
tion of evaporation flux and decomposition rates based on multiplica-
tion factors derived from empirical data (You et al., 2022; Yu et al.,,
2020), which introduces excessive parametric uncertainty and strong
context dependence on the empirical data used for model
parameterization.

(3) Simulate as many measurable variables as we can, such that
the model simulation can be thoroughly validated, and measurable
constraints can be easily incorporated to further improve the
model simulation. For example, as discussed in Section 2.3, GPP
largely determines the carbon input to the soil (through litter and root
exudates), and crop yield are major carbon outputs from cropland, thus
models with observational constraints from ground or satellite measured
GPP and/or crop yield will unsurprisingly outperform models without
such constraints. From a mass-balance perspective (Eq. (2), Fig. 2), GPP
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could serve as a particularly strong constraint for quantifying litter and
root exudates, two critical carbon cycle components that have signifi-
cant spatial heterogeneity but are hard to measure (Fig. 8). Another
example is the recent paradigm shift from using conceptual and non-
measurable SOC pools to using measurable SOC fractions for SOC
simulation in process-based models (Abramoff et al., 2018; Abramoff
et al., 2022; Cotrufo et al., 2013; Robertson et al., 2019; Zhang et al.,
2021a, 2021b). SOM is a complex mixture of materials with heteroge-
neous origins, chemical compounds, microbial accessibility, and turn-
over rates (Schmidt et al, 2011). Physical fractionation of SOM
differentiate particulate organic matter (POM) and mineral-associated
organic matter (MAOM, stabilized and exchangeable), which all are
measurable in the laboratory and have different characteristic residence
times (Cotrufo et al., 2019; Lavallee et al., 2020; Lugato et al., 2021).
Beyond the change in total SOC, quantifying the changes and distribu-
tions of POM and MAOM may help address the permanence issue of soil
carbon credit. However, most previous soil carbon models simulate SOM
dynamics as non-measurable fluxes between conceptually defined and
non-measurable soil carbon pools (Robertson et al., 2019). Only if POM
and MAOM are properly conceptualized and represented in the models
can they be used to simulate the changes of those SOM fractions and can
measured SOM fractionation data be used as direct constraints for
models (Guo et al., 2022).

3.3. Model-data fusion with accuracy and robustness at individual fields

Model-data fusion (MDF) here refers to a set of techniques that
reduce the uncertainty of states and parameters of process-based models
or data-driven models (e.g. statistical model or neural networks) using
local information (i.e. field-level E, M, C data) to obtain improved
estimation of carbon outcomes (Fer et al., 2018). MDF also has the
ability to evolve by incorporating new sensors/sensing data or new
model developments to this framework.

MDF is the core part of the “System-of-Systems” solution, with the
basic rationale that available observations can only see part of a system,
but a model that has the necessary processes can leverage available
observations to help constrain the overall system and thus improve
prediction accuracy for the processes that observations do not see. The
most successful example of MDF is weather forecast - the integration of
weather models with satellite observation - leading to its everyday use
by different industries (Bonavita et al., 2016; Geer et al., 2018). MDF is
not a new concept in earth science and ecological studies (Fer et al.,
2021; Luo et al., 2011), as methods such as Bayesian Inference, Data
Assimilation, and Emergent Constraint have been extensively used to
improve various predictions at some sites, watersheds, or relatively
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Fig. 8. GPP is closely linked with soil carbon input, i.e. litter and root exudates, and thus directly affect change of SOC (Grant, 2001). This site-level sensitivity
analysis is conducted over three sites with different environmental and soil conditions in northern (Site 1), central (Site 2) and southern (Site 3) Illinois using the

ecosys model (Zhou et al., 2021, Zhou et al., 2023a).
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coarse spatial grids (Dietze et al., 2018; Kalnay, 2003; Reichle, 2008);
however, the use of MDF for field-level carbon outcome quantification
has many new requirements.

We propose a new MDF approach to enable MDF being conducted at
every individual field level, while also quantifying critical components
of the carbon cycle to inform both science and management practices.
Essentially, for every field in a targeted region, cross-scale sensing
(Section 3.1) provides high-resolution and spatially-explicit E, M, C
observations, which are then used as either inputs or constraints for a
model with necessary processes represented (Section 3.2), and a set of
location-specific parameters will be constrained for every field. By
doing so, carbon outcome quantification allows the uncertainty quan-
tification at every field, and model verification at every field is also
made possible when extra carbon-related observations can be used as
independent validation data. This MDF approach to enable high-
resolution and spatially-explicit model constraining represents a major
advance over any of the existing quantification protocols (Climate Ac-
tion Reserve, 2020b; Verra, 2020) that only require validation at the
regional scale. This new MDF approach fulfills the model validation
needed to test whether a model or a solution has true scalability, which
was defined earlier as the ability of a model to perform robustly with
accepted accuracy on all targeted fields. Only models that can reproduce
the accepted ‘accuracy’ at any random fields can be used as an accepted
MRV tool for agricultural carbon outcome quantification.

Meanwhile, such a new MDF calls for new computational techniques,
as the conventional implementation of MDF techniques (e.g. Bayesian
Inference, Data Assimilation) would be too computationally expensive
to handle the field-level MDF. Take Champaign county in Illinois alone
as an example, it has ~12,000 fields in active cultivation; and the state
of Illinois has ~1,000,000 fields in active cultivation; conducting
intensive MDF using traditional implementation for each of these fields
is infeasible. Moving to Al-based solutions and fully leveraging GPU
computing to facilitate efficient and effective scale-up of the field-scale
MDF over a broad region is the only path forward, which will be dis-
cussed further in Section 3.4.

3.4. High computation efficiency and Al to enable scaling to millions of
individual fields

Scaling a System-of-Systems solution to all the individual fields with
similar accuracy and at a low cost is a twofold problem: (1) cross-scale
sensing to generate rich E, M, C information for constraining various
aspects of agricultural carbon cycles (Peng et al., 2020a) (as discussed in
Section 3.1); and (2) scalable application of MDF over millions of indi-
vidual fields (as discussed in Section 3.3). To reduce the computation
cost to scale up, both problems require the inclusion of Al and a tran-
sition from CPU-heavy to GPU-heavy models on supercomputing or
cloud-computing platforms for massive deployment. Below we will
specifically discuss three pathways to help realize the upscaling of MDF,
spanning across a spectrum of different levels of integrating process-
based models with Al

Pathway 1: The most straightforward path to reduce model uncer-
tainty is to use MDF to constrain model parameters. However, the high
computational cost of parameter optimization limits the scaling of MDF.
A feasible bypass without massive re-coding is to leverage deep learning
algorithms and develop GPU-based surrogate models. Forward inference
of deep neural network-based surrogates can be orders of magnitude
faster than CPU-based process-based models, making them particularly
suitable for parameter calibration (Brajard et al., 2021; Fer et al., 2018).
Successful applications have been reported in hydrologic (Tsai et al.,
2021) and Earth system models (Asher et al., 2015; Lu and Ricciuto,
2019), this strategy is also practiced in other complex systems such as
agroecosystem (Zhou et al., 2021) and climate models (Couvreux et al.,
2021).

Traditional parameter optimization algorithms work by iteratively
searching for the optimal parameter combination to minimize an
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objective function (e.g., RMSE), but may get stuck at random local op-
tima where multiple parameter combinations correspond to identical
model outputs. If parameters are calibrated for individual pixels, this ill-
posed issue may lead to a discrete spatial distribution of the target pa-
rameters. Recently, neural network-based parameter learning methods
have demonstrated promising possibilities to address this issue without
a searching procedure (Reichstein et al., 2019; Schneider et al., 2017).
For example, the differentiable parameter learning framework devel-
oped by Tsai et al. (2021) enables the inference of model parameters by
an unsupervised parameter learning network, which was automatically
constrained by the surrogate network to produce reasonable parameter
combinations in the training phase. Compared to the traditional SCE-UA
method (Duan et al., 1992) in calibrating the Variable Infiltration Ca-
pacity (VIC) model, the parameter learning network estimates physi-
cally more sensible parameter sets with continuous spatial patterns
because the inputs of the parameter network (e.g., forcings) are them-
selves spatially coherent. Although Al-based surrogate models provide a
pathway for the MDF upscaling, the objectives of further research should
not be limited to speeding up the parameter calibration procedure but to
exploring generalized pathways for estimating interpretable and
reasonable model parameters.

Pathway 2: The second pathway is a hybrid modeling approach to
integrate machine learning (black box) and mechanistic modeling
(white box) in one integrated modeling system to achieve computational
efficiency, prediction accuracy and model transferability. Knowledge-
Guided machine learning (KGML) is one such approach that learns
complex patterns from data while incorporating domain-specific
knowledge, such as physical rules (e.g. mass conservation), causality
(e.g. dependency structure between variables) and nature of variables
(e.g. states versus fluxes), informed by process-based models (Reichstein
et al., 2019). Preliminary success has been achieved in many topics
including streamflow prediction (Jia et al., 2021), lake phosphorus
(Hanson et al., 2020) and temperature estimation (Jia et al., 2021; Read
et al., 2019), and GHG emission modeling (Liu et al., 2022, 2023). In
particular, the KGML-ag model developed by Liu et al. (2022) incorpo-
rated knowledge from the ecosys model into a GRU (Gated Recurrent
Unit, one kind of recurrent neural network for representing time series)
model and outperformed both the ecosys model and pure GRU model in
predicting the complex temporal dynamics of NO fluxes (Fig. 9a). The
expanded KGML-ag method for quantifying carbon budgets exhibited
strong agreement with the NEE measurements obtained from 11 eddy-
covariance sites (Liu et al., 2023) (Fig. 9b). Combining KGML with
Meta-learning may increase model transferability by accelerating hyper-
parameter learnings that account for spatial heterogeneity (e.g. those in
different watersheds) (Chen et al., 2022). Despite this early success,
efforts to develop hybrid models are still in its nascent stage. Scaling
field-level KGML for carbon accounting across millions of fields would
require innovative approaches to assimilate multimodal remote and in-
situ sensing data, possibly by assimilating these data via low-
dimensional embeddings to constrain neural networks. Future
research should also address multi-objective learnings, because existing
KGML models are mostly mono-objective (e.g., simulating CO,, CH4 and
N0 individually) and lack synergistic considerations for the coupling of
soil biogeochemistry.

Pathway 3: Fully upgrading existing agroecosystem models to GPU-
accelerated systems necessitates intensive code redesign and rewrite,
thus requiring longer coordinated efforts with dedicated funding sup-
port (Bauer et al., 2021; Irrgang et al., 2021). Based on previous ex-
plorations for Earth System Models (ESMs) (Bauer et al., 2021; Irrgang
et al., 2021) and specific challenges in agricultural carbon outcome
quantification (described in Section 2.4), the ideal GPU-accelerated
agroecosystem models should have the following characteristics: (1)
having the same or higher level of performance and interpretability as in
the original model; (2) working freely in the GPU environment and be
flexible enough to adapt to hardware improvements; and (3) enabling
the assimilation of generic data ensemble from multiple sources with
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Fig. 9. N,O and CO, fluxes estimated by two knowledge-guided machine learning (KGML) models. (a) KGML outperforms the process-based model and pure ML
model in simulating N,O fluxes. (b) KGML predicted net ecosystem exchange (NEE) demonstrated great agreement with observations from 11 eddy-covariance flux
towers in the U.S. Midwest. Validations of KGML were carried out on a dataset that was not used in its training process.

different scales (e.g. the cross-sensing data described in 3.1) for efficient
training/validating/finetuning and on-time correcting. Progress is faster
in upgrading modules with relatively known physical rules, such as in
the areas of climate and hydrology than in biogeochemistry or human
disturbance (Irrgang et al., 2021). For example, previous efforts on
rewriting domain-specific language to adapt the GPU-accelerated sys-
tems succeeded in weather modeling (e.g. COSMO) (Thaler et al., 2019)
and climate modeling (e.g. CESM) (Zhang et al., 2020). An extensive
effort is currently underway to adapt DOE ESMD/E3SM with modern
machine learning techniques to next-generation architectures that are
capable of GPU computing and generic data assimilation (Alexander
et al.,, 2020). The recently proposed concept of neural earth system
modeling (e.g. NESYM) (Irrgang et al., 2021), aiming for a deep and
interpretable integration of Al into ESMs, might be the closest solution
for upgrading agroecosystem models as well. One profound step for such
upgrading is to replace every submodule of the process-based model
with a ML surrogate, and to train those surrogates jointly with real-
world observations. However, proceeding in this direction needs to
conquer the challenge of mapping highly non-linear processes involving
partial differential equations (PDEs) with different coefficients at
different spatial and temporal resolutions. One solution that has shown
some early success in predicting global atmospheric circulations (Pathak
et al., 2022) is Fourier Neural Operator (FNO) (Li et al., 2020), a neural
network specifically designed for solving an entire family of PDEs by
learning mappings between functions in infinite-dimensional spaces (i.
e., functions are discretized in an arbitrary way). However, FNO is only
one kind of “black box” neutral solver for PDEs. To be adopted in
agroecosystem simulations, FNO needs to combine with other machine
learning models (e.g. RNN, GNN, transformer) to consider the connec-
tions and heterogeneity in space and time, and needs knowledge-guided
constraints to provide predictions following physical/biogeochemical
rules.

3.5. Three-tier validation system: ensuring model fidelity and true
scalability

Model fidelity is critical for establishing trust in any carbon outcome
quantification. Model validation, a procedure to benchmark model
simulation with independent, high-quality observational data, is the
only way to build model fidelity. The new MDF approach of high-
resolution and spatially-explicit model constraining essentially pro-
poses a more strict way to test model scalability, defined as the ability
of a model to perform robustly with accepted accuracy on all tar-
geted fields. “Scalability” of a model or a solution should not only be
demonstrated by model performance at a limited number of sites with
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rich data, where extensive parameter calibration is allowed; a true test of
model “scalability” should be also demonstrated at many random sites,
where only limited measurements are available. The latter is what a real-
world application entails - we are required to quantify the carbon out-
comes at any given field. To achieve the above goal to fully validate the
model scalability, a three-tier validation approach is needed, and re-
sults from these three tiers should be reported to the community for fair
and transparent comparison. It is worth mentioning that at all the three
tiers of sites, cross-scale sensing technology should be able to provide
already rich remote-sensing based observations, which should provide
the necessary model inputs and model constraints for MDF.

Tier 1 - Super sites: This tier includes sites that have collected a
complete suite of measurements data that can be regarded as gold-
standard datasets (Novick et al., 2022). An ideal super site should
include measurements that range from biogeophysics (profiles of tem-
perature, and moisture, energy fluxes) to biogeochemistry (carbon and
nutrient fluxes and state variables), i.e. a dataset that is sufficient to
recreate the soil-plant-atmosphere continuum, and evaluate/benchmark
the major ecosystem processes simulated by models. Thus a typical
super site should at least include eddy-covariance flux tower, extensive
and deep soil samples, ground-level remote sensing, and various other
advanced measurements (automatic chambers for N,O). Existing ex-
amples of research infrastructure that already supports many of these
“gold-standard” data variables include the USDA Long-Term Agro-
ecosystem Research (LTAR) network, some National Ecological Obser-
vatory Network (NEON) sites, and AmeriFlux sites on cropland and
pasture land (Baldocchi et al., 2001). Further, the recently launched U.S.
Department of Energy ARPA-E SMARTFARM sites have been collecting
soil, crop, and GHG fluxes data with even greater spatial and temporal
resolutions (ARPA-E, 2019) (Fig. 10), enabling a new generation of R&D
development such as high-resolution remote sensing monitoring, or
novel modeling methods that can capture granular dynamics such as
hot-spot and hot-moment patterns of GHG emissions.

Tier 1 super sites would enable detailed model calibration and out-
of-sample validation by virtue of the fact that gold-standard datasets
capture whole ecosystem flux (e.g. NEE, GPP), soil carbon flux and
stock, plant biomass etc. What would make the Tier 1 super sites more
useful is to add paired experiments with detailed measurements for the
pairs. For example, setting up two neighboring sites (e.g. weather and
soil conditions should be similar) with one growing cover crop and the
other not, and keeping other management practices the same or similar
enough, the difference of measurements could provide strong scientific
evidences and thus validation data for quantifying the carbon outcome
of different management practices. Successful examples of paired ex-
periments with eddy-covariance flux measurements have been
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Fig. 10. Example of the Tier 1 super site: using the ARPA-E SMARTFARM Phase 1 site at Champaign, Illinois, managed by University of Illinois Urbana-Champaign.

demonstrated in rice methane emission using alternate wetting and
drying (Runkle et al., 2019). Super sites also provide further validation
for the cross-scale sensed E, M, C variables.

Tier 2 - Intermediate sites: This tier includes an extensive number
of sites that only have a few key ground measurements (e.g. soil samples
for soil texture and SOC, crop yield, leaf samples) but do not have a
complete suite of observations as the Tier 1 super sites. Using these
ground measurements and also remotely sensed observations, MDF can
be conducted, and validation can still be made directly to compare the
simulated crop yield, SOC stock and SOC changes with ground obser-
vations. When doing model validation at the Tier 2 sites, only basic
information about site location and management history will be pro-
vided, and the modeling team should report their simulation results for
independent comparison with observations.

Tier 3 - Scaling sites: This tier includes virtually any site or field that
requires carbon outcome quantification. Little or no ground measure-
ments are available at these sites. This tier of sites thus represents the
real-world situation for operational use. However, using the cross-scale
sensing technologies (Section 3.1), all random fields will still have a
suite of remotely sensed E, M, C data available to enable MDF and
quantify both carbon outcomes and associated uncertainty at all these
fields. Model verification at every field is also made possible when extra
remotely sensed observations can be used as independent validation
data. It is worth noting that Tier 3 almost entirely relies on remotely
sensed and/or public-database E, M, C information, which highlights the
importance of cross-scale sensing to enable such a new MDF approach.

4. Financial investment for R&D to substantiate agricultural
carbon market and sustainable agroecosystems

Looking forward, the “System-of-Systems™ solution will be the most
promising technology for field-level carbon outcome quantification. One
of the biggest advantages of the “System-of-Systems” solution is that it is
an inclusive framework that can embrace new technology and has the
potential to ingest new scientific discoveries and information, and thus
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can continue to evolve with the whole scientific community and tech-
nology trends. While prototypes of such a “System-of-Systems” solution
are emerging for certain crop types and geography (Zhou et al., 2021),
this integrated system consists of several components that are still at
their early stages, thus requiring considerable R&D investment by gov-
ernment and industry. Coincidentally, these investments will build the
foundation for the next generation of precision agriculture whose scope
has been expanded from increasing productivity and efficiency with site-
specific management (Yan et al., 2020), to the integration of sensing,
big-data analytics and automation for guiding sustainable farming
(Tautges et al., 2019). However, technical advances alone are insuffi-
cient for substantiating the agricultural carbon market or agricultural
sustainability more broadly; success will also rely on synergies among
citizens, researchers, corporations, NGOs and governments to remove
scientific and practical hurdles.

First and foremost, we should fully acknowledge that agricultural
carbon outcomes are deeply rooted in complex agroecosystems, and a
holistic system view of carbon, nutrient, energy, and water cycles
strongly coupled with human management should be the guiding prin-
ciple. Aboveground and belowground processes of carbon cycle collec-
tively determine the SOC change (Section 2.3), thus only focusing on
changes in soil carbon pools while neglecting other critical carbon
processes (e.g. over-emphasis of soil sampling at the cost of other flux
measurements) may lead to limited success. The tight connection of
carbon cycle with other biogeochemical cycles (including redox and
elemental stoichiometry) and water cycle also highlights the importance
of soil moisture, soil oxygen and chemical characterization of litter,
which links SOC with the GHG emissions (N2O and CH4). Many un-
knowns about these above linkages exist (e.g. mechanisms that drive
N0 emission with hot-spot and hot-moments) (Butterbach-Bahl et al.,
2013). Coordinated research on understanding the holistic carbon-
nutrient-water cycles for agroecosystems is a priority that could be
effectively pursued by leveraging the Integrated Model-Observation-
Experiment (ModEx) Paradigm (Geernaert et al., 2018; U.S. DOE,
2021). ModEx promotes the idea that models should be developed with
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the current best knowledge and corroborated with observational and
experimental data, and models are then used to identify opportunities
for additional field and lab-based research to fill gaps in further un-
derstanding system structure and function. Iterative feedback between
models and experiments advances the overall progress in this area.

Second, we should use community efforts to develop unified pro-
tocols that guide measurements and modeling schemes to understand
and reduce the uncertainty of carbon outcome quantification. Such
protocols must be established through collective effort to achieve sci-
entific rigor and transparency. Existing efforts led by certification or-
ganizations such as Verra (Verra, 2020) and Climate Action Reserve
(Climate Action Reserve, 2020a) are important and valued, but tend to
be simplistic, conservative, and not always well-adapted to the nuances
of production agriculture, given the limited empirical data and insuffi-
cient MRV tools (Oldfield et al., 2021). To successfully establish public
confidence in low-carbon bioenergy feedstock, climate-smart commod-
ities and agricultural carbon credit markets, a concerted effort of more
advanced field work, data collection, and modeling assessment will be
necessary. It is anticipated that debate will intensify as more disciplines
and stakeholders become involved in the new phase of protocol devel-
opment and validation, especially when the necessary rigor requires
technical sophistication beyond traditional quantification approaches
(Badgley et al.,, 2022; Novick et al., 2022). To foster open and
constructive conversations that increase credibility and the public con-
fidence in carbon outcome quantification methods, three principles
must be emphasized. First, the quantification uncertainty of field-
level carbon outcomes must be emphasized, and especially for the
market-based instruments, such as climate-smart commodities and car-
bon credit markets, the uncertainty of the calculated carbon benefits
should be reflected in climate-smart commodities’ price premium, or
carbon credits pricing and policy design (e.g. managing emission re-
versals) to ensure that the incentivized impact is not over- or under-
compensated. For example, the standard deviation of a MRV system
can be used to discount the value of credits generated (Kim and McCarl,
2009). This is an essential requirement for the protocol to be usable, not
just a subjective technical preference. Second, validation is the only
way to report system-wide uncertainty. No exemption should be
made for any quantification tool, even if the tool is widely used or peer-
reviewed. There are some academic-based model intercomparison MIP
efforts (Eyring et al., 2016; Rosenzweig et al., 2013) that can shed light
on how to set up such validations, but given the transaction purpose of
carbon credits, a high bar must be set for acceptable model performance.
Third, demonstrating performance at the scale of an individual field
is critical. Due to the challenges of achieving scalability, some practi-
tioners suggest compromise by focusing on the aggregated accuracy of
quantified carbon credit (Oldfield et al., 2021). We argue that aggre-
gated accuracy, which is almost impossible to validate, must come from
field-level accuracy.

Next, establishing high-quality and comprehensive datasets and
inter-comparison infrastructure for developing, calibrating, and
validating MRV systems of carbon benefits is essential to building
stakeholder trust in these market-based emission reduction instruments.
The high-quality and comprehensive dataset to represent the three Tier
validation system (Section 3.4) should ensure site representativeness to
include different soil, weather, crop, and management types, and be
open-source but compiled under a protocol of community-wide accep-
tance. An analogy is the ImageNet database (Deng et al., 2009; Russa-
kovsky et al., 2015) for computer vision and Al research, with which
new algorithms will be benchmarked to show their progress in visual
object recognition. Establishing an “ImageNet for Agriculture” is
certainly more challenging given the complexity of carbon quantifica-
tion. Due to the often large uncertainty associated with agricultural
measurements, protocols for standardized data collection, and process-
ing techniques must be carefully evaluated and imposed. Some long-
term experiment and observation networks have collected a complete
suite of E, M, C variables (i.e. super sites) and have the great potential to

16

Earth-Science Reviews 243 (2023) 104462

provide high-quality and comprehensive data. Lastly, a large number of
controlled experiment sites can be used to test the model scalability.
These sites often have limited amounts of ground measurements but
represent the real-world conditions for operational use.

Further investment in high-quality data collection should prioritize
experiments that can help understand the carbon outcomes associated
with different bundles of carbon-outcome-related practices, such as the
combination of no-till and cover crop, as well as measurements that can
disentangle the opaque “black box” of complex plant-soil-microbe in-
teractions (Yan et al., 2020). In addition, deep sampling of soils beyond
the typical surface sampling depths (e.g. 0-30 cm) is necessary to
accurately quantify the extent of SOC changes (Tautges et al., 2019) and
to corroborate estimates by models. Developing cyberinfrastructure to
ensure archiving and sharing of the scientific data is also highly
important and should be an investment priority. Such cyberinfras-
tructure development should be guided by the FAIR guiding principle (i.
e. Findability, Accessibility, Interoperability, and Reuse of digital assets)
for the collected scientific data management and stewardship (Wilkin-
son et al., 2016), with a thorough consideration of privacy protection of
farmer data.

Finally, while our discussion has mainly focused on agricultural
carbon outcomes, it is important to note the myriad environmental and
economic co-benefits (e.g. improving soil health, reducing water use and
air pollution, and increasing climate resilience), which in turn can bring
further benefits to carbon mitigation programs per se. Some recent case
studies have demonstrated that, given the relatively low carbon credit
price, participation of farmers may be primarily driven by these co-
benefits (ARPA-E, 2019; Deng et al., 2009; Summers et al., 2021). The
“System-of-Systems” framework proposed in this perspective can be
extended to assist the accounting of these co-benefits, and inform sus-
tainable agroecosystem management by holistically studying the often
coupled carbon, water, and nutrient cycles and human activities, a topic
itself at the frontier of Earth system science.
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