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ABSTRACT
The temperature dependence of the nuclear free induction decay in the presence of a magnetic-field gradient was found to exhibit motional
narrowing in gases upon heating, a behavior that is opposite to that observed in liquids. This has led to the revision of the theoretical frame-
work to include a more detailed description of particle trajectories since decoherence mechanisms depend on histories. In the case of free
diffusion and single components, the new model yields the correct temperature trends. The inclusion of boundaries in the current formalism
is not straightforward. We present a hybrid SDE-MD (stochastic differential equation - molecular dynamics) approach whereby MD is used
to compute an effective viscosity and the latter is fed to the SDE to predict the line shape. The theory is in agreement with the experiments.
This two-scale approach, which bridges the gap between short (molecular collisions) and long (nuclear induction) timescales, paves the way
for the modeling of complex environments with boundaries, mixtures of chemical species, and intermolecular potentials.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0163782

I. INTRODUCTION

During the mid-20th century, when the first nuclear magnetic
resonance (NMR) experiments were performed in liquids, magnetic-
field inhomogeneity was the limiting factor that determined the
properties of nuclear induction. Rapid signal decay is problematic
on so many levels, especially because it limits spectral resolution.
This led to the development of the Hahn echo,1 where the effects
of external magnetic field inhomogeneity are removed by a π-
rotation about the x axis in a time-reversal experiment. Spin echoes
enabled more accurate studies of intrinsic spin–spin relaxation
mechanisms and molecular structures. Years later, the deliberate
creation and modulation of magnetization by magnetic-field gradi-
ents formed the basis of modern techniques in magnetic resonance
imaging (MRI).2,3

Given the ubiquitous nature and uses of magnetic-field gradi-
ents in modern magnetic resonance experiments, it is imperative
that the nuclear response function and its dependence on the sample
under study in the presence of applied gradients be properly under-
stood. A correct understanding of the true limits and capabilities of
the experiment will enable accurate interpretation of the experimen-
tal results as well as inform future developments and applications. In

organic and biological chemistry, for example, NMR spectroscopy is
routinely used as a tool to analyze solution content and composi-
tion for chemical species’ identities and relative content. Limiting
factors that compromise linewidth must be minimized or removed
so that spectra can be obtained of sufficiently high resolution to elu-
cidate molecular structures. The diffusion of molecules can cause
undesirable effects such as altering line shape or be used advanta-
geously, for example, by helping probe transport phenomena. While
diffusion can sometimes lead to sharper lines (e.g., increased spec-
tral resolution due to diffusional averaging of the intermolecular
magnetic dipole interaction), the presence of residual gradients does
create a complex relationship between nuclear induction and sam-
ple properties and geometry that obscures the interpretation of
results that rely on line shape analysis. Diffusion-weighted readouts
have enabled imaging of gases in lungs,4 operando monitoring of
chemical reactions,5–7 as well as biophysical or mechanical prop-
erties of gels and biological tissues.8,9 In materials science and
engineering, diffusion processes are essential to fabrication and
synthesis.

In light of these various effects, the observation that in gases
lines become narrow with temperature was rather surprising7,10,11

given that the conventional theory predicted a broadening
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instead.1,12–14 In liquids, a broadening is observed experimentally,
and this is in agreement with theory. This led to a revision of the
line shape theory in gases accounting for the time history of rapid
molecular motions below the timescale of the NMR experiment.15
It is critical to account for the history of molecular motions when
the process involves motional averaging due to collisions. Con-
ventional theory ignores the histories of molecular diffusion and
instead assumes a Gaussian probability distribution for the accu-
mulated phase of the spins. The Gaussian assumption on phase
accumulation, which neglects the details of molecular trajectories,
only appears justified in liquids, where many collisions occur on the
NMR timescale. However, in gases, the average separation between
molecules is much larger, and this assumption is more difficult to
justify. A drawback of the new theory is its increased complexity.
While it provides good agreement between theory and experiments
in the case of free diffusion, it is unclear how one should model
the effects of realistic boundaries. Stochastic differential equations
(SDE) can be used to model molecular trajectories, but this still
requires validation against experiments.

In this study, we bridge the gap by using molecular dynamics
(MD) simulations and coupling them to an SDE in order to describe
nuclear induction. By modeling the viscosity of fluids using MD,
the line shape is then derived from the viscosity via its connection
to the SDE. Our simulations of particle collisions and trajectories
using Lennard-Jones (LJ) interaction reveal opposite trends in liquid
and gas particle viscosity coefficients as a function of temperature.
This, in turn, can be used to describe the line shape trends in gases
and liquids. This work establishes the feasibility of the hybrid SDE-
MD approach and paves the way for modeling complex interactions
with boundaries and other components. The advantages ofmodeling
viscosity by MD include the possibility of including realistic bound-
aries, multiple components, or varying the details of intermolecular
interactions. Indeed, models of effective viscosity have already been
developed for such situations.16–19

A. Review of conventional theory
Assume that an ensemble of spins is placed in an external mag-

netic field and that a coherent superposition between the states ∣↑⟩
and ∣↓⟩ is created. In an inhomogeneous field, the phase accumula-
tion for each spin is proportional to the local field experienced by the
spin over time. Phase accrued by nuclear spins can be refocused by
the application of a π pulse, which inverts the direction of spin rota-
tions, or by simulating a “time-reversal,” forming a Hahn echo.1,20–23

If the spins are fixed (frozen) in space, evolution is described with
a unitary propagator, and the entropy remains constant. With dif-
fusion (e.g., liquids and gases), not all initial phases within a spin
ensemble can be recovered, and the Hahn echo signal will be smaller.
Assuming that the molecules undergo a random walk, it has been
postulated that they sample random phase increments from a Gaus-
sian distribution.1 In the presence of a magnetic-field gradient g, the
phase accrued by a spin from time 0 to t is

Δϕ(t) = ∫
t

0
ω(t′)dt′ = γn∫

t

0
g ⋅ r(t′)dt′, (1)

where ω(t) is the time-dependent frequency of a moving spin, γn
is the nuclear gyromagnetic ratio, and r(t) is the time-dependent
position of the diffusing particle. The nuclear induction signal is

weighted by the ensemble average of these phase factors, written
with the probability distribution P(Δϕ),

⟨exp (iΔϕ(t))⟩ = ∫
∞

−∞

P(Δϕ) exp (iΔϕ)d(Δϕ). (2)

To alleviate the notation, we will drop t from the notation and
write Δϕ(t) = Δϕ. Assuming a Gaussian distribution for P(Δϕ)with
variance ⟨(Δϕ)2⟩ proportional to t, we get

S(t) = ⟨exp (iΔϕ)⟩ = exp (−⟨(Δϕ)2⟩/2).

Therefore, for the free diffusion under a steady magnetic field of a
linear gradient g and duration t, the attenuation of the NMR signal
S(t) was found to be

S(t) = exp [(−1/3)γ2ng
2Dt3], (3)

where D is the self-diffusion coefficient, and the t3 decay arises
from self-diffusion in the presence of a field gradient.23,24 This equa-
tion shows that for unrestricted diffusion, as D gets larger, a wider
range of Δϕ is sampled resulting in faster damping of the signal. In
the Hahn echo experiment, 90○ − τ − 180○ − τ, at t = 2τ, the decay
function is similar,

S(2τ) = exp(−
2
3
γ2ng

2Dτ3). (4)

The t3 dependence has been validated experimentally for
liquids. This form of signal can be used to describe a
Carr–Purcell–Meiboom–Gill (CPMG) experiment with n refocus-
ing π pulses and an interpulse delay of 2τ.20,25 The signal at t = 2nτ
decays according to

S(2nτ) = exp(−
2
3
γ2ng

2Dτ2(nτ)). (5)

As a result, the signal attenuation at time t = 2nτ can be reduced
by decreasing the time delay between the pulses τ while increasing
the number of pulses n. Equations (4) and (5) have been extensively
validated in experiments for the case of liquids. The assumption
of Gaussian-distributed phase increments is reasonable for liquids
because of the short mean-free paths and the large number of
collisions during time intervals of duration τ.

B. Problems with conventional theory
In the case of gas molecules, which are characterized by longer

mean free paths, the assumption of randomly distributed phase
increments becomes more difficult to justify.10,26 Two simple argu-
ments can be used to illustrate the need for a more sophisticated
model. The first one is the observation that in the series expansion
of the phase factor

⟨exp(i∫
t

0
ω(t′)dt′)⟩ = 1 + i∫

t

0
⟨ω(t′)⟩dt′

+ (i)2∫
t

0
dt′∫

t

0
⟨ω(t′)ω(t′′)⟩dt′′ + ⋅ ⋅ ⋅ ,

computation of n-point time autocorrelation functions such as
⟨ω(t1) . . .ω(tn)⟩ requires n-point joint probability distributions
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such as pt1 ,t2 ,...,tn(x1, x2, . . . , xn). Failure to do this is equivalent to
neglecting time correlations in the stochastic process {ω(t)}, which
are imposed by the physics of molecular motions and collisions. For
the second argument, we model the velocity process as memoryless
Brownian motion (Ornstein–Uhlenbeck),

dv = −γvdt +
Γ f

M
dW(t),

where γ−1 is a damping time constant and dW(t) is the increment of
the Wiener process W(t) at time t (dW(t) ∶=W(t) −W(t − dt)).
The strength of fluctuations is Γ f =

√

2γMkBT (fluctuation-
dissipation theorem), where M is the mass of the diffusing particle
and kB is the Boltzmann constant. After integration

v(t) = ⟨v(t)⟩ +

√

2γkBT
M

e−γt∫
t

0
eγt
′

dW(t′),

where ⟨v(t)⟩ = ⟨v0⟩e−γt . The position process is the time integral
of the velocity process, dx(t) = v(t)dt, whose solution is [setting
x(0) = 0]

x(t) =
v0
γ
(1 − e−γt) +

√

2γkBT
M ∫

t

0
dt′e−γt

′

∫

t′

0
dW(t′′)eγt

′′

.

Because x(t) is given by a sum of Gaussian-distributed increments,
dW(t), x(t) is also Gaussian. Its mean is v0

γ (1 − e
−γt
). Defining a

thermal velocity vT =
√

kBT/M, its second moment is

σ2x(t) ∶=
2v2T
γ

t −
v2T
γ2
(3 − 4e−γt + e−2γt).

Therefore, the distribution of x(t) is [again, assuming x(0) = 0]

p(x, t) =
1

√

2πσ2x(t)
exp [−

(x − vT(1 − e−γt)/γ)2

2σ2x(t)
].

At short t, this is not the usual Gaussian with variance t characteristic
of long-time particle diffusion (i.e., the Einstein–Fick limit). Only at
long times (t ≫ γ−1) does the distribution become Gaussian with
variance t,

p(x, t)→
1

√

4πDt
exp [−

(x − vT/γ)2

4Dt
],

with diffusion coefficient D = kBT/Mγ. To compute the accrued
phase, which is a time integral of x(t) [cf. Eq. (1)], it appears pru-
dent to model the behavior at short times (t ≲ γ−1). The timescale
γ−1 of the friction coefficient is associated with molecular collisions.

It has been shown10 that Eqs. (4) or (5) do not describe the
nuclear induction decay in gases. Instead, it was observed that in the
CPMG experiment,

⟨exp (iΔϕ)⟩ = exp (−γ2g2κ(2nτ)). (6)

Here, the decay constant κ is a decreasing function of tempera-
ture T, damping rate γ, and particle mass M, Eq. (18). Notice the
different powers of τ inside the argument of the exponential func-
tion (τ3 vs τ). This difference was first noticed by observing the

linewidth dependence on temperature7 and was subsequently inves-
tigated more in-depth in Refs. 10 and 26. The conclusion from these
studies is that a more detailed description of diffusion effects is
needed. Obviously, exact solutions to the N-body problem are not
possible; hence, we seek suitable models.

C. Generalized Langevin equation (GLE)
The GLE is a well-established model of particle diffusion that

accounts for memory effects as the molecules undergo diffusion via
collisions. In the gas and liquid phases, nuclear spin degrees of free-
dom are fairly well isolated from spatial degrees of freedom, at least
to the first order. Consequently, individual molecular collisions do
not completely depolarize the spins. Instead, decoherence and depo-
larization processes, which are second-order processes, take place
over much longer periods of time. Decoherence is described by a
characteristic decay time T2. The motional part of the NMR signal
can thus be written as the expectation value of the spin phase factors
[cf. Eq. (1), with ω(t) = γng ⋅ x(t) in 1-D], which depends on their
position x(t).10,24 In Ref. 10, it is assumed that x(t) is a Gaussian
random process that is stationary in the wide sense. The expectation
value

S(t) = ⟨exp(i∫
t

0
ω(t′)dt′)⟩, (7)

takes the form

exp [iγng∫
t

0
⟨x(t′)⟩dt′ − γ2ng

2
∫

t

0
⟨x(t′)x(0)⟩(t − t′)dt′]. (8)

The second term determines the line shape of the signal decay.
For liquids, displacements are small x(t) ≈ x(0), and this leads to
the Einstein–Fick limit ⟨x(t)x(0)⟩ ≈ ⟨x(t)x(t)⟩ = 2Dt, where D is a
diffusion coefficient, and the classic Hahn result (3) is recovered.

We note that there is no easy way to compute the integral over
the function ⟨x(t′)x(0)⟩ from first principles in the general case
of arbitrary physical conditions. Even MD simulations fail because
⟨x(t′)x(0)⟩ decays on short time scales (tens to hundreds of picosec-
onds) before reaching a nonzero steady state value, after which the
time integral is weighted by the monotonically increasing weight
(t − t′)dt′ over much longer time scales (microseconds to seconds).
The initial decay and any numerical errors associated with it are then
amplified by orders of magnitude. Instead, a model is needed that
bridges the two widely different timescales by analytically solving the
integral and reducing it to a function of transport coefficients that
are easier to compute. Such a transformation was first presented in
Ref. 7. The main steps of its derivation, although well known to the
fluid dynamics community, are recapped below for convenience.

In the “weak collision” regime (see Ref. 10), a GLE with a
memory kernel describes particle dynamics,

Mv̇ + ∫
t

0
Γ(t − t′)v(t′)dt′ = η f (t), (9)

whereM is themass of diffusing particle, v(t) = ẋ(t) and v̇ are parti-
cle velocity and acceleration. η f (t) on the right-hand side represents
a time-dependent stochastic force. The memory kernel Γ(t) is con-
voluted with the particle velocity to describe the friction asserted by
the viscous dynamics.
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Projecting both sides of the GLE equation with the inner
product ⟨v(0), ⋅⟩, we get

M⟨v(0)v̇(t)⟩ + ∫
t

0
Γ(t − t′)⟨v(0)v(t′)⟩dt′ = 0. (10)

Note that ⟨v(0)η f (t)⟩ = 0, since the stochastic force at t > 0 is
independent of the initial velocity by causality. This equation can
be recast in terms of the integral of the velocity autocorrelation
function, ν(t) = ∫

t
0 ⟨v(0)v(t

′
)⟩dt′. The equipartition theorem yields

⟨v(0)v(0)⟩ = kBT/M. The resulting equation for ν(t)27 is

Mν̇(t) + ∫
t

0
Γ(t − t′)ν(t′)dt′ = kBT. (11)

Time correlation functions such as the velocity autocorrelation
function and related transport coefficients can be found by solv-
ing this integro-differential equation. For the memory kernel, one
often invokes the Ornstein–Uhlenbeck process to model the delayed
response of surrounding fluid,

Γ(t) = (γ2/m) exp (−γt/m), (12)

where γ is a friction coefficient proportional to the viscosity of the
fluid and m represents a mass attributed to solvent particles. The
solution using ζ∓ = γ

2 m(1 ∓
√

1 − 4 m/M) is

ν(t) =
kBT
M
(

γ
mζ−ζ+

+
1

ζ+ − ζ−
[(1 −

γ
mζ+
) exp (−ζ+t)

− (1 −
γ

mζ−
) exp (−ζ−t)]). (13)

In addition, since ⟨v(t)v(0)⟩ = − d2

dt2 ⟨x(t)x(0)⟩, the position auto-
correlation function is found by integrating the velocity autocorre-
lation function twice,

⟨x(t)x(0)⟩ =
kBT

M(ζ+ − ζ−)
[ζ−1+ (1 −

γ
mζ+
) exp (−ζ+t)

× ζ−1− (1 −
γ

mζ−
) exp (−ζ−t)]. (14)

In the case that γt/m is sufficiently large, the Ornstein–Uhlenbeck
kernel rapidly decays. At this point, it is possible to introduce a
dependence on viscosity by invoking Stokes’ drag law γ = 6πηR,
where R is the radius of the “Brownian particle” and η is the shear
viscosity. The validity of Stokes’ law is predicated on the assumption
that the Brownian particle is much larger than the solvent parti-
cles (M ≫ m). In the case of self-diffusion, all particles are identical.
Hence, Stokes’ law appears unjustified. However, the proportional-
ity between γ and η is always correct.28 In fact, Einstein developed
the concept of “effective viscosity,” which has been used to describe
the effective viscosity of lubricants.28–31

We are now in a position to replace the integral in Eq. (8)
by a function of the viscosity, a transport coefficient that is eas-
ily computed from MD simulations with good accuracy. Viscosity
is essentially a coarse-grained quantity describing the relaxation of
momentum density to its equilibrium value after a perturbation. It
is directly related to the velocity auto-correlation function. Stokes’

law has been extended to the frequency domain to describe dynami-
cal and dissipative effects in rheology.32–34 The relationship between
the Fourier representation of frequency dependent viscosity and the
frequency-dependent friction coefficient γ̃(s) is

η̃(s) =
γ̃(s)
6πR

, (15)

where s is the complex frequency in Laplace domain and
γ̃(ω) = ∫

∞

0 Γ(t) exp (iωt).32 This relationship, which has been
termed the “correspondence principle,”34 provides a direct link
between memory function and viscosity. The memory kernel itself
encodes the response of particles at all frequencies to collisions and
boundary conditions. Therefore, we expect the viscosity to be sen-
sitive to boundary conditions and intermolecular potentials as well.
In particular, we expect that changes in the line shape of the NMR
signal, cf. Eq. (7), as a function of temperature will be reflected in the
memory function as well as the viscosity coefficient.

The case of gases. A model for the viscosity and its tempera-
ture dependence is needed.35 The dynamic viscosity of gases was
described by Sutherland as

η =
μ0(T0 + C)

T + C
(
T
T0
)

3/2
∼

T3/2

T + C
, (16)

where C is Sutherland’s constant and μ0 is the viscosity at tem-
perature T0. At high temperatures, viscosity grows with the square
root of the temperature, η ∼ T1/2, while at low temperature, η ∼ T3/2.
Using Stokes’ drag law, we rewrite the nuclear induction signal as10

S(t) = exp (−γ2ng
2κt), (17)

with

κ(T) =
kBT(−mζ2−ζ+ −mζ−ζ2+ + ζ2−γ + ζ−ζ+γ + ζ2+γ)

mMζ3−ζ3+

=
kBTM(M + 3m(−1 + πRη))

27π3R3η3
. (18)

Note that κ determines the linewidth Δ f , and it shows two distinct
trends with temperature,

Δ f ∼
⎧
⎪⎪
⎨
⎪⎪
⎩

T−7/2 T < C,
T−1/2 T > C.

(19)

Figure 1 represents the decay of the gas phase NMR signal
in an echo experiment for a range of temperatures. The sample
is a sealed tube of liquid tetramethylsilane (TMS) prepared using
the freeze–pump–thaw method. The sample tube is heated above
25 ○C to evaporate the TMS. Measurements were performed on a
Bruker AV 600 MHz NMR spectrometer equipped with variable
temperature and pulsed gradient capabilities. In the presence of a
magnetic-field gradient, the line narrows with increasing temper-
ature, a surprising result that was first observed and explained in
Refs. 7, 10, and 11. Data points are fitted to exponential decay func-
tions according to Eq. (17), and the resulting linewidths are plotted
in the inset of Fig. 1. Their temperature trend is in agreement with
Eq. (19).
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FIG. 1. The decay of the NMR echo signal for TMS in the gas phase for a variable
temperature at g = 0.01 G/cm. The decay becomes slower at higher tempera-
tures. The inset indicates the linewidth Δ f ∝ κ(T), extracted by fitting the time
domain data to an exponential decay function Eq. (17). The dashed line shows the
best fit using κ(T) = cT−1/2, where c is a constant. Error bars show the standard
error obtained from parameter fitting.

The case of liquids. To model the viscosity of liquids, an
empirical equation of the form

η = A exp (B/T), (20)

where A and B are constants that can be substituted into the expres-
sion for the nuclear induction decay [cf. Eq. (17)]. Recalling that
κ(T) is proportional to Tζ−3, we find

κ(T)∝ T exp (−3B/T) = T(1 − 3B/T +
9
2
B2
/T2
+ ⋅ ⋅ ⋅ ).

The overall temperature dependence of the linewidth is a line broad-
ening with increasing temperature.7,10,11 In any case, these equations

are only models for η. They do not account for boundaries, yet it
is known that boundaries alter the effective viscosity.28–31 There-
fore, the problem has been reduced to the modeling of an effective
viscosity.

II. MD RESULTS
MD simulations of particle trajectories have been used tomodel

gas diffusion in systems of gas mixtures in complex geometries.36–38

In particular, for liquids and non-ideal gases whose transport
properties are difficult to describe, MD simulations have proven
very successful.16–18 The MD simulations take the free volume
model into account in order to describe atom dynamics as a
sequence of collisions resembling hard spheres, possibly lead-
ing to localized mass movement. The free volume model’s para-
meters can be inferred from microscopic characteristics, and it
is capable of explaining variations in transport properties with
temperature.19

At each time step, intermolecular forces between the nearest
neighbors are enforced to recreate realistic particle trajectories.39,40

To obtain such trajectories over a large number of particles, we
used the open source software “Large-scale Atomic/Molecular Mas-
sively Parallel Simulator” (LAMMPS).41 LAMMPS results were then
used to compute viscosity coefficients in liquid and gaseous xenon
(Xe). We used the Lennard-Jones (LJ) pairing, U(r) = 4ϵ[(σ/r)12
− (σ/r)6], where ϵ = 1.77 kJ/mol is the depth of the potential well
and σ = 4.1 Å is the distance where the potential is zero. Simula-
tions were performed for 1000 Xe atoms in a box with periodic
boundary conditions. The simulations ran for a constant number
of particles, volume, and temperature in the canonical ensemble
(NVT). The equilibrium time correlation function approach, a.k.a.
the Green–Kubo auto-correlation function, was used to derive the
viscosity,19,35,40,42,43

FIG. 2. Green–Kubo correlation functions for liquid and gas simulations are evaluated at each temperature for both densities. Here, the simulation results at 300 are presented
(left). These correlations are integrated to the saturation point to evaluate the viscosity coefficient equation (22) (right). Note that the time axis is three orders of magnitude
larger for gas simulations.
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FIG. 3. Viscosity in liquids drops as the temperature increases. Error bars indicate
the standard deviation for the set of 60 accumulated correlation functions. The
solid line is a fit to Eq. (20) with A = 0.38 ± 0.01 and B = 135 ± 7.

η = lim
t→∞

ηGK(t) (21)

with

ηGK(t) =
V

3kBT∫
t

0
∑

α<β
Cαβ(τ)dτ, (22)

where α,β ∈ {x, y, z}, V is the volume, and T is the tempera-
ture. Cαβ(τ) = ⟨pαβ(τ)pαβ(0)⟩ is the auto-correlation function of
non-diagonal elements of the pressure tensor, e.g.,

pxy(t) =
1
V

⎧
⎪⎪
⎨
⎪⎪
⎩

∑

j
mjvjx(t)vjy(t) +

1
2∑i≠j

rijx(t) fijy(t)
⎫
⎪⎪
⎬
⎪⎪
⎭

.

Here, fijy represents the y-component of the force between two par-
ticles i and j. The first term on the right hand side is the kinetic
contribution to the pressure tensor, while the second term indicates
the potential contribution. Other components pαβ of the pressure
tensor are defined analogously.

Simulations were performed for 21 different temperature val-
ues in the range 200–400 K, using a high density (ρ = N/V) of

FIG. 4. Viscosity in gas molecules grows as the temperature increases. Red circles
indicate the results of MD simulations, and black circles are experimental data.
Error bars are the standard deviation for the set of 60 accumulated correlation
functions. The solid line shows a fit to Eq. (16) with C = 258 ± 69.

particles compatible with the liquid phase and a low density for
the gas phase. Particle trajectories evolved for 106 fs to equilibrate.
We evaluated Cαβ correlation functions 60 times in each simulation,
recording them well beyond their saturation point (see Fig. 2). They
were then used to evaluate the Green–Kubo integral Eq. (21). For
this approach to work, it is critical that the correlation functions
decay at similar rates so that the resulting integrals converge to an
average value.

The shear viscosity coefficient for the liquid state was found
to decrease with temperature (see Fig. 3). This behavior is expected
and well understood for liquids and is in agreement with the line
broadening observed in the liquid state NMR experiments.7,10 The
verification of simulated viscosity coefficients against experimen-
tal values is complicated by the fact that Xe is not in liquid form
above 270 K, whereas below that temperature, measurements report
viscosity vs temperature but across different densities.44,45 Neverthe-
less, a matching data point exists: at 220 K, our simulated viscosity
coefficient lies within 5% of the experimentally measured value.44
Our simulation results are similar to those from Ref. 46, where the
authors performed a general study of LJ potential dynamics vs ρ and
T and found that the resulting viscosity coefficients are within 6%
of experimental values. The decay of η(T) with T was found to be
exponential and was fitted to Eq. (20).

The gas phase simulations were performed by first equilibrat-
ing the system over a period of 106 ps. Compared to the liquid
case, the correlation functions were found to decay slower as the
frequency of particle collision is smaller (see Fig. 2). The simulated
viscosity values were found to be two orders of magnitude smaller
as well. Moreover, viscosity coefficients in gases show the opposite
trend to those of liquids, i.e., shear viscosity increases with temper-
ature (Fig. 4). A comparison to the available experimental data47,48

shows that the simulated viscosity coefficients overlap with them.
The calculated viscosity coefficients are fitted to Eq. (16). We find
that Sutherland’s constant (C = 258 ± 69) is in agreement with the
literature value for Xe gas (C = 252).47

Our MD results confirmed that as the temperature of gases
increases, the higher frequency of molecular collisions results
in greater resistance and larger viscosities. Viscosity results are

FIG. 5. Temperature dependence of nuclear induction linewidth for Xe gas. Exper-
imental data are compared with linewidths calculated for MD-derived viscosity
coefficients using Eq. (18).
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in agreement with previous studies and experimental results, as
expected. On the other hand, what is new here is our ability to pre-
dict the correct line shape for the nuclear induction signal from
MD results, and this line shape is predicted based on the effective
viscosity. Equation (18) suggests that the decay rate of the nuclear
induction signal is inversely proportional to the viscosity coefficient
η, and as a result, the linewidth narrows at higher temperatures. A
depiction of such behavior for the experiment with g = 0.01 G/cm is
shown in Fig. 5, where the simulated viscosity coefficients were used
to predict the line shape in gases. The resulting linewidths are very
close to the experimental values of Fig. 1. A side-by-side comparison
of experiments and theory is shown in Fig. 5.

III. CONCLUSION
We have shown the feasibility of using MD simulations to

model transport coefficients in liquids and gases; these transport
coefficients are then used together with a GLE model to obtain the
nuclear induction line shape. In particular, our MD results correctly
indicate that gas phase spectra exhibit narrower lines at higher tem-
peratures. (This is in contrast to conventional formalism,12–14 which
incorrectly predicts the opposite trend.) This work opens the door
for the prediction of lineshapes in more complex geometries and
boundary conditions. Our work differs from previous studies of
diffusion49 in that memory effects can be explicitly modeled using
our method. Future directions may include explicit modeling of
boundaries and gas types using appropriate memory kernels and,
ultimately, solving the inverse problem of computing molecular and
pore parameters from experimentally measured nuclear induction
decays.
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