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The dynamics of viscoelastic fluids are governed by a memory function, essential yet challenging
to compute, especially when diffusion faces boundary restrictions. We propose a computational
method that captures memory effects by analyzing the time-correlation function of the pressure
tensor, a viscosity indicator, through the Stokes-Einstein equation’s analytic continuation into the
Laplace domain. We integrate this equation with molecular dynamics (MD) simulations to derive
necessary parameters. Our approach computes NMR lineshapes using a generalized diffusion co-
efficient, accounting for temperature and confinement geometry. This method directly links the
memory function with thermal transport parameters, facilitating accurate NMR signal computation
for non-Markovian fluids in confined geometries.

I. INTRODUCTION

NMR spectroscopy stands as a preferred method for
probing molecular self-diffusion. Utilizing pulsed-field
gradient (PFG) NMR experiments, it is possible to an-
alyze molecular dynamics within porous media. This is
achieved by examining fluid motion, even in structurally
complex geometries [1–3]. Such measurements provide
insights into the microstructure of these media, elucidat-
ing characteristics like pore size, shape, and connectivity,
as well as tortuosity. However, recent experimental data
from gaseous systems have indicated significant devia-
tions from the predictions of conventional NMR theory.
Contrary to the expected increase in line broadening at
higher temperatures, empirical studies have reported a
phenomenon of line narrowing [4–8]. These unexpected
results have prompted a reevaluation of the existing the-
oretical framework to accurately account for these obser-
vations.

A new theory that yielded the correct temperature-
dependent NMR trends [5–8] was proposed based on a
description of phase accumulation in diffusing nuclear
spins whereby molecular dynamics are described by the
generalized Langevin equation (GLE) with memory ker-
nel. The viscosity-dependent GLE-derived free induction
decay expression captures the memory effects influenced
by fluid dynamics in porous media, which are critical for
understanding particle interactions within the medium
and at surfaces. The practical implications of measur-
ing local viscosity are profound, enabling the investiga-
tion of intermolecular forces and surface characteristics
in diverse systems such as geological substrates, catalytic
processes, and biological matrices. Despite its utility,
the GLE approach is challenged by boundary conditions,
with restricted diffusion rendering the equation difficult
to solve in closed form. To address this, MD simulations
were proposed as a means to calculate effective viscosities
in confined geometries [4].
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MD simulations are useful for computing transport pa-
rameters such as viscosity in confined fluids, yet they face
limitations with frequency-dependent phenomena [9–12].
Specifically, high-frequency dynamics necessitate short
computational time steps, thereby increasing computa-
tional demand. This is exemplified in our models of
temperature-dependent NMR linewidths in gases, where
we identified discrepancies between short-term velocity
autocorrelation functions and long-term trajectory aver-
ages. The vast range of timescales (see Fig. 1), from
femtosecond-level molecular collisions to the millisecond
scale typical of NMR observations, presents a significant
challenge for direct integration methods. These methods
struggle to reconcile transient molecular memory effects
with the prolonged timescales of NMR experiments, of-
ten resulting in data corrupted by computational noise.
A better approach is needed to bridge this gap, and
to ensure accurate representation of molecular dynam-
ics within NMR linewidth predictions.
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FIG. 1. This figure illustrates the timescales pertinent to
fluid dynamics analysis via MD simulations. The interactions
between fluid particles are captured with a time-step in the
femtosecond (fs) range. Particle positions and velocities are
sampled at 10-fs intervals, with correlation functions tracked
until they decay, typically reaching times well into the hun-
dreds of picoseconds (ps). For the decay of the NMR signal
due to diffusion to be calculated, particle diffusion must be
monitored over the course of hundreds of milliseconds (ms).

In prior work [4], we developed a particle trajectory
model that captures the temperature-dependent behav-
iors observed in free gas diffusion. This model integrates
a Stochastic Differential Equation (SDE) for gas dynam-
ics with MD simulations to accurately compute autocor-
relation functions. This integrated approach allowed for
the calculation of an effective viscosity via MD, which
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was then utilized within the SDE framework to simulate
NMR lineshapes corresponding to experimental data. We
termed this a two-scale methodology, with MD simula-
tions detailing the microsecond (µs) dynamics and the
SDE extending these insights to the timescale relevant
to NMR measurements. This hybrid SDE-MD method
effectively reconciles the time-scale gap between rapid
molecular motions and the slower NMR observations.

The problem of boundaries, however, remains un-
solved. In this study, we examine the connection between
viscosity and memory kernel in the context of the GLE
for NMR lineshape analysis subject to boundary condi-
tions. Viscosity, a key transport property, encapsulates
the memory effects crucial for investigating the proper-
ties of porous media. The concept of “effective viscosity”
has been used to describe transport in porous media [13–
19]. Herein we demonstrate that viscosity can be deduced
from the pressure tensor’s correlation function, enabling
the determination of memory functions to predict the
NMR signal in the presence of boundaries. By applying
the analytic continuation of the Stokes-Einstein equation
to the Laplace domain, we derive a frequency-dependent
diffusion function. This function is subsequently em-
ployed to calculate NMR lineshapes that are in agree-
ment with experiments.

II. GENERALIZED LANGEVIN EQUATION:
REVIEW

Consider the Brownian motion of a spherical particle
under the influence of forces that include a frictional com-
ponent proportional to its velocity, denoted as −ξv, as
well as a stochastic force. The particle’s motion is typi-
cally described by the Langevin equation, which assumes
no memory of past velocities (Markovian dynamics):

M
dv

dt
= −ξv + ηf (t),

where M is the mass of the particle, v(t) = ẋ(t) is its ve-
locity, and ηf (t) represents a time-dependent stochastic
force with finite variance and zero mean. In this model,
the frictional force is proportional to the instantaneous
velocity, and the stochastic force is uncorrelated at differ-
ent times, characterized by a delta-function correlation,
commonly referred to as white noise.

However, in many physical systems, the dynamics are
non-Markovian, implying that the stochastic force ex-
hibits colored noise behavior and the friction at time t
isn’t solely dependent on the instantaneous velocity but
is influenced by the trajectory of the particle’s velocity.
Consequently, friction is described by a memory function,
frequently denoted as Γ(t), and integrated over the past
time. This modification results in a GLE, which serves
as an essential framework for describing the dynamics of
viscoelastic fluids [6]

M v̇ +

∫ t

0

Γ(t− τ)v(τ) dτ = ηf (t). (1)

The memory kernel, Γ(t), is convolved with the parti-
cle’s velocity history to model the influence of the vis-
cous dynamics on the frictional forces. Within the GLE
framework, all thermodynamic parameters and correla-
tion functions undergo modifications through the incor-
poration of the memory function. For instance, if we
consider C(t) to represent a normalized correlation func-
tion pertaining to a parameter A, where ⟨A⟩ = 0, then
C(t) obeys the following integro-differential equation:

dC

dt
= −

∫ t

0

Γ(τ)C(t− τ)dτ (2)

where the memory kernel is given by

Γ(t) = ⟨Ȧ(0) exp[it(1− P)L]Ȧ(0)⟩. (3)

In this equation, L is the Liouville operator describing
the time evolution of A(t) = exp(iLt)A(0), and P is a
projection operator over the relevant variables [20, 21].
Consider the correlation function

Cη(k, t) =
⟨J∗

⊥(k, 0)J⊥(k, t)⟩
⟨J∗

⊥(k, 0)J⊥(k, 0)⟩
(4)

where k is the wave number (normally taken along ẑ),

and J(k, t) =
∑N

j=1 ẋj(t)e
ikzj(t) is the Fourier transform

of the velocity, and J⊥ is used to describe one of the two
transverse components, assuming the second transverse
component is zero. This is a normalized autocorrelation
function that satisfies the equation

∂Cη

∂t
= −

∫ t

0

Γ⊥(k, t)Cη(k, t− τ) dτ

where Γ⊥(k, t) is given by Eq. (3) when

A =
J⊥(k, t)

⟨J⊥(k)J⊥(k)⟩1/2
.

By solving this equation in the Laplace domain in the
neighborhood of s → 0 and k → 0 one finds the frequency
dependent shear viscosity [22]

η(ω) =
1

V kBT

∫ ∞

0

e−iωt⟨J(0) · J(t)⟩ dt (5)

where V is the volume and T is the temperature. At ω =
0 this corresponds to the equilibrium time correlation
function, also known as the Green-Kubo autocorrelation
function approach to deriving shear viscosity [12, 21, 23–
25]

η = lim
t→∞

ηGK(t) (6)

with

ηGK(t) =
V

3kBT

∫ t

0

∑
α<β

Cαβ(τ) dτ, (7)
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where α, β ∈ {x, y, z}, V is the volume and T is the
temperature. Cαβ(τ) = ⟨pαβ(τ)pαβ(0)⟩ is the autocorre-
lation function of non-diagonal elements of the pressure
tensor, e.g.

pxy(t) =
1

V

{∑
j

mjvjx(t)vjy(t) +
1

2

∑
i̸=j

rijx(t)fijy(t)
}
.

Here fijy represents the y-component of the force be-
tween two particles i and j. The first term on the right
hand side, is the kinetic contribution to the pressure ten-
sor while the second term indicates the contribution from
the potential energy. Other components pαβ of the pres-
sure tensor are defined analogously.

The memory function formalism can be used to de-
scribe self-diffusion, denoting the probability of a particle
being found in the volume d3r at time T as G(r, t)d3r,
the diffusion equation is:

∂G(r, t)

∂t
= D∇2G(r, t) (8)

where D is the diffusion coefficient. The Fourier trans-
form of the probability function G(r, t) is given by
Fs(k, t) =

∫
R eik·rG(r, t)d3r and it also adheres to the

memory function formalism through

∂Fs(k, t)

∂t
= −

∫ t

0

Γ(k, t)Fs(k, t− τ) dτ, (9)

where Γ(k, t) is calculated from Eq. (3) with A = exp(ik ·
r). Fourier transformation of both sides of Eq. (8) gives

∂Fs(k, t)

∂t
= −k2DFs(k, t)

and we find Fs(k, t) ∝ exp(−k2Dt) + f(k). The second

derivative at the origin is
(
∂2Fs

∂k2

)
k=0

= −2Dt, and we
have(

∂2Fs

∂k2

)
k=0

= −1

3

∫ ∞

0

4πr4G(r, t) d3r = −1

3
⟨r2(t)⟩.

So the average square displacement as a function time is
found to be ⟨r2(t)⟩ = 6Dt, which was originally derived
by Einstein [26]. For a general starting point we can write
this equation as

⟨|r(t)− r(0)|2⟩ = 6Dt (10)

which shows that the G(r, t) can also be interpreted as
the fraction of particles that end up in d3r given their
various initial positions.

Again since Fs in its general form is a complex-
frequency dependent function, a frequency dependent dif-
fusion function is defined as [21]

D(ω) =
1

3

∫ ∞

0

e−iωt⟨v(0) · v(t)⟩ dt. (11)

The frequency-dependent diffusion function can also be
defined using the generalized Fick’s law, where the com-
ponents of current density are proportional to the gra-
dient of the concentration ∇c of the diffusing species,
j(k, ω) = −D(k, ω)(∇c)k,ω [27].

The fluctuation-dissipation theorem, in its general
form, can elucidate the nature of colored noise as rep-
resented by ⟨ηf (0) · ηf (t)⟩ = kBTΓ(t). This equation of-
fers insight into the memory function, which corresponds
to the correlation function of the stochastic force. In its
general form, a memory function is a wave-number and
complex-frequency dependent function that describes the
response of fluid, to fluctuations at different frequencies
and at different length scales. Viewed through this lens,
it is not unreasonable to anticipate that the correlation
functions of various operators, such as the velocity au-
tocorrelation function, viscosity, or diffusion coefficients,
are subject to the same underlying decaying dynamics.
In the subsequent section, we expound upon how this fun-
damental understanding can be harnessed to establish a
connection between the GLE solution and the evaluation
of the shear viscosity coefficient through MD simulations.

III. GENERALIZED STOKES-EINSTEIN
EQUATION

The diffusion of a spherical particle in a purely vis-
cous fluid at low Reynolds number is described by the
Stokes-Einstein equation D = kBT

6πaη , where a represents

the radius of the diffusing particle, and η denotes the
shear viscosity of the surrounding fluid at zero frequency.
Consequently, the mean-square displacement of the dif-
fusing particles increases linearly with time. We postu-
late a generalized form of the Stokes-Einstein equation by
extending it to the frequency domain, introducing fre-
quency dependence to its parameters. Beginning with
the GLE equation (refer to Eq. 1), we apply a Laplace
transformation, converting the convolution operator into
a multiplication. The resultant equation is

⟨v(0) · ṽ(s)⟩ = kBT

Ms+ Γ̃(s)
(12)

where s is the Laplace domain variable and parameters
denoted with a tilde are assumed to be extended to the
Laplace domain via analytic continuation. The equipar-
tition theorem is often used to equate M⟨v2(0)⟩ = kBT .
The first term in the denominator represents the iner-
tial effects and is negligible at low frequencies. For the
left-hand-side we can use the mean-square displacement
instead of the velocity autocorrelation function. With

r(t)− r(0) =
∫ t

0
v(t′) dt′ we have

[r(t)− r(0)]2 =

∫ t

0

∫ t

0

v(t′) · v(t′′) dt′ dt′′.
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Averaging over an ensemble of particles we get:

⟨[r(t)− r(0)]2⟩ =
∫ t

0

∫ t

0

⟨v(t′) · v(t′′)⟩ dt′ dt′′.

We set τ = t′′ − t′ and change the limits of integration:

⟨[r(t)− r(0)]2⟩ = 2t

∫ t

0

(1− τ

t
)⟨v(0) · v(τ)⟩ dτ (13)

assuming that the equilibrium state is a stationary state
with time reversal symmetry, as is the case in determin-
istic classical mechanics. For a fast decaying velocity
autocorrelation function and long observation times this
equation is approximated by

⟨∆r2(t)⟩ = ⟨[r(t)− r(0)]2⟩ ≈ 2t

∫ t

0

⟨v(0) ·v(τ)⟩ dτ. (14)

Considering Eq. (10) the left hand side can be expressed
in terms of the Laplace transform of the mean-square
displacement,

Γ̃(s) =
6kBT

s2⟨∆r̃2(s)⟩
. (15)

The final step consists of relating the memory function
to the viscosity. Mason et. al. [28] achieve this by writ-
ing the following relation between macroscopic stress τ(t)
and the stress relaxation modulus Gr(t)

τ(t) =

∫ t

0

Gr(t− t′)γ̇(t′) dt′ (16)

where γ̇(t′) is the strain rate. They noticed that the
Laplace transform of Gr(t) had units of viscosity and by
extending the zero-frequency version of Stokes law they
arrived at

G̃r(s) =
Γ̃(s)

6πa
. (17)

This relationship, which has been termed the “correspon-
dence principle”, provides a direct link between memory
kernel and viscosity [29–32]. By combining Eqs. (15) and
(17) we obtain a direct link between viscoelastic modulus

G̃(s) = sG̃r(s), and mean square displacement, which is
a generalized form of the Stokes-Einstein equation

G̃(s) ≈ kBT

πas⟨∆r̃2(s)⟩
. (18)

Considering the complex viscosity spectrum η̃(s) =

G̃(s)/s we arrive at

D̃(s) =
kBT

6πasη̃(s)
. (19)

This equation was experimentally verified using diffusing-
wave spectroscopy [28].

IV. PULSED FIELD GRADIENT (PFG) NMR

The PFG NMR technique plays an important role
in detecting molecular self-diffusion processes at the
nanometer scale. This experimental method operates by
assigning a spatial label to individual molecules based
on their Larmor frequency, in the presence of a constant
magnetic field gradient applied across the sample. The
foundational concept, initially proposed by Hahn [33], ex-
ploits the precessional displacement of the signal phase,
commonly referred to as signal dephasing (i.e., loss of
phase coherence among the spins), within a spin echo
experiment to quantify molecular translational motion.
The theoretical foundation of such experiments was de-
veloped by Carr and Purcell [34], and subsequently un-
derwent further improvements [35–37].
In its simplest form, the PFG NMR method is based

on a Hahn echo sequence, denoted as 90 − τ − 180 − τ ,
where effects of spin-spin interactions are removed and
diffusion effects are studied under a constant magnetic
field gradient g, applied both before and after the echo
pulse. The lineshape of NMR signal in the diffusion ex-
periment is evaluated by a signal attenuation function
R(τ) that describes the total signal from an ensemble of
spins dephasing in a gradient. The cumulant expansion
gives:

R(τ) =

〈
exp(i

∫ τ

0

ω(t)dt)

〉
= exp

(
i

∫ τ

0

⟨ω(t)⟩dt− 1

2

∫ τ

0

dt

∫ τ

0

dt′⟨ω(t)ω(t′)⟩+ · · ·
)

where frequency depends on position ω(t) = γg · x(t).
For a stationary process, the ensemble average in the
first term is constant. For the second term∫ τ

0

dt

∫ τ

0

dt′⟨x(t)x(t′)⟩ = 2

∫ τ

0

(τ − t)⟨x(t)x(0)⟩dt.

We extend the upper limit of the integral to infinity and
invoke the Plancherel’s theorem for Laplace transforms
of real-valued functions f(t) and g(t):∫ ∞

0

f(t)g(t) dt =
1

2πi

∫ c+i∞

c−i∞
f̃(s)g̃(−s) ds.

where the Bromwich contour has the usual meaning (ver-
tical line with real part fixed, and placed to the right of
all poles). We get:∫ ∞

0

(τ − t)⟨x(t)x(0)⟩dt =

1

2πi

∫ c+i∞

c−i∞
(̃τ − t)(s) ˜⟨x(t)x(0)⟩(−s)ds

Let us abbreviate:

X(s) ≡ ˜⟨x(t)x(0)⟩(s)
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U(s) ≡ (̃τ − t)(s) =
τ

s
− 1

s2

so that∫ ∞

0

(τ − t)⟨x(t)x(0)⟩dt =
∫ c+i∞

c−i∞
U(s)X(−s)ds

=

∫ c+i∞

c−i∞
U(s)

V (−s)

s2
ds =

∫ c+i∞

c−i∞

U(s)

s2
V (−s)ds

where the second equality follows from V (s) = s2X(s).
Another application of the Plancherel theorem (inverse
Laplace transform) yields:∫ ∞

0

(
τ
t2

2!
− t3

3!

)
⟨v(t)v(0)⟩dt ≈ MτT 2

∫ τ

0

⟨v(t)v(0)⟩dt

where τ ≫ T is assumed, employing the intermediate
value theorem with the constant M = O(1), and consid-
ering a time factor τc ≤ T ≤ τ bounded from below by
the correlation time τc and the form of the velocity au-
tocorrelation function ⟨v(t)v(0)⟩. For small molecules in
weak gradient fields, the cumulant expansion is typically
truncated at the second order [38]. In isotropic diffusion,
after the decay of the velocity correlation function, the

diffusion function D(t) = 1
3

∫ t

0
⟨v(t′) · v(0)⟩dt′ becomes

constant. The signal attenuation due to the second cu-
mulant term, is:

R(τ) = exp(−3Mγ2g2DτT 2). (20)

Accurately calculating frequency-dependent viscosity or
diffusion coefficients remains challenging. The subse-
quent section illustrates how MD simulations can effec-
tively model fluid dynamics to assist in this endeavor.

V. MOLECULAR DYNAMIC SIMULATION OF
SIGNAL ATTENUATION

MD simulations are suitable for generating the au-
tocorrelation functions necessary to evaluate frequency-
dependent diffusion and viscosity parameters. Our model
must accurately capture the complex diffusion dynam-
ics exhibited by gas particles, which display memory ef-
fects [4–8]. This is the appropriate description for non-
Markovian liquids, non-ideal gases, and intricate geome-
tries where assessing transport properties poses consid-
erable challenges.

The process involves computation of interatomic or in-
termolecular forces and the subsequent motion of neigh-
boring particles. The list of neighboring particles, which
is crucial for calculating interactions, is dynamically up-
dated at each time step. The simulation boundaries can
be periodic, allowing particles leaving the simulation box
to re-enter it from the opposite side. (Periodic boundary
conditions are a common technique to mimic an infinite
system.) At predefined time intervals, physical attributes
of particles, such as position and momentum, are sam-
pled to compute averages, which are recorded in an out-
put data file [23, 39]. To facilitate the generation of these

parameters for a particle ensemble, we employed the soft-
ware “Large-scale Atomic/Molecular Massively Parallel
Simulator” (LAMMPS), a popular open-source compu-
tational tool [40] for MD simulations.
MD simulations were conducted to calculate the shear

viscosity of gaseous xenon (Xe), as defined by Eq. (7).
We utilized the Lennard-Jones (LJ) pair potential, ex-
pressed as U(r) = 4ϵ[(σ/r)12−(σ/r)6], where interactions
between xenon atoms were characterized by ϵ = 1.77
kJ/mol, the depth of the potential well, and σ = 4.1 Å,
the distance at which the potential energy becomes zero.
Our simulations of bulk fluid were conducted for isotropic
diffusion by placing 2,000 xenon atoms within a box de-
fined by periodic boundary conditions. Throughout the
simulations, we maintained a consistent particle count,
volume, and temperature, adhering to the canonical en-
semble (NV T ensemble) [4]. Each set of simulations was
repeated for 10 different random seeds for the initial po-
sitions and velocities of the particles to ensure robust
statistical sampling and accuracy of the results. In the
simulations of restricted diffusion (i.e., diffusion limited
by the nanotube geometry), nanotubes of a fixed length
and various diameters were employed, and the number
of particles was adjusted to maintain a constant particle
density.

VI. SIMULATION OF BULK GAS

In the first example, we investigated the unrestricted
self-diffusion of particles in a gaseous phase, a phe-
nomenon that has been observed to exhibit an unex-
pected line-narrowing effect with increasing tempera-
ture [4–8]. Simulations were carried out across a tem-
perature range spanning from 200 K to 400 K, encom-
passing a total of 21 distinct temperature values. To en-
sure equilibration, particle trajectories were evolved for
a duration of 106 fs. During each simulation, the Cαβ

correlation functions were computed 60 times, extend-
ing data collection to ensure the decay of correlations is
fully captured. Subsequently, these correlation functions
were averaged and utilized to compute the Green-Kubo
integral, Eq. (6). The effectiveness of this approach re-
lies on the correlation functions exhibiting similar decay
rates, ensuring the integrals converge to a representative
average value.
Figure 2 illustrates the temporal decay behavior of the

correlation of the pressure tensor, Cη = 1
3 (Cxy + Cyz +

Cyz), at various temperatures. The inset of Figure 2
provides a semi-logarithmic plot of the initial segment of
this data. We observe that the rate of decay, indicated by
the consistent slope in the semi-logarithmic plot, remains
consistent across all temperatures. Therefore, variations
in the diffusion coefficient can be attributed to differences
in the initial amplitude of the pressure tensor correlation
function, as shown in Eq. (7). The decay of the pressure
correlation function can be described with:

Cµ ≈ A exp(−t/TD) (21)
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where A represents the temperature-dependent ampli-
tude and TD is the common decay characteristic time
due to diffusion.

p

FIG. 2. The autocorrelation function of the pressure tensor,
as specified in Eq. (7), was calculated via MD simulation and
plotted as a function of time for a series of temperatures.
The inset provides a semi-logarithmic view of the initial data
points, illustrating that the autocorrelation function follows
a clear exponential decay with a consistent rate across dif-
ferent temperatures. The viscosity coefficient, obtained from
the integral of the autocorrelation function values, correlates
directly with the amplitude of the initial point on the decay
curve.

It is essential for the initial amplitude of the correla-
tion function decay curve to align with its integral, in-
dicative of the viscosity factor. Figure 3 illustrates these
parameters across various simulation temperatures. Our
previous work demonstrated that our simulated viscosity
parameters conform to Sutherland’s formula, which de-
scribes temperature-dependent variations in viscosity [4].

η ∝ T 3/2

T + C
(22)

Here, C represents Sutherland’s constant. Correspond-
ingly, the initial value of the Cαβ correlation function fol-
lows a similar pattern. To derive the generalized diffusion
function D̃(s) from the complex-frequency-dependent
viscosity function within the Laplace domain, η̃(s), we
approximate Cµ using an exponential decay function:

η̃(s) = ˜Ae−t/TD (s) =
A

T−1
D + s

. (23)

In the Laplace domain, we link the viscosity function
to the diffusion function using the generalized Stokes-
Einstein equation, Eq. (19),

D̃(s) =
kBT

6πaAs(T−1
D + s)

. (24)

With an inverse Laplace transform we find a generalized
diffusion coefficient in the time domain

D(t) =
kBT

6πa

θ(t)

ATD
(25)

where θ(t) is the Heaviside step function. So we recover
the zero frequency Stokes-Einstein relation where η is
replaced by ATD. Thus, for diffusion in bulk gas, it is not
necessary to consider the frequency-dependent diffusion
coefficient, and the signal decay attributed to particle
diffusion, as delineated in Eq. (20), can be conveniently
addressed by invoking the zero-frequency Stokes-Einstein
equation. This results in a line-width that is inversely
proportional to the zero-frequency viscosity coefficient,
as previously discussed in [4]

∆ω = (3Mγ2g2D)1/3 = (3Mγ2g2
kBT

6πaATD
)1/3. (26)

Utilizing this equation, the viscosity coefficients de-
rived from MD simulations enable the prediction of gas-
phase lineshape trends. Figure 4 demonstrates this for a
magnetic field gradient of 0.01 G/cm, with the value of
M fitted to experimental results. The figure’s inset of-
fers a direct comparison between the simulated linewidth
and the experimentally measured linewidth of gaseous
tetramethylsilane (TMS). The experimental sample com-
prised a sealed tube containing liquid TMS, prepared
using the freeze-pump-thaw method for degassing. The
sample was then heated, elevating its temperature above
25◦C, to promote TMS evaporation. Measurements were
conducted using a Bruker AV 600 MHz NMR spectrom-
eter, equipped with variable temperature control and
pulsed gradient capabilities, ensuring a controlled, pre-
cise environment for data acquisition.

FIG. 3. The blue data points represent the viscosity coeffi-
cient obtained by numerically integrating the pressure corre-
lation function at various temperatures. The consistent decay
rate in the correlation function suggests that the amplitude
of the initial data point provides an accurate and reliable ap-
proximation of the viscosity coefficient, as indicated by the
orange data points.

VII. RESTRICTED DIFFUSION

The analysis of anisotropic diffusion in NMR requires
extending the zero-frequency diffusion coefficient to a dif-
fusion tensor. In cases like aligned fibers, NMR signal at-
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FIG. 4. Linewidth of the NMR signal calculated using
Eq. (26) and derived from the simulated viscosity coefficient.
A line-narrowing effect is observed. The inset shows a com-
parison with experimental results.

tenuation significantly depends on the measurement di-
rection. This dependence is determined by the orienta-
tion of the sample relative to the field gradient vector,
represented by its Cartesian components g = (gx, gy, gz).
The NMR lineshape is a weighted average of all spins in
an ensemble, while the signal decay rates are determined
by the diffusion tensor’s components.

For more intricate samples, such as those with multiple
orientations or powder-like distributions, averaging over
all possible orientations becomes essential. This method
is akin to assuming a single oriented domain where the
gradient direction is randomly sampled [2, 37].

In this study, we employed the memory function for-
malism to explore the complexities of restricted diffusion
in fluids. Our series of MD simulations focused on the
restricted diffusion of gas particles, specifically investi-
gating the effects of temperature variations and different
diameters of cylindrical boundaries on their diffusion be-
havior. These simulations were conducted inside cylin-
ders of various diameters, all aligned parallel to the mag-
netic field gradient g = (0, 0, g). The objective was to
understand how NMR linewidth varies with temperature
and cylinder radius.

For the simulations, we used Xenon (Xe) particles. The
interactions between the Xe particles and the cylindrical
boundary were modeled using the Lennard-Jones poten-
tial, with parameters ϵ = 0.3 kJ/mol and σ = 4.295 Å,
representing a silica tube. To determine the viscosity co-
efficient, we integrated all three components of the pres-
sure tensor, referred to as Cαβ(τ) in Eq. (7). Although
the Cxy component showed significantly higher values
than the Cyz and Cxz components, given the tube’s ori-
entation along the z-axis, we opted to integrate all three
components together for a thorough analysis, as illus-
trated in Fig. 5.

The simulations indicate that viscosity in this context

FIG. 5. Viscosity coefficient evaluated for cylinders of uniform
length but varying diameters. This coefficient was ascertained
by integrating all three components of the pressure tensor
cross-correlation function. Notably, the temperature trend
observed closely parallels that of bulk gas diffusion. Further-
more, the viscosity coefficient demonstrates a clear sensitivity
to the diameter of the cylindrical tube.

exhibits a temperature dependence akin to that observed
in bulk gas. Notably, as the temperature rises, there is
a marked increase in the medium’s resistance to molecu-
lar motion, likely resulting from more frequent molecular
collisions at elevated temperatures. Consequently, this
increased resistance is expected to raise the diffusion co-
efficient, subsequently narrowing the NMR lineshape.
It is also significant to note that the viscosity observed

here is substantially lower—by approximately an order of
magnitude—than that in bulk fluid environments. This
observation points to a markedly reduced resistance to
molecular motion within the medium. Moreover, the
simulations suggest an increase in resistance to diffusion
when molecules are confined within tubes with smaller
diameters.
To better comprehend the interplay between viscosity

and the dynamics of complex fluid flow, we explored its
correlation with the radius of the cylindrical boundary.
In cases of restricted fluid diffusion within these cylindri-
cal confines, the decay pattern of the pressure correlation
function diverges from a simple exponential decay. This
divergence is depicted in Fig. 6a. A more precise repre-
sentation of this decay pattern is obtained by integrat-
ing an exponential decay with an oscillatory component,
modeled as:

Cµ ≈ A exp(−t/TD) cos(ωt), (27)

where ω denotes the frequency of the oscillatory compo-
nent.
Figure 6 presents the fitting results of the simulated

pressure tensor data for a tube with a radius of 75 Å,
using Eq. (27). Our initial analysis reveals that the char-
acteristic decay time, similar to that in bulk fluids, varies
minimally with temperature. However, the amplitude of
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(a)

(c)

(b)

(d)

FIG. 6. Restricted diffusion of Xe gas molecules in a cylin-
drical tube with a radius of 75 Å. Panel (a) displays the de-
cay pattern of the gas molecules, highlighting the presence of
an oscillatory component alongside exponential decay. Panel
(b) depicts the variation in the characteristic decay time TD

across different temperatures, illustrating a lack of a consis-
tent trend. Panel (c) shows that the amplitude of the decay
function escalates with an increase in temperature, aligning
with observations in bulk gas behavior. Panel (d) presents
the variation in the angular frequency of the oscillatory com-
ponent with temperature.

the decay curve exhibits significant temperature depen-
dence, as shown in Figs. 6b and c.

The angular frequency of the oscillatory component
remains relatively stable across different temperatures
but shows a notable correlation with the tube’s radius.
Figure 7a displays this oscillation frequency, averaged
over various temperatures, plotted against the cylindri-
cal tubes’ radii. This pattern suggests that the oscillatory
term’s frequency acts as an indicator of diffusion dimen-
sions, being proportional to the radius with an exponen-
tially decaying function. This underscores the impor-
tance of viscosity in examining geometrical constraints
affecting diffusion within the tubes.

The amplitude of the decay curve is influenced by both
the temperature and the radius of the cylindrical tube.
At a fixed temperature, we observe that the amplitudes
exhibit an exponential correlation with the tube radii, as
demonstrated in Fig. 7b. The characteristic decay time of
the pressure correlation function, similar to that observed
in bulk diffusion, shows minimal variation with tempera-
ture. However, it noticeably increases as the tube radius
expands, as clearly depicted in Fig. 7c. It is important
to note that, while both the frequency and amplitude
of the pressure tensor decay curve show exponential de-
pendence on the tube radius, their distinct impacts are
more pronounced in experiments conducted across vari-
ous temperatures.

n
G

(a)

(b)

(c)

FIG. 7. The frequency of the oscillatory term and the am-
plitude of the pressure tensor decay exhibit well-defined re-
lationships with the tube radius. Panel (a) shows that the
average frequency decreases exponentially with the tube ra-
dius. Panel (b) illustrates a similar exponential relationship
for amplitudes at a constant temperature. Panel (c) displays
the variation in the characteristic decay time of the pressure
tensor as a function of the tube radius.

VIII. EFFECTS ON NMR LINEWIDTH

The analysis from the preceding section shows that key
parameters, such as the characteristic decay time, ampli-
tude, and frequency associated with the oscillatory com-
ponent of viscosity, exhibit consistent and predictable
trends. The main objective is to correlate these parame-
ters with the generalized diffusion coefficient and deter-
mine their impact on the NMR signal’s lineshape. This
aligns with the broader goal of using the NMR signal
profile to deduce detailed characteristics of complex fluid
behavior.
Our analysis begins with the generalized Stokes-

Einstein equation (refer to Eq. 19). In this context, we

deduce the generalized diffusion function D̃(s) from the
complex-frequency-dependent viscosity function within
the Laplace domain. We obtain the viscosity function by
applying a Laplace transform to the time-domain viscos-
ity expression, represented as η̃(s). Utilizing analytical
expressions to approximate the time-dependent pressure
tensor Cµ, we derive:

η̃(s) = ˜Ae−t/TD cos(ωt)(s) =
A(1/TD + s)

ω2 + (1/TD + s)2
. (28)

Employing the generalized Stokes-Einstein equation we
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get:

D̃(s) =
kBT

6πa

ω2(1/TD + s)2

As(1/TD + s)
. (29)

Next we perform an inverse Laplace transform to get the
generalized diffusion function in the time domain

D(t) =
kBT

6πa

θ(t)

A
[1/TD + ω2TD(1− e−t/TD )] (30)

where θ(t) is the Heaviside step function.
To more closely examine the impact of tube radius, we

analyzed the diffusion function at a constant tempera-
ture. Figure 8 illustrates the results for cylindrical nan-
otubes with radii ranging from 11 to 75 Å. Initially, the
diffusion function demonstrates time-dependent behav-
ior, especially noticeable when the pressure tensor cor-
relation function Cµ has not yet stabilized to zero. Be-
yond this phase, extending over several multiples of TD

(the characteristic diffusion time), a consistent diffusion
coefficient becomes apparent. The time dependency ob-
served in our simulations reflects the time required for
particles to reach and interact with the tube boundaries,
representing a temporal dynamic arising from our ob-
servational methodology rather than an intrinsic prop-
erty of the particle diffusion process itself. In reality, the
diffusion function represents the mean square displace-
ment averaged over all particles, which assumes a time-
independent value. Thus, for diffusion analysis within the
GLE formalism, it is appropriate to use the equilibrium
value of D(t). As outlined in Eq. (30), this equilibrium
value is influenced by factors like TD and ω, leading to
diffusion coefficients that significantly differ from those
in bulk systems and fluids without memory effects.
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FIG. 8. Generalized diffusion parameter calculated according
to Eq. (30) at T=300 K. Transport parameters are extracted
from MD simulation of Xe gas diffusion in cylindrical tubes.

The next step is to analyze the effect of the diffusion
function on the NMR signal’s lineshape. Once again, we
utilize the attenuation function described in Eq. (20), fit-
ting the value of M and adopting the equilibrium value of

the generalized diffusion function D. Figure 9 illustrates
the NMR lineshape trend. The data reveals a distinct
pattern: larger pore sizes correspond to increased diffu-
sion parameters, resulting in broader NMR lines.
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FIG. 9. The linewidth of NMR signal at T=300 K is estimated
for nanotubes with various pore sizes, using the generalized
diffusion parameter. Larger diffusion parameters correspond
to a broader line.

IX. CONCLUSION

This work highlights the significant role of memory
functions in understanding the non-Markovian dynamics
of viscoelastic fluids. By employing frequency-dependent
viscosity and diffusion coefficients, and building upon the
generalized Stokes-Einstein equation, we have developed
a generalized diffusion function. This function is no-
tably sensitive to memory effects, as demonstrated by its
relationship to the pressure correlation function. Most
importantly, we introduce a novel method for analyzing
NMR lineshape in complex geometries, using transport
parameters derived from MD simulations.
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