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Abstract
This study highlights optimizing polyol reaction conditions to produce 100% silver nanowire (AgNW) yields (AgNWs count/
all nanostructure count) using a millifluidic flow reactor (MFR). AgNWs of uniform length and diameter offer potentially 
low-cost, transparent, and flexible conductors. MFRs produce AgNWs with superior uniformity, yield, and concentration 
due to the reduced dimensions of the reaction environment. A statistical design of experiments (DoE) considering polyol 
reaction temperature and the three reagent concentrations optimized the process. The AgNWs are characterized by scan-
ning electron microscopy (SEM) to calculate the yield of AgNWs per reaction. After completing the DoE, calculated yields 
are put into Minitab statistical software for analysis. Minitab discovered the optimal reaction conditions to be T = 170 °C, 
[AgNO3] = 0.177 M, [CuCl2] = 6.05 mM, and [PVP] = 0.224 M, with an R2 value of 85%. Results of the DoE were imported 
into supervised decision tree (DT) and random forest (RF) machine learning (ML) algorithms. The DT and RF predicted 
yields of AgNWs given reaction temperature and reagent concentrations with 96.9% and 97.5% accuracy, respectively. The 
optimal polyol reaction conditions synthesized 100% AgNW yield with average concentrations of 16 mg/mL, lengths of 
32 µm (σ ± 3.5 µm), diameters of 68 nm (σ ± 12 nm), and aspect ratios of 475.

Keywords  Silver nanowires · Polyol · Millifluidic flow reactor · Continuous flow reactor · Design of experiment · Machine 
learning

Introduction

One-dimensional (1D) silver nanowires (AgNWs), with 
high aspect ratios, optical transparency, photolumines-
cence, and high electrical and thermal conductivity are 
leading candidates for future nanomaterial applications 

in nanoelectronics, nanophotonics, optoelectronics, and 
micromechanics (Luu et al. 2011; Hemmati et al. 2015). 
These include smart sensors (Hemmati et al. 2016; Lee et al. 
2016; R et al. 2015), wearable electronics (Kwon et al. 2018; 
Huang and Zhu 2019), catalysts (Kostowskyj et al. 2008), 
energy harvesting devices (Liang et al. 2019), and various 
other types of stretchable sensors (Choi et al. 2015; Liang 
et al. 2014; Miller et al. 2013; Kumar et al. 2021). AgNWs 
are commonly synthesized using templates or using wet-
chemical techniques like hydrothermal, solvothermal, and 
polyol-based synthesis techniques that heretofore require a 
costly and time-consuming separation and purification step 
(Kumar et al. 2021).

There are two major types of template syntheses for 
AgNWs including soft and hard templates. Typical hard 
template examples include nanoporous membranes and 
carbon nanotubes, while typical examples of soft templates 
include micelles, surfactants, and various polymers (Zhang 
et al. 2017). In template-based syntheses, the AgNWs are 
grown on specific templates in the presence of reagents 
undergoing either electrochemical (Dalchiele et al. 2007), 
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chemical reduction (Malandrino et al. 2004), or irradiation 
(Hong et al. 2015) processes to produce silver atoms that 
propagate nanowire growth. The advantage of hard template 
syntheses is the ability to synthesize highly ordered, well-
defined morphologies, but the major disadvantage is the 
complex removal process of the AgNWs from the templates. 
Soft templates were introduced to overcome the issues asso-
ciated with the nanomaterial removal process, but the dis-
advantages changed from a difficult removal process to low 
amounts of AgNWs produced, polycrystallinity, low aspect 
ratios, and irregular morphologies (Zhang et al. 2017).

Two common wet-chemical techniques are hydrothermal 
(Xu et al. 2006) and solvothermal (Chen et al. 2011). Each 
of these processes include mixing reagents in a reaction 
vessel, placing the reactor into a furnace, allowing time for 
the reaction to proceed, cooling the reaction solution, and 
then separating and washing the nanowires from the reac-
tion solution. Advantages of using one of these methods 
include using greener solvents (water in hydrothermal pro-
cesses) and being able to seal the reaction vessel to allow 
for large arrays of reaction temperatures. A disadvantage of 
these techniques is that organic solvents are used instead of 
water (in solvothermal processes) and both methods require 
detailed separation processes for the nanowires (Zou et al. 
2006). Despite these challenges, wet-chemical techniques 
can be more readily implemented than template-based 
methods.

The polyol wet-chemical technique is a simple, cost-
effective way to synthesize AgNWs with uniform diameters 
and lengths. Polyol synthesis requires a glycol as the solvent 
and reducing agent, a metal precursor, polyvinylpyrrolidone 
(PVP) as the capping agent, and a salt mediator to scavenge 
oxygen, as well as slowly release silver ions into solution 
during the reaction (Hemmati et al. 2017). Cao et al. used a 
modified polyol method to synthesize AgNWs using a batch 
reactor. Silver nitrate, ethylene glycol (EG), and PVP were 
used as the metal precursor, reducing agent, and capping 
agent, respectively. Sodium chloride and sodium bromide 
were used as the halide mediators for the modified polyol 
process. The AgNWs formed in this study had average 
lengths of 24 µm with 70 nm average diameters (Cao et al. 
2020). Nekahi et al. produced sharp-end and round-end 
AgNWs in a batch reactor using another modified polyol 
process. Silver nitrate, EG, and PVP were used as the metal 
precursor, reducing agent, and capping agent, respectively. 
In this study, a salt mediator was not used in the polyol 
reaction. The authors controlled the silver ion concentra-
tion by adding the reagent solutions into the reaction flask 
drop wise over 8 min. The AgNWs synthesized in this study 
reported average lengths of 28 µm and average diameters of 
215 nm (Nekahi and Fatmesari 2016). Zhao et al. synthe-
sized AgNWs using a traditional polyol process in a batch 
reactor. Silver nitrate, EG, PVP, and ferric chloride were 

used as the metal precursor, reducing agent, capping agent, 
and salt mediator, respectively. They investigated the effects 
of adding different amounts of ferric chloride and PVP to 
produce long and uniform AgNWs. The authors reported 
a maximum aspect ratio of 570 for the AgNWs (Zhao and 
Qu 2018).

Batch processes are known for low AgNW yields, low 
aspect ratio AgNWs, and irregular morphologies (Hemmati 
et al. 2017). In order for a process to be eligible for scale up, 
it must demonstrate control over the morphologies synthe-
sized and be reproducible for quality assurance. Convective 
mass and heat transfer dominate in batch reactors due to 
turbulent flow conditions (Roberts et al. 2019). Nanowires 
from batch reactions are unreproducible due to mass and 
thermal transport properties changing with respect to vol-
ume (Bertuit and Abou-Hassan 2022). As reaction volume 
gets larger, it is more difficult to achieve uniform mixing, 
so custom impeller geometries must be configured (Roberts 
et al. 2019).

Continuous flow reactors operating at low Reynolds 
(Re) allow diffusion dominated heat and mass transport 
throughout the reaction and the nanowires grow in the well-
organized streamlines of laminar flow. In this work, a com-
bination of laminar flow, and a coiled reactor tube results 
in secondary flow called Dean vortices that aid mixing of 
the reagents throughout the synthesis. Dean vortices create 
a secondary, transverse flow to the bulk fluid’s flow which 
produces transverse drag on the NWs being synthesized. 
Even at low Deans numbers, the drag from the secondary 
flow allows for long AgNWs to be synthesized. When con-
sidering scale out, or identical flow reactors in parallel, the 
dimensionless numbers that are dependent on reactor size 
and configuration remain constant which allows for scalable 
repeatable synthesis. When considering a technique with 
potential for scale out, continuous flow syntheses show great 
promise (Bertuit et al. 2022; Kinhal et al. 2019).

Gottesman et al. synthesized AgNWs in a millifluidic 
flow reactor (MFR) utilizing the polyol synthesis. The 
authors used polytetrafluoroethylene (PTFE) tubing placed 
inside of a split furnace heated to 198 °C. Silver nitrate, 
EG, and PVP were used as the metal precursor, reducing 
agent, and capping agent, respectively. A salt mediator was 
not used in this process. They reported AgNWs with aver-
age lengths of 10 µm and diameters of 71 nm (Gottesman 
et al. 2012). Hemmati et al. synthesized AgNWs in a MFR 
using the polyol process. The authors used PTFE tubing 
submerged in an isothermal bath of silicone oil at reaction 
temperatures of 120 °C, 130 °C, 140 °C, or 150 °C. Silver 
nitrate, EG, PVP, and copper chloride were used as the metal 
precursor, reducing agent, capping agent, and salt mediator, 
respectively. A proposed reaction mechanism by the authors 
is outlined in Fig. 1. They reported synthesizing AgNWs at 
temperatures as low as 130 °C (Hemmati et al. 2017).
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Lau et al. synthesized AgNWs in a continuous flow reac-
tor using the polyol method. A 10 mL perfluoroalkoxy (PFA) 
reaction coil placed on a heater set to 130 °C was used for 
the synthesis. Silver nitrate, EG, PVP, and sodium chloride 
were used as the metal precursor, reducing agent, capping 
agent, and salt mediator, respectively. The authors reported 
AgNWs with average lengths of 36 µm and average diam-
eters of 95 nm (Sheng Lau et al. 2019).

Replicating the millifluidic polyol process reported by 
Hemmati et al. (Hemmati et al. 2017), repeatedly produced 
a small amount of silver nanoparticles (AgNPs) along 
with the AgNWs. To help address this problem, the opti-
mal reaction conditions of a batch study by Hemmati et al. 
(Hemmati and Barkey 2017) were applied to the MFR. The 
authors performed a parametric study with reaction tem-
perature, silver nitrate concentration and sonication time, 
salt mediator type and copper chloride concentration, and 
PVP concentration and molecular weight to understand the 
impact of each factor. The outcome was that the reactions 
were heavily impacted by changes in reaction temperature, 
[AgNO3], sonication time, salt mediator type and concen-
tration, and [PVP] and PVP molecular weight. To refine 
the optimal reaction conditions, a design of experiments 

(DoE) was created using the statistical software JMP Pro. 
The authors found the optimum reaction conditions to be 
T = 158 °C, [AgNO3] = 0.102 M, [PVP] = 0.124 M, and 
[CuCl2] = 5.16 mM (Hemmati and Barkey 2017). Applying 
the batch optimal conditions improved the yield of AgNWs 
produced per millifluidic reaction but was still not at 100%. 
Under these conditions, the average AgNW concentration 
([AgNW]) calculated was 5 mg/mL.

In machine learning (ML), a computer imports data and 
applies statistical science to learn directly from the data 
to make future predictions in the algorithm (Anuoluwa 
Bamidele et al. 2022). Given a quality training set involv-
ing myriad variables that impact the desired outcome, ML 
can be used to discover new materials (Li et al. 2020) and 
optimize known materials (Mahalle et al. 2019). In this 
study, the material is AgNWs, and the application of ML 
is to use data from the DoE to train a model to accurately 
predict AgNW yields given varying input parameters. The 
vast capabilities of ML lie within three major categories 
of algorithms such as reinforcement learning (Pareek et al. 
2021), supervised ML (Ji et al. 2022), and unsupervised 
ML (Lv and Chen 2022). Reinforcement learning aims to 
find optimal relationships or predict actions to maximize 

Fig. 1   Proposed reaction mechanism for the polyol process. In a 
polyol synthesis of AgNWs, solutions of silver nitrate, PVP, and cop-
per chloride are prepared in EG. Silver nitrate dissociates in solution 
due to ionic bonding properties. When exposed to heat, the EG con-
verts to glycol aldehyde (GA), and acts as a reducing agent. The GA 

reduces the silver ions which allows nucleation and growth into mul-
tiply twinned silver seeds. PVP is used as a stabilizing and capping 
agent because it preferentially adsorbs onto the [100] facets which 
promotes one-dimensional growth (Hemmati et al. 2017) (image cre-
ated with BioRender)
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cumulative reward for the selected material properties. After 
learning from labeled data, supervised ML finds the hidden 
relationship between known inputs and unknown outputs 
while unsupervised ML learns from unlabeled data. While 
ML is a new and exciting area in nanomaterials science, 
there are certain nuances or issues associated with using 
these algorithms. The most common nuances include under-
represented classes, descriptor selection, underfitting, over-
fitting, model interpretability, and feature extraction. Select-
ing the appropriate type of algorithm and descriptor for the 
material helps researchers manage these nuances (Anuoluwa 
Bamidele et al. 2022).

When considering an appropriate ML algorithm for 
nanomaterial synthesis and optimization, supervised ML 
algorithms are commonly used. Supervised ML algorithms 
encompass several ML algorithms such as regression, deci-
sion tree (DT), random forest (RF), support vector machine 
(SVM), naïve Bayes, k-nearest neighbor (KNN), and arti-
ficial neural networks (ANN). When considering the best 
supervised algorithm for nanomaterial synthesis optimiza-
tion, DT and RF are commonly applied (Nathanael et al. 
2023; Ono et al. 2023; Kenry 2023). Advantages of DT algo-
rithms include clear visualization, handling of missing data 
easily, scaling data is not necessary, requires less data and 
processing efforts, data normalization is unnecessary, and 
the models are intuitive. The advantages of RF algorithms 
are that they handle large data sets, outliers have a negligi-
ble impact, they handle missing data easily, and they easily 
estimate and reduce error. Disadvantages of DT algorithms 
include taking a long time to train, requiring expensive com-
putations, not being able to predict continuous values, not 
being able to handle large data sets, and susceptible to over-
fitting. The disadvantages for RF algorithms are that they 
are not easy to control, and regression predictions can be 
inaccurate. Considering the advantages, DT and RF algo-
rithms are reliable methods for synthesis and optimization of 
nanomaterials (Saraee et al. 2017; Tashkhourian et al. 2011; 
Anuoluwa Bamidele et al. 2022).

Decision tree algorithms import the data and then divide 
it into smaller pieces until a pattern emerges. These pat-
terns form a flow pattern which resembles a tree as seen 
in Fig. 2. Each node indicates where a decision has been 
made based on a parameter, and when the nodes split that 
indicates multiple decision possibilities. After several nodes 
have split and subdivided, the flow path is completed with a 
final node. A terminal node indicates when the division of 
data stops, and the final nodes share the same conclusions 
(Galvão et al. 2020).

Random forest algorithms utilize a method called bag-
ging which uses the outcome of several decision tree algo-
rithms to make predictions as seen in Fig. 3. Specifically, RF 
algorithms utilize sample and property bagging to reduce 
the number of properties which creates several different DT 
algorithms. Relying on the anticipated outcome allows RF 
algorithms to reduce the number of properties based on the 
outcome as the DTs are made. All the DT outcomes are then 
statistically analyzed to produce a final prediction (Galvão 
et al. 2020).

Gholizadeh et al. focused on applying a RF algorithm to 
predict the viscosities of Newtonian nanofluids. The authors 
identified the input parameters as solid volume fraction, vis-
cosity of the base fluid, temperature, density of nanoparticle, 
and nanoparticle size, and trained the RF algorithm on 2890 
datasets from 50 references. To assess the accuracy of the RF 
model, the model was compared to a multilayer perceptron 
(MLP) model and a support vector regression (SVR) model. 

Fig. 2   An example of a DT algorithm for AgNW polyol synthesis 
where the oval nodes represent parameters and the numbers on the 
branches represent high and low values of the parameters (triangles 
represent other nodes in the DT) (Galvão et al. 2020) (image created 
with BioRender)
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When comparing the R2 values, the RF model had 98.9% accu-
racy while the MLP and SVR models had 91.5% and 94.1% 
accuracies, respectively (Gholizadeh et al. 2020). Han et al. 
optimized, accelerated, and predicted the quantum yield (QY) 
of carbon dots (CDs) using a regression DT algorithm. Volume 
of the precursor, mass of the precursor, time, temperature, and 
ramp rate were identified as the important input parameters. 
The authors used 391 sets of data to train the DT algorithm 
and found that CDs with strong green emission with QYs 
up to 39.3% could be obtained from the DT model and then 
experimentally verified (Han et al. 2020). Liu et al. studied the 
cytotoxicity of photosynthesis synthesized silver nanoparti-
cles (AgNPs). The extraction/solvent, exposure dose, particle 
size, exposure time, normal/cancerous cells, and zeta potential 
were classified as the important factors in predicting cytotoxic-
ity using DT and RF ML algorithms, and 690 data sets were 
used to train the models. To verify the models, the authors 
compared the accuracy of published works to the DT and RF 
algorithms used. A baseline prediction accuracy for published 
data is 55.6% and the authors were able to model cytotoxicity 
using a RF model with 90% accuracy (Liu et al. 2021).

This study used the findings from the previous optimiza-
tion by Hemmati et al. (Hemmati and Barkey 2017) to create a 
design of experiments (DoE) using the Minitab statistical soft-
ware aimed to optimize the polyol reaction conditions for the 
millifluidic synthesis of AgNWs. In addition, the data obtained 
from the DoE reactions were input to a linear regression model 

software and imported into supervised ML algorithms aimed 
to calculate or predict the yield of AgNWs given reaction tem-
perature and reagent concentrations.

Results and discussion

Design of experiments

A DoE was created using the Minitab software with 
parameters of reaction temperature and reagent concentra-
tions of silver nitrate, copper chloride, and PVP. A central 
composite, response surface design was selected to evalu-
ate the DoE in lieu of the Box–Behnken design. Central 
composite designs are a factorial design with center points 
supplemented by a group of axial points that allow for 
more accurate optimization. Response surface designs can 
more accurately optimize a process because a response 
surface factorial design includes the addition of the quad-
ratic term that allows for more accurate modeling in the 
response of the DoE. Box–Behnken designs are response 
surface designs that do not contain an embedded factorial 
design, so these designs only account for one value above 
and below (± 1.0) the base parameters (Support 2022a). 
The central composite, response surface design accounts 
for two values above and below (± 1.0 and ± 1.68179) the 
base parameters for a more thorough, conclusive response 
that searches beyond the base parameters (Support 2022b). 
The DoE is designed to find a response that optimizes 
reaction parameters to produce 100% yield of AgNW using 
a MFR. The parameters, based on the findings of Hemmati 
et al., are reaction temperature, silver nitrate concentra-
tion, copper chloride concentration, and PVP concentra-
tion (Hemmati and Barkey 2017).

Reaction temperature is vital for converting EG to gly-
colaldehyde (GA) so that silver atoms can undergo homog-
enous nucleation. The ratio of PVP to silver nitrate heavily 
impacts the morphology of synthesized AgNWs in polyol 
syntheses. When the concentration of silver nitrate is too 

Fig. 3   An example of a random forest machine learning algorithm for 
AgNW polyol synthesis that utilizes bagging to create several deci-
sion tree outcomes that can then be statistically analyzed to make a 
prediction (Galvão et al. 2020) (image created with BioRender)

Fig. 4   The proposed mechanism shows PVP (in orange) preferen-
tially depositing on the [100] facets of the multiply twinned Ag seeds 
which allows the Ag atoms in solution to preferentially deposit on 
the [111] facets located at the ends of the AgNWs (Sun et al. 2003) 
(image created with BioRender)
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high, passivation of the [100] facets on the Ag seeds is insuf-
ficient and growth occurs on both [100] and [111] facets. 
Growth on [111] facets encourage AgNP formation in lieu 
of the desired AgNW morphology. When the concentration 
of silver nitrate is too low, the excess PVP covers all sur-
faces, including [100] facets of the Ag seeds and prevents 
1D AgNW growth. A proposed mechanism of PVP acting 
as a capping agent is shown in Fig. 4 (Coskun et al. 2011).

Sonicating the silver nitrate solutions for 5–6 min mini-
mized the by-product nanoparticles and allowed for longer 
wires to form. In the presence of heat, oxygen in solution 
adsorbs onto the surface of the silver seeds. Adsorbed oxy-
gen on the surface during the nucleation and growth steps 
can cover different facets on the silver seeds and prevent 
1D growth. To minimize this adverse adsorption, copper 
chloride was used as the salt mediator. The copper (II) ions 
get reduced by EG, once EG has converted to  GA, and then 
go on to react with the adsorbed oxygen to remove it from 
the surface of the silver seeds. This process allows the Cu+ 
ions to convert back to Cu2+ ions to be reduced and used 
again for scavenging oxygen as seen in Fig. 5 (Hemmati 
and Barkey 2017).

In the presence of heat, the silver ions will form an ionic 
bond with the chloride ions. This compound dissociates 
throughout the nucleation and growth phases, which allows 
for silver ions to be released slowly into the reaction solution 
to undergo reduction. This functionality of the salt mediator 
allows for Ag to be slowly added to the multiply twinned 
silver seeds. The concentration and molecular weight of 
PVP are critical in controlling growth and morphology of 
the silver seeds into AgNWs. PVP with a molecular weight 
of 55,000 was found to be the optimal molecular weight 
because it easily covered the surface of silver seeds due to 

its low steric effect and preferentially capped the [100] facets 
of the silver seeds (Hemmati and Barkey 2017).

For baseline conditions, the findings from Hem-
mati et  al. were applied. The baseline conditions are 
T = 158 °C, [AgNO3] = 0.102 M, [PVP] = 0.124 M, and 
[CuCl2] = 5.16 mM as seen in Table 1 (Hemmati and Barkey 
2017). Based on four input parameters, the DoE consisted of 
31 total experiments as shown in Table 2.

The SEM images taken of the 31 DoE reactions can be 
seen in Fig. 6.

Minitab linear regression model

Upon the completion and analysis of the 31 DoE reactions, 
the data were put into the Minitab software and analyzed 
using a response surface design. Once the software analyzed 
the data, significant factors could be identified by compar-
ing the p-value calculated by the software to the standard 
α term in the software. Minitab assigns α a value of 0.05, 
so if a parameter has a p-value less than α, the parameter 
is considered statistically significant to the process. In 
Table 3, the parameters, variables, and p-values are listed. 
A pareto chart in Fig. 7 is used to graphically depict the 
data seen in Table 3. Based on Fig. 7 and Table 3, only 
silver nitrate concentration (B), PVP concentration (D), and 

Fig. 5   Copper chloride dissoci-
ates in EG due to ionic bonding 
properties, copper (II) is 
reduced to copper (I) by glycol 
aldehyde (GA), oxygen adsorbs 
onto the surface of multiply 
twinned silver seeds, copper (I) 
scavenges the adsorbed oxygen, 
gains an electron, and converts 
back to copper (II), and finally 
copper (II) is reduced again 
by GA and the process repeats 
(Korte et al. 2008) (image cre-
ated with BioRender)

Table 1   Base, low, and high parameter values for the DoE

Value T, °C [AgNO3], M [CuCl2], mM [PVP], M

− 1.7 144 0.0019 3.1614 0.02435
– 151 0.0519 4.1614 0.07435
0 158 0.1019 5.1614 0.12435
 +  165 0.1519 6.1614 0.17435
 + 1.7 172 0.2019 7.1614 0.22435
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their self-interactions (BB and DD) parameters should be 
considered significant to the process. When this is the case, 
a model reduction is usually required to properly fit a model.

The previously discussed impact of reaction temperature 
and copper chloride concentration (Hemmati and Barkey 
2017), as well as the experimental results from this study 
(Fig. 6) exhibit a dependence on all four parameters. To 
investigate whether these factors were significant, the mean of 
yield (average percentage of AgNWs in each reaction for each 
parameter) for each factor is represented in Fig. 8. When ana-
lyzing a main effects plot, a linear mean of yield line implies 
that the effect of a parameter is insignificant, but a non-linear 
mean of yield line implies an effect of a parameter is signifi-
cant. The steepness of the non-linear line implies how large the 
parameter effect is. Considering the findings from Hemmati 

et al., experimental evidence from this study, and results from 
the mean yield plot generated by Minitab, all parameters were 
considered when fitting the model.

A regression model was performed and an R2 value of 85% 
was calculated by the Minitab software. The model determined 
by the Minitab software to predict AgNW yield given tempera-
tures and reagent concentrations is shown in Eq. 1:

where the units for temperature, silver nitrate concentration, 
copper chloride concentration, and PVP are degrees Cel-
sius, molar, millimolar, and molar, respectively. The Minitab 
regression model and the experimental data are graphed in 
Fig. 9 for each DoE reaction.

When the R2 value is low, Minitab suggests a model 
reduction (removing statistically insignificant parameters) 
to try to raise the R2 value. A model reduction was per-
formed to only include the statistically significant vari-
ables found in Fig. 7 and a model and R2 value was cal-
culated by the software. The model reduction produced 
an even lower R2 value equal to 68%. Several variations 
of model reductions were performed, but none produced 
an R2 value above 85%. It was determined that all four 
variables are significant and necessary to properly model 
the data.

Looking more closely at the data in Fig. 9 for DoE 26, 
the regression model shows that the yield for AgNWs is 
predicted to be greater than 100% for the given reaction 
conditions. While this point stands out because it exceeds 
100%, there are a few other points, DoE 2, 3, 25, 27, 28, 
and 29, that exhibit an extreme overshoot or undershoot 
for prediction. Figure 6 shows that these reaction condi-
tions promote AgNP formation because the ratio of [PVP] 
and [CuCl2] were either too low or too high for the [Ag+] 
in solution. It is experimentally anticipated for AgNPs to 
form when the [PVP] and [CuCl2] concentrations are too 
high or too low in the reaction solution and it is verified 
from the reaction product images in Fig. 6. The results 
from this model have proved that linear regression mod-
els are not a viable way to predict the yield of AgNWs. 
A model capable of accounting for and noting the sensi-
tive relationship between the reagents during nucleation 
and growth phases of AgNW formation is required to 
adequately model and predict AgNW yields.

(1)

%AgNWs = −2821 + 32.2 ∙ T − 842 ⋅
[

AgNO3
]

+ 171 ⋅
[

CuCl2
]

− 1357 ⋅ [PVP] − 0.0991 ⋅ T2 − 5169 ⋅
[

AgNO3
]2

− 5.92 ⋅
[

CuCl2
]2 − 4369 ⋅ [PVP]2 + 16.9 ⋅ T ⋅

[

AgNO3
]

− 0.736 ⋅ T ⋅
[

CuCl2
]

+ 12.8 ⋅ T ⋅ [PVP]

− 125.4 ⋅
[

AgNO3
]

⋅
[

CuCl2
]

+ 2047 ⋅
[

AgNO3
]

⋅ [PVP]

+ 107.7 ⋅
[

CuCl2
]

⋅ [PVP]

Table 2   DoE reaction conditions for 31 polyol AgNW syntheses

DoE Parameters T, °C [AgNO3], M [CuCl2], mM [PVP], M

1 − 1.7 0 0 0 144 0.1019 5.1614 0.12435
2 − − + +   151 0.0519 6.1614 0.17435
3 − + − − 151 0.1519 4.1614 0.07435
4 – − + - 151 0.0519 6.1614 0.07435
5 − + + +  151 0.1519 6.1614 0.17435
6 − + − +  151 0.1519 4.1614 0.17435
7 − + + − 151 0.1519 6.1614 0.07435
8 − − − − 151 0.0519 4.1614 0.07435
9 − − − +  151 0.0519 4.1614 0.17435
10 0 − 1.7 0 0 158 0.0019 5.1614 0.12435
11 0 0 + 1.7 0 158 0.1019 7.1614 0.12435
12 0 0 0 − 1.7 158 0.1019 5.1614 0.02435
13 0 0 − 1.7 0 158 0.1019 3.1614 0.12435
14 0 0 0 0 158 0.1019 5.1614 0.12435
15 0 0 0 0 158 0.1019 5.1614 0.12435
16 0 + 1.7 0 0 158 0.2019 5.1614 0.12435
17 0 0 0 0 158 0.1019 5.1614 0.12435
18 0 0 0 0 158 0.1019 5.1614 0.12435
19 0 0 0 + 1.7 158 0.1019 5.1614 0.22435
20 0 0 0 0 158 0.1019 5.1614 0.12435
21 0 0 0 0 158 0.1019 5.1614 0.12435
22 0 0 0 0 158 0.1019 5.1614 0.12435
23  + + − − 165 0.1519 4.1614 0.07435
24  + − + +  165 0.0519 6.1614 0.17435
25  + − − +  165 0.0519 4.1614 0.17435
26  + + −+  165 0.1519 4.1614 0.17435
27  + + + − 165 0.1519 6.1614 0.07435
28  + − − + − 165 0.0519 6.1614 0.07435
29  + − − − 165 0.0519 4.1614 0.07435
30  + + + + 165 0.1519 6.1614 0.17435
31  + 1.7 0 0 0 172 0.1019 5.1614 0.12435
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Fig. 6   SEM images of silver nanostructures synthesized at different reaction conditions (reaction conditions correspond to the values found in 
Table 2) (scale bars: 19 µm)
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Machine learning algorithms

To conduct the experiment, the RF and DT algorithms in 
Python were utilized, leveraging libraries such as pan-
das and scikit-learn for data manipulation, executing 
the machine learning algorithms, and evaluating met-
rics. To test the effectiveness of the model  and assess 
feature correlation, the cross-validation was performed. 
This technique enables estimation of the performance of 
the model  on unseen data and gain insights into its gen-
eralization capabilities. To train the algorithms, 31 data 
sets each containing 3 data points each (93 total) from the 
DoE reactions, were used in DT and RF ML algorithms. 
The selected parameters for the algorithms are [AgNO3], 

[PVP], [CuCl2], reaction temperature, and predicted yield 
of AgNWs. When applying the DT algorithm to the data, 
the depth of the tree was set to unlimited, and the test 
mode was a fivefold cross-validation. The DT ended up 
having 45 nodes corresponding to an R2 value of 96.9%. 
For the RF algorithm, bagging with 100 iterations and 
base learner were applied to the data which produced an 
R2 value of 97.5%. Both ML algorithms improved predic-
tion accuracy over the Minitab regression model and each 
model took less than 1 s to build.

Minitab response optimization

After modeling the data, a response optimization was 
performed in the Minitab software. The response opti-
mization graphed the AgNW yields across the mini-
mum and maximum values for each parameter con-
sidered as seen in Fig.  10. Considering where the 
graphed parameters intersected the 100% yield thresh-
old, the software produced the reaction conditions of 
T = 170 °C, [AgNO3] = 0.177 M, [CuCl2] = 6.05 mM, and 
[PVP] = 0.224 M.

Table 3   Table of p-values assigned by Minitab to help identify sig-
nificant parameters

Parameter Parameter variable P-value

T A 0.497
[AgNO3] B 0
[CuCl2] C 0.139
[PVP] D 0
T*T AA 0.164
[AgNO3]*[AgNO3] BB 0.001
[CuCl2]*[CuCl2] CC 0.094
[PVP]*[PVP] DD 0.005
T*[AgNO3] AB 0.203
T*[CuCl2] AC 0.264
T*[PVP] AD 0.328
[AgNO3]*[CuCl2] BC 0.178
[AgNO3]*[PVP] BD 0.267
[CuCl2]*[PVP] CD 0.244

Fig. 7   A Pareto chart is used 
to determine the magnitude 
and the importance of the 
parameters by analyzing the 
yield response of the reaction 
parameters; the bars that extend 
past the dotted reference line 
are considered statistically 
significant (image created with 
BioRender)

Fig. 8   A main effects plots shows the mean AgNW yield for each 
parameter of each DoE reaction
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Fig. 9   For each DoE reaction, 
the experimental data and the 
model prediction were graphed 
(reaction conditions correspond 
to the values found in Table 2)
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Fig. 10   Optimized reaction 
conditions based on the DoE 
analysis for reaction tempera-
ture and reagent concentrations 
is shown

Fig. 11   SEM images of two different reactions conducted at optimal conditions (OC) with 100% AgNW yields (scale bars: 10 µm)
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Two separate reactions were conducted and repeated at 
the optimal reaction conditions to establish reproducibility 
of the synthesis. The AgNWs were synthesized, washed, 
prepared, characterized, and analyzed in the same manner 
as the 31 DoE reactions in Table 2. Figure 11 shows two 
SEM images taken from the two identical optimal reactions. 
After analysis, it was determined that each reaction yielded 
100% AgNWs. In addition, 45 AgNWs were measured using 
SEM and ImageJ software to obtain the average length and 
diameter to calculate the aspect ratio. The optimal reaction 
conditions produced 100% AgNWs with average concentra-
tion of 16 mg/mL, lengths of 32 µm (σ ± 3.5 µm), diameters 
of 68 nm (σ ± 12 nm), and aspect ratio of 475. The aspect 
ratio is high compared to other reported values for the con-
tinuous polyol synthesis of AgNWs (Gottesman et al. 2012; 
Sheng Lau et al. 2019).

Experimental

AgNW synthesis

The AgNWs were synthesized using a polyol method in a 
continuous, MFR. The reactor was assembled by coiling and 
submerging PTFE tubing in a silicone oil bath as shown in 
Fig. 12.

The length of tubing was calculated to achieve a residence 
time of 90 min with a flow rate of 40 μL/min (Hemmati et al. 
2017). To control the flowrate, a syringe pump was used 
for reagent addition. Reagent solutions of copper chloride, 
PVP, and silver nitrate were prepared in EG according to the 
concentrations found in Table 2 for each DoE reaction. Once 
the reagents were prepared, PVP and copper chloride were 
sonicated until homogeneously mixed, while silver nitrate 
was sonicated for 6 min (Hemmati and Barkey 2017). After 
sonication, 60 μL of copper chloride was added to both PVP 
and silver nitrate solutions and mixed (Hemmati et al. 2017). 
The PVP/copper chloride and silver nitrate/copper chloride 

solutions were then loaded into 5 mL plastic syringes and 
connected to the reactor tubing. The synthesized AgNWs 
were collected into a Falcon tube collection flask at the out-
let of the reactor. Once the samples were cooled to room 
temperature, they were washed and centrifuged at 3000 
RPM for 30 min, once with acetone and then twice more 
with deionized water (DIW). The samples were then stored 
in DIW for further characterization.

Materials

The MFR was comprised of a pump (Chemyx, F100X), plas-
tic syringes (Brandzig, 5 mL, Leur Slip), 1.5 mm I.D. polyte-
trafluoroethylene (PTFE) tubing, 1.5 mm I.D. polypropylene, 
t-joint connectors, a hot plate, and a Falcon tube collection 
flask. Silicone oil (Fisher, 200553), Copper (II) Chloride 
(CuCl2, Sigma-Aldrich, 203149, 99%), Polyvinylpyrrolidone 
(PVP, Sigma-Aldrich, 856568, Avg. MW: 55,000), Silver 
Nitrate (AgNO3, Sigma-Aldrich, 209139, ≥ 99%), Ethylene 
Glycol (EG anhydrous, Sigma-Aldrich, 324558, 99.8%), and 
Acetone (C3H6O, Honeywell, 10626710) were all purchased 
and used without further purification.

AgNW characterization

A Scanning Electron Microscope (SEM) (FEI Quanta 600 
field-emission gun with Bruker EDS X-ray microanalysis 
system and HKL EBSD system) at the Oklahoma State 
University Microscopy Lab was used to characterize the 
samples. To prepare the samples for SEM, stored samples 
were sonicated to fully disperse the AgNWs into solution. 
After sonication, the solutions were diluted 5 times with DI 
water. After dilution, 100 µL of AgNWs was pipetted onto 
carbon tabs adhered to aluminum pins. The samples were 
dried for 24 h under ambient conditions. Three SEM images 
were taken for each DoE reaction and were then analyzed by 
manually counting the number of wires and particles each 
image contained. Once each image was analyzed, a yield 

Fig. 12   A typical polyol AgNW 
MFR setup includes coiled 
tubing submerged in a silicone 
oil bath heated to reaction 
temperature, a syringe pump 
that controls reagent addition, 
reagents in syringes, and sus-
pension collection at the outlet 
of the reactor (image created 
with BioRender)
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of AgNWs was calculated for each image by dividing the 
counted number of AgNWs by the total number of wires and 
particles in that image. The three AgNW yields were then 
averaged to obtain a final average yield of AgNWs. After the 
final yield of AgNWs was obtained for each DoE reaction, 
the data were input to and analyzed by the Minitab software.

[AgNW] calculations

To calculate the concentration of AgNWs ([AgNWs])], a 
clean aluminum pin was weighed three times to obtain an 
average weight. AgNWs were sonicated to fully disperse the 
AgNWs into solution and then mixed on a stir plate. After 
the average weight was established, 100 µL of the AgNW 
solution was pipetted onto the aluminum pin and allowed 
to dry for 24 h under ambient conditions. This process was 
conducted a total of three times for one sample. To obtain an 
average [AgNW] in mg/mL, the pins are each weighed three 
times after fully dry and the difference between the clean 
pin weight and the dried weight is recorded. After dividing 
the average weight by the volume of the sample, an average 
[AgNW] value was obtained.

Conclusions

In this study, an optimized millifluidic polyol synthesis of 
AgNWs overcame the waste, reproducibility, distribution 
of size and morphology, and scalability issues associated 
with batch polyol AgNW reactions through control of a 
uniform chemical and thermal environment in a small seg-
ment of the reaction volume. A central composite, response 
surface, design of experiments was created to optimize the 
polyol reaction conditions to maximize the yield of AgNWs 
produced in a continuous, MFR. Based on the result of the 
design of experiments, the optimal reaction conditions are 
T = 170 °C, [AgNO3] = 0.177 M, [CuCl2] = 6.05 mM, and 
[PVP] = 0.224 M. The Minitab model predicted the yield 
of AgNWs with 85% accuracy while the DT and RF ML 
algorithms predicted the yield of AgNWs with 96.9% and 
97.5% accuracy, respectively. Two separate optimized reac-
tions reliably re-produced 100% AgNWs with average con-
centrations of 16 mg/mL (compared to 5 mg/m in millif-
luidic at optimized batch reaction conditions), lengths of 
32 µm (σ ± 3.5 µm), diameters of 68 nm (σ ± 12 nm), and 
aspect ratios of 475. We also demonstrated the superior-
ity of ML algorithms over linear regression models for pre-
dicting AgNWs yield. The proposed high-throughput MFR 
with the improved and optimized synthesis procedures along 
with ML models provide a platform for metal nanostructure 

manufacturing in which there is a systematic exchange 
between experiments and data-driven models. Discovery of 
an optimized, controllable, predictable, scalable, and low-
cost manufacturing technology would be a major benefit to 
boost the manufacturing. Future work includes continuous 
chemically stabilizing AgNWs synthesized in a MFR at opti-
mized reaction condition to further increase their stability 
against oxidation for nanoelectronics applications.
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