Extreme Mechanics Letters 63 (2023) 102042

m EXTREME MECHANICS

LETTERS

Contents lists available at ScienceDirect

Extreme Mechanics Letters

journal homepage: www.elsevier.com/locate/eml

Locality sensitive hashing via mechanical behavior N

Emma Lejeune *, Peerasait Prachaseree

Check for
updates

Department of Mechanical Engineering, Boston University, Boston, MA, United States of America

ARTICLE INFO

Article history:

Received 8 March 2023

Received in revised form 14 May 2023
Accepted 18 June 2023

Available online 22 June 2023

Dataset link: https://github.com/elejeune11
/mechHS

Keywords:

Physical computing
Morphological computing
Programmable matter
Mechanical hashing

ABSTRACT

From healing wounds to maintaining homeostasis in cyclically loaded tissue, living systems have a
phenomenal ability to sense, store, and respond to mechanical stimuli. Broadly speaking, there is
significant interest in designing engineered systems to recapitulate this incredible functionality. In
engineered systems, we have seen significant recent computationally driven advances in sensing and
control. And, there has been a growing interest - inspired in part by the incredible distributed and
emergent functionality observed in the natural world - in exploring the ability of engineered systems
to perform computation through mechanisms that are fundamentally driven by physical laws. In this
work, we focus on a small segment of this broad and evolving field: locality sensitive hashing via
mechanical behavior. Specifically, we will address the question: can mechanical information (i.e., loads)
be transformed by mechanical systems (i.e., converted into sensor readouts) such that the mechanical
system meets the requirements for a locality sensitive hash function? Overall, we not only find that
mechanical systems are able to perform this function, but also that different mechanical systems
vary widely in their efficacy at this task. Looking forward, we view this work as a starting point for
significant future investigation into the design and optimization of mechanical systems for conveying
mechanical information for downstream computing.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

From the cells embedded in our skin deciding if they should
activate to heal a wound [1,2], to robotic systems dexterously
manipulating delicate objects [3-5], the ability to effectively
transmit and interpret mechanical signals can lead to incredible
functionality [6-8]. In natural systems, this ability leads to com-
plex emergent behavior such as the maintenance of homeostasis
in mechanically loaded tissue [9,10]. And, in engineered systems,
we can design for responsiveness by controlling the transmission
of mechanical signals through material selection and structural
form [11-13].

Transmission and interpretation of mechanical signals is
especially relevant to growing interests in “morphological com-
puting” [14], “physical learning” [15], and “programmable mat-
ter” [16,17]. Broadly speaking, these are all paradigms where
a physical system is either programmed, or used to perform
some form of “computation”. For example, researchers have
experimentally realized physical logic gates [18-20], as well as
responsive mechanisms that trigger functional behavior when
activated [21-23]. And, within the scope of dynamical systems,
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researchers have used physical bodies to perform “reservoir com-
puting” where a higher dimensional computational space is cre-
ated by multiple non-linear responses to an input signal [24,25],
and cryptographic hashing where researchers have shown that
chaotic hydrodynamics can be used to store and manipulate
information in a fluid system [26]. In this paper, we will focus on
a small segment of this broad and emerging field: locality sensitive
hashing via mechanical behavior. Here, our goal is to explore
this specific type of computation in the context of mechanical
systems.

Hashing, the process of converting arbitrarily sized inputs to
outputs of a fixed size, is schematically illustrated in Fig. 1a [27].
In most popular applications of hashing (e.g., storing sensitive
information), it is desirable to minimize collisions (i.e., the oc-
currence of different inputs mapping to the same output) and
obfuscate the relationship between inputs and outputs. However,
there has been a growing interest in alternative types of hashing
algorithms — specifically hashing algorithms for applications such
as similarity search, see Fig. 1b [28]. In these algorithms, the
goal is to compress input data while preserving essential aspects
of the relationship between input data points. In Section 2.1,
we lay out the mathematical definition for “locality sensitive
hashing” [29,30]. In this paper, we will focus on the concept
schematically illustrated in Fig. 1c. Can mechanical information
(i.e., loads) be transformed by mechanical systems (i.e., converted
into sensor readouts) such that the mechanical system meets the
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Fig. 1. (a) Schematic illustration of a generally defined hash function;
(b) Schematic illustration of the requirements for locality sensitive hashing
where peoision 1S the probability of a hash collision that is larger for inputs that
are closer together; (c) Schematic illustration of a mechanical system performing
locality sensitive hashing.

requirements for a locality sensitive hash function? In exploring
this specific type of computing in mechanical systems, our goal
is to lay a solid ideological foundation for future applications of
physical computing where mechanical systems are tailored to
act as a “physical computing layer” that transforms mechanical
information to enable downstream responsiveness and control.
The remainder of the paper is organized as follows. In
Section 2, we further define locality sensitive hashing, elaborate
on the concept of mechanical systems as locality sensitive hash
functions, and define an example problem to explore the per-
formance of different mechanical systems for locality sensitive
hashing. Then, in Section 3, we show the results of our investiga-
tion of our example problem, and conclude in Section 4. Overall,
our goal is threefold: (1) to introduce the concept of locality
sensitive hashing in the context of mechanical systems, (2) to
provide a straightforward “proof of concept” that mechanical
systems can be used to perform locality sensitive hashing, and
(3) to lay the foundation for future investigations on optimizing
mechanical behavior to perform hashing for similarity search.

2. Methods

We will begin in Section 2.1 by defining Locality Sensitive
Hashing (LSH), then in Section 2.2 we will demonstrate how the
concept behind LSH can be applied to mechanical systems as a
“proof of concept”. Finally, in Section 2.3 we define an example
problem that will set up the main investigation presented in this

paper.
2.1. Locality sensitive hashing

In simple terms, a “hash function” is a function that maps in-
put data of an arbitrary size to a fixed size output, referred to as a
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“hash value” [31]. This is schematically illustrated in Fig. 1a. Hash
functions have broad societal applications ranging from storing
passwords, to checking if files match, to enabling data structures
(e.g., dictionaries in Python) [32]. For these applications, hash
functions are designed to minimize “hash collisions”. To minimize
“hash collisions”, hash functions typically convert similar yet dif-
ferent inputs to drastically different hash values [33]. Therefore,
for typical hash algorithms, it would not make sense to perform
downstream applications that rely on the distance between hash
values. However, there has been recent interest in an alternative
type of hash algorithm referred to as “locality sensitive hashing”
where the goal is to create hash functions that encourage col-
lisions between similar inputs [28]. For these Locality Sensitive
Hash (LSH) approaches, similar inputs should lead to similar or
identical hash values. To date, these techniques have primarily
been used for dimensionality reduction prior to nearest neighbor
search [34]. More formally, we can introduce LSH through the
following definition [28].

First, we describe our input data as points in a N dimensional
metric space M with distance function d. Here we will choose d
as the L% norm! - ||x||*° = max{|x1], |X2], ..., |xn|} where X is
the difference between two points in M. We define a family of
h hash functions as 7 where for any two points ¢; and g; in M
and any hash function h chosen uniformly at random from F the
following conditions hold:

if d(qi, q;) < R: Pr[h(q;) = h(q;)] = p: @)
if d(qi, q;) > cR: Pr[h(q;) = h(q;)] < p»

where threshold R > 0, approximation factor ¢ > 1, and Pr[]
computes probabilities p; and p, with 0 < py,p, < 1. In this
work, we will store hash values h(g;) with the numpy.float64
data type, thus Pr[h(g;) = h(g;)] = 0. In physical implementations
of these systems, the precision of h(q;) will depend on the choice
of sensor. Therefore, in establishing our mechanical analogue to a
locality sensitive hashing algorithm, we re-write Eq. (1) in terms
of a positive value S as:

if d(qi. ¢j) < R: Pr[d(h(q;). h(g;)) < S1=> p (2)
if d(qi, ¢j) > cR : Prld(h(q:), h(q)) < S] < p,

which is elaborated on in Appendix A.1. With this definition, a
family F is referred to as a “Locality Sensitive Hash” family, or
alternatively as (R, cR, p1, p2)-sensitive if p; > p,. In simple and
functional terms, illustrated schematically in Fig. 1b, a family of
hash functions will exhibit LSH behavior if the probability of a
hash collision is higher for points that are closer together in the
input space.

2.2. Introduction to mechanical systems as locality sensitive hash
functions

In this paper, we will explore the idea of using mechanical be-
havior to perform locality sensitive hashing where F will define a
class of mechanical systems. In Fig. 1c, we schematically illustrate
our approach to defining this problem. Specifically, we will con-
sider a vertical distributed load w(x) applied on the surface of a
mechanical system. The mechanical system will be drawn from a
family 7, where the mechanical behavior of the system will lead
to multiple force sensor readouts at discrete locations, treated as
hash values.

1 Alternative choices of |IL]] would also be acceptable, here we choose ||L||*®
to simplify future calculations, see Appendices A.1 and A.2. We note briefly
that our GitHub page hosts the code necessary to re-implement the numerical
portions of our study with ||L||?, which leads to very similar results and identical
conclusions to what we find using ||L[|*.
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Fig. 2. (a) Schematic illustration of F, a family of simply supported beams
with two supports (A and B); (b) Schematic illustration of Fg_3, a family of
simply supported composite beams with three supports (A, B, and C).

For this setup, we define the input continuous distributed load
w(x) as an evenly spaced N x 1 dimensional vector (i.e., w(x) is
a continuous interpolation of N points) and the process of “hash-
ing” entails converting this N dimensional vector into ns (number
of sensors) force sensor readouts. In future work the distributed
load could be conceptualized as either multi-dimensional, i.e.,
w(x,y), or displacement driven, and the sensor readouts could
capture alternative forms of behavior (e.g., strain).

Here we will define our first family of mechanical hash func-
tions Fy as a family of simply supported beams, illustrated in
Fig. 2a, where supports A and B are randomly placed at positions
I, and I, such that they are separated by a minimum distance mL
where 0 < m < 1 and L is the length of the beam. Here, w(x) will
be the input distributed load, and force at each of the ns sensors is
the hash value output. Following Eq. (2), we will treat two hash
values as a collision if the readouts at all sensors are within a
tolerance S. We can then assess if the conditions defined in Egs.
(1)-(2) hold for Fs. In Appendix A.1, we expand on this in detail
and explicitly define R, cR, py, and p, for F. However, for F, it
only requires a simple thought experiment to demonstrate that
Fss is not (R, cR, p1, p2)-sensitive.

In brief, we can demonstrate that F is not (R, cR, p1, p2)-
sensitive by showing that we can choose two points in our inputs
space (wq, w), that are arbitrarily far apart (d(wq, w2) > cR
for an arbitrarily large cR) yet still lead to a hash collision for
all possible mechanical hash functions in F; (p, = 1). In the
context of mechanics, because all distributed loads with the same
resultant force and centroid lead to the same reaction forces,
simply supported beams do not meet the definition for locality
sensitive mechanical hash functions.

However, if we consider even a slightly more complicated
family of mechanical systems, simply supported composite beams
with 3 supports, referred to as Fi;_c3 and illustrated in Fig. 2b,
the situation changes. For F_.3, we consider supports A, B, and
C that are randomly placed at positions I,, I, and I such that
they are each separated by a minimum distance mL where 0 <
m < 0.5 and segments AB and BC and connected through a roller
support. Because I;, I, and I. change for each hash function in
Fss—c3, two far apart distributed loads will collide with p, < 1,
thus if we define R as small enough such that the readout at each
sensor will be within tolerance S and thus p; = 1, we can show
that Fs_c3 is (R, CR, p1, p2)-sensitive. An explicit computation of R,
¢, p1, and p; for Fy_ 3 is expanded on in Appendix A.2. Overall,
this simple demonstration is a proof of concept for mechanical
systems as locality sensitive hash functions. Though this frame-
work is straightforward, it is important to define as this work
will lay the foundation for addressing more complex problems
where we can consider broader definitions of mechanical hash
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functions, inputs, outputs, and system structure. In Section 3, we
will examine the functional performance of these simple beams
alongside more complicated mechanical systems that may lead to
more desirable functional LSH behavior. In addition, the straight-
forward LSH approach defined here will serve as a baseline for
novel strategies to optimize mechanical systems for downstream
signal processing.

2.3. Example problem definition

Beyond satisfying the criteria defined in Eq. (1), we are inter-
ested in assessing the functional utility of mechanical systems
for performing locality sensitive hashing. To this end, we now
define an example problem consisting of example loading, de-
fined in Section 2.3.1, example mechanical systems, defined in
Section 2.3.2, and evaluation metrics, defined in Section 2.3.3.
In brief, we will investigate how different mechanical systems
transform mechanical signals in the context of LSH.

2.3.1. Example loads

In Fig. 3a, we show our 200 randomly generated applied
loads across 20 different categorical classes. In brief, we consider:
constant loads, linear loads, piecewise linear loads, absolute value
sinusoidal loads, and kernel density estimate loads based on
randomly generated point densities. Note that, as illustrated in
Fig. 1c, we apply all loads pointing downwards. Building on the
framework laid out in Section 2.2, these loads are chosen to:
(1) pose a risk of unwanted hash collisions across categories
(i.e., identical centroids and resultant forces), while (2) being
qualitatively different. For each of the 20 categorical classes, we
generate 20 examples with different selections of correlated Perlin
noise [35,36]. Specifically, we add Perlin noise with a randomly
selected seed and octave (random integer with range [2, 10]) —
this is the source of the variation across each category in the
curves illustrated in Fig. 3a. Additional details for describing all
categories of load are given in Appendix B.2, and the link to
the code for re-generating these loads including selected random
seeds is given in Section 5.

2.3.2. Example mechanical systems

In Fig. 3b-e, we show the mechanical systems investigated
in this study. For all examples, we set the top surface length
L = 10 (length units). In brief, we consider the following classes
of mechanical systems:

e Simply supported and simply supported composite beams
defined in Section 2.2. We will consider composite beams
with up to 10 supports, and we will report the performance
of both single beam instances and hard voting based ensem-
ble behavior for a total of 17 different scenarios (see Fig. 3b).
For the beam ensembles, each of the 100 composite beams
will have different randomly generated support locations.
The final performance of each ensemble will then be repre-
sented as a single value that combines information from all
100 randomly generated composite beams. An illustration of
arepresentative beam ensemble is included in Appendix B.1.

e Homogeneous rectangular domains with variable depth,
number of sensors, and fixity. We will consider rectangular
domains with 2, 3, 4, and 5 force sensors, depths 1.0, 2.5,
5.0, 10.0, and 20.0, and both with and without bottom fixity.
For reference, a rectangular domain with depth = 1.0 will
have dimension 1.0 x 10.0, and a rectangular domain with
depth = 10.0 will be a square. The combination of 4 sensor
options, 5 depths, and 2 bottom fixities leads to leads to a
total of 4 x 5 x 2 = 40 different rectangular domains (see
Fig. 3c where all potential sensor placements and depths are
illustrated).
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Fig. 3. (a) Illustration of the 20 classes of applied loads; (b) Schematic illustration of the simply supported and ensemble beam mechanical systems (note an example
ensemble is explicitly illustrated in Fig. 8); (c) Schematic illustration of the rectangular domains with different depths (depth = [1.0, 2.5, 5.0, 10.0, 20.0]) and number
of sensors (ns= [2, 3, 4, 5]). For all rectangular domains, we simulate the bottom fixed only at sensors (J) and the whole bottom fixed (¢); (d) Schematic illustration
of the lattice domains (L3, L4, L5); (e) Schematic illustration of the custom domains (C1, C2, C3). Note that all lattice and custom domains have depth = 10.0. In
b-e, the markers next to each mechanical system match the markers used in Figs. 4-5.

e lLattice domains with 3, 4, and 5 sensors and corresponding
2 x 2,3 x 3,and 4 x 4 window grids (see Fig. 3d). All lattice
domains have depth = 10.0.

e Custom domains with three different geometries and vari-
able sensor numbers ns (see Fig. 3e). All custom domains
have depth = 10.0.

For each mechanical system, we run 400 simulations correspond-
ing to each of the applied loads illustrated in Fig. 3a and report
the y direction force at each sensor location. In the context of LSH,

the applied loads are the input, and these forces are the hash
function output. In all cases, sensor locations are fixed in both
the x and y direction, but only the y direction force is used in
subsequent analysis. Simply supported beams are simulated in a
Python [37] script that we link to in Section 5. All finite element
simulations are conducted using open source finite element soft-
ware FEniCS [38,39] and built in FEniCS mesh generation software
mshr. To avoid numerical artifacts, we simulate all domains as
Neo-Hookean materials with v = 0.3, and a fine mesh (mshr
mesh parameter set to 200) of quadratic triangular elements.
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Fig. 4. Plot of peoision Of hash values (defined as the probability that ||h; — hjll. < 0.01) vs. distance between input loads ||w; — wj|l for all rectangular domains.
For context, we also include the curve for a simply supported beam with two supports, and the curve for the mean of all rectangular samples (see inset, where

Pcollision = [0'149 0~099, 0~075, 0.070, 0.047]).

The link to the code for re-generating all simulation results is
given in Section 5. In addition, our code contains a tutorial for
designing and simulating user defined architected domains to
make it straightforward to expand on the initial results presented
in this paper.

2.3.3. Evaluation metrics

Based on the suite of 400 loads defined in Section 2.3.1 and
the 63 mechanical systems defined in Section 2.3.2 (see Fig. 3),
we will have over 25,000 simulation results to analyze. To draw
conclusions from these results, we will examine the relationship
between three different quantities of interest: (1) the probability
of a hash collision with respect to the L*° distance between loads,
(2) the Spearman’s Rank correlation coefficient p between the
L*° distance between loads and the L*° distance between hash
values [40,41], and (3) the classification accuracy based on a
single nearest neighbor (note that there are 20 categories of loads,
with 20 examples in each category, illustrated in Fig. 3a) [42].

To begin, we will report the probability of hash collision
Deoliision @S function of the L distance between input loads and
hash values for all 40 rectangular domains and compare to a
baseline simply supported beam from Fg;. To approximate peojjision
vs. L*° distance for our selection of example loads, we divide
all load pairs into five equally sized bins based on the distance
between input loads. Then, we compute pcoision as the fraction
of hash values in each bin with L* < 0.01 (input loads are
normalized to sum up to 1). In Fig. 4, we plot pconision With respect
to the average input distance value associated with each equally
sized bin. Thus, for each device we will have a curve that shows
binned peoision VS. L*° distance between loads. In Section 3, we
visualize this behavior in Fig. 4 as one (limited) approach to
observing LSH behavior.

Beyond peoliision VS. L% distance, we will also compute Spear-
man'’s p designed to capture the rank correlation between the L*
distance between loads and the L*® distance between hash values.
For all 79,800 load pairs (400 x 399/2 = 79,800 pairs) we rank

order the distances of both the loads and the hash values and then
compute p as:

63,17
n(n2—1)

where r1; is the difference between the ranks of the load and
hash values distances and n is the number of load pairs. For
perfect monotonic correlation p 1 and for no correlation
P 0. We perform this operation with the Python function
scipy.stats.spearmanr () [41]. Though visualizing peopision VS.
L*° is a more intuitive match to the LSH definitions in Egs.
(1)-(2), the quantitative comparison of preserving input rela-
tionships is perhaps more interpretable via Spearman’s p. In
Section 3, we visualize Spearman’s p in each device both with
respect to classification accuracy (Fig. 5), and mechanical system
properties (Fig. 6, see also Fig. 12).

The third evaluation quantity is chosen as a set up for future
applications in “learning to hash”. In future “learning to hash”
applications, the hashing efficacy of the mechanical system will
be measured via the performance on a functional task. Here we
choose classification accuracy as an example functional task. In
brief, each of the 400 loads belongs to one of 20 applied load
classes (20 classes, 20 loads per class). This is illustrated in Fig. 3a.
Here, we compute classification accuracy using a simple nearest
neighbor algorithm where we predict the class of a given load
based on its hash value. For each of the 400 loads, we implement
a new k-nearest neighbor classifier based on the 399 other loads
and then see what class is predicted for the held out load with
k = 1 [43]. Classification accuracy is then defined based on the
ability of this algorithm to predict the class of the held out load:

p=1 (3)

correct predictions

accuracy = —
y total predictions

(4)
where the “correct” prediction is which of the 20 applied load
classes (see Fig. 3a) the input load belongs to. We implement this
algorithm with scikit-learn [42] and report the average prediction
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Fig. 5. Plot of classification accuracy vs. Spearman’s p for all mechanical systems explored in this study. Note the inset plot which contains S2 (simply supported
beam with two supports) and similarly performing mechanical systems. Fig. 12 also presents Spearman’s p and classification accuracy plotted with respect to number

of sensors and domain depth.

accuracy across all 400 individual hold out cases. Because there
are 20 identically sized labeled classes according to the prob-
lem definition, the baseline prediction accuracy that represents
random guessing is 0.05. In Section 3, classification accuracy
is reported in Fig. 5. As a brief note, the link to the code for
computing all of these quantities of interest is given in Section 5.

3. Results and discussion

In this Section, we will summarize the results of the inves-
tigation detailed in Section 2.3. On one hand, the results of this
study are largely intuitive — applied loads influence mechanical
response, and different applied loads lead to different mechanical
response. On the other hand, this initial investigation is an im-
portant step because it lays the groundwork for significant future
investigation in designing mechanical systems that outperform
the baseline proof of concept results shown here. Multiple future
directions are explicitly stated in Section 4.

3.1. Probability of hash collision decreases with increasing distance
between input loads

The first major result of this investigation is shown in Fig. 4
where we visualize the probability of a hash collision pcoriision
vs. the [ distance between the normalized input loads (sam-
pled with N = 1000) for all rectangular domains. Following
Section 2.3.2 and Section 2.3, we define a collision as the cir-
cumstance where every component of the hash value is within
distance S = 0.01 (with all input loads normalized to have
the same total resultant force). For example, [0.5, 0.25, 0.25]
and [0.495, 0.2525, 0.2525] would “collide”. The critical outcome
shown in this plot is that peision decreases as the L distance
increases, which is desirable behavior for locality sensitive hash-
ing and hashing for similarity search in general. We note briefly

that the inset plot of Fig. 4 shows the mean pcojision curve for
all rectangular domains where this decrease is readily visible.
However, in Fig. 4, we also plot a baseline pcoision curve for a
simply supported beam with two supports which shows that
observing a decrease in pcoiision VS. the L*° input distance for this
selection of input loads (see Fig. 3a) is not sufficient to claim
LSH behavior. Therefore, we turn to the other metrics defined
in Section 2.3.3, Spearman’s p and classification accuracy, to add
needed context to our investigation.

3.2. Spearman’s p and classification accuracy vary across mechani-
cal systems

In Fig. 5, we explore two key components of the functional
behavior of our mechanical hashing systems, Spearman’s p and
classification accuracy, and visualize their relationship. From a
functional perspective, Spearman’s p captures a picture of the
potentially non-linear distance preservation between the input
loads and the hash values. And, from a functional perspective,
assessing classification accuracy will set up a toy problem and
baseline functional performance for future work in optimizing
mechanical domains to perform hashing functions. Specifically,
we anticipate future work in designing application specific me-
chanical systems that target specific functionality (e.g., high clas-
sification accuracy) where the results shown here will serve as
baselines at these tasks.

Overall, we observe that accuracy ranges from ~ 0.17, the
accuracy of a simply supported beam with two supports, to ~
0.8, the accuracy for simply supported ensembles with > 5
sensors (note that force sensors are all located at the supports).
For reference, accuracy = 0.05 corresponds to random guess-
ing, and accuracy = 0.77 corresponds to the prediction accu-
racy that is obtained by performing classification with the input
loads directly rather than with the hash values. And, overall,
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Fig. 6. Visualization of Spearman’s p (upper) and classification accuracy (lower) with respect to domain depth and number of sensors. In the left column, results
from individual rectangular domains are indicated by the O and ¢ markers, and the background shading is based on the rectangular domain with a fixed bottom. In
the right column, results from the lattice and custom domains are superimposed on the same background shading, thus comparing the lattice and custom domains
to the rectangular domain baseline. Note that the fill color of all markers is dictated by Spearman’s p (upper) and classification accuracy (lower). Fig. 12 also presents
Spearman’s p and classification accuracy plotted with respect to number of sensors and domain depth. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Spearman’s p and classification accuracy appear to be correlated,
which is consistent with LSH behavior for scenarios where the
hash function is not specifically learned to perform a non-linear
transformation on the distribution of inputs. In addition, it is
worth mentioning that the inset plot in Fig. 5 contains multiple
“poorly performing” domains with both low Spearman’s p and
low classification accuracy. Notably, the domains in this region
are rectangular domains that are deep and/or have only two
sensors. And, as demonstrated by the inset plot, these domains
all perform similarly to the simply supported beam with two
supports.

For each of the mechanical systems introduced in Section 2.3.2,
key observations are as follows:

e For the simply supported composite beams and beam en-
sembles, increasing ns leads to both higher Spearman’s p

and higher accuracy. And, the hard voting based ensemble
predictions tend to outperform the single mechanical sys-
tem results. Notably, the transition between ns = 2 and
ns = 3 leads to the largest incremental improvement in
performance for the simply supported beams (accuracy =
0.175 to accuracy = 0.42), which is also consistent with our
introduction to the concept of LSH in Section 2.2.

For the rectangular domains, accuracy and Spearman’s p
vary widely. As stated previously, some designs perform
poorly - similar to the simply supported beam with ns=
2 - whereas other designs exceed the simply supported
composite beam performance for the equivalent number of
sensors. In general, increasing ns and decreasing depth corre-
spond to increases in p and improvements in accuracy. From
a mechanics perspective, this is a logical result as increasing
ns will provide more information about mechanical behavior
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while increasing depth will lead to diminishing differentia-
tion between applied tractions with the same resultant force
and centroid following Saint-Venant’s principle [44].

e In comparison to the rectangular domains, the lattice
domains led to consistent performance improvements
(accuracy;s = 0.43, accuracy;4 = 0.51, accuracy;s = 0.61).

e In comparison to the rectangular domains and the lattice
domains, the custom domains selected offered little perfor-
mance improvement (accuracyc; = 0.42, accuracyc, = 0.37,
accuracycs = 0.37).

Further visualizations are shown in Fig. 12 where Spearman’s
p and classification accuracy are plotted with respect to the
number of sensors and domain depth. And, in Table 1, we also
list Spearman’s p and classification accuracy for each domain
directly. Finally, it is worth re-emphasizing that even when clas-
sification is performed on the input signals directly, we only
achieve accuracy = 0.77. This is because we defined an example
problem with loads that can be difficult to disaggregate in the
presence of noise. In Appendix C Fig. 6, we provide the confusion
matrix for the unaltered input signals to highlight which loads
are leading to overlapping predictions. This quantitative outcome
is consistent with the qualitative comparison that can be made
by examining the plots in Fig. 3a.

3.3. Architected domains change, and can be used to enhance, task
specific LSH performance

In Fig. 6, we re-organize the rectangular, lattice, and custom
domain data shown in Fig. 5 to better visualize the influence of
architected domains on Spearman’s p and classification accuracy
with respect to both domain depth and number of sensors. Crit-
ically, this figure demonstrates that even for a fixed number of
sensors, there is a large variation in domain performance. And, by
comparing Spearman’s p and classification accuracy of the lattice
domains to the rectangular domains, we can see that architecting
these domains can help overcome the drop off in performance
with respect to domain depth. Finally, the spread in performance
between the lattice and custom domains also indicates that there
is potential richness to this problem where selecting domains
that will perform well is non-trivial. These observations taken
together point towards a strong future opportunity to engineer
systems that, for a given suite of possible loads and allowable
number of sensors, are specifically designed to maximize Spear-
man’s p, classification accuracy, and/or achieve an alternative
type of engineered relationship between mechanical inputs and
sensor readouts. Though the notion that architected domains can
alter force transmission is a straightforward result, the framework
that we have established here will directly enable future work in
the design and optimization of architected domains to perform
desirable application specific signal transformations.

4. Conclusion

In this paper, we began with a brief introduction to the con-
cept of hashing and hashing for similarity search. Then, we define
locality sensitive hashing and lay the foundation for considering
mechanical systems as locality sensitive hash functions. From
both our analytical and computational investigations, we find
that mechanical systems can exhibit the properties required for
locality sensitive hashing, and we find that by tuning mechanical
inputs (e.g., boundary conditions, domain architecture) we can
change the functional efficacy of mechanical systems for this task.
Based on our observations, and the very general scope of “me-
chanical systems”, we anticipate that there will be a significantly
broader potential range of behavior than what we captured in the
systems selected for this study. Overall, the main contributions
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Table 1
Summary of results, supporting information for Fig. 5.

System type Number of Domain Spearman’s Classification
Sensors ns depth d 0 accuracy

simply supported 2 n/a 0.36 0.17
simply supported 3 n/a 0.55 0.42
simply supported 4 n/a 0.59 0.5
simply supported 5 n/a 0.59 0.5
simply supported 6 n/a 0.67 0.65
simply supported 7 n/a 0.75 0.75
simply supported 8 n/a 0.74 0.76
simply supported 9 n/a 0.8 0.81
simply supported 10 n/a 0.79 0.8
ss ensemble 3 n/a 0.49 0.47
ss ensemble 4 n/a 0.54 0.65
ss ensemble 5 n/a 0.55 0.72
ss ensemble 6 n/a 0.59 0.81
ss ensemble 7 n/a 0.63 0.82
ss ensemble 8 n/a 0.65 0.83
ss ensemble 9 n/a 0.68 0.82
ss ensemble 10 n/a 0.7 0.82
rect fixed btm 2 1 0.41 0.41
rect fixed btm 3 1 0.52 0.65
rect fixed btm 4 1 0.65 0.61
rect fixed btm 5 1 0.69 0.77
rect fixed btm 2 2.5 0.47 0.41
rect fixed btm 3 25 0.49 0.56
rect fixed btm 4 25 0.55 0.56
rect fixed btm 5 25 0.55 0.63
rect fixed btm 2 5 0.46 0.41
rect fixed btm 3 5 0.46 0.42
rect fixed btm 4 5 0.46 0.47
rect fixed btm 5 5 0.46 0.47
rect fixed btm 2 10 0.37 0.31
rect fixed btm 3 10 0.37 0.39
rect fixed btm 4 10 0.37 0.3
rect fixed btm 5 10 0.37 0.37
rect fixed btm 2 20 0.36 0.2
rect fixed btm 3 20 0.36 0.44
rect fixed btm 4 20 0.36 0.2
rect fixed btm 5 20 0.36 0.42
rect 2 1 0.37 0.17
rect 3 1 0.55 0.44
rect 4 1 0.59 0.52
rect 5 1 0.69 0.63
rect 2 2.5 0.36 0.18
rect 3 2.5 0.55 0.41
rect 4 2.5 0.59 0.51
rect 5 2.5 0.65 0.61
rect 2 5 0.36 0.2
rect 3 5 0.47 0.42
rect 4 5 0.46 0.47
rect 5 5 0.48 0.46
rect 2 10 0.36 0.2
rect 3 10 0.36 0.38
rect 4 10 0.36 0.2
rect 5 10 0.36 0.38
rect 2 20 0.36 0.21
rect 3 20 0.36 0.44
rect 4 20 0.36 0.2
rect 5 20 0.36 0.42
lattice 3 10 0.53 0.43
lattice 4 10 0.58 0.51
lattice 5 10 0.58 0.61
custom 1 3 10 0.53 0.42
custom 2 3 10 0.38 0.37
custom 3 5 10 0.44 0.37

of this work are to: (1) introduce the concept of locality sensitive
hashing via mechanical behavior, (2) define a numerical approach
to readily assessing metrics that indicate functional locality sen-
sitive hashing behavior, and (3) establish a baseline performance
for future comparison where mechanical systems are optimized
to perform hashing for similarity search related tasks.

Following this thread, is worth highlighting that we view this
investigation as a starting point for significant further study of
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Fig. 7. (a) Schematic illustration of Fg; (b) Visualization of the amplification of the +R1 term defined in Eq. (6) for different support positions I, and I, (here
m = 0.1, the x markers indicate choices where |, — Iy| < mL, and we discretize 11 evenly spaced potential support positions [0, L]); (c) Schematic illustration of an

example of two loads that will always collide for F;.

hashing performed by mechanical systems. Looking forward, we
anticipate four key endeavors that will build on this work. First,
future work is required to demonstrate that mechanical systems
besides simply supported and simply supported composite beams
do or do not meet the formal definition of locality sensitive
hash functions. We anticipate that this work will be conducted
by beginning with our straightforward to compute proxies for
locality sensitive behavior, and then showing formally that a
given mechanical system is able to meet the definition laid out in
Eq. (2) by anticipating extreme load pairs following the procedure
in Appendix A.1. Second, an important next step is the physical
realization of mechanical systems for locality sensitive hashing.
Constraints imposed by the need for ready constructability and
current sensing capabilities will pose a challenge [45], and it will
be important to determine if our findings remain consistent in
the equivalent experimentally realized systems. Third, it will be
interesting to explore the efficacy of a learning to hash approach
in mechanical systems where the input distribution is known
and the hash function (i.e., the mechanical system) is designed
specifically to perform a desired task [46,47]. The framework and
metrics defined here will allow us to construct an optimization
problem where both system mechanical behavior and sensor
placement can be jointly tailored to serving a specific function.
In future learning to hash applications, the mechanical systems
explored in this work can serve as a baseline for comparison,
where optimized systems should lead to better performance of a
desired task. Because this is a challenging optimization problem,
we anticipate that there will be a need to implement efficient
modeling and optimization strategies [48-51]. Finally, we an-
ticipate that the structural form of architected materials that
are highly effective at hashing for similarity search may exist in
nature, and identifying relevant motifs may help us better un-
derstand force transmission in biological cells and tissue. Though
this initial study is quite straightforward, we anticipate that it will
directly enable a highly novel approach to physical computing.

5. Additional information

The data and code to reproduce and build on the results in
this paper are provided on our GitHub page (https://github.com/
elejeune11/mechHS).
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Appendix A. Simply supported composite beams as locality
sensitive hash functions

Here we provide supporting information for the work pre-
sented in Section 2.1. As stated in the main text, we are exploring
the problem schematically illustrated in Fig. 1c. Following the
definition in Eq. (1), our goal is to determine if a given family
of mechanical hash functions F is (R, cR, p1, p2)-sensitive.

A.1. Simply supported beams

As our first exploration, we define a family of mechanical
hash functions F as a family of simply supported beam reaction
forces. This family, illustrated in Fig. 7a, is defined by the ran-
domly generated placement of reaction supports, A and B placed
at I, and I, respectively. These supports can have any location as
long as they are separated by distance mL, where 0 < m < 1
and L is the length of the beam. To begin, we will first establish
R, the threshold distance, and p;, the probability of a collision
for two loads within the threshold distance. For simplicity, we
choose to define R for p; = 1. To do this, we need to define the
threshold distance between two loads w(x); and w(x), that will
always hash to the same value, defined as h[w(x)] = h[w,(x)]
and alternatively written as h; = h,. To explicitly define distance
R, we need to define the size of our hash buckets S. Because our
outputs will come in the form of continuous numerical values,
we will conceptualize our hash buckets as discrete bins that
break up this continuous space into bins of size S. To mitigate
the influence of the placement of the bin boundaries, we will
simply consider any two numbers within distance S as identical.
Therefore, for a simply supported beam, two loads wi(x) and
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w,(x) will experience a hash collision when both reaction forces
collide, defined as:

|Ay1—Ay2|<S |By]—By2|<S.
For Fs, we can define w; and w; in terms of R as:
wy(x) = wi(x) = R1 (6)

where 1 is a vector with the same length N as wi(x) and w;(x)
such that R is the L*° norm of the distance between wi(x) and
wo(x). For Fg, as illustrated in Fig. 7b, the most extreme ampli-
fication of the =R 1 term will occur when [, = 0 and [, = mL
(alternatively I, = L — mL, I, = L). For I, = 0 and [, = mL, we
perform a simple equilibrium calculation to compute:

and

(5)

L 1 L
Api =/ wl(x)dx——/ wi(x)x dx
0 mL Jo
1 L
B = — X)xdx 7
Y1 mL J, w1(x) (7)
1
Ay2:Ay]:l: 1_ﬂ RL

1
By2 = Dy1 :l: <E)RL

which allows us to compute:

Ajn —Ap| = (l — 2:11>RL’ (8)
1

By1 — By | = ’<2m>RL‘

where:
1 1

S= max( |(1- ﬂ)RL , (%)RL|> 9)

1
=[(5- )R]
2m
for 0 < m < 1 which allows us to compute:
R=2mS/L. (10)

Therefore, for d(p, q) < 2mS/L, p; = 1.

Following our identification of R for p; = 1, we need to see
if it is possible to specify ¢ such that p, < p;. Here is where
we encounter the fundamental limitation of i as a (R, cR, p1,
p2)-sensitive hash function.

Of course, for F;s, we can define two loads w1(x) and w,(x) that
are arbitrarily far apart (i.e., no upper limit on c) that will always
lead to a hash collision. Specifically, we just need to choose two
different loads with the same resultant force and centroid. For

example, illustrated in Fig. 7c, we can define one load as:
wi(x) = q1 (11)

where q is a constant and 1 is length N vector of ones, and another
load as a central spike, written as:

L(N—1)
0, X< =55
wy(x) = {gN, HB2D <x < HOED (12)
0, % <X

and illustrated in Fig. 7c. For this choice of wq(x) and w-(x), we
can compute |jw(x) — wa(x)|loo as:

lwi(x) — wa(X)lleo = q(N — 1) (13)

which can become arbitrarily large.> Because p, = 1 for any value
of ¢, we can formally say that F is not (R, cR, p1, p2)-sensitive.

2 (%) — wa®)llos = qN — 1) if N is odd, [|wi(x) — w2(x)]lo = GIN/2 — 1)
if N is even.
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A.2. Simply supported composite beams with > 2 supports

If we instead consider a slightly more complicated family of
mechanical systems, simply supported composite beams with
3 supports, referred to as Fy_.3 and illustrated in Fig. 8a, this
picture changes. Here, we consider a composite beam where
segments AB and BC are connected via a roller support with
supports A, B, and C located at I, I, and I. respectively. In this
case, a hash collision between two loads w1(x) and w,(x) requires
all three support reactions to collide, written as:

|Ay1 —Ay2| <S and |By] —By2| <3S |Cy1 — Cy2| <S.

(14)

We can follow the same logic to compute R as the prior F
example. Specifically, for Fs;_.3 we identify the most extreme
amplification of the +R1 term introduced in Eq. (6) for [, = 0,
I, = mL, and I = 2mL, where m controls the minimum allowable
distance between supports (see Fig. 8b for a visualization of this
amplification). Again, we perform a simple equilibrium calcula-
tion to compute the reaction supports A,, B,, C, for w¢(x) and
wo(x) as:

mLmeL wi(x)dx — meL w1(x)x dx

A =
Vi mL
L mL (™ wi(x)dx — [™ wi(x)xdx
By] :/ ‘LU](X)dX— fo 1( ) 0 1( )
0 mL
B fnﬁL wq(x)xdx — mLfnﬁL w1 (x)dx
mL
frfu wy(x)xdx — mLfnLqL wi(x) dx
G = (15)
mL
RmL
Ay2 = Ay] :l: T
5o — o+ (RL RmL  R(L —mL)?
2o 2 2mL
ot (L —mL)’R
2= 2mL
which allows us to compute:
RmL
= =5
5 gl = |k RmL  R(L —mL)? (16)
i e 2 2mL
c ool — (L —mL)’R
VT omL
which can be manipulated, following the example in Eq. (9), as:
RmL RmL R(L—mLY| |(L—mL)*R
S=max{|—]|, |[RL— — — s
2 2mL 2mL
(17)
(L—mL)*R V12
S:[ znr;L |’ , 0<n}<]_T (18)
R(L—mL
|RL—f5% — ST 1- Y <m <]
which allows us to determine:
2SmL
= (19)
(L — mL)?

where 0 < m < % As a brief note, we define 0 < m <

% for the general case of 3 supports in order to accommodate
all supports within total length L while simultaneously allowing
realizations that place supports at any location throughout the
domain. Eq. (19) will hold for 0 < m < 1 — ¥12,
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Fig. 9. Simulated probability of a collision (pconision With respect to the dis-
cretization of the input load (N) for different values of m. For m = 0 the curve
plotted matches Eq. (21).

After we have shown that we can compute R for p; = 1,
we then need to show that for some value of ¢ greater than 1,
p1 will be greater than p,. To do this, we conceptualize a worst
case example of wi(x) and w,(x) where substantially different
loads will lead to hash collisions by considering the two loads
illustrated in Fig. 8c. Here, w(x) = 0 and we can define w,(x) as
a piecewise function:

0, X < %,
tL (t+1)L
_CR/Z, N S X < Tv
walx) = YR, Gk <x < GRL (20)
(t+2)L (t4+3)L
—CR/2, N S X< SRS,
0, (H[—V3)L <x

where t is an integer, and L/N with N > 3 represents the
discretization of the load, and ¢ > 1 following the definition
introduced with Eq. (1). In this case, a hash collision will occur
when either: (1) ¢ is small enough that w,(x) will always lead
to a change in support force <S regardless of where the support
positions are located, or (2) when the support positions defined
by distances I, Iy, and I. (see Fig. 7b-i) all fall outside the range
[tL/N, (t 4+ 3)L/N]. To satisfy the conditions for locality sensitive
hashing laid out in Egs. (1)-(2), we need to show that arbitrarily

11

far apart functions (i.e., large ¢ and thus large distance between
functions d(w, w,) = cR) experience a hash collision with p, <
p1. In other words, we need to determine if there is an upper
bound on p, as values of ¢ become arbitrarily large. To do this,
we consider scenario (2) and compute p, as the probability that
distances Iy, Iy, and I, all fall outside the range [tL/N, (t + 3)L/N]
as a function of our discretization N and our minimum distance
between support m. In Fig. 8¢, we plot p, vs. N for multiple values
of m. Note that for m — 0, we can readily compute:

N-37
p2 = |: N ]
as the probability that all three supports will be placed outside of
the tL/N < x < (t 4+ 3)L/N zone if their locations are randomly
generated. From Fig. 9, we also see that higher values of N lead
to higher values of p,. However, it is clear that even for this
worst case of comparison points with large ¢, p, < p; and thus
the system is (R, cR, p1, p2)-sensitive. Notably, this simplest case
example paves the way for the investigation of more complex
mechanical systems as (R, cR, p1, p2)-sensitive.

(21)

Appendix B. Example problem additional details

In Section 2.3, we define the example problem that will lead
to the results proposed in Section 3. Here we provide additional
information to ensure that our problem definition is clear.

B.1. Simply supported ensemble

In Fig. 3b-d, we illustrate the mechanical systems that we
explore as hash functions. Here, in Fig. 10, we explicitly illustrate
what we mean by an “ensemble” of simply supported beams.
Namely, each ensemble contains 100 simply supported beams
with randomly generated support locations. Each one of these
devices may lead to a different load class prediction, and the final
prediction of the ensemble is the hard voting based outcome of
combining all 100 of these predictions. In hard voting, the class
labels with the highest frequency from the ensemble predictions
becomes the final prediction.

B.2. Applied load categories

The applied loads introduced in Section 2.3.1 are described in
more detail as follows:
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Fig. 10. Explicit illustration of the difference between simply supported “S” and simply supported ensemble “E” mechanical systems for the case with 5 supports.

e (lass 1, constant load (¢ = 1/L):

wy(x) = —c (22)
e Class 2, piecewise linear load (c = 2/L):
) = —c+%x, 0<x<}£, (23)
(5-x%, L<x=<IL
e Class 3, piecewise linear load (c = 2/L)
=] 1 0=reE (24)
Lx—2c, L<x=<lL
e Class 4, linear load (c = 2/L):
wa(x) = %x —c (25)
e (lass 5, linear load (¢ = 2/L):
ws(x) = —%x (26)

e Class 6, sine wave with wave number k = 0.5 and offset

o =0:
k 5
sinf —x — 27
27l ¢

e (Class 7, sine wave with wave number k =
¢ =0, see Eq. (27).

e (Class 8, sine wave with wave number k =
¢ = 0.25, see Eq. (27).

e Class 9, sine wave with wave number k =
¢ =0, see Eq. (27).

e Class 10, sine wave with wave number k
¢ = 0.25, see Eq. (27).

e Class 11, sine wave with wave number k
¢ =0, see Eq. (27).

e Class 12, negative kernel density estimate (kde) based on
n = 2 points p; with uniform random location on the
x-axis. The negative kde for a Gaussian kernel pg(x) with
bandwidth h = 0.1L is written as:

Zexp(_ —pz)2>

e (lass 13, negative kernel density estimate (kde) based on
n = 2 points p; with uniform random location on the x-axis,
see Eq. (28).

e Class 14, negative kernel density estimate (kde) based on
n = 2 points p; with uniform random location on the x-axis,
see Eq. (28).

e (lass 15, negative kernel density estimate (kde) based on
n = 5 points p; with uniform random location on the x-axis,
see Eq. (28).

e Class 16, negative kernel density estimate (kde) based on
n = 5 points p; with uniform random location on the x-axis,
see Eq. (28).

T

—3 (27)

we(X) =

1.0 and offset
1.0 and offset
1.5 and offset
1.5 and offset

2.0 and offset

wia(x (28)

12
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Fig. 11. Confusion matrix based on the original input loads. Note that this
confusion matrix corresponds to a classification accuracy of 0.77 across 20
classes.

e Class 17, negative kernel density estimate (kde) based on
n = 5 points p; with uniform random location on the x-axis,
see Eq. (28).

e (lass 18, negative kernel density estimate (kde) based on
n = 25 points p; with uniform random location on the
x-axis, see Eq. (28).

e (lass 19, negative kernel density estimate (kde) based on
n = 25 points p; with uniform random location on the
x-axis, see Eq. (28).

e Class 20, negative kernel density estimate (kde) based on
n = 25 points p; with uniform random location on the
x-axis, see Eq. (28).

Each load is set up so that the area under the curve is equal to
1. There are 20 examples for each of the 20 classes of loads. The
20 examples are all differentiated from each other through the
addition of Perlin noise with randomly selected initial seed and
integer octave in range [2 — 10]. Details for accessing the code to
exactly reproduce these loads including the randomly generated
Perlin noise are given in Section 5.

Appendix C. Results additional details

This Appendix contains additional supporting results to sup-
plement the information presented in Section 3. In Section 3, we
compare the classification accuracy of our mechanical systems
to both random guessing accuracy = 0.05 and direct analysis
of the original input data accuracy = 0.77. Here, in Fig. 11, we
show the confusion matrix for nearest neighbor load classification
based on the original input data. The purpose of showing this
graphic is to demonstrate that we have chosen a challenging
suite of applied loads that are non-trivial to distinguish. Next,
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Fig. 12. As a supplement to Fig. 5, we provide Spearman’s p and classification accuracy plotted with respect to both number of sensors and domain depth.

for completeness and as an alternative view of the relationship
between Spearman’s p, classification accuracy, and mechanical
domain properties, we provide Fig. 12 as a supplement to Figs. 5
and 6. Finally, we provide Table 1 which contains Spearman’s p
and classification accuracy for every system investigated in this
study. These data are directly visualized in Figs. 5, 6, and 12.
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