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Abstract

This study highlights optimizing polyol reaction conditions to produce 100% silver nanowire (AgNW) yields (AgNWs count/
all nanostructure count) using a millifluidic flow reactor (MFR). AgNWs of uniform length and diameter offer potentially
low-cost, transparent, and flexible conductors. MFRs produce AgNWs with superior uniformity, yield, and concentration
due to the reduced dimensions of the reaction environment. A statistical design of experiments (DoE) considering polyol
reaction temperature and the three reagent concentrations optimized the process. The AgNWs are characterized by scan-
ning electron microscopy (SEM) to calculate the yield of AgNWs per reaction. After completing the DoE, calculated yields
are put into Minitab statistical software for analysis. Minitab discovered the optimal reaction conditions to be T=170 °C,
[AgNO;]=0.177 M, [CuCl,]=6.05 mM, and [PVP] =0.224 M, with an R? value of 85%. Results of the DoE were imported
into supervised decision tree (DT) and random forest (RF) machine learning (ML) algorithms. The DT and RF predicted
yields of AgNWs given reaction temperature and reagent concentrations with 96.9% and 97.5% accuracy, respectively. The
optimal polyol reaction conditions synthesized 100% AgNW yield with average concentrations of 16 mg/mL, lengths of
32 um (0 £ 3.5 um), diameters of 68 nm (o + 12 nm), and aspect ratios of 475.

Keywords Silver nanowires - Polyol - Millifluidic flow reactor - Continuous flow reactor - Design of experiment - Machine

learning

Introduction

One-dimensional (1D) silver nanowires (AgNWs), with
high aspect ratios, optical transparency, photolumines-
cence, and high electrical and thermal conductivity are
leading candidates for future nanomaterial applications
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in nanoelectronics, nanophotonics, optoelectronics, and
micromechanics (Luu et al. 2011; Hemmati et al. 2015).
These include smart sensors (Hemmati et al. 2016; Lee et al.
2016; R et al. 2015), wearable electronics (Kwon et al. 2018;
Huang and Zhu 2019), catalysts (Kostowskyj et al. 2008),
energy harvesting devices (Liang et al. 2019), and various
other types of stretchable sensors (Choi et al. 2015; Liang
et al. 2014; Miller et al. 2013; Kumar et al. 2021). AgNWs
are commonly synthesized using templates or using wet-
chemical techniques like hydrothermal, solvothermal, and
polyol-based synthesis techniques that heretofore require a
costly and time-consuming separation and purification step
(Kumar et al. 2021).

There are two major types of template syntheses for
AgNWs including soft and hard templates. Typical hard
template examples include nanoporous membranes and
carbon nanotubes, while typical examples of soft templates
include micelles, surfactants, and various polymers (Zhang
et al. 2017). In template-based syntheses, the AgNWs are
grown on specific templates in the presence of reagents
undergoing either electrochemical (Dalchiele et al. 2007),
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chemical reduction (Malandrino et al. 2004), or irradiation
(Hong et al. 2015) processes to produce silver atoms that
propagate nanowire growth. The advantage of hard template
syntheses is the ability to synthesize highly ordered, well-
defined morphologies, but the major disadvantage is the
complex removal process of the AgNWs from the templates.
Soft templates were introduced to overcome the issues asso-
ciated with the nanomaterial removal process, but the dis-
advantages changed from a difficult removal process to low
amounts of AgNWs produced, polycrystallinity, low aspect
ratios, and irregular morphologies (Zhang et al. 2017).

Two common wet-chemical techniques are hydrothermal
(Xu et al. 2006) and solvothermal (Chen et al. 2011). Each
of these processes include mixing reagents in a reaction
vessel, placing the reactor into a furnace, allowing time for
the reaction to proceed, cooling the reaction solution, and
then separating and washing the nanowires from the reac-
tion solution. Advantages of using one of these methods
include using greener solvents (water in hydrothermal pro-
cesses) and being able to seal the reaction vessel to allow
for large arrays of reaction temperatures. A disadvantage of
these techniques is that organic solvents are used instead of
water (in solvothermal processes) and both methods require
detailed separation processes for the nanowires (Zou et al.
2006). Despite these challenges, wet-chemical techniques
can be more readily implemented than template-based
methods.

The polyol wet-chemical technique is a simple, cost-
effective way to synthesize AgNWs with uniform diameters
and lengths. Polyol synthesis requires a glycol as the solvent
and reducing agent, a metal precursor, polyvinylpyrrolidone
(PVP) as the capping agent, and a salt mediator to scavenge
oxygen, as well as slowly release silver ions into solution
during the reaction (Hemmati et al. 2017). Cao et al. used a
modified polyol method to synthesize AgNWs using a batch
reactor. Silver nitrate, ethylene glycol (EG), and PVP were
used as the metal precursor, reducing agent, and capping
agent, respectively. Sodium chloride and sodium bromide
were used as the halide mediators for the modified polyol
process. The AgNWs formed in this study had average
lengths of 24 um with 70 nm average diameters (Cao et al.
2020). Nekahi et al. produced sharp-end and round-end
AgNWs in a batch reactor using another modified polyol
process. Silver nitrate, EG, and PVP were used as the metal
precursor, reducing agent, and capping agent, respectively.
In this study, a salt mediator was not used in the polyol
reaction. The authors controlled the silver ion concentra-
tion by adding the reagent solutions into the reaction flask
drop wise over 8 min. The AgNWs synthesized in this study
reported average lengths of 28 um and average diameters of
215 nm (Nekahi and Fatmesari 2016). Zhao et al. synthe-
sized AgNWs using a traditional polyol process in a batch
reactor. Silver nitrate, EG, PVP, and ferric chloride were
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used as the metal precursor, reducing agent, capping agent,
and salt mediator, respectively. They investigated the effects
of adding different amounts of ferric chloride and PVP to
produce long and uniform AgNWs. The authors reported
a maximum aspect ratio of 570 for the AgNWSs (Zhao and
Qu 2018).

Batch processes are known for low AgNW yields, low
aspect ratio AgNWs, and irregular morphologies (Hemmati
et al. 2017). In order for a process to be eligible for scale up,
it must demonstrate control over the morphologies synthe-
sized and be reproducible for quality assurance. Convective
mass and heat transfer dominate in batch reactors due to
turbulent flow conditions (Roberts et al. 2019). Nanowires
from batch reactions are unreproducible due to mass and
thermal transport properties changing with respect to vol-
ume (Bertuit and Abou-Hassan 2022). As reaction volume
gets larger, it is more difficult to achieve uniform mixing,
so custom impeller geometries must be configured (Roberts
et al. 2019).

Continuous flow reactors operating at low Reynolds
(Re) allow diffusion dominated heat and mass transport
throughout the reaction and the nanowires grow in the well-
organized streamlines of laminar flow. In this work, a com-
bination of laminar flow, and a coiled reactor tube results
in secondary flow called Dean vortices that aid mixing of
the reagents throughout the synthesis. Dean vortices create
a secondary, transverse flow to the bulk fluid’s flow which
produces transverse drag on the NWs being synthesized.
Even at low Deans numbers, the drag from the secondary
flow allows for long AgNWs to be synthesized. When con-
sidering scale out, or identical flow reactors in parallel, the
dimensionless numbers that are dependent on reactor size
and configuration remain constant which allows for scalable
repeatable synthesis. When considering a technique with
potential for scale out, continuous flow syntheses show great
promise (Bertuit et al. 2022; Kinhal et al. 2019).

Gottesman et al. synthesized AgNWs in a millifluidic
flow reactor (MFR) utilizing the polyol synthesis. The
authors used polytetrafluoroethylene (PTFE) tubing placed
inside of a split furnace heated to 198 °C. Silver nitrate,
EG, and PVP were used as the metal precursor, reducing
agent, and capping agent, respectively. A salt mediator was
not used in this process. They reported AgNWs with aver-
age lengths of 10 pum and diameters of 71 nm (Gottesman
et al. 2012). Hemmati et al. synthesized AgNWs in a MFR
using the polyol process. The authors used PTFE tubing
submerged in an isothermal bath of silicone oil at reaction
temperatures of 120 °C, 130 °C, 140 °C, or 150 °C. Silver
nitrate, EG, PVP, and copper chloride were used as the metal
precursor, reducing agent, capping agent, and salt mediator,
respectively. A proposed reaction mechanism by the authors
is outlined in Fig. 1. They reported synthesizing AGNW:s at
temperatures as low as 130 °C (Hemmati et al. 2017).
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Fig. 1 Proposed reaction mechanism for the polyol process. In a
polyol synthesis of AgNWs, solutions of silver nitrate, PVP, and cop-
per chloride are prepared in EG. Silver nitrate dissociates in solution
due to ionic bonding properties. When exposed to heat, the EG con-
verts to glycol aldehyde (GA), and acts as a reducing agent. The GA

Lau et al. synthesized AgNWs in a continuous flow reac-
tor using the polyol method. A 10 mL perfluoroalkoxy (PFA)
reaction coil placed on a heater set to 130 °C was used for
the synthesis. Silver nitrate, EG, PVP, and sodium chloride
were used as the metal precursor, reducing agent, capping
agent, and salt mediator, respectively. The authors reported
AgNWs with average lengths of 36 pm and average diam-
eters of 95 nm (Sheng Lau et al. 2019).

Replicating the millifluidic polyol process reported by
Hemmati et al. (Hemmati et al. 2017), repeatedly produced
a small amount of silver nanoparticles (AgNPs) along
with the AgNWs. To help address this problem, the opti-
mal reaction conditions of a batch study by Hemmati et al.
(Hemmati and Barkey 2017) were applied to the MFR. The
authors performed a parametric study with reaction tem-
perature, silver nitrate concentration and sonication time,
salt mediator type and copper chloride concentration, and
PVP concentration and molecular weight to understand the
impact of each factor. The outcome was that the reactions
were heavily impacted by changes in reaction temperature,
[AgNO;], sonication time, salt mediator type and concen-
tration, and [PVP] and PVP molecular weight. To refine
the optimal reaction conditions, a design of experiments

reduces the silver ions which allows nucleation and growth into mul-
tiply twinned silver seeds. PVP is used as a stabilizing and capping
agent because it preferentially adsorbs onto the [100] facets which
promotes one-dimensional growth (Hemmati et al. 2017) (image cre-
ated with BioRender)

(DoE) was created using the statistical software JMP Pro.
The authors found the optimum reaction conditions to be
T=158 °C, [AgNO;]=0.102 M, [PVP]=0.124 M, and
[CuCl,]=5.16 mM (Hemmati and Barkey 2017). Applying
the batch optimal conditions improved the yield of AgNWs
produced per millifluidic reaction but was still not at 100%.
Under these conditions, the average AgNW concentration
([AgNW]) calculated was 5 mg/mL.

In machine learning (ML), a computer imports data and
applies statistical science to learn directly from the data
to make future predictions in the algorithm (Anuoluwa
Bamidele et al. 2022). Given a quality training set involv-
ing myriad variables that impact the desired outcome, ML
can be used to discover new materials (Li et al. 2020) and
optimize known materials (Mahalle et al. 2019). In this
study, the material is AgNWs, and the application of ML
is to use data from the DoE to train a model to accurately
predict AgNW yields given varying input parameters. The
vast capabilities of ML lie within three major categories
of algorithms such as reinforcement learning (Pareek et al.
2021), supervised ML (Ji et al. 2022), and unsupervised
ML (Lv and Chen 2022). Reinforcement learning aims to
find optimal relationships or predict actions to maximize
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cumulative reward for the selected material properties. After
learning from labeled data, supervised ML finds the hidden
relationship between known inputs and unknown outputs
while unsupervised ML learns from unlabeled data. While
ML is a new and exciting area in nanomaterials science,
there are certain nuances or issues associated with using
these algorithms. The most common nuances include under-
represented classes, descriptor selection, underfitting, over-
fitting, model interpretability, and feature extraction. Select-
ing the appropriate type of algorithm and descriptor for the
material helps researchers manage these nuances (Anuoluwa
Bamidele et al. 2022).

When considering an appropriate ML algorithm for
nanomaterial synthesis and optimization, supervised ML
algorithms are commonly used. Supervised ML algorithms
encompass several ML algorithms such as regression, deci-
sion tree (DT), random forest (RF), support vector machine
(SVM), naive Bayes, k-nearest neighbor (KNN), and arti-
ficial neural networks (ANN). When considering the best
supervised algorithm for nanomaterial synthesis optimiza-
tion, DT and RF are commonly applied (Nathanael et al.
2023; Ono et al. 2023; Kenry 2023). Advantages of DT algo-
rithms include clear visualization, handling of missing data
easily, scaling data is not necessary, requires less data and
processing efforts, data normalization is unnecessary, and
the models are intuitive. The advantages of RF algorithms
are that they handle large data sets, outliers have a negligi-
ble impact, they handle missing data easily, and they easily
estimate and reduce error. Disadvantages of DT algorithms
include taking a long time to train, requiring expensive com-
putations, not being able to predict continuous values, not
being able to handle large data sets, and susceptible to over-
fitting. The disadvantages for RF algorithms are that they
are not easy to control, and regression predictions can be
inaccurate. Considering the advantages, DT and RF algo-
rithms are reliable methods for synthesis and optimization of
nanomaterials (Saraee et al. 2017; Tashkhourian et al. 2011;
Anuoluwa Bamidele et al. 2022).

Decision tree algorithms import the data and then divide
it into smaller pieces until a pattern emerges. These pat-
terns form a flow pattern which resembles a tree as seen
in Fig. 2. Each node indicates where a decision has been
made based on a parameter, and when the nodes split that
indicates multiple decision possibilities. After several nodes
have split and subdivided, the flow path is completed with a
final node. A terminal node indicates when the division of
data stops, and the final nodes share the same conclusions
(Galvao et al. 2020).
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Fig.2 An example of a DT algorithm for AgNW polyol synthesis
where the oval nodes represent parameters and the numbers on the
branches represent high and low values of the parameters (triangles
represent other nodes in the DT) (Galvao et al. 2020) (image created
with BioRender)

<5.16 li > 5,16 mM

Random forest algorithms utilize a method called bag-
ging which uses the outcome of several decision tree algo-
rithms to make predictions as seen in Fig. 3. Specifically, RF
algorithms utilize sample and property bagging to reduce
the number of properties which creates several different DT
algorithms. Relying on the anticipated outcome allows RF
algorithms to reduce the number of properties based on the
outcome as the DTs are made. All the DT outcomes are then
statistically analyzed to produce a final prediction (Galvao
et al. 2020).

Gholizadeh et al. focused on applying a RF algorithm to
predict the viscosities of Newtonian nanofluids. The authors
identified the input parameters as solid volume fraction, vis-
cosity of the base fluid, temperature, density of nanoparticle,
and nanoparticle size, and trained the RF algorithm on 2890
datasets from 50 references. To assess the accuracy of the RF
model, the model was compared to a multilayer perceptron
(MLP) model and a support vector regression (SVR) model.
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Fig.3 An example of a random forest machine learning algorithm for
AgNW polyol synthesis that utilizes bagging to create several deci-
sion tree outcomes that can then be statistically analyzed to make a
prediction (Galvio et al. 2020) (image created with BioRender)

When comparing the R? values, the RF model had 98.9% accu-
racy while the MLP and SVR models had 91.5% and 94.1%
accuracies, respectively (Gholizadeh et al. 2020). Han et al.
optimized, accelerated, and predicted the quantum yield (QY)
of carbon dots (CDs) using a regression DT algorithm. Volume
of the precursor, mass of the precursor, time, temperature, and
ramp rate were identified as the important input parameters.
The authors used 391 sets of data to train the DT algorithm
and found that CDs with strong green emission with QYs
up to 39.3% could be obtained from the DT model and then
experimentally verified (Han et al. 2020). Liu et al. studied the
cytotoxicity of photosynthesis synthesized silver nanoparti-
cles (AgNPs). The extraction/solvent, exposure dose, particle
size, exposure time, normal/cancerous cells, and zeta potential
were classified as the important factors in predicting cytotoxic-
ity using DT and RF ML algorithms, and 690 data sets were
used to train the models. To verify the models, the authors
compared the accuracy of published works to the DT and RF
algorithms used. A baseline prediction accuracy for published
data is 55.6% and the authors were able to model cytotoxicity
using a RF model with 90% accuracy (Liu et al. 2021).

This study used the findings from the previous optimiza-
tion by Hemmati et al. (Hemmati and Barkey 2017) to create a
design of experiments (DoE) using the Minitab statistical soft-
ware aimed to optimize the polyol reaction conditions for the
millifluidic synthesis of AgNWs. In addition, the data obtained
from the DoE reactions were input to a linear regression model

[100'] Facet

v [111] Facet
PVP PVP «
PVP
Side View of a AgNW

Fig.4 The proposed mechanism shows PVP (in orange) preferen-
tially depositing on the [100] facets of the multiply twinned Ag seeds
which allows the Ag atoms in solution to preferentially deposit on
the [111] facets located at the ends of the AgNWs (Sun et al. 2003)
(image created with BioRender)

software and imported into supervised ML algorithms aimed
to calculate or predict the yield of AgNWs given reaction tem-
perature and reagent concentrations.

Results and discussion
Design of experiments

A DoE was created using the Minitab software with
parameters of reaction temperature and reagent concentra-
tions of silver nitrate, copper chloride, and PVP. A central
composite, response surface design was selected to evalu-
ate the DoE in lieu of the Box—Behnken design. Central
composite designs are a factorial design with center points
supplemented by a group of axial points that allow for
more accurate optimization. Response surface designs can
more accurately optimize a process because a response
surface factorial design includes the addition of the quad-
ratic term that allows for more accurate modeling in the
response of the DoE. Box—Behnken designs are response
surface designs that do not contain an embedded factorial
design, so these designs only account for one value above
and below (# 1.0) the base parameters (Support 2022a).
The central composite, response surface design accounts
for two values above and below (4 1.0 and + 1.68179) the
base parameters for a more thorough, conclusive response
that searches beyond the base parameters (Support 2022b).
The DoE is designed to find a response that optimizes
reaction parameters to produce 100% yield of AGNW using
a MFR. The parameters, based on the findings of Hemmati
et al., are reaction temperature, silver nitrate concentra-
tion, copper chloride concentration, and PVP concentra-
tion (Hemmati and Barkey 2017).

Reaction temperature is vital for converting EG to gly-
colaldehyde (GA) so that silver atoms can undergo homog-
enous nucleation. The ratio of PVP to silver nitrate heavily
impacts the morphology of synthesized AgNWs in polyol
syntheses. When the concentration of silver nitrate is too
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high, passivation of the [100] facets on the Ag seeds is insuf-
ficient and growth occurs on both [100] and [111] facets.
Growth on [111] facets encourage AgNP formation in lieu
of the desired AgN'W morphology. When the concentration
of silver nitrate is too low, the excess PVP covers all sur-
faces, including [100] facets of the Ag seeds and prevents
1D AgNW growth. A proposed mechanism of PVP acting
as a capping agent is shown in Fig. 4 (Coskun et al. 2011).

Sonicating the silver nitrate solutions for 5-6 min mini-
mized the by-product nanoparticles and allowed for longer
wires to form. In the presence of heat, oxygen in solution
adsorbs onto the surface of the silver seeds. Adsorbed oxy-
gen on the surface during the nucleation and growth steps
can cover different facets on the silver seeds and prevent
1D growth. To minimize this adverse adsorption, copper
chloride was used as the salt mediator. The copper (II) ions
get reduced by EG, once EG has converted to GA, and then
go on to react with the adsorbed oxygen to remove it from
the surface of the silver seeds. This process allows the Cu™*
ions to convert back to Cu®* ions to be reduced and used
again for scavenging oxygen as seen in Fig. 5 (Hemmati
and Barkey 2017).

In the presence of heat, the silver ions will form an ionic
bond with the chloride ions. This compound dissociates
throughout the nucleation and growth phases, which allows
for silver ions to be released slowly into the reaction solution
to undergo reduction. This functionality of the salt mediator
allows for Ag to be slowly added to the multiply twinned
silver seeds. The concentration and molecular weight of
PVP are critical in controlling growth and morphology of
the silver seeds into AgNWs. PVP with a molecular weight
of 55,000 was found to be the optimal molecular weight
because it easily covered the surface of silver seeds due to

Fig.5 Copper chloride dissoci-
ates in EG due to ionic bonding
properties, copper (I) is
reduced to copper (I) by glycol
aldehyde (GA), oxygen adsorbs
onto the surface of multiply
twinned silver seeds, copper (I)
scavenges the adsorbed oxygen,
gains an electron, and converts
back to copper (II), and finally
copper (II) is reduced again

by GA and the process repeats
(Korte et al. 2008) (image cre-
ated with BioRender)

Table 1 Base, low, and high parameter values for the DoE

Value T, °C [AgNOs], M [CuCl,], mM [PVP],M
- 1.7 144 0.0019 3.1614 0.02435
- 151 0.0519 4.1614 0.07435
0 158 0.1019 5.1614 0.12435
+ 165 0.1519 6.1614 0.17435
+1.7 172 0.2019 7.1614 0.22435

its low steric effect and preferentially capped the [100] facets
of the silver seeds (Hemmati and Barkey 2017).

For baseline conditions, the findings from Hem-
mati et al. were applied. The baseline conditions are
T=158 °C, [AgNO;]=0.102 M, [PVP]=0.124 M, and
[CuCl,]=5.16 mM as seen in Table 1 (Hemmati and Barkey
2017). Based on four input parameters, the DoE consisted of
31 total experiments as shown in Table 2.

The SEM images taken of the 31 DoE reactions can be
seen in Fig. 6.

Minitab linear regression model

Upon the completion and analysis of the 31 DoE reactions,
the data were put into the Minitab software and analyzed
using a response surface design. Once the software analyzed
the data, significant factors could be identified by compar-
ing the p-value calculated by the software to the standard
o term in the software. Minitab assigns a a value of 0.05,
so if a parameter has a p-value less than a, the parameter
is considered statistically significant to the process. In
Table 3, the parameters, variables, and p-values are listed.
A pareto chart in Fig. 7 is used to graphically depict the
data seen in Table 3. Based on Fig. 7 and Table 3, only
silver nitrate concentration (B), PVP concentration (D), and

Oxygen in
Solution Adsorbs
Onto the [111]
Facets of Multiply
Twinned Ag Seeds
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Table 2 DoE reaction conditions for 31 polyol AgNW syntheses

DoE Parameters T,°C [AgNO;],M [CuCl,], mM [PVP],M
1 —-1.7000 144 0.1019 5.1614 0.12435
2 - —++ 151 0.0519 6.1614 0.17435
3 -+ —-- 151 0.1519 4.1614 0.07435
4 ——+- 151 0.0519 6.1614 0.07435
5 - +++ 151 0.1519 6.1614 0.17435
6 -+ -+ 151 0.1519 4.1614 0.17435
7 —++- 151 0.1519 6.1614 0.07435
8 ———- 151  0.0519 4.1614 0.07435
9 ———+ 151  0.0519 4.1614 0.17435
10 0-1700 158 0.0019 5.1614 0.12435
11 00+1.70 158 0.1019 7.1614 0.12435
12 000-1.7 158 0.1019 5.1614 0.02435
13 00-1.70 158 0.1019 3.1614 0.12435
14 0000 158  0.1019 5.1614 0.12435
15 0000 158  0.1019 5.1614 0.12435
16 0+1.700 158 0.2019 5.1614 0.12435
17 0000 158  0.1019 5.1614 0.12435
18 0000 158  0.1019 5.1614 0.12435
19 000+1.7 158 0.1019 5.1614 0.22435
20 0000 158  0.1019 5.1614 0.12435
21 0000 158  0.1019 5.1614 0.12435
22 0000 158  0.1019 5.1614 0.12435
23 ++-— - 165  0.1519 4.1614 0.07435
24 +-—-++ 165  0.0519 6.1614 0.17435
25 +-—+ 165  0.0519 4.1614 0.17435
26 ++ —+ 165  0.1519 4.1614 0.17435
27 +++- 165  0.1519 6.1614 0.07435
28 +-—-—+— 165 0.0519 6.1614 0.07435
29 +-—-- 165  0.0519 4.1614 0.07435
30 ++++ 165  0.1519 6.1614 0.17435
31 +1.7000 172 0.1019 5.1614 0.12435

their self-interactions (BB and DD) parameters should be
considered significant to the process. When this is the case,
a model reduction is usually required to properly fit a model.

The previously discussed impact of reaction temperature
and copper chloride concentration (Hemmati and Barkey
2017), as well as the experimental results from this study
(Fig. 6) exhibit a dependence on all four parameters. To
investigate whether these factors were significant, the mean of
yield (average percentage of AgNWs in each reaction for each
parameter) for each factor is represented in Fig. 8. When ana-
lyzing a main effects plot, a linear mean of yield line implies
that the effect of a parameter is insignificant, but a non-linear
mean of yield line implies an effect of a parameter is signifi-
cant. The steepness of the non-linear line implies how large the
parameter effect is. Considering the findings from Hemmati

et al., experimental evidence from this study, and results from
the mean yield plot generated by Minitab, all parameters were
considered when fitting the model.

A regression model was performed and an R? value of 85%
was calculated by the Minitab software. The model determined
by the Minitab software to predict AgNW yield given tempera-
tures and reagent concentrations is shown in Eq. 1:

%AgNWs = —2821 +32.2« T — 842 - [AgNO;] + 171 - [CuCl,

— 1357 - [PVP] - 0.0991 - T? — 5169 - [AgNO; |’

—5.92- [CuCl,]* — 4369 - [PVP]* + 16.9 - T - [AgNO;]

—0.736 - T - [CuCl,| + 12.8 - T - [PVP]

— 1254 - [AgNO;] - [CuCly] +2047 - [AgNOs] - [PVP]

+107.7 - [CuCl,] - [PVP]

ey

where the units for temperature, silver nitrate concentration,
copper chloride concentration, and PVP are degrees Cel-
sius, molar, millimolar, and molar, respectively. The Minitab
regression model and the experimental data are graphed in
Fig. 9 for each DoE reaction.

When the R? value is low, Minitab suggests a model
reduction (removing statistically insignificant parameters)
to try to raise the R value. A model reduction was per-
formed to only include the statistically significant vari-
ables found in Fig. 7 and a model and R? value was cal-
culated by the software. The model reduction produced
an even lower R? value equal to 68%. Several variations
of model reductions were performed, but none produced
an R? value above 85%. It was determined that all four
variables are significant and necessary to properly model
the data.

Looking more closely at the data in Fig. 9 for DoE 26,
the regression model shows that the yield for AGNWs is
predicted to be greater than 100% for the given reaction
conditions. While this point stands out because it exceeds
100%, there are a few other points, DoE 2, 3, 25, 27, 28,
and 29, that exhibit an extreme overshoot or undershoot
for prediction. Figure 6 shows that these reaction condi-
tions promote AgNP formation because the ratio of [PVP]
and [CuCl,] were either too low or too high for the [Ag*]
in solution. It is experimentally anticipated for AgNPs to
form when the [PVP] and [CuCl,] concentrations are too
high or too low in the reaction solution and it is verified
from the reaction product images in Fig. 6. The results
from this model have proved that linear regression mod-
els are not a viable way to predict the yield of AgNWs.
A model capable of accounting for and noting the sensi-
tive relationship between the reagents during nucleation
and growth phases of AgNW formation is required to
adequately model and predict AgNW yields.
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Fig.6 SEM images of silver nanostructures synthesized at different reaction conditions (reaction conditions correspond to the values found in
Table 2) (scale bars: 19 pm)
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Table 3 Table of p-values assigned by Minitab to help identify sig-
nificant parameters

Parameter Parameter variable P-value
T A 0.497
[AgNO;] B 0
[CuCl,] C 0.139
[PVP] D 0
T*T AA 0.164
[AgNO;]*[AgNO;] BB 0.001
[CuCl,]*[CuCl,] CC 0.094
[PVP]*[PVP] DD 0.005
T*[AgNO;] AB 0.203
T*[CuCl,] AC 0.264
T*[PVP] AD 0.328
[AgNO;]*[CuCl,] BC 0.178
[AgNO;]*[PVP] BD 0.267
[CuCL]*[PVP] CD 0.244

Machine learning algorithms

To conduct the experiment, the RF and DT algorithms in
Python were utilized, leveraging libraries such as pan-
das and scikit-learn for data manipulation, executing
the machine learning algorithms, and evaluating met-
rics. To test the effectiveness of the model and assess
feature correlation, the cross-validation was performed.
This technique enables estimation of the performance of
the model on unseen data and gain insights into its gen-
eralization capabilities. To train the algorithms, 31 data
sets each containing 3 data points each (93 total) from the
DoE reactions, were used in DT and RF ML algorithms.
The selected parameters for the algorithms are [AgNO;],

Fig.7 A Pareto chart is used
to determine the magnitude
and the importance of the

Mean DoE AgNW Yields, %
T [AgNO:;] [CuCl,]

N

[PVP]

100 —
80— /\
60—
40—
20—

0_

Fig.8 A main effects plots shows the mean AgNW yield for each
parameter of each DoE reaction

[PVP], [CuCl,], reaction temperature, and predicted yield
of AgNWs. When applying the DT algorithm to the data,
the depth of the tree was set to unlimited, and the test
mode was a fivefold cross-validation. The DT ended up
having 45 nodes corresponding to an R? value of 96.9%.
For the RF algorithm, bagging with 100 iterations and
base learner were applied to the data which produced an
R? value of 97.5%. Both ML algorithms improved predic-
tion accuracy over the Minitab regression model and each
model took less than 1 s to build.

Minitab response optimization

After modeling the data, a response optimization was
performed in the Minitab software. The response opti-
mization graphed the AgNW yields across the mini-
mum and maximum values for each parameter con-
sidered as seen in Fig. 10. Considering where the
graphed parameters intersected the 100% yield thresh-
old, the software produced the reaction conditions of
T=170 °C, [AgNO;]=0.177 M, [CuCl,] =6.05 mM, and
[PVP]=0.224 M.

Pareto Chart of Standardized Effects

parameters by analyzing the
yield response of the reaction
parameters; the bars that extend
past the dotted reference line
are considered statistically
significant (image created with

BioRender) T
erm

2.120
Factor Name
A T
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C CuCl,
D PVP
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Fig.9 For each DoE reaction,
the experimental data and the
model prediction were graphed
(reaction conditions correspond
to the values found in Table 2)

Fig. 10 Optimized reaction
conditions based on the DoE
analysis for reaction tempera-
ture and reagent concentrations

is shown

Linear Regression Model vs Experimental Data for AgNW Yields
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Fig. 11 SEM images of two different reactions conducted at optimal conditions (OC) with 100% AgNW yields (scale bars: 10 pm)
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Two separate reactions were conducted and repeated at
the optimal reaction conditions to establish reproducibility
of the synthesis. The AgNWs were synthesized, washed,
prepared, characterized, and analyzed in the same manner
as the 31 DoE reactions in Table 2. Figure 11 shows two
SEM images taken from the two identical optimal reactions.
After analysis, it was determined that each reaction yielded
100% AgNWs. In addition, 45 AgNWs were measured using
SEM and Imagel software to obtain the average length and
diameter to calculate the aspect ratio. The optimal reaction
conditions produced 100% AgNWs with average concentra-
tion of 16 mg/mL, lengths of 32 um (¢+ 3.5 um), diameters
of 68 nm (o+ 12 nm), and aspect ratio of 475. The aspect
ratio is high compared to other reported values for the con-
tinuous polyol synthesis of AgNWs (Gottesman et al. 2012;
Sheng Lau et al. 2019).

Experimental
AgNW synthesis

The AgNWs were synthesized using a polyol method in a
continuous, MFR. The reactor was assembled by coiling and
submerging PTFE tubing in a silicone oil bath as shown in
Fig. 12.

The length of tubing was calculated to achieve a residence
time of 90 min with a flow rate of 40 pL/min (Hemmati et al.
2017). To control the flowrate, a syringe pump was used
for reagent addition. Reagent solutions of copper chloride,
PVP, and silver nitrate were prepared in EG according to the
concentrations found in Table 2 for each DoE reaction. Once
the reagents were prepared, PVP and copper chloride were
sonicated until homogeneously mixed, while silver nitrate
was sonicated for 6 min (Hemmati and Barkey 2017). After
sonication, 60 pL of copper chloride was added to both PVP
and silver nitrate solutions and mixed (Hemmati et al. 2017).
The PVP/copper chloride and silver nitrate/copper chloride

Fig. 12 A typical polyol AgNW
MER setup includes coiled
tubing submerged in a silicone

| AgNO; + CuCl, |

solutions were then loaded into 5 mL plastic syringes and
connected to the reactor tubing. The synthesized AgNWs
were collected into a Falcon tube collection flask at the out-
let of the reactor. Once the samples were cooled to room
temperature, they were washed and centrifuged at 3000
RPM for 30 min, once with acetone and then twice more
with deionized water (DIW). The samples were then stored
in DIW for further characterization.

Materials

The MFR was comprised of a pump (Chemyx, F100X), plas-
tic syringes (Brandzig, 5 mL, Leur Slip), 1.5 mm L.D. polyte-
trafluoroethylene (PTFE) tubing, 1.5 mm L.D. polypropylene,
t-joint connectors, a hot plate, and a Falcon tube collection
flask. Silicone oil (Fisher, 200553), Copper (II) Chloride
(CuCl,, Sigma-Aldrich, 203149, 99%), Polyvinylpyrrolidone
(PVP, Sigma-Aldrich, 856568, Avg. MW: 55,000), Silver
Nitrate (AgNO;, Sigma-Aldrich, 209139, > 99%), Ethylene
Glycol (EG anhydrous, Sigma-Aldrich, 324558, 99.8%), and
Acetone (C;HgO, Honeywell, 10626710) were all purchased
and used without further purification.

AgNW characterization

A Scanning Electron Microscope (SEM) (FEI Quanta 600
field-emission gun with Bruker EDS X-ray microanalysis
system and HKL EBSD system) at the Oklahoma State
University Microscopy Lab was used to characterize the
samples. To prepare the samples for SEM, stored samples
were sonicated to fully disperse the AgNWs into solution.
After sonication, the solutions were diluted 5 times with DI
water. After dilution, 100 uL. of AgNWs was pipetted onto
carbon tabs adhered to aluminum pins. The samples were
dried for 24 h under ambient conditions. Three SEM images
were taken for each DoE reaction and were then analyzed by
manually counting the number of wires and particles each
image contained. Once each image was analyzed, a yield

HELD

oil bath heated to reaction
temperature, a syringe pump
that controls reagent addition,
reagents in syringes, and sus-
pension collection at the outlet
of the reactor (image created

[ PVP + CuCl, |

AgNW
Suspension

— e

with BioRender)

Silicone
Oil Bath
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of AgNWs was calculated for each image by dividing the
counted number of AgNWs by the total number of wires and
particles in that image. The three AgNW yields were then
averaged to obtain a final average yield of AgNWs. After the
final yield of AgNWs was obtained for each DoE reaction,
the data were input to and analyzed by the Minitab software.

[AgNW] calculations

To calculate the concentration of AgNWs ([AgNWs])], a
clean aluminum pin was weighed three times to obtain an
average weight. AgN'Ws were sonicated to fully disperse the
AgNWs into solution and then mixed on a stir plate. After
the average weight was established, 100 puL of the AgNW
solution was pipetted onto the aluminum pin and allowed
to dry for 24 h under ambient conditions. This process was
conducted a total of three times for one sample. To obtain an
average [AgNW] in mg/mL, the pins are each weighed three
times after fully dry and the difference between the clean
pin weight and the dried weight is recorded. After dividing
the average weight by the volume of the sample, an average
[AgNW] value was obtained.

Conclusions

In this study, an optimized millifluidic polyol synthesis of
AgNWs overcame the waste, reproducibility, distribution
of size and morphology, and scalability issues associated
with batch polyol AgNW reactions through control of a
uniform chemical and thermal environment in a small seg-
ment of the reaction volume. A central composite, response
surface, design of experiments was created to optimize the
polyol reaction conditions to maximize the yield of AGNWs
produced in a continuous, MFR. Based on the result of the
design of experiments, the optimal reaction conditions are
T=170 °C, [AgNO;]=0.177 M, [CuCl,]=6.05 mM, and
[PVP]=0.224 M. The Minitab model predicted the yield
of AgNWs with 85% accuracy while the DT and RF ML
algorithms predicted the yield of AgNWs with 96.9% and
97.5% accuracy, respectively. Two separate optimized reac-
tions reliably re-produced 100% AgNWs with average con-
centrations of 16 mg/mL (compared to 5 mg/m in millif-
luidic at optimized batch reaction conditions), lengths of
32 um (6+3.5 um), diameters of 68 nm (o + 12 nm), and
aspect ratios of 475. We also demonstrated the superior-
ity of ML algorithms over linear regression models for pre-
dicting AgNWs yield. The proposed high-throughput MFR
with the improved and optimized synthesis procedures along
with ML models provide a platform for metal nanostructure
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manufacturing in which there is a systematic exchange
between experiments and data-driven models. Discovery of
an optimized, controllable, predictable, scalable, and low-
cost manufacturing technology would be a major benefit to
boost the manufacturing. Future work includes continuous
chemically stabilizing AgNWs synthesized in a MFR at opti-
mized reaction condition to further increase their stability
against oxidation for nanoelectronics applications.
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