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A B S T R A C T

Recently, there has been a growing interest in applying machine learning methods to problems in engineering
mechanics. In particular, there has been significant interest in applying deep learning techniques to predicting
the mechanical behavior of heterogeneous materials and structures. Researchers have shown that deep learning
methods are able to effectively predict mechanical behavior with low error for systems ranging from engineered
composites, to geometrically complex metamaterials, to heterogeneous biological tissue. However, there has
been comparatively little attention paid to deep learning model calibration, i.e., the match between predicted
probabilities of outcomes and the true probabilities of outcomes. In this work, we perform a comprehensive
investigation into machine learning model calibration across 7 open access engineering mechanics datasets
that cover three distinct types of mechanical problems. Specifically, we evaluate both model and model
calibration error for multiple machine learning methods, and investigate the influence of ensemble averaging
and post hoc model calibration via temperature scaling. Overall, we find that ensemble averaging of deep
neural networks is both an effective and consistent tool for improving model calibration, while temperature
scaling has comparatively limited benefits. Looking forward, we anticipate that this investigation will lay the
foundation for future work in developing mechanics specific approaches to deep learning model calibration.

1. Introduction

Over the past decade, there have been unprecedented advances
in applying machine learning techniques to problems in mechanics.
Researchers have used machine learning approaches to enable design
optimization (Gongora et al., 2022; Guo et al., 2021; Hanakata et al.,
2020; Shin et al., 2022; Wang et al., 2020a), inverse analysis (Ardizzone
et al., 2018; Wang et al., 2019), real-time predictions (Jin et al.,
2020; Kapteyn et al., 2021; Zandigohar et al., 2021), and multi-scale
modeling (Alber et al., 2019; Karapiperis et al., 2021; Mann and
Kalidindi, 2022; Vlassis et al., 2020; Yin et al., 2022) among many
other applications. There has also been a growing interest in using
machine learning approaches for uncertainty quantification for consti-
tutive modeling (Joshi et al., 2022; Sun et al., 2022) and multi-fidelity
surrogate modeling (Han et al., 2022; Perdikaris et al., 2015; Gander
et al., 2022). Overall, machine learning models have been repeatedly
shown to make predictions about mechanical behavior with low error.
However, to date, there has been significantly less investigation into
machine learning model calibration, i.e., the match between predicted
probabilities of outcomes and the true probabilities of outcomes (Gneit-
ing and Raftery, 2007; Guo et al., 2017; Minderer et al., 2021; Naeini

< Corresponding author.
E-mail addresses: saeedmhz@bu.edu (S. Mohammadzadeh), pprachas@bu.edu (P. Prachaseree), elejeune@bu.edu (E. Lejeune).

et al., 2015; Niculescu-Mizil and Caruana, 2005; Zadrozny and Elkan,
2002).

For applications in engineering design and real world decision
making, understanding model calibration alongside model error is es-
sential. In the computational mechanics community, there is a rich
history of rigorously studying uncertainty quantification and model
calibration (Arendt et al., 2012; Psaros et al., 2022; Wang et al.,
2020b). However, for deep learning models applied to problems in
mechanics in particular, which tend to have low model error with
no associated promise of being well calibrated (Guo et al., 2017),
this is a current knowledge gap. In Fig. 1, we illustrate the concept of
model calibration for binary classification problems. And, in Fig. 1b, we
specifically highlight that low model error and low model calibration error
are not necessarily synonymous. Critically, machine learning models
can exhibit high accuracy yet suffer from poor calibration. Thus, in this
work, our goal is to work towards addressing this knowledge gap by
adding additional context specific to deep learning based classification
problems in mechanics.

In the machine learning community broadly defined, there is grow-
ing interest in improving model calibration without compromising

https://doi.org/10.1016/j.mechmat.2023.104749
Received 30 November 2022; Received in revised form 6 June 2023; Accepted 13 July 2023

https://www.elsevier.com/locate/mecmat
http://www.elsevier.com/locate/mecmat
mailto:saeedmhz@bu.edu
mailto:pprachas@bu.edu
mailto:elejeune@bu.edu
https://doi.org/10.1016/j.mechmat.2023.104749
https://doi.org/10.1016/j.mechmat.2023.104749
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2023.104749&domain=pdf


Mechanics of Materials 184 (2023) 104749

2

S. Mohammadzadeh et al.

Fig. 1. Conceptual illustration of model calibration for binary classification problems.
Panel (a) depicts a standard binary classification task where the model outputs
probabilities for both ‘‘Class 0’’ and ‘‘Class 1’’. Panel (b) illustrates the combined
implications of both ‘‘model error’’ and ‘‘model calibration error’’ via a toy example. In
this graph, the bottom left quadrant represents high accuracy and good calibration and
the top right quadrant represents low accuracy and poor calibration. In the circular test
cases, the top half of each circle represents the true label, and the bottom half shows
the predicted probability for class 1. Overall, low model calibration error is achieved
when the network has high confidence for correct predictions and low confidence for
incorrect predictions.

predictive accuracy (Guo et al., 2017; Minderer et al., 2021). For
deep learning in particular, where model calibration remains poorly
understood, there is a concurrent focus on evaluating model calibration
and on improving model calibration. For example, there is growing
attention to empirical evaluation of established model calibration met-
rics (e.g., expected calibration error defined in Section 2.5.3) across
different deep learning model architectures (Guo et al., 2017; Min-
derer et al., 2021). In the computer vision community, researchers
have empirically investigated the relationship between model error and
emergent model calibration error across multiple architectures on the
ImageNet dataset (Minderer et al., 2021; Deng et al., 2009). There
has also been significant work towards developing methods specifically
for improving model calibration (Guo et al., 2017; Lakshminarayanan
et al., 2017; Platt et al., 1999; Rahaman and Thiery, 2020; Zadrozny
and Elkan, 2002; Zhang et al., 2020), including work that predates
the prevalent current interest in deep learning (Gneiting and Raftery,
2007; Niculescu-Mizil and Caruana, 2005). For example, Platt Scaling,
a post hoc calibration method where scores of the trained model are
additionally trained through logistic regression, was initially developed
for support vector machines (Platt et al., 1999). In addition to Platt
Scaling, there are multiple post hoc calibration methods that rely on
an additional held out training dataset (Zadrozny and Elkan, 2002).
For deep learning, deep ensembles (Lakshminarayanan et al., 2017),
temperature scaling (Guo et al., 2017), and combinations of deep
ensembles and temperature scaling (Rahaman and Thiery, 2020; Zhang
et al., 2020) are straightforward and commonly implemented strategies
that we will investigate here.

In this work, our goal is to perform a comprehensive investigation
into deep learning model calibration for classification problems in
mechanics. As our ability to train large deep learning based models with
low error becomes more commonplace (Elhassouny and Smarandache,
2019; Guo et al., 2017), working towards better model calibration is

a natural next step. The structure of our investigation is informed
by two high level objectives. First, because deep learning model per-
formance is dataset dependant, it is our goal to design and implement
a mechanics-specific challenge for assessing different approaches to
model calibration. Namely, we want to create a multi-faceted frame-
work to apply broad advances in machine learning to the mechanics
domain. Second, we want to conduct a study that can be directly
leveraged by others. This means that we not only want our findings
to be of clear utility to others, but also that we want our framework
to be directly accessible for others to build on it to assess alternative
methods. This structure is directly informed by similar investigations
into deep learning methods conducted by others outside the field of
mechanics (Kissas et al., 2022; Minderer et al., 2021; Do et al., 2020;
Mehrtash et al., 2020).

Following these high level goals, the foundation for our inves-
tigation is 7 previously published datasets that span three distinct
mechanical problems, detailed in Section 2.1. Necessitated by the
diversity in these three mechanical problems, we train distinct problem-
specific deep learning models on these datasets, detailed in Section 2.2.
And, across all datasets, we explore the influence of ensemble aver-
aging, detailed in Section 2.3, and temperature scaling, detailed in
Section 2.4, on model calibration. In Section 3, we present the main
findings from our investigation as plots of machine learning model
error with respect to machine learning model calibration error. To our
knowledge, this is the largest investigation of deep learning model
calibration on open access mechanics datasets to date. It is our hope
that this investigation is both informative to others, and will lay the
foundation for further exploration of this important topic.

2. Methods

In this Section, we will begin by introducing the datasets used
in this investigation. Please note that all datasets used in this study
have been previously published by our group under Creative Commons
Attribution-ShareAlike 4.0 International licenses, and are thus freely
available for others to use in follow-up studies to this work. Then, in
Section 2.2, we will describe the machine learning models investigated
in this work. In Section 2.3 we will describe our implementation of
ensemble averaging, and in Section 2.4 we will describe our implemen-
tation of temperature scaling. Finally, in Section 2.5, we will specify the
error and calibration metrics used to report results in Section 3.

2.1. Benchmark datasets used in this study

In this investigation, our goal is to comprehensively evaluate model
calibration on a diverse set of mechanics-based classification datasets.
To this end, we will conduct our analysis on 7 open access datasets
across three types of mechanical problems. In Section 2.1.1, we pro-
vide background details on the ‘‘Buckling Instability Classification’’
(BIC) dataset and sub-datasets (Lejeune, 2020a), in Section 2.1.2, we
provide background details on the ‘‘Asymmetric Buckling Columns’’
(ABC) dataset and sub-datasets (Prachaseree and Lejeune, 2022a), and
in Section 2.1.3 we provide details on the ‘‘Mechanical MNIST – Crack
Path’’ dataset (Mohammadzadeh and Lejeune, 2021). We note briefly
that all datasets are derived from simulations conducted via the open
source finite element analysis software FEniCS (Alnæs et al., 2015;
Logg et al., 2012), and the structures in the ABC dataset are gen-
erated through Gmsh (Geuzaine and Remacle, 2009). Overall, these
datasets cover both a range of mechanical mechanisms (i.e., both
geometric and material nonlinearity), and rely on a range of deep
learning techniques (i.e., standard neural networks Lejeune, 2021,
graph neural networks Prachaseree and Lejeune, 2022b, and convolu-
tional networks Mohammadzadeh and Lejeune, 2022). Specific details
for accessing each dataset and the additional background information
required to recreate each dataset are provided in Section 5.
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Fig. 2. Schematic illustration of the 7 datasets used in this study: the BIC dataset
(which contains BIC 1, BIC 2, and BIC 3) (Lejeune, 2020a), the ABC dataset (which
contains ABC 1, ABC 2, and ABC 3) (Prachaseree and Lejeune, 2022a), and the
Mechanical MNIST – Crack Path dataset (Mohammadzadeh and Lejeune, 2021).

2.1.1. Buckling Instability Classification (BIC)
The BIC dataset was disseminated in conjunction with our previous

publication exploring multiple straightforward approaches to classifica-
tion problems in mechanics (Lejeune, 2021). The BIC dataset contains
three sub-datasets: ‘‘BIC 1’’, ‘‘BIC 2’’, and ‘‘BIC 3’’ that differ only in
their input parameter distribution. In all cases, the input is the material
property distribution of a heterogeneous column that is then subject
to a fixed level of applied compressive displacement. The output then
corresponds to class ‘‘Stable’’ or ‘‘Unstable’’ based on the results of
a Finite Element Analysis (FEA) simulation. For all sub-datasets, the
input property distribution of each sample is represented by a 16 ù 1
vector. For BIC 1, there are two possible discrete modulus E values:
E = 1, and E = 4. For BIC 2, there are three possible discrete values:
E = 1, E = 4, and E = 7. For BIC 3, the modulus varies continuously
to three degrees of precision in the range E = [1, 8]. Further details
regarding data curation and our FEA implementation are available in
our previous publication (Lejeune, 2021). For the work presented in
this manuscript, we used 10,000 samples for machine learning model
training and 1,000 samples for post hoc model calibration across all

three sub-datasets, and 6,553 samples for BIC 1 and 10,000 samples for
BIC 2 and BIC 3 for model testing. Briefly, we note that in Section 3.1,
we also specifically investigate training set sizes of 200, 500, 1,000,
2,000, 5,000, 10,000 samples. For the BIC 1 dataset, the ratio between
‘‘Stable’’ and ‘‘Unstable’’ samples is 0.28, for BIC 2 it is 0.40, and for
BIC 3 it is 0.26.

2.1.2. Asymmetric Buckling Columns (ABC)
As a follow up to the BIC dataset, we introduced the ABC dataset

(Prachaseree and Lejeune, 2022a) in our previous work in conjunction
with an exploration of geometric deep learning for mechanics-specific
classification problems (Prachaseree and Lejeune, 2022b). Similar to
BIC, the ABC dataset contains three subdatasets, where each subdataset
corresponds to a different algorithm for generating the geometry of the
input domain. For ABC 1, columns are generated by vertically stacking
rectangular blocks of randomly varying widths. For ABC 2, columns are
generated by randomly overlaying rings of identical inner and outer
radii. For ABC 3, columns are generated by overlaying and trimming
rings of varying inner and outer radii (i.e., varying size and thickness).
For all sub-datasets, the columns are subjected to fixed-fixed boundary
conditions and are compressed until the onset of buckling. Each input
geometry in the ABC dataset is then classified as buckling ‘‘left’’ or
‘‘right’’. Further details of data curation, and FEA implementation
are available in our previous publication (Prachaseree and Lejeune,
2022b). For the work presented in this manuscript, we used 20,000
samples for machine learning model training, 1,000 samples for post
hoc model calibration, and 2,500 samples for model testing for each of
the three sub-datasets. For all three ABC sub-datasets, the classes are
balanced.

2.1.3. Mechanical MNIST – Crack path
The Mechanical MNIST dataset collection (Lejeune, 2020b) is a

collection of benchmark datasets initially conceptualized as mechanics-
relevant drop-in replacements for the popular MNIST dataset (LeCun
and Cortes, 2010). For the datasets in the Mechanical MNIST collection,
input bitmaps dictate heterogeneous material properties, and outputs
are defined as curated results from FEA simulations. The ‘‘Mechani-
cal MNIST – Crack Path’’ dataset is an example from the collection
where the input bitmap distribution is a heterogeneous pattern of
inclusions derived from the Fashion MNIST dataset (Xiao et al., 2017),
and the main output is a damage field predicted by a linear elastic
phase-field fracture simulation (Wu et al., 2020; Wu, 2017). For this
manuscript, we will focus exclusively on the 64 ù 64 input bitmap
and a downsampled 64 ù 64 output crack path. Notably, each pixel
in this downsampled crack path is in either the ‘‘damaged’’ (true) class
or the ‘‘undamaged’’ (false) class, thus conceptualizing the Mechanical
MNIST – Crack Path dataset as a binary classification problem similar
to the BIC and ABC datasets described previously. Further details of
data curation and our FEA implementation are available in our previ-
ous publication (Mohammadzadeh and Lejeune, 2022). In the original
dataset there are 60,000 samples in the training set and 10,000 samples
in the test set. For the work in this manuscript, we used the first 10,000
samples from the training set for machine learning model training, the
next 1,000 samples from the training set for post hoc model calibration,
and 10,000 samples from the test set for model testing. For this dataset,
classes are heavily imbalanced, where the ‘‘damaged’’ class corresponds
to 2.88% of pixels.

2.2. Machine learning models investigated

The main focus of this work is on deep learning model calibration.
However, in Section 3.1, we provide baseline comparisons to Gaussian
Process Classification and Support Vector Classification to add addi-
tional context to our results. Here we briefly summarize these methods
along with the Neural Network based approaches used for prediction.
As a brief note, details for accessing the code to reproduce these models
are given in Section 5.
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2.2.1. Gaussian process classification
Gaussian Processes are commonly used in machine learning lit-

erature for both classification and regression tasks when uncertainty
quantification is critical (Bartók et al., 2022). The Gaussian Process
Classification (Williams and Rasmussen, 2006), which we use in this
work, is a generalization of the linear logistic regression model where
the linear latent function is replaced by a Gaussian Process. To train
a Gaussian Process Classification in the context of a machine learning
problem, the user must define a kernel function that will determine
the form of the covariance matrix. For further details on Gaussian
Process methods in machine learning, we refer the reader to the lit-
erature (Williams and Rasmussen, 2006). In this work, we used scikit-
learn (Pedregosa et al., 2011) to train Gaussian Process Classification
with a Radial Basis Function kernel (Duvenaud, 2014) on the BIC
1, BIC 2, and BIC 3 datasets. The performance of Gaussian Process
Classification on these data is shown in Section 3.1.

2.2.2. Support vector classification
Support Vector Machines are a commonly used machine learning

algorithm for classification problems (Hearst et al., 1998). The Sup-
port Vector Machine was initially developed for binary classification
problems and later on extended to deal with multi-class classifica-
tion (Weston and Watkins, 1998) and regression tasks (Drucker et al.,
1996). Here, we will focus on ‘‘Support Vector Classification’’ for
binary classification. In brief, the general idea behind Support Vector
Classification is to transform the data in a high dimensional space and
identify a hyperplane that most accurately separates the classes. Similar
to Gaussian Process Classification, choice of kernel function impacts
Support Vector Classification performance in the context of machine
learning. In this work, we use scikit-learn (Pedregosa et al., 2011)
to train Support Vector Classifications with a Radial Basis Function
kernel and no additional regularization on the BIC 1, BIC 2, and
BIC 3 datasets. The performance of Support Vector Classifications on
these data is shown in Section 3.1. Critically, we note that scikit-
learn uses Platt scaling, described in Platt et al. (1999), coupled with
five-fold cross-validation to obtain probabilistic outputs from otherwise
non-probabilistic Support Vector Classification scores.

2.2.3. Fully Connected Neural Network
Fully Connected Neural Networks are a well-established method

for both regression and classification tasks. These networks commonly
consist of an input layer, an output layer, and a series of fully connected
hidden layers. Each layer applies a linear transformation followed
by a non-linear activation function such as Rectified Linear Units
(ReLU) (Agarap, 2018) on its input vector. These layers are designed
to eventually transform a given input vector into an output vector of
the desired size. For the BIC datasets, we use Fully Connected Neural
Networks (simply referred to as neural networks) with a 16 node input
layer, three 200 node hidden layers, and a 2 node output layer (see
Appendix C). The 2 output nodes are the logits indicating to which class
‘‘stable’’ or ‘‘unstable’’ a sample belongs. To reduce overfitting during
training, we add batch normalization (Ioffe and Szegedy, 2015) before
applying each ReLU activation function and use dropout (Srivastava
et al., 2014) with the rate of 0.5 before the second and third hidden
layers and output layer. We use the PyTorch library (Paszke et al.,
2019) for our implementation, and train each network for 50 epochs
using the Adam optimizer (Kingma and Ba, 2014) with an initial
learning rate of 0.001, which is dropped to 0.0005 after 25 epochs. We
train this model on the BIC 1, BIC 2, and BIC 3 datasets, and present
the results in both Sections 3.1 and 3.2.

2.2.4. Graph Neural Network
By design, the ABC datasets contain complex geometries that are

attractive to represent as spatial graphs rather than as ‘‘image-like’’
arrays. In our previous work, we identified a set of best performing
models and data representation approaches for each ABC subdataset
that we directly build on for this work (Prachaseree and Lejeune,
2022b). In brief, each ABC input geometry is first represented as a
spatial graph. In our previous work, we identified a high performing
strategy for spatial graph representation where spatial graphs are con-
structed via discretizing the structure into nodes and then performing a
ball query to form edges. Based on our prior investigation, ABC 1 had a
‘‘medium’’ node density (˘ 306 nodes per structure) with a ball radius
of 40% of the column width, and ABC 2 and ABC 3 have a ‘‘dense’’ node
density (˘ 566 and ˘ 768 nodes per structure respectively) with a ball
radius of 30% of the column width (Prachaseree and Lejeune, 2022b).
Given this spatial graph representation, we used PointNet++ layers (Qi
et al., 2017) as spatial graph convolution layers coupled with batch
normalization (Ioffe and Szegedy, 2015), followed by skip connections
and a linear classifier to construct our machine learning model (see
Appendix C). To improve model performance, we also augment our
dataset by flipping the columns along the x axis, y axis, and both axes
while changing labels as needed. All models are implemented with the
Pytorch Geometric library (Fey and Lenssen, 2019) and trained using
the Adam optimizer (Kingma and Ba, 2014) for 50 epochs. We present
the results from this model on the ABC datasets in Section 3.2.

2.2.5. UNet neural network
To complement the models described in Sections 2.2.1–2.2.4 which

are trained to predict a single quantity of interest, we train a deep neu-
ral network on the Mechanical MNIST – Crack Path dataset that is de-
signed to predict full-field quantities of interest, specifically the whole
domain damage field. In our previous work (Mohammadzadeh and
Lejeune, 2022), we used a modified version of the UNet model (Ron-
neberger et al., 2015), the MultiRes-WNet, combined with a convolu-
tional autoencoder for an end-to-end prediction of 256 ù 256 images
of the damage field from 64 ù 64 material distribution input images.
Here, we regenerated lower resolution output damage fields directly
from our FEA results as 64 ù 64 arrays and used a standard UNet
with three downsampling and upsampling steps (Siddique et al., 2021).
The outputs of the model are logits in the form of two-channel im-
ages that can be transformed into probabilities by applying a softmax
function to each pixel (see Appendix C). We briefly note that we
trained the network by minimizing the Dice-loss (Jadon, 2020). We
use the PyTorch library (Paszke et al., 2019) for the UNet model
implementation, and train each network for 50 epochs using the Adam
Optimizer (Kingma and Ba, 2014). We present the results from this
model on the Mechanical MNIST – Crack Path dataset in Section 3.2.

2.3. Ensemble methods

For the Neural Network approaches introduced in Sections 2.2.3–
2.2.5, the behavior of each trained neural network will vary based on
the random weight initialization. Thus, it is possible to train multi-
ple neural networks and subsequently combine them into an ensem-
ble (Ciregan et al., 2012; Lakshminarayanan et al., 2017). Here, we
take a straightforward approach and individually train 10 models with
different initialization seeds before aggregating the predictions using
soft voting, also referred to as unweighted model averaging (Laksh-
minarayanan et al., 2017). In soft voting, the predicted probability
for each class is averaged over all models and the label with the
highest probability then becomes the final class prediction. The goal
of ensemble averaging is to increase the overall prediction accuracy.
Additionally, if the neural networks are trained with proper scoring
rules like cross entropy, ensemble averaging may also lead to averaged
probabilities that are well calibrated (Lakshminarayanan et al., 2017).
One major goal of this work is to critically evaluate the efficacy of
neural network ensemble averaging for deep learning approaches to
classification problems in mechanics.
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2.4. Post hoc calibration via temperature scaling

Post hoc calibration of neural networks using a held-out calibra-
tion dataset is a popular approach with both parametric (e.g., Platt
scaling Platt et al., 1999, temperature scaling, matrix scaling Guo
et al., 2017) and non-parametric (e.g., Bayesian Binning Naeini et al.,
2015, isotonic regression Zadrozny and Elkan, 2002) implementations.
Motivated by its popularity in the literature, we choose temperature
scaling as a standard post hoc calibration technique. Specifically, given
a trained classifier, we divide the logits vector z by a single variable T
called the temperature. The optimal temperature is obtained by mini-
mizing the Negative Log Likelihood (NLL) on the held out calibration
set. The NLL is written as:

min
T

Nc…
i=1

NLL
0
�(zi _ T ) , yi

1

s.t. T > 0

(1)

where �(x) is the softmax function, y is the true labels,Nc is the number
of sample points in the calibration set, and z is the previously defined
logits vector. Notably, temperature scaling can be applied either before
or after ensemble averaging (Rahaman and Thiery, 2020).

In Section 3.2, we report the results of applying post hoc calibration
methods on our datasets. For clarity, the methods investigated are
defined as follows:

• Method I : Individual neural network without post hoc calibration.
• Method I-C: Individual neural network with post hoc calibration
via temperature scaling.

• Method E-M1: Ensemble neural network without post hoc calibra-
tion.

• Method E-M2: Ensemble neural network with post hoc calibration
via temperature scaling applied before ensemble averaging.

• Method E-M3: Ensemble neural network with post hoc calibration
via temperature scaling applied after ensemble averaging.

Fig. 6 in Section 3.2 and Fig. 8 in Appendix B directly reference these
definitions.

2.5. Error and calibration metrics reported in this investigation

In this work, all supervised learning tasks are binary classification
problems. For the datasets without severely imbalanced class labels
(i.e. BIC and ABC) we report classification accuracy as our error metric,
while for the severely imbalanced class label (i.e. damaged pixels in
the Mechanical MNIST Crack Path dataset) we report the F1 score
as our error metric. To measure calibration, we report the Expected
Calibration Error (ECE). In all cases, we report these metrics on our
held out test datasets. Details on metrics for model error and model
calibration error are as follows.

2.5.1. Classification error definition for BIC and ABC
We evaluate model performance for the BIC and ABC datasets

via traditional classification error. Specifically, we define classification
error as the fraction of wrong predicted labels with respect to the total
number of labels. Mathematically, this is written as:

Error(y, Çy) = 1
N

N…
i=1

1( Çyi ë yi) (2)

where N is the number of labels to evaluate, y and Çy are the true
and predicted labels respectively, and 1( Çy ë y) represents the 0–1 loss
function (Shalev-Shwartz and Ben-David, 2014).

Fig. 3. Representative reliability diagram for an individual neural network trained on
the BIC 3 dataset. To promote completeness while preserving data visualization clarity,
we report additional reliability diagrams in Appendix B as a supplement to Section 3.

2.5.2. Classification error definition for mechanical MNIST crack path
Following our previous work, the damage field for each sample in

the Mechanical MNIST dataset is treated as a binary matrix (image)
where 1 represents a damaged sub-region (pixel) and 0 represents an
undamaged sub-region (pixels) (Mohammadzadeh and Lejeune, 2022).
Because the damaged region represents a crack path, the relative
prevalence of damaged pixels is small (2.88%) leading to severe class
imbalance. As such, the classification error as defined in Eq. (2) will
automatically appear as a small value due to the high percentage
of true negative pixels in each prediction. To better evaluate model
performance with these imbalanced labels, we report the error as the
Sørensen–Dice index, often referred to as the F1 score, defined as:

F1 =
2True Positive

2True Positive + False Positive + False Negative (3)

where True Positive, False Positive, and False Negative denote the
number of correctly predicted damaged pixels, incorrectly predicted
undamaged pixels, and incorrectly predicted damaged pixels respec-
tively. We note that F1 score defined in Eq. (3) is not influenced by the
number of true negative pixels (correctly predicted undamaged pixels),
making it an easier-to-interpret metric of model predictive performance
for the Mechanical MNIST – Crack Path dataset. In Fig. 6, where we
report F1 score, we plot error as 1*F1 on the y axis to maintain visual
consistency.

2.5.3. Expected Calibration Error (ECE)
In this work, we use the Expected Calibration Error (ECE) to eval-

uate model calibration. As stated in Section 1, calibration refers to
the match between predicted probabilities of outcomes and the true
probabilities of outcomes. For example, when a model is perfectly
calibrated, 100 predictions with 80% confidence should be correct
80_100 times. While there are many potential metrics used to evaluate
calibration (Guo et al., 2017; Minderer et al., 2021; Naeini et al.,
2015; Niculescu-Mizil and Caruana, 2005; Nixon et al., 2019; Ovadia
et al., 2019; Zhang et al., 2020), the ECE is one of the most preva-
lent in the literature and one of the most interpretable. Namely, the
ECE is connected to the reliability diagram, a common approach to
visualizing model calibration illustrated in Fig. 3 (Guo et al., 2017;
Naeini et al., 2015; Niculescu-Mizil and Caruana, 2005). Reliability dia-
grams are constructed in two steps. First, sample prediction confidences
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(i.e., confidence that a given sample is in a chosen class) are binned.
In this work, we use 10 equally spaced bins to construct all reliability
diagrams. Then, the average bin confidence is compared to the true
fraction of samples with the chosen class. The ECE is then computed as
the weighted average of the gap between perfect calibration and model
confidence within each bin. Mathematically, this is defined as:

ECE =
B…
i=1

ni
N

Fi * Ci  (4)

where B is the number of bins, ni is the number of samples in each bin,
N is the total number of samples, Fi is the frequency of the chosen
class in the bin, and Ci is the average confidence that the sample is
in the chosen class in the bin. Following this definition, a lower ECE
corresponds to a better calibrated model, and a model with ECE= 0
corresponds to a perfectly calibrated model. As indicated in Fig. 3, the
reliability curve bins in a perfectly calibrated model will follow the
diagonal y = x.

We report ECE as our main model calibration metric because it is
both prevalent in the literature and relatively interpretable. However,
it is not without limitations. For example, ECE is known to be sen-
sitive to the selection of binning scheme (Nixon et al., 2019; Ovadia
et al., 2019; Zhang et al., 2020). More specifically, ECE values can
depend on the bin size as well as the number of samples in each
bin. Multiple modifications to the definition of ECE defined in Eq. (4)
such as adaptive binning schemes (Nixon et al., 2019), using the l2
norm instead of the l1 norm to compute the ECE (Minderer et al.,
2021; Nixon et al., 2019), and kernel-density based methods (Zhang
et al., 2020), have been proposed in the literature. Aside from the
ECE, other methods that are related to reliability diagrams like the
Maximum Calibration Error (Naeini et al., 2015) have been proposed.
Alternatively, proper scoring rules (Gneiting and Raftery, 2007) with
roots in statistical analysis like the Negative Log-Likelihood (NLL) and
Brier Score (Minderer et al., 2021; Ovadia et al., 2019) have been
used to evaluate model calibration. However, it is not clear if these
proposed methods are significantly better than the standard method
for computing ECE, and these new metrics potentially lose some of
the clear relationship to the interpretable reliability diagram. Looking
forward, we anticipate that the framework we establish in this paper
could also be used to investigate the behavior of these alternative
metrics. However, this is beyond the scope of our current work.

3. Results and discussion

In Section 2, we introduced 7 datasets (BIC 1, BIC 2, BIC 3, ABC
1, ABC 2, ABC 3, and Mechanical MNIST – Crack Path), described
multiple machine learning models for making predictions with these
datasets, procedures for ensemble averaging and temperature scaling,
and metrics for evaluating model error and calibration. Here, we will
begin in Section 3.1 by comparatively evaluating different machine
learning methods on the BIC datasets. Then, in Section 3.2, we will in-
vestigate multiple strategies for improving model calibration across the
BIC, ABC, and Mechanical MNIST – Crack Path datasets. Throughout
this Section, we present the results of our study following the format
introduced in Fig. 1 where each individual trained machine learning
model is represented as a single marker on a prediction error vs. model
calibration error axis.

3.1. Evaluating model calibration

Our first major motivation for performing this investigation is that
large deep neural networks are prone to being poorly calibrated to an
extent that is not well understood (Guo et al., 2017). Thus, by evalu-
ating deep neural network model calibration for our mechanics-based
datasets, we will make progress towards our general understanding
of model calibration as a potentially emergent phenomena. In Fig. 4,
we plot model error vs. model expected calibration error (ECE) for

Fig. 4. Error vs. ECE plots for Gaussian Process Classification (GPC), Support Vector
Classification (SVC), 10 individual neural networks (NN-I), and an ensemble of 10
neural networks (NN-E) trained on the BIC 1, BIC 2, and BIC 3 datasets. Lower
ECE and error indicate better performance (bottom left corner, represented by the
green background gradient). Fig. 7 in Appendix B contains reliability diagrams that
supplement these results.

multiple machine learning models trained on the BIC 1, BIC 2, and BIC
3 datasets. Note that each marker corresponds to the test performance
of a trained machine learning model. From Fig. 4, we can directly com-
pare the performance of Gaussian Process Classification and Support
Vector Classification with Platt scaling to the performance of neural
networks.

Consistent with results from our prior publication (Lejeune, 2021),
model performance across different BIC sub-datasets varies due to the
different input parameter space for each BIC dataset. A machine learn-
ing problem with larger input parameter space (i.e. BIC 3) will typically
result in a higher error than a machine learning problem with smaller
input parameter space (i.e. BIC 1). Thus, we will make direct compar-
isons within each dataset, and note overall trends that are consistent
across all three datasets. In Fig. 4, we consistently see that individual
neural networks have a large ECE range, and tend to be poorly cali-
brated in comparison to the Gaussian Process Classification and Support
Vector Classification models. However, we also consistently see that
ensemble neural networks have both lower error and lower ECE, and
perform similarly to their Gaussian Process Classification and Support
Vector Classification counterparts. This context is important because
it justifies the choice of ensemble neural networks as an approach to
designing well calibrated deep learning based model frameworks. In
Appendix B, Fig. 7, we show supplementary reliability diagrams that
further support these results. Overall, this first investigation leads to
the expected result that ensemble averaging consistently improves the
performance of our deep neural networks. And, it leads to the less
expected result that ensemble neural networks have similar calibration
performance to the Gaussian Process Classification and Support Vector
Classification baselines.

In Fig. 5, we plot model error vs. model expected calibration error
(ECE) for multiple model types with different training set sizes trained
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Fig. 5. Error vs. ECE plots with varied training set sizes: (a) Gaussian Process Classification (GPC), Support Vector Classification (SVC), and an ensemble of 10 neural networks
(NN-E); (b) 10 individual neural networks (NN-I) and mean values of these 10 networks (NN-I (Mean)). All models are trained on multiple subsets of the BIC 1, BIC 2, and BIC 3
datasets with varying training set sizes (200, 500, 1,000, 2,000, 5,000, and 10,000 samples). Lower ECE and error indicate better performance (bottom left corner, represented by
the green background gradient). The Pearson correlation coefficients for error and ECE on BIC 1, BIC 2, and BIC 3, respectively, are as follows. SVC: (0.899, 0.887, 0.917); GPC:
(0.691, 0.967, 0.995); NN-E: (0.981, 0.731, 0.983); NN-I: (0.850, 0.612, 0.659); NN-I (Mean): (0.969, 0.656, 0.936).

Fig. 6. Visualization of the influence of ensemble averaging and post hoc model calibration on error and ECE for (a) the BIC datasets, (b) the ABC datasets, and (c) the Mechanical
MNIST Crack Path dataset. Color indicates the (sub)dataset, and marker style specifies the ensemble averaging and calibration approach, see Section 2.4. Lower ECE and error
indicate better performance (bottom left corner, represented by the green background gradient). Fig. 8 in Appendix B contains reliability diagrams that supplement these results.

on the BIC 1, BIC 2, and BIC 3 datasets. In Fig. 5, each marker
corresponds to the test performance of a trained machine learning
model, and marker size indicates the size of the training dataset. As
expected, Fig. 5 shows that error generally decreases as the training set
size increases, but eventually reaches a point of ‘‘diminishing returns’’,
where additional training data only marginally improves the accuracy.
This result is consistent with the standard observation in machine
learning and highlights the importance of selecting an appropriate
training set size. Beyond this standard result, Fig. 5 illustrates two
important results. First, it is clear from the distribution of results across
all machine learning models and datasets that model error and ECE are

at most weakly correlated (the overall correlation coefficient across all
models is 0.516). Namely, low model error does not necessarily indicate
low ECE, and high model error does not necessarily indicate high ECE.
Second, if we examine individual model types (i.e., Gaussian Process
Classification, Support Vector Classification, or ensemble neural net-
works) and individual datasets (i.e., BIC 1, BIC 2, BIC 3) increasing the
training set size consistently lowers both model error and model ECE.
For example, for ensemble neural networks the correlation coefficients
relating error and ECE are 0.981, 0.731, and 0.983 for BIC 1, BIC
2, and BIC 3 respectively. Critically, for these examples, increasing
the training set size improves both model error and model calibration
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which is an important observation because it is an actionable strategy
for improving both dimensions of performance.

3.2. Improving model calibration

In Sections 2.3 and 2.4, we introduced two strategies for explicitly
improving model calibration. The first, ensemble averaging, relies on
training multiple neural networks on the same data using different
random weight initialization. The second, post hoc calibration via
temperature scaling, relies on reserving additional data for calibration.
In this Section, we will compare the performance of individual neural
networks (I), individual neural networks with post hoc calibrated via
temperature scaling (I-C), ensemble averaging (E-M1) and two different
methods for ensemble averaging combined with post hoc calibrated via
temperature scaling (E-M2, and E-M3, see Section 2.4 for definitions).
Similar to machine learning literature where it is typical to perform
these investigations across multiple datasets, we will investigate all
approaches across the BIC, ABC, and Mechanical MNIST – Crack Path
datasets in order to identify outcomes that are potentially consistent
across diverse types of mechanical data.

Consistent with the results presented in Section 3.1, we find that
ensemble averaging without post hoc calibration (E-M1) improves error
and ECE across all datasets. We note briefly that in Fig. 6a, which rep-
resents the BIC datasets, the I and E-M1 data points are repeated from
Fig. 4, and in Fig. 6b, which represents the ABC datasets, the I and E-M1
data points are repeated from our previous publication (Prachaseree
and Lejeune, 2022b). Across all datasets shown in Fig. 6a–c, direct
comparison of the I and E-M1 points convincingly indicates that ensem-
ble averaging holds up as a strategy for improving model performance
and calibration. As outlined in Section 2.3, we would like to empha-
size that during the training of each individual network, the weights
were randomly initialized. The impact of this random initialization
can be observed in Fig. 6 where individual neural networks clearly
exhibit variable final performance. One reason for the success of en-
semble averaging for improving performance is that it can both mitigate
and leverage the downstream effects of random weight initializations.
Specifically, random weight initializations mean that the same model
inputs may correspond to different model outputs across the individual
neural networks. By averaging these predictions, we can not only
mitigate poor predictions, but also improve the average efficacy of
inconsistent predictions. These positive results, all without post hoc
calibration, serve as a baseline for evaluating the efficacy of meth-
ods designed specifically to improve calibration such as temperature
scaling.

In Fig. 6, we also show the results of three approaches to performing
post hoc model calibration via temperature scaling (I-C, E-M2, and E-
M3), where the individual models (I) and models with straightforward
ensemble averaging (E-M1) serve as the baseline. From Fig. 6, we see
that unlike the results of applying ensemble averaging, the results of
applying temperature scaling are much less consistent. In contrast
with machine learning literature (Guo et al., 2017), when applying
temperature scaling to individual neural networks (i.e., comparing the I
models to the I-C models), there were limited and inconsistent benefits.
For example, in Fig. 6b, temperature scaling leads to limited decreases
in ECE for individual networks, while in Fig. 6c temperature scaling
leads to a modest increase in ECE. One possible explanation for this
difference is that Fig. 6c corresponds to the Mechanical MNIST –
Crack Path dataset, which is inherently very unbalanced – there are
many fewer ‘‘damaged’’ pixels than ‘‘undamaged’’ pixels. Though we
cannot strictly say that this is causal, we can resolutely say that it is
important to evaluate methods for improving model calibration on an
example of an unbalanced dataset prior to drawing general conclusions.
Overall, in comparing individual models with temperature scaling (I-C)
to ensemble models without temperature scaling (E-M1), we note that
the E-M1 models more consistently lead to both lower ECE and lower
error.

When comparing ensemble averaging combined with post hoc cal-
ibration via temperature scaling (E-M2 and E-M3) to the baseline of
straightforward ensemble averaging (E-M1), we find similar incon-
sistent results. Specifically, ensemble averaging combined with tem-
perature scaling (E-M2, E-M3) lead to inconsistent performance im-
provements in comparison to ensemble averaging alone (E-M1). Of
note, temperature scaling prior to ensemble averaging (E-M2) led to
strikingly worse performance compared to ensemble averaging alone
(E-M1) for the Mechanical MNIST – Crack Path dataset, illustrated
in Fig. 6c. As stated previously, this dramatic difference may be
due to the severe class imbalance present in the Mechanical MNIST –
Crack Path dataset. Overall, we found that for these datasets ensemble
averaging offers much more consistent performance improvements than
post hoc model calibration via temperature scaling. The supplementary
reliability diagrams shown in Appendix B, Fig. 8 also support these
results. In addition, it is worth mentioning that results shown in Fig. 5,
where increasing the training set size led to improvements in both
model error and model ECE for ensemble neural networks, also indicate
that increasing the initial training set size may be a better use of data
resources than post hoc calibration via temperature scaling. However,
we acknowledge that this statement may vary based on specific desired
outcomes and data resources.

Overall, we note that our findings are based on empirical evi-
dence obtained through analyzing the 7 datasets introduced in this
manuscript. The complex and presently ‘‘black box’’ nature of deep
neural networks means that we should not make either sweeping gener-
alizations or causality claims based on these findings alone. Therefore,
for full transparency and completeness, it is important to acknowledge
that the trends observed in this study are not necessarily guaranteed
to be consistent with either previous or forthcoming literature that is
based on different data. For example, others have empirically shown
that temperature scaling applied after ensemble averaging (M3) can
consistently improve model calibration compared to ensemble averag-
ing alone (M1) (Rahaman and Thiery, 2020). However, because there
is no real consensus on the best method for calibrating deep learning
models, and calibration strategies to date appear dependent on the type
of dataset and deep learning architecture used (Zhang et al., 2020; Guo
et al., 2017; Lakshminarayanan et al., 2017; Minderer et al., 2021; Ova-
dia et al., 2019; Rahaman and Thiery, 2020), we assert that this work
is a necessary and important step forward. As such, rather than taking
the results of this investigation at face value, we hope that our work
(1) highlights the need for more research towards understanding deep
neural network calibration, and (2) emphasizes the need for additional
domain specific open access datasets for systematically exploring the
efficacy of deep learning approaches.

4. Conclusion

To the author’s knowledge, this is the largest investigation to date
of deep learning model calibration for classification problems in me-
chanics. From this investigation, we found four key results. First, we
found that ensemble neural networks perform comparably to Gaus-
sian Process Classification and Support Vector Classification with Platt
scaling in terms of model error and model expected calibration error
(ECE) for all three BIC datasets. Second, we found that increasing the
training set size decreases both model error and model ECE for all three
BIC datasets. Third, we found that ensemble averaging consistently
improves both model error and model ECE for all 7 datasets. Fourth,
we found that temperature scaling offers limited benefits in compar-
ison to ensemble averaging for all 7 datasets. In summary, the most
important result from this study is that ensemble averaging of deep
neural networks is both an effective and consistent tool for improving
model calibration for problems in mechanics, while temperature scaling
has comparatively limited benefits. Overall, we believe that this work
demonstrates the utility of large scale studies of machine learning
methods applied to problems in mechanics.
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Looking forward, we anticipate several major areas of future inves-
tigation by both us and others. First, these datasets can be used to
investigate alternative approaches to simultaneously improving both
model error and ECE. For example, there are multiple approaches
to post hoc model calibration beyond temperature scaling that are
amenable to similar investigation (Kuleshov et al., 2018; Naeini et al.,
2015; Rahimi et al., 2020). Alternatively, Bayesian methods (Kendall
and Gal, 2017; Maddox et al., 2019; Zhang and Garikipati, 2021) and
evidential deep learning models (Amini et al., 2020; Sensoy et al.,
2018) aim to output calibrated predictions without any additional post
hoc training. And, building on exciting recent work (Raissi et al.,
2019; Yang and Perdikaris, 2019), we anticipate that there are rich
possibilities for physics-informed approaches to this problem. Second,
these datasets can be used to investigate alternative approaches to
evaluating model calibration. As stated in Section 2.5.3, developing
more effective metrics remains an open area of research and one that
deserves attention in a mechanics-specific context. Third, there is a
need to extend this study to additional open-access mechanics-based
datasets from diverse sources. Ultimately, we acknowledge that the cur-
rent study is limited to data generated through FEA, which introduces
a potential bias. This highlights the need for further research to explore
the problem with data from other sources, such as experimental testing
or molecular dynamic simulations, which may contain stochastic be-
havior. Additionally, our study is limited to simulated data since, to our
knowledge, there are currently no open access experimental mechanics
datasets that are both amenable to being formulated as a classification
problem and sufficiently large to include in this study. We view the
lack of experimental data as the biggest limitation of this work. That
being said, our hope is that this work both offers a starting point
for researchers beginning work with deep learning model calibration,
and motivates future mechanics-specific advances in deep learning
model calibration. Because all datasets and codes associated with this
manuscript are available under open-source licenses, others can readily
build on our work and make direct comparisons to alternative methods
and datasets.

5. Additional information

All datasets used in this investigation have been previously pub-
lished in conjunction with prior manuscripts from our group (Lejeune,
2021; Prachaseree and Lejeune, 2022a; Mohammadzadeh and Lejeune,
2022). Each dataset contains both the metadata to interpret files and
the code needed to reproduce all results. In all cases, data is shared
under a CC BY-SA 4.0 License through the OpenBU Institutional Repos-
itory and code is shared under a MIT License through GitHub. The
datasets used are as follows:

• Buckling Instability Classification (BIC) (Lejeune, 2020a): rect-
angular columns with heterogeneous material properties are sub-
ject to a fixed level of applied displacement and classified as
either stable or unstable (i.e., buckled).
BIC contains three independent sub-datasets where all three 16 ù 1
input patterns are sampled from different distributions:

BIC 1: 16 ù 1 pattern from distribution 1, sampling 2
discrete values (input) ≠ stable vs. unstable (output)
BIC 2: 16 ù 1 pattern from distribution 2, sampling 3
discrete values (input) ≠ stable vs. unstable (output)
BIC 3: 16 ù 1 pattern from distribution 3, sampling contin-
uous range (input) ≠ stable vs. unstable (output)

• Asymmetric Buckling Columns (ABC) (Prachaseree and Leje-
une, 2022a): heterogeneously architected and asymmetric
columns with homogeneous material properties are subject to a
fixed level of applied displacement and classified as either left
buckling or right buckling.
ABC contains three independent sub-datasets where all three in-
put domain architecture types are generated through different
procedural approaches:

ABC 1: spatial graph that represents domains from domain
type 1, block stacking (input) ≠ left vs. right (output)
ABC 2: spatial graph that represents domains from domain
type 2, uniform rings (input) ≠ left vs. right (output)
ABC 3: spatial graph that represents domains from domain
type 3, clipped non-uniform rings (input) ≠ left vs. right
(output)

• Mechanical MNIST – Crack Path (Mohammadzadeh and Leje-
une, 2021): two-dimensional square domains with heterogeneous
material properties and a defined initial crack are subject to a
fixed level of applied displacement. Under these loading condi-
tions, a crack propagates throughout the domain with the crack
path dictated by the heterogenous material property distribution.
Mechanical MNIST – Crack Path is a single dataset:

Mechanical MNIST – Crack Path: 64 ù 64 material prop-
erty array (input) ≠ 64 ù 64 damage field (output)

All datasets are schematically illustrated in Fig. 2 for a total of 7
independently trained and tested cases (Lejeune, 2020a; Prachaseree
and Lejeune, 2022a; Mohammadzadeh and Lejeune, 2021).

The code to reproduce all computational results presented in this pa-
per is available through GitHub (https://github.com/saeedmhz/model-
calibration) with the exception of the code to implement the Graph
Neural Network described in Section 2.2.4 which is published in the
GitHub repository accompanying our previous publication (Prachaseree
and Lejeune, 2022b).
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Fig. 7. Reliability diagrams as a supplement to Fig. 4.
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Fig. 8. Reliability diagrams and confidence distribution histograms as a supplement to Fig. 6.
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Fig. 9. This figure supplements Sections 2.2.3, 2.2.4, and 2.2.5 by schematically illustrating the different neural network architectures. The fully connected neural networks consists
of three linear layers, each with 200 nodes, and utilizes dropout with a probability of 0.5 during training. Our previous work (Prachaseree and Lejeune, 2022b) provides further
details on the graph neural network that we used. Finally, the UNet network employs ‘‘Conv-blocks’’, which repeat a 2D convolutional layer followed by a 2D batch normalization
and a ReLU activation function twice. The convolutional layers have a filter size of 3 and a stride and padding of 1, while the maxpool layers use a filter size of 2. The transposed
convolutional (‘‘UpConv’’) layers employ a filter and stride of 2.

Appendix A. List of abbreviations

FEA - Finite Element Analysis
BIC - Buckling Instability Classification
ABC - Asymmetric Buckling Columns
NLL - Negative Log Likelihood
ECE - Expected Calibration Error
GPC - Gaussian Process Classification
SVC - Support Vector Classification
NN-I - Individual neural network (see Figs. 4 and 5)
NN-E - Ensemble neural network (see Figs. 4 and 5)

Method (I) - Individual neural network without post hoc calibra-
tion (see Fig. 6)
Method (I-C) - Individual neural network with post hoc calibra-
tion via temperature scaling (see Fig. 6)
Method (E-M1) - Ensemble neural network without post hoc
calibration (see Fig. 6)
Method (E-M2) - Ensemble neural network with post hoc calibra-
tion via temperature scaling applied before ensemble averaging
(see Fig. 6)
Method (E-M3) - Ensemble neural network with post hoc calibra-
tion via temperature scaling applied after en- semble averaging
(see Fig. 6)
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Appendix B. Supplementary reliability diagrams

In Section 3, we present the core results of this investigation as
plots of Error vs. Expected Calibration Error (ECE). As introduced in
Section 2.5.3 and illustrated in Fig. 3, ECE is connected to the reliability
diagram, a common strategy for visualizing model calibration. Here
we provide supplementary reliability diagrams to accompany Figs. 4
and 6. In Fig. 7, we show 12 calibration curves that correspond to the
results shown in Fig. 4. Specifically, for BIC 1, BIC 2, and BIC 3 we
plot reliability diagrams for Gaussian Process Classification, Support
Vector Classification with Platt scaling, a representative Individual
Neural Network, and an Ensemble Neural Network. In Fig. 8, we show
9 calibration curves that correspond to the results shown in Fig. 6.
Specifically, for BIC 3, ABC 3, and Mechanical MNIST Crack Path we
plot reliability diagrams for straightforward ensemble averaging (E-
M1), post hoc calibration temperature scaling followed by ensemble
averaging (E-M2), and ensemble averaging followed by post hoc cali-
bration temperature scaling (E-M3). In addition, we plot histograms of
the representative distribution of model confidence for E-M1 for BIC 3,
ABC 3, and Mechanical MNIST Crack Path. These histograms not only
indicate the bins that will have the heaviest weight, but also illustrate
the severe class imbalance present in the Mechanical MNIST Crack Path
dataset.

Beyond overall ECE, which is a weighted average of the calibration
error in each bin, the reliability diagram allows us to visualize the
Maximum Calibration Error and the regions where the different models
tend to be over and under confident. In addition, they provide a visual-
ization of the outcomes of post hoc model calibration via temperature
scaling. These diagrams provide additional contextual information that
helps address some of the limitations of ECE as a metric, discussed
in Section 2.5.3. Overall, we recommend visualizing the reliability
diagram in addition to computing ECE prior to deploying a given
model.

Appendix C. Details of the neural networks

To supplement the description of the neural networks we used in
this work, introduced in Sections 2.2.3, 2.2.4, and 2.2.5, we have
included network schematics for our implementations of each network
in Fig. 9.
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